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Abstract—Radio access networks (RANs) in monolithic
architectures have limited adaptability to supporting dif-
ferent network scenarios. Recently, open-RAN (O-RAN)
techniques have begun adding enormous flexibility to RAN
implementations. O-RAN is a natural architectural fit
for cell-free massive multiple-input multiple-output (CFm-
MIMO) systems, where many geographically-distributed
access points (APs) are employed to achieve ubiquitous
coverage and enhanced user performance. In this paper, we
address the decentralized pilot assignment (PA) problem for
scalable O-RAN-based CFmMIMO systems. We propose
a low-complexity PA scheme using a multi-agent deep
reinforcement learning (MA-DRL) framework in which
multiple learning agents perform distributed learning over
the O-RAN communication architecture to suppress pilot
contamination. Our approach does not require prior channel
knowledge but instead relies on real-time interactions made
with the environment during the learning procedure. In
addition, we design a codebook search (CS) scheme that
exploits the decentralization of our O-RAN CFmMIMO
architecture, where different codebook sets can be utilized
to further improve PA performance without any significant
additional complexities. Numerical evaluations verify that
our proposed scheme provides substantial computational
scalability advantages and improvements in channel esti-
mation performance compared to the state-of-the-art.

Index Terms—Open-RAN (O-RAN), cell-free massive
MIMO, deep reinforcement learning, pilot assignment.

I. INTRODUCTION

A. Open Radio Access Network (O-RAN)
Next generation wireless technologies will likely em-

ploy many dispersed radio access networks (RANs) for
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Fig. 1: O-RAN architecture with different types of control loops.

ubiquitous coverage and enhanced user performance [1],
[2]. However, interconnecting different RANs to create
one seamless network requires well-defined network func-
tions and interfaces which are flexible in their integration
capability. Recently, the evolution of software-defined
open RAN (O-RAN) solutions have added enormous flex-
ibility to the implementation of current 5G networks [3]–
[5] and development of emerging 6G networks. O-RAN
offers software-defined disaggregation on virtual network
functions (VNFs) and necessary interfaces to support their
coordination, allowing system implementations adaptive
to various architectural settings. With this openness
and flexibility, O-RAN promotes interoperability across
different RAN vendors and allows network operators to
adapt to different wireless environments.

O-RAN adopts the functional split defined in 3GPP [6]
and defines three distinct units [7]: the open central unit
(O-CU), open distributed unit (O-DU), and open radio
unit (O-RU). Moreover, O-RAN operation is divided into
three different control loops [7]: the real-time (RT), near-
RT, and non-RT loops executing at different time-scales.
The resulting O-RAN architecture and standard names of
interfaces therein, which enable practical implementation
of many RAN operations, are depicted in Fig. 1.

O-RAN offers two types of RAN intelligent controllers
(RICs) [7] as shown in Fig. 1: near-RT RICs and non-RT
RICs. Each of these RICs handles tasks manageable in
different time-scales. O-RAN offers virtualization of both
RICs, which promotes flexibility in implementing data-
driven intelligence tasks that will be key components
of emerging wireless networks. Various operations can



O-DU

O-RU

User

O-Cloud

Uplink Pilot 
TransmissionUser-centric 

RU Clusters

Backhaul

O-FH

RIC VNF

Database

Inter-DU Connection

Fig. 2: A decentralized CFmMIMO system realized in O-RAN.

be implemented via custom third-party applications
called xApps/rApps [7], allowing RICs to be much more
accessible to the public. In this work, we will consider
the implementation of machine learning (ML) algorithms
over these RICs to optimize pilot signal assignments.

Due to these aforementioned advantages offered by
O-RAN, a number of opportunities to utilize O-RAN on
future wireless technologies seem promising:
• Massive multiple-input multiple-output (MIMO) beam-

forming (BF): To implement ML-based BF strategies
that handle both latency-sensitive (e.g., RT beam selec-
tion with quick updates) and data-intensive (e.g., policy
update using a large dataset) tasks is challenging, and
O-RAN provides a platform for these approaches [8]–
[10]. ML tasks are implemented in RICs, and BF
operation can be split over O-RU and O-DU (e.g.,
option 7.2x [11]) to maximize efficiency.

• Unmanned aerial vehicle (UAV) networking: UAVs
are typically deployed in dynamic environments (e.g.,
emergency rescue and aerial surveillance [12]), where
the network infrastructure is required to be extremely
flexible and adaptive. Flexibility and interoperability
offered by O-RAN can be exploited to meet this
architectural need [13], [14].

• Localization via channel charting: Channel charting
is a data-driven localization technique [15] that maps
a user to radio geometry using channel information.
For the practical implementation of channel charting,
O-RAN can offer a balanced distribution of heavy
computational load coming from the data that is
consistently collected and updated for each user.

B. Cell-free Massive MIMO
One innovative idea to address the shortcomings

of 5G cellular networks is to remove cell boundaries
using many dispersed transmission/reception points. This
idea falls within the academic definition of cell-free
massive MIMO (CFmMIMO) [16]–[18]. By deploying
many geo-distributed access points (APs), CFmMIMO
system alleviates the existing cell-edge problems by
substantially improving both the reliability [19] and

energy efficiency [20] compared to cellular massive
MIMO. These enhancements are due to the user-centric
paradigm offered by CFmMIMO, where a group of APs
are dynamically selected to serve each user.

In the early CFmMIMO literature, a system with APs
connected to a single processing unit (PU) was considered
for centralized operation. However, in a scalable system
where the number of users and APs grow large, the
resulting complexity becomes prohibitive [21]. Thus,
CFmMIMO with multiple decentralized PUs (Fig. 2),
each of which is connected to a disjoint subset of APs,
has been introduced to consider scalability [21]–[24].
The decentralization allows the system to scale while
still being practical by reducing the computational and
fronthaul load on each PU [18]. Nevertheless, imple-
menting centralized CFmMIMO techniques (e.g., signal
adaptation and resource allocation) into a decentralized
architecture is a challenging task.

C. CFmMIMO Pilot Assignment Problem

In CFmMIMO, reliable channel estimation at both
transmitter and receiver is critical to facilitate advanced
diversity and signal processing techniques. For channel
estimation, a set of orthogonal pilots are used. However,
when the number of users grows beyond the number of
available pilots, some users must share their pilots with
others, leading to pilot contamination (PC) that can signif-
icantly degrade the channel estimation performance [25].
To cope with PC, various pilot assignment (PA) methods
have been studied in the CFmMIMO literature [26]–[32].

In [26], a greedy PA scheme with iterative pilot updates
was proposed to mitigate PC. A pilot reuse scheme
to acquire dynamic sets of users for pilot sharing was
proposed in [27]. In [28], a PA strategy, in which the same
pilot is assigned to users with minimum overlapping APs,
was proposed. Other methods to solve the PA problem
include k-means clustering [29], graph coloring [30],
tabu-search [31], and Hungarian [32] algorithms.

These prior works [26]–[32], however, conduct PA via
centralized processing. Thus, their computational com-
plexities become prohibitive as the number of users grows
large (e.g., Fig. 13a). While one can always consider
conducting a set of uncoordinated local PAs, such an
architecture without global orchestration can degrade the
overall performance. Successful decentralization requires
a carefully designed coordination strategy to achieve
performance comparable to the centralized case. To the
best of our knowledge, no work has yet developed
and analyzed such a well-engineered distributed PA for
CFmMIMO systems. In addition, these works [26]–[32]
use closed-form expressions derived from Bayesian esti-
mation, requiring any relevant information (e.g., pathloss)
to be known a priori. The required information is in
general obtained via estimation (e.g., pathloss can be



estimated after collecting power measurements); however,
for large-scale systems, especially under a dynamic
environment, accurately estimated prior information is
often not available due to the large overhead imposed,
underscoring the need to develop a PA scheme that does
not require prior knowledge. As a viable approach to
address these issues, in this work, we adopt a learning-
based optimization technique called multi-agent deep
reinforcement learning (MA-DRL) to conduct decentral-
ized PA in a CFmMIMO system.
D. Overview of Methodology and Contributions

Motivated by the aforementioned challenges, we focus
on PA in scalable CFmMIMO systems. As CFmMIMO
deploys a large number of APs for ubiquitous coverage,
it is crucial to maintain a great level of implementation
flexibility and interoperability across different RANs for
scalability. Hence, we propose to design our CFmMIMO
system in O-RAN architecture. As O-RAN balances
operational complexities and computational loads via
a functional split along the network (i.e., O-RU/DUs and
RICs), O-RAN becomes a natural solution for scalable
CFmMIMO systems.

Based on the O-RAN CFmMIMO system, we formu-
late a decentralized PA problem and develop a learning-
based PA scheme to solve it. We resort to a MA-DRL
framework, where a group of agents individually perform
their learning to provide a low-complexity solution
without an explicit training stage [33]–[35]. Our scheme
is designed to operate in the near-RT RIC of O-RAN.
We summarize the key contributions of our work below.
• We design our CFmMIMO system based on the O-

RAN architecture (Sec. II). We specifically focus on
channel estimation and PA models considering practi-
cal aspects (e.g., fronthaul overhead and operational
complexity by each functional unit), which can be
adopted to the O-RAN CFmMIMO systems.

• We design a Markov game model (Sec. III-C) for our
MA-DRL which leads to an efficient solution for our
decentralized PA problem. In particular, we formulate
our reward based on observations that are directly
measurable at the O-RUs. Thus, our scheme does not
require prior knowledge of channel statistics, which
is different from previous PA algorithms [26]–[32].

• We propose a novel learning-based PA scheme
(Sec. III-D) aiming to minimize the total mean
squared error (MSE) across the users. By adopting
the MA-DRL framework, our scheme provides a low-
complexity PA solution, the computation complexity
of which increases at a much lower rate compared
to the previous PA algorithms and therefore offers a
scalability advantage to support large-scale systems.

• Utilizing the decentralization of our system, we con-
sider two effective ways to improve the PA perfor-
mance: (i) inter-DU message passing for observation

sharing and (ii) low-complexity codebook search (CS)
algorithm (Sec. III-E) that jointly operates with our PA
scheme. Numerical results verify that these approaches
can further improve the PA performance.

• We show that our PA scheme can maintain its perfor-
mance over a mobile environment, which is possible
due to (i) the DRL framework that naturally performs
adaptive learning and (ii) the CS algorithm with
iterative greedy search. Previous PA methods only
consider a static environment and do not address the
user mobility.

• We numerically evaluate (Sec. IV) the performance
of our PA scheme against the state-of-the-art [31],
[32] in both channel estimation performance and
computational complexity. The results show that our
scheme outperforms the benchmarks in terms of sum-
MSE and scalability.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the architecture of the
considered O-RAN-based CFmMIMO system (Sec. II-A)
to establish a foundation for CFmMIMO decentralization.
Then, after describing the channel model (Sec. II-B),
we provide details of codebook-based channel estima-
tion (Sec. II-C) and uplink/downlink data transmission
(Sec. II-D). Finally, we formulate our decentralized PA
problem (Sec. II-E) and explain the relationship between
the PA task and channel estimation performance.

A. CFmMIMO Configuration in O-RAN Architecture
Our decentralized O-RAN CFmMIMO system is

illustrated in Fig. 2. We consider M single-antenna O-
RUs and U O-DUs collected in sets M = {1, 2, . . . ,M}
and U = {1, 2, . . . , U}, respectively. The O-RUs are ran-
domly placed using uniform distribution across the area
that is divided into U disjoint regions for system decentral-
ization, and each O-DU is deployed to one of the regions.
Each O-RU is connected to one of the O-DUs in U via an
open fronthaul (O-FH) connection such that O-RUs within
each subdivided region are connected to the same O-DU.
We define MDU

u ⊆ M as the set of O-RUs connected to
O-DU u ∈ U . We assume inter-DU connections [36] to
form fully user-centric RU clusters since the users can be
served by RUs from different sets of MDU

u . We assume
ideal O-FH and inter-DU connections [30], [31].

Here, we have our O-DUs connected to O-Cloud [7]
via backhaul network (Fig. 2). O-Cloud is the cloud
computing platform that supports the virtualized network
functions (VNFs) within O-RAN, which include RICs.
In designing our PA scheme, we specifically focus on
the near-RT RIC that communicates with O-DUs via E2
interface (Fig. 1). Within the near-RT RIC, we assume U
independent learning agents, each of which has a one-to-
one correspondence to one of the O-DUs in the system.
Note that we assume multiple agents to fully impose
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decentralization on our system. Thus, each agent in the
near-RT RIC conducts local learning through the O-DU
and O-RUs connected. We also consider a single non-RT
RIC interacting with the near-RT RIC via an A1 interface
(Fig. 1), which is responsible for learning model updates
of the near-RT RIC.

Next, we consider K single-antenna users in a set
K = {1, 2, . . . ,K}. For each user k, a user-centric RU
cluster is formed such that only MUE

k ≪ M O-RUs are
engaged to serve the user, where we define MUE

k ⊂ M
to be the set of O-RUs serving user k ∈ K (i.e., MUE

k =
|MUE

k | where | · | denotes the set cardinality). Each MUE
k

is assumed to be selected and updated using a procedure
independent from our PA (e.g., radio resource control
(RRC) setup procedure [37]). We also define KRU

m ⊂ K
to be the set of users served by O-RU m ∈ M.

Since we have U multiple agents performing PA, each
user k ∈ K must belong to one of these agents. To
develop user-to-agent pairings, we consider two different
types of users: (i) user k whose MUE

k is connected to
a single O-DU u, i.e., MUE

k ⊆ MDU
u , which we simply

pair that user k to the corresponding agent u, and (ii) user
k whose MUE

k consists of O-RUs from different O-DUs.
For the second type, a serving O-DU [36], which can
be defined by any reasonable criterion (e.g., the O-DU
with the most number of O-RUs serving the user), is
determined and paired with the user. We define KDU

u to
be the set of users whose PA is managed by O-DU u.
Example 1. We consider a scenario with U = 3,
M = 9, and K = 3, which is illustrated in Fig. 3.
For decentralization, each O-DU is connected to three
O-RUs that are closest (e.g., MDU

1 = {1, 2, 3}), and user-
centric RU clusters with MUE

k = 4 are formed for each
user (e.g., MUE

1 = {1, 2, 4, 5}). Note that an O-RU can
serve multiple users (e.g., KRU

2 = {1, 2}). Since each
user needs an agent for PA, the user is paired to one of
the three O-DUs (e.g., KDU

1 = {1, 2}).

B. Time-varying Channel Model
We assume a periodic channel estimation with time

interval Te and indicate each estimation instance using
index i = 0, 1, . . . , N . The channel between user k ∈ K
and O-RU m ∈ M during channel estimation instance i

is formally expressed as

g
(i)
km =

√
β
(i)
kmh

(i)
km, (1)

where h
(i)
km = µkh

(i−1)
km +

√
(1− µ2

k)n
(i)
km is the small-

scale fading factor following a first-order time-varying
Gauss-Markov process for i = 1, 2, . . . , N . The perturba-
tion terms {n(i)

km} are zero-mean, unit-variance complex
Gaussian random variables that are independent and
identically distributed (i.i.d.) over k, m, and i, i.e., n(i)

km ∼
CN (0, 1). At i = 0, we assume h

(0)
km ∼ CN (0, 1) to be

mutually independent from n
(1)
km. The correlation coeffi-

cient µk for user k is defined as µk = J0(2π
vk

c fcTe) [38],
where J0(·) is the Bessel function of the first kind
of order zero, vk is the velocity of user k, fc is the
carrier frequency, and c = 3 × 108 m/s is the speed
of light. The magnitude of h

(i)
km is designed to follow

a Rayleigh distribution, which is effective in modeling
a dense scattering wireless environment [39]. The term
β
(i)
km in (1) is the large-scale fading factor that is inversely

proportional to the distance between user k and O-RU m
at the channel estimation instance i. There exist multiple
realistic large-scale fading models, including the 3GPP
urban-micro line-of-sight pathloss model [40].

C. Codebook-based Channel Estimation

We consider uplink channel estimation with Tp channel
uses for each estimation instance, allowing Tp orthogonal
pilots to be available. For each instance i, user k ∈ KDU

u

is assigned with one of the Tp pilots in a mutually
orthogonal codebook T (i)

u = {ϕ(i)
u,1,ϕ

(i)
u,2, . . . ,ϕ

(i)
u,Tp

},

where each ϕ
(i)
u,t for t = 1, 2, . . . , Tp is a unit-norm com-

plex vector of length Tp. Thus, for t, t′ = 1, 2, . . . , Tp,
(ϕ

(i)
u,t)

Hϕ
(i)
u,t′ = 1 if t = t′, and zero otherwise, where

(·)H denotes the conjugate transpose. We denote the pilot
assigned to user k as x

(i)
k .

For channel estimation, each user k ∈ K transmits
the assigned pilot x(i)

k . The signal vector (of length Tp)
received by O-RU m ∈ M is then expressed as y

(i)
m =

X(i)g
(i)
m +w

(i)
m =

∑
k∈K g

(i)
kmx

(i)
k +w

(i)
m , where X(i)=

[x
(i)
1 x

(i)
2 · · ·x(i)

K ] is the Tp ×K pilot matrix and g
(i)
m =

[g
(i)
1m g

(i)
2m · · · g(i)Km]⊤ is the channel vector (of length K)

for O-RU m. Here, w(i)
m ∼ CN (0, σ2ITp

) is the zero-
mean complex Gaussian noise vector of length Tp with
covariance σ2ITp , where In is the n× n identity matrix.

We discuss two different channel estimation structures
within O-RAN architecture, which we illustrate in Fig. 4,
and compare their communication overhead by computing
the number of bits exchanged during a single near-RT
control loop. One structure (Fig. 4a) performs channel
estimation at O-DU whereas the estimation occurs at
O-RU in the other structure (Fig. 4b). We assume that
Nn RT loops occur for each near-RT loop.
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Suppose representing the PA information x
(i)
k and

received signal y(i)
m requires bd = log2 Tp and bu = 2BTp

bits, respectively, where 2B is the number of bits used
to represent a complex number. For DU-based channel
estimation, the RIC first sends out the PA information of
the controlled users {x(i)

k }k∈KDU
u

over the backhaul using
bd|KDU

u | bits. O-DU u then passes this pilot information to
the master O-RU that serves user k over the O-FH using
another bd|KDU

u | bits. For each of the Nn RT loops, y(i)
m

from each O-RU m ∈ MDU
u must be collected by the O-

DU, which results in bu|MDU
u |Nn bits exchanged over the

O-FH. Hence, the total amount of overhead for DU-based
channel estimation is

∑U
u=1

(
2bd|KDU

u | + bu|MDU
u |Nn

)
bits. Note that 2bd|KDU

u | accounts for the data transferred
in both backhaul and O-FH links.

For the RU-based channel estimation, each of the O-
RUs serving user k must be informed with the pilot
information x

(i)
k to conduct channel estimation. Therefore,

in addition to the bd|KDU
u | bits exchanged between the

RIC and O-DU over the backhaul,
∑

m∈MDU
u

bd|KRU
m |

bits must be transferred via O-FH to deliver the pilot
information to the O-RUs. Note that, for RU-based
channel estimation, no RT data transfer is required since
the estimation occurs at each O-RU. Hence, the total
amount of overhead for RU-based channel estimation is
given by bd

∑U
u=1

(
|KDU

u | +
∑

m∈MDU
u

|KRU
m |

)
. Table I

shows the amount of overhead in bits per near-RT loop
required for channel estimations when M = 96, U = 4,
MUE

k = 8, and B = 8. From the result, we confirm that
RU-based estimation imposes less overhead than DU-
based one does. Note that it also benefits from latency
advantage as no data exchange is needed for RT loops.
Hence, similar to the work in [26], we assume our channel
estimation to take place at O-RUs.

Next, in case of user-centric RU clustering, each
RU m ∈ M only needs to estimate |KRU

m | different
channels (i.e., {g(i)km}k∈KRU

m
) associated with users in

TABLE I
The amount of overhead in bits per near-RT loop to perform channel

estimation

Estimation Tp = 4 Tp = 8
K = 24 K = 72 K = 24 K = 72

DU-based 61,536 61,728 123,024 123,312
RU-based 432 1,296 648 1,944

KRU
m . For estimating the channel, we consider two

different techniques called pilot-matching [19] and least-
square [41] estimations. If we set ĝ(i)

m = [ĝ
(i)
km]⊤k∈KRU

m
as

the |KRU
m |-length estimated channel vector from O-RU m

during the channel estimation instance i, pilot-matching
and least-square estimations are expressed as

ĝ(i)
m = (X̄(i)

m )Hy(i)
m = (Z(i)

m )H(X(i))Hy(i)
m (2)

and ĝ(i)
m = (X̄(i)

m )H(X(i)(X(i))H)−1y(i)
m

= (Z(i)
m )H(X(i))H(X(i)(X(i))H)−1y(i)

m , (3)

respectively, where X̄
(i)
m = X(i)Z

(i)
m = [x

(i)
k ]k∈KRU

m
is

the Tp × |KRU
m | pilot matrix of the users served by

O-RU m. We define a K × |KRU
m | selection matrix

Z
(i)
m = [z

(i)
k ]k∈KRU

m
where z

(i)
k is the K-length unit-

vector with its k-th element being one. Now, when
some of K users share the pilot, X(i) is not unitary
(i.e., (X(i))HX(i) ̸= IK), so the least-square estima-
tion in (3), which utilizes the pseudo-inverse term
(X(i))H(X(i)(X(i))H)−1 to negate the PC, yields better
estimation performance. However, in the least-square
approach, since X(i) needs to be known to every O-
RU and the size of X(i) increases linearly with K, the
resulting overhead causes significant delay as the number
of users grows. Note that, for the case of pilot-matching,
each O-RU m only needs to know {x(i)

k }k∈KRU
m

to obtain
X̄

(i)
m . This motivates the pilot-matching channel estima-

tion scheme in (2) for scalability [19]. The estimated
channel ĝ(i)km is then expressed as

ĝ
(i)
km = (x

(i)
k )Hy(i)

m =
∑
k′∈K

g
(i)
k′m(x

(i)
k )Hx

(i)
k′ +(x

(i)
k )Hw(i)

m

= g
(i)
km+

∑
k′∈K
k′ ̸=k

g
(i)
k′m(x

(i)
k )Hx

(i)
k′ +(x

(i)
k )Hw(i)

m . (4)

Note that the summation term the in last equality captures
the effect of PC.

D. Data Transmission Model

For uplink (downlink) data transmission, the estimated
channel in (4) is used as a combiner (a precoder),
the details of which are given as follows. For uplink
transmission, each user k transmits a data signal xu

k.
Then, the received signal yum at O-RU m is given by
yum =

∑
k∈K g

(i)
km

√
ρkx

u
k + wu

m, where ρk and wu
m are

the transmit power of user k and uplink additive Gaussian
noise on O-RU m with variance σ2

u , respectively. For
each user k ∈ KRU

m , O-RU m computes (ĝ
(i)
km)∗yum and



transfers it to the user’s serving O-DU. After collecting
the conjugate-multiplied signals from the O-RUs in MUE

k ,
the serving O-DU combines them to obtain the data signal
x̄u
k expressed as

x̄u
k =

∑
m∈MUE

k

∑
k′∈K

(ĝ
(i)
km)∗g

(i)
k′m

√
ρk′xu

k′ +
∑

m∈MUE
k

(ĝ
(i)
km)∗wu

m.

(5)
Based on (5) and the formulation in [18], the effective
uplink signal to interference plus noise ratio (SINR) of
user k is given by (7), where the expectation is over the
random variables.

For downlink transmission, the data signal xd
k is

transmitted by the O-RUs serving user k (i.e., O-RU
m ∈ MUE

k ) after applying the conjugate beamforming
expressed as x̄d

km = (ĝ
(i)
km)∗xd

k/|ĝ
(i)
km|. The received

signal ȳdk for user k is then given by

ȳdk =
∑
k′∈K

∑
m∈MUE

k′

g
(i)
kmx̄d

k′m + wd
k

=
∑
k′∈K

∑
m∈MUE

k′

g
(i)
km(ĝ

(i)
k′m)∗xd

k′ + wd
k, (6)

where wd
k is the downlink additive noise on user k with

variance σ2
d . Based on (6) and the approach in [18],

the effective downlink SINR is given by (8), where the
expectation is over the random variables.

Based on (7) and (8), the achievable uplink and down-
link spectral efficiencies (SEs) for user k are computed
as Ru

k = log2(1 + SINRu
k) and Rd

k = log2(1 + SINRd
k),

respectively. Note that these SE metrics can be used to
quantify the uplink/downlink data transmission perfor-
mance [18], [26]. Since the SINR expressions contain
the estimated channel term ĝ

(i)
km, the SEs are directly

impacted by the performance of channel estimation.
E. Problem Formulation

We use MSE of the channel estimation described in
Sec. II-C for our PA performance metric. For user k
served by the O-RUs in MUE

k , we define the MSE of the
channel estimate in (4) as

MSE
(i)
k = E

[ ∑
m∈MUE

k

∣∣∣ĝ(i)km − g
(i)
km

∣∣∣2]

=
∑

m∈MUE
k

E
[∣∣∣ĝ(i)km − g

(i)
km

∣∣∣2]

=
∑

m∈MUE
k

E

[∣∣∣ ∑
k′∈K
k′ ̸=k

g
(i)
k′m(x

(i)
k )Hx

(i)
k′ + (x

(i)
k )Hw(i)

m

∣∣∣2]

=
∑

m∈MUE
k

∑
k′∈K
k′ ̸=k

β
(i)
k′m

∣∣∣(x(i)
k )Hx

(i)
k′

∣∣∣2 + σ2, (9)

where the expectation is taken over the channel and noise.
The third equality holds as we substitute ĝ

(i)
km with (4).

Next, the last equality holds since (i) g(i)km and w
(i)
m are

i.i.d. across k and m and (ii) E[|g(i)km|2] = β
(i)
km and

E[∥w(i)
m ∥22] = σ2. From (9), we see that the MSE is

directly proportional to the interference caused by PC,
and thus can be used as an effective metric to quantify
the PA performance.

Since our system involves U agents, each of which
handles the PA of user k ∈ KDU

u , we can formulate the
PA optimization problem for agent u as

(Pu) : min
{x(i)

k }
k∈KDU

u

∑
k∈K

MSE
(i)
k (10)

s.t. x
(i)
k ∈ T (i)

u , ∀k ∈ KDU
u , (11)

∥ϕ(i)
u,t∥22 = 1,

(
ϕ

(i)
u,t

)H
ϕ

(i)
u,t′ = 0 if t ̸= t′,

∀t, t′ = 1, 2, . . . , Tp. (12)

If β
(i)
km, ∀k,m is known, one can directly evaluate∑

k∈K MSE
(i)
k using (9) and solve Pu using an exist-

ing PA algorithm (e.g., the previous works [26]–[32]).
However, in large-scale systems, such prior knowledge is
often not available, and one can no longer evaluate the
objective function in a straightforward manner. Suppose
the knowledge is somehow available for the MSE to
be evaluated, but some of these algorithms (e.g., PAs
using the Tabu-search [31] and Hungarian algorithm [32])
still cannot be considered as the complexity becomes
prohibitive for a large number of users. To address both
issues, we solve Pu via a distributed learning framework,
details of which are given in Sec. III. The decentralization
imposed in this work allows our PA scheme to be much
more scalable.

III. SCALABLE PA SCHEME FOR O-RAN CFMMIMO

In this section, we first describe how our proposed PA
scheme is framed in O-RAN (Sec. III-A). Next, after
providing preliminaries on MA-DRL (Sec. III-B), we
design a Markov game model perceiving our PA problem
(Sec. III-C), and show that the action selection in our
learning framework corresponds to minimizing the PC
(Theorem 1). Finally, we provide implementation details
for our DRL-based PA scheme (Sec. III-D) and iterative
CS algorithm (Sec. III-E).

A. Pilot Assignment Framework in O-RAN Architecture

Our PA scheme for CFmMIMO is designed based
on the O-RAN architecture defined in Sec. II-A. Its
conceptual block diagram is illustrated in Fig. 5. Here
the PA is conducted under three different O-RAN control
loops which have been described earlier in Fig. 1.

1) RT loop: We assume that a single round of channel
estimation steps described in Sec. II-C takes place in each
RT loop. Hence, we denote the index of each RT loop
using the same notation used for indexing the channel
estimation instance. In each RT loop i, users transmit
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(i)
km
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∑
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Fig. 5: A block diagram of the proposed PA scheme.

their assigned pilots, and the O-RU m completes the
channel estimation to obtain ĝ

(i)
km for k ∈ KRU

m .
2) Near-RT loop: Near-RT loop occurs once in every

Nn RT loops. During each near-RT loop, O-DU u collects
observation data, which we describe later in Sec. III-C,
from the O-RUs in MDU

u and transfers it to the near-RT
RIC for learning. At the same time, each agent u in
the near-RT RIC conducts PA on the users in KDU

u . We
use ℓ = 0, 1, . . . , ⌊ N

Nn
⌋ to denote the index of near-RT

loop, thus, ℓ-th near-RT loop occurs during the Nnℓ-th
RT loop (or the Nnℓ-th channel estimation instance). The
relationship between i and ℓ is visualized in Fig. 5.

To further improve our PA performance, two accelera-
tion techniques are introduced:
• Inter-DU message passing: We consider inter-DU mes-

sage passing which occurs at each near-RT loop. The
inter-DU connection is essential for fully realizing user-
centric RU clusters in decentralized CFmMIMO [36],
and we exploit this feature to improve our PA perfor-
mance. With inter-DU messages, we aim to reinforce
the data observed by the local group of O-RUs (i.e.,
O-RUs of MDU

u ). The details on inter-DU message
passing are provided in Sec. III-D.

• Codebook searching: We leverage the decentralization
of our system and develop a CS algorithm that operates
jointly with our PA scheme. We adopt the idea of quasi-
orthogonal codebooks [42], [43] to be used across the
agents. In multi-cell systems, where each cell conducts
its own PA to the serving users, using non-identical
orthogonal codebooks across the cells has shown
improved system performance [42], [43]. Inspired
by this, we rotate the codebook of each agent in an
iterative manner to find the codebook orientation with
the minimum MSE of channel estimation. The detailed
steps of our CS scheme are provided in Sec. III-E.

3) Non-RT loop: The non-RT loop is utilized to handle
time-insensitive tasks. In our PA scheme, the update of
the learning parameters for near-RT RIC occurs over
this loop. Here, the non-RT loop occurs once in every

Nnon RT loops, and we denote q = 0, 1, . . . , ⌊ N
Nnon

⌋ as
the non-RT loop index. As described in Fig. 1, a near-RT
loop duration can be as short as 10 ms while the shortest
duration for non-RT loop is a second [7]. Hence, we
assume Nnon ≫ Nn.
B. Preliminaries on MA-DRL

MA-DRL addresses scenarios where multiple agents
perform simultaneous decision-making based on a
Markov game model [44]. For our decentralized PA
problem, we define MA-DRL using a tuple ({S(ℓ)

u }u∈U ,
{a(ℓ)

u }u∈U , {r(ℓ)u }u∈U ), where S
(ℓ)
u , a(ℓ)

u , and r
(ℓ)
u are

respectively the state, action, and reward of the agent
u during the ℓ-th near-RT loop. For each loop ℓ, agent
u with a state S

(ℓ)
u makes an action a

(ℓ)
u to interact

with the environment. Subsequently, the agent makes an
observation and computes a reward r

(ℓ)
u which helps to

find the next state S
(ℓ+1)
u .

In the non-RT loop, once an agent has completed
multiple interactions with the environment, its policy on
action selection for a given state is optimized by updating
the weights of its respective deep neural network (DNN).
The action is selected based on the Q-value [45] denoted
by Q(S

(ℓ)
u ,a

(ℓ)
u ). The Q-value quantifies the quality of

an agent’s action for a given state. Thus, it is important
for the agent to obtain accurate Q-values to make correct
decisions. In DRL, these Q-values are computed via a
DNN, the weights of which are trained with experiences
so that a correct (i.e., Q-value-maximizing) action can
be selected upon each decision-making.

In perceiving our PA task as a multi-agent learning
problem, there are two conditions to consider [46].
First, multiple agents making independent decisions
simultaneously implies the environment is never seen
as stationary to an action of a single agent. Second,
due to the decentralized architecture, each agent only
obtains a part of the observation available from the
entire environment. Due to these conditions, in multi-
agent learning, careful design of the Markov game
model is crucial for achieving performance comparable
to centralized learning.
C. Markov Game Model for Decentralized PA

In our O-RAN CFmMIMO setting, channel estimation
is repeated for every RT loop i, forming a periodic
interaction with the environment. The near-RT PA corre-
sponds to action selection that affects the environment
and resulting observation. Based on this, we formally



define each component of the tuple presented in Sec. III-B
to perceive our PA task as a Markov game model.

1) States: To represent the PA status of agent u on
users in KDU

u at the start of near-RT loop ℓ, we define
the state as S

(ℓ)
u = Φ

(ℓ)
u which is a |KDU

u | × Tp sized
matrix where

[Φ(ℓ)
u ]k,t =

{
1 if x(Nnℓ)

k = ϕ
(Nnℓ)
u,t ,

0 otherwise.
(13)

PC occurs when users share a pilot, and this can be
indicated by the ones in each column of Φ

(ℓ)
u . Hence,

Φ
(ℓ)
u can become an effective means to represent the

condition of PA for each agent, and we aim to have the
agents accurately perceive the relationship between their
PA (i.e., their actions) and the resulting PC.

2) Actions: We consider sequential updates on the
pilots, where the pilot of only a single user is changed
with every action. If we consider actions that assign
pilots to all |KDU

u | users at once, this would lead our
action space to take T

|KDU
u |

p possible combinations and
suffer from the “curse of dimensionality”. We hence
define actions as an ordered pair indicating the user of
interest and the pilot to be assigned, respectively. The
action of agent u at near-RT PA ℓ is formally defined
as a

(ℓ)
u = (k, t), where k ∈ KDU

u and t ∈ {1, 2, . . . , Tp}.
With this setting, there are total |KDU

u |Tp possible actions
for agent u to take, resulting in a more computationally
scalable action space.

3) Rewards: We propose to compute the reward of
each agent u on the ℓ-th near-RT PA based on the average
sum-power of the channel estimates obtained by the O-
RUs. Note that, for each action (i.e., near-RT PA) taken
by an agent, Nn channel estimations are conducted by
O-RU m to acquire a set of ĝ(i)

m for Nnℓ ≤ i < Nn(ℓ+1).
Using this information, the O-RU m computes

p
(ℓ)
km =

1

Nn

Nn−1∑
n=0

∣∣∣ĝ(Nnℓ+n)
km

∣∣∣2 (14)

on user k ∈ KRU
m during the near-RT loop ℓ and

sends it to the corresponding O-DU. At the end of this
transfer, O-DU u collects different sets of p

(ℓ)
km from

each O-RU m ∈ MDU
u (i.e., {{p(ℓ)km}k∈KRU

m
}m∈MDU

u
).

In decentralized PA, each agent u ∈ U is responsible
for a disjoint subset of K users, and it is desirable
for the agent to have access to p

(ℓ)
km from all O-RUs

associated with the users (i.e., {{p(ℓ)km}m∈MUE
k
}k∈KDU

u
).

However, as each O-DU u is only connected to O-RUs
of MDU

u , {{p(ℓ)km}m∈MUE
k ∩MDU

u
}k∈KDU

u
only gets collected

by the agent. Hence, O-DU u ends up computing the
observation data to be transferred to the agent u as
p̄
(ℓ)
u =

∑
k∈KDU

u

∑
m∈MUE

k ∩MDU
u

p
(ℓ)
km.

Note that the rest of information required by agent u
(i.e., {{p(ℓ)km}m∈MUE

k \MDU
u
}k∈KDU

u
) has been collected by

other O-DUs. As mentioned earlier in Sec. III-A, since
we consider inter-DU messages, this information can be
transferred to each corresponding O-DU. Then, each O-
DU u can now compute the reinforced observation data
which is expressed as

p̃(ℓ)u = p̄(ℓ)u +
∑

k∈KDU
u

∑
m∈MUE

k \MDU
u

p
(ℓ)
km =

∑
k∈KDU

u

∑
m∈MUE

k

p
(ℓ)
km.

(15)

The observation data computed by O-DU u in (15) is
transferred to agent u via a backhaul, and the reward
for agent u at near-RT loop ℓ is subsequently computed
using the mapping function

r(ℓ)u (p) = (pmax − p)/(pmax − pmin), (16)

where p = p̃
(ℓ)
u by the availability of inter-DU message.

The function (16) converts the observation data into a
reward range such that lower values of p are rewarded
higher. Here [pmin, pmax] is the range of observation data,
which we assume is set by the non-RT RIC.

We now show that the learning via our Markov model
leads to taking an action that minimizes the degree of
PC. The basic mechanism of learning we utilize is that,
for each given state Su, we want the agent u to select
the action that maximizes its Q-value [45], i.e.,

a⋆
u = argmax

au∈Au

Q(Su,au), (17)

where Au is the set of all possible actions for agent u.
The training in DRL is done by updating the network
weights via regression toward the experiences obtained.
The Q-value, which is the numerical output of the trained
network, is then expected to follow the average of these
experiences, i.e., the Q-value is updated through training
to yield Q(Su,au) = E[ru(p)|(Su,au)].

For each near-RT loop ℓ, the following theorem shows
that, with inter-DU message passing, the action selected
via (17) is the best action in terms of minimizing the
degree of local PC.

Theorem 1. With p̃
(ℓ)
u available, for a given state S

(ℓ)
u ,

taking the action a
(ℓ)
u which satisfies (17) is equivalent

to finding the action that minimizes the degree of pilot
contamination occurring on local users in KDU

u during
the near-RT loop ℓ, which is expressed as∑
k∈KDU

u

∑
m∈MUE

k

Nn−1∑
n=0

∑
k′∈K
k′ ̸=k

β
(Nnℓ+n)
k′m

∣∣∣(x(Nnℓ)
k )Hx

(Nnℓ)
k′

∣∣∣2. (18)

Proof. First, in terms of the parameters defined in our
model, we find the expected reward at near-RT loop ℓ for
a given state-action pair (S(ℓ)

u ,a
(ℓ)
u ), which is given as

E[r(ℓ)u (p̃(ℓ)u )|(S(ℓ)
u ,a(ℓ)

u )] =
pmax − E[p̃(ℓ)u ]

pmax − pmin
, (19)

where the equality holds from (16). Recalling (17), the
learning conducted at each agent u aims to find the action



achieving the maximum Q-value Q(Su,au), which we
discussed to yield E[ru(p)|(Su,au)]. Thus, the action
selection mechanism of agent u can be expressed as

a(ℓ)
u = argmax

au∈Au

E[r(ℓ)u (p̃(ℓ)u )|(S(ℓ)
u ,au)]. (20)

Now combining (19) and (20), we can say that

a(ℓ)
u = argmin

au∈Au

∑
k∈KDU

u

∑
m∈MUE

k

E[p(ℓ)km]

= argmin
au∈Au

1

Nn

∑
k∈KDU

u

∑
m∈MUE

k

Nn−1∑
n=0

E
[∣∣∣ĝ(Nnℓ+n)

km

∣∣∣2], (21)

where the first and second equalities are obtained using
(15) and (14), respectively. Now, for n = 0, 1, . . . , Nn−1,
using (4) we have

E
[∣∣∣ĝ(Nnℓ+n)

km

∣∣∣2] = E
[∣∣∣g(Nnℓ+n)

km

∣∣∣2]+∑
k′∈K
k′ ̸=k

E
[∣∣∣g(Nnℓ+n)

k′m

(x
(Nnℓ+n)
k )Hx

(Nnℓ+n)
k′

∣∣∣2]+ E
[∣∣∣(x(Nnℓ+n)

k )Hw(Nnℓ+n)
m

∣∣∣2]
= β

(Nnℓ+n)
km + ξ

(ℓ,n)
km + σ2, (22)

where ξ(ℓ,n)km =
∑

k′∈K
k′ ̸=k

β
(Nnℓ+n)
k′m

∣∣(x(Nnℓ+n)
k )Hx

(Nnℓ+n)
k′

∣∣2
reflects the PC discussed in Sec. II-E. By the definition
of ĝ

(i)
km in (4), taking the expectation of |ĝ(i)km|2 leaves

only the autocorrelation terms for ĝ
(i)
km and w

(i)
m , cor-

responding to β
(Nnℓ+n)
km = E[|g(Nnℓ+n)

km |2] and σ2 =

E[|(x(Nnℓ+n)
k )Hw

(Nnℓ+n)
m |2] in (22), since the channel

and noise are assumed uncorrelated across k and m.
Now, since (i) ξ(ℓ,n)km is the only term that is impacted by

action au, i.e., β(Nnℓ+n)
km and σ2 in (22) are independent

from PA and (ii) x
(i)
k only changes once every Nn RT

loops, i.e., x(Nnℓ+n)
k is fixed for n = 0, 1, . . . , Nn − 1,

by ignoring 1
Nn

as a scaling factor, (21) is equivalent to

a(ℓ)
u = argmin

au∈Au

∑
k∈KDU

u

∑
m∈MUE

k

Nn−1∑
n=0

∑
k′∈K,k′ ̸=k

β
(Nnℓ+n)
k′m

∣∣∣(x(Nnℓ)
k )Hx

(Nnℓ)
k′

∣∣∣2, (23)

which represents the degree of PC at near-RT loop ℓ over
the users in KDU

u . ■
From Theorem 1, we conclude that learning based on

our Markov games model is equivalent to performing the
pilot update which minimizes the interference due to PC
at each near-RT PA. According to (18), the PA made at
each near-RT loop ℓ couples with the pathloss occurring
over the corresponding Nn RT loops. Since we do not
assume prior knowledge on the pathloss β

(i)
km, we cannot

evaluate the exact MSE. However, through the reward we
define and the learning mechanism of DRL, we can still
design our PA scheme such that the MSE performance is
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Fig. 6: A block diagram overview of our PA scheme, consisting of
non-RT DNN training and near-RT PA updates.

improved over time. For static scenarios, where β
(i)
km is

constant over i, all the actions taken over near-RT loops
(i.e., the entire series of successive pilot updates) are
contributing to look for a single optimal PA solution that
minimizes the sum-MSE. On the other hand, for mobile
scenarios, each action is led to focus on minimizing the
sum-MSE resulted from the current channel statistics
by leveraging the past information. Our PA scheme is
designed to cope with time varying small-scale and large-
scale fading factors upon continuous training.
D. MA-DRL-based Pilot Assignment Scheme

Given the setting in the previous subsections, we
describe our PA scheme in detail using the MA-DRL
framework to find the solution to our decentralized PA
problem. Our PA scheme trains learning algorithms to
perform sequential pilot updates that aim to reduce the
sum average power of channel estimates across the users.
As shown by Theorem 1, minimizing the sum average
power of channel estimates is equivalent to minimizing
the overall MSE of channel estimation since both ex-
pressions share the PC term that is directly impacted by
PA. Through sequential updates, our algorithm follows
a greedy search framework that significantly reduces
the dimension of the action space for a more practical
MSE minimization. We incorporate MA-DRL via the
deep Q-network (DQN) that utilizes neural network
layers for approximating Q-values. An individual DQN
is implemented at each agent in the near-RT RIC for
distributed learning. Fig. 6 provides an overview of our
methodology, which is also outlined in Alg. 1. We detail
each of the steps in the following:

Near-RT PA: At ℓ = 0, each agent u randomly assigns
one of the Tp sequences in T (0)

u to its associated users
in KDU

u , from which the state S
(0)
u is generated. For each

subsequent near-RT loop ℓ, the agent u takes an action
a
(ℓ)
u via an ϵ-greedy method [45] to update one user’s

pilot sequence and obtain a new state S
(ℓ+1)
u . If the agent

decides to take its action based on Q-values, the state
S

(ℓ)
u is used as a |KDU

u | × Tp input to the DQN, which
outputs the Q-value vector of size |KDU

u |Tp. The action
with the highest Q-value is then selected. Since Nn RT
channel estimations occur during a single loop of near-RT
PA, each O-DU u collects {p(ℓ)km}k∈KRU

m
from the O-RUs



Algorithm 1: Proposed Pilot Assignment Scheme
1 Input: Pilot length Tp, number of RT loops N , number

of RT loops per near-RT loop Nn, number of internal
loops L, set of users managed by O-DU u KDU

u , set
of O-RUs managed by O-DU u MDU

u , set of users
served by O-RU m KRU

m , set of O-RUs serving the
user k MUE

k , training period, update period
2 Initialize near-RT loop index ℓ = 0; randomize the

parameter vectors θtr
u and θta

u

3 Generate T (Nnℓ)
u ; randomly assign {ϕ(Nnℓ)

k }k∈KDU
u

4 for ℓ = 0 to N do
5 Compute S

(ℓ)
u using (13)

6 if ℓ > 0 then
7 Compute r

(ℓ−1)
u (p̃

(ℓ−1)
u ) using (16); store

(S
(ℓ−1)
u ,a

(ℓ−1)
u , r

(ℓ−1)
u (p̃

(ℓ−1)
u ),S

(ℓ)
u ) in the

memory
8 for l = 0 to L− 1 do
9 Select a(ℓ,l)

int,u randomly; compute S
(ℓ,l)
int,u

using (13); compute r
(ℓ,l)
int,u using (25)

10 Store (S
(ℓ)
u ,a

(ℓ,l)
int,u , r

(ℓ,l)
int,u ,S

(ℓ,l)
int,u ) in the

memory

11 if ϵ-greedy then select a(ℓ)
u randomly else

a
(ℓ)
u = argmaxau

Qθtr
u
(S

(ℓ)
u ,au)

12 Update the PA according to a
(ℓ)
u

13 for i = 0 to Nn − 1 do
14 User k ∈ KDU

u transmits ϕ
(Nnℓ+i)
k ; O-RU

m ∈ MDU
u estimates {ĝ(i)km}k∈KRU

m
using (4)

15 if mod(ℓ, training period) = 0 then generate a
batch from the memory and train θtr

u via SGD
on (24)

16 if mod(ℓ, update period) = 0 then set θta
u = θtr

u

17 Output: Updated pilot sequences {ϕ(N)
k }k∈KDU

u

in MDU
u and computes p̃

(ℓ)
u with the aid of inter-DU

message passing. The O-DU transfers p̃
(ℓ)
u to its agent in

the near-RT RIC, which computes r
(ℓ)
u (p) and stores an

experience tuple (S
(ℓ)
u ,a

(ℓ)
u , r

(ℓ)
u (p),S

(ℓ+1)
u ) in a replay

memory of size Dm.
Non-RT DNN Training: The learning of each agent

u is carried out by two DNNs called the train and
target networks [33], [47], where their network parameter
vectors are denoted by θtr

u and θta
u , respectively. Once

enough experiences have been collected in the memory,
a mini-batch of size Db is randomly selected from the
memory and used to update θtr

u minimizing the loss:

L(θtr
u ) = Eℓ

[
yℓ −Qθtr

u
(S(ℓ)

u ,a(ℓ)
u )

]
, (24)

where yℓ = r
(ℓ)
u +γmaxa Qθta

u
(S

(ℓ+1)
u ,a) with γ being

the discount factor. Here Qθ(S,a) represents the Q-value
for a given pair of state S and action a computed via
a DNN of weight vector θ. The update is done using
stochastic gradient descent (SGD). This step is equivalent
to the training phase of supervised learning in the sense

that each experience becomes a training datapoint and
the label is replaced by the reward. Here, the weights of
θtr
u are periodically copied to target network θta

u , with
the length of this period as a design parameter.

Experience generation: By the O-RAN capability,
the value of Nn can vary and impact the rate of
experiences being collected to each agent, i.e., the number
of experiences collected for a given amount of time varies
by Nn. If Nn is too large, a sufficient size of data required
to perform effective training may not be collected within
a desired time period. To resolve the issue and utilize time
more efficiently, we exploit the architecture of O-RAN
and introduce an internal experience-generating loop
inside the near-RT RIC. This internal loop is executed L
times to take additional L hypothetical actions during a
single near-RT loop. In particular, once a real experience
is obtained via the ℓ-th near-RT loop, we generate L
extra virtual experiences by taking a random action and
evaluating the corresponding reward for each internal
loop. We define the reward by the l-th internal loop of
the ℓ-th near-RT PA as

r
(ℓ,l)
int,u(p) =

(
1− κ(ℓ,l)

u /κmax

)
r(ℓ)u (p), (25)

where κ
(ℓ,l)
u =

∣∣∑Tp

t=1

(∑
k∈KDU

u
(ϕ

(Nnℓ)
u,t )Hx

(ℓ,l)
k −⌊ |KDU

u |
Tp

⌋)∣∣ is the penalty for having more than necessary
number of users sharing the same pilot sequence and
κmax = 2|KDU

u |(Tp − 1)/Tp is the maximum penalty
obtainable. Integrating this internal loop alongside near-
RT PA, we can generate L more experiences to accelerate
the convergence of our scheme and train our DNNs
to favor sequence combinations that have more evenly
spread number of users across Tp sequences.

E. Iterative Codebook Search (CS) Algorithm
We describe our CS algorithm that is designed to work

with the PA scheme in Sec. III-D. As each agent assigns
pilots to its local users using the codebook T (i)

u , CS is
iteratively conducted so that the final set of U codebook
sets, when combined with our PA solution, suppresses
the PC to the minimum degree. We detail each of the
steps in the following.

First, we assign each agent u ∈ U with an identical
codebook, i.e., T (0)

1 = T (0)
2 = · · · = T (0)

U , and initiate
our PA scheme without CS to ensure that the agents first
learn and improve their PA only based on the interference
resulted from pilot sharing. We design our algorithm to
begin its iterative CS only after the learning on PA is
stabilized so that the PA and CS do not impair each other
from converging. We determine the PA of agent u to be
stable when the state S

(ℓ)
u remains unchanged over Ncs

near-RT loops. Once the agent u has given the same PA
for Ncs consecutive times at the end of near-RT loop ℓ⋆u,
the agent is perceived as stable and becomes subject for



CS. Note that ℓ⋆u is likely to vary for each agent due to
our decentralized PA framework.

If we design our agents to conduct CS in parallel, it
becomes difficult to accurately evaluate a codebook as
multiple actions simultaneously affect the environment.
Hence, we propose to have each agent take a turn and
conduct CS while the rest of agents is paused from
the search. To implement a such design, we define an
operation called the CS run in which an isolated CS is
conducted for each agent u ∈ U (v)

cs , where U (v)
cs is the

set of agents subject for CS during the v-th CS run. For
each isolated search, the following steps are performed.

Suppose it is the turn of the w-th element of U (v)
cs ,

denoted by uv,w, to perform the isolated CS, where
w = 1, 2, . . . , |U (v)

cs |. We first define ℓv,w to be the
near-RT loop in which the agent uv,w begins its
search. We also let Ns define the number of near-
RT loops to be spent for codebook evaluation. Dur-
ing the first Ns near-RT loops (i.e., ℓv,w ≤ ℓ <
ℓv,w + Ns), the quality of current codebook matrix
Told

v,w = [ϕ
(Nnℓv,w)
uv,w,1 ,ϕ

(Nnℓv,w)
uv,w,2 , . . . ,ϕ

(Nnℓv,w)
uv,w,Tp

] is evalu-
ated by computing

r̄oldv,w =
1

Ns

Ns−1∑
n=0

r(ℓv,w+n)
uv,w

(p), (26)

which is the average of the most Ns recent rewards
collected at agent uv,w via our PA algorithm. Note
that (26) represents the quality of PA performed using
the codebook T (Nnℓv,w)

uv,w .
After obtaining (26), the agent generates a Tp × Tp

column-normalized zero-mean Gaussian random pertur-
bation matrix Pv,w and computes the rotation matrix as
Rv,w =

√
1− η2uv,w

ITp
+ ηuv,w

Pv,w, where ηuv,w
=

1 −
ℓv,w−ℓ⋆uv,w
N/Nn−ℓ⋆uv,w

is the perturbation degree designed to
decrease with ℓv,w to obtain a converged solution. Note
that larger ηuv,w

results in Rv,w with greater perturbation.
After acquiring Rv,w, the agent rotates the current

codebook to obtain a new codebook matrix

Tnew
v,w = proj(Rv,wT

old
v,w), (27)

where proj(·) is the projection function for which we
use the Gram-Schmidt orthogonalization algorithm [48].
The set of Tp columns in Tnew

v,w is then used as a new
codebook for agent uv,w during the next Ns near-RT
loops (i.e., ℓv,w +Ns ≤ ℓ < ℓv,w +2Ns). After these Ns

near-RT loops, where a set of Ns rewards using the new
codebook are collected by our PA algorithm, the agent
computes

r̄newv,w =
1

Ns

2Ns−1∑
n=Ns

r(ℓv,w+n)
uv,w

(p), (28)

to evaluate the quality of the new codebook. At this point,
agent uv,w has evaluated (26) and (28) from using two

different codebooks Told
v,w and Tnew

v,w, respectively, and
determines which codebook to keep by the end of search
using the following criterion

T(Nn(ℓv,w+2Ns))
uv,w

=

{
Tnew

v,w if r̄newv,w > r̄oldv,w,

Told
v,w otherwise.

(29)

Algorithm 2: Proposed Codebook Search Scheme
1 Input: Pilot length Tp, number of consistent PAs

required for stability Ncs, codebook evaluation interval
Ns, number of RT loops N , set of agents U

2 Initialize CS run index v = 0, set of agents subject for
CS U (v)

cs = ∅, the counter for agent u au = 0,
CSrun = 0, and CSiso = 0; assign identical codebook
for all u ∈ U ; capture S

(0)
u using (13)

3 for ℓ = 1 to N do
4 for u ∈ U do
5 Capture S

(ℓ)
u using (13)

6 if S(ℓ)
u = S

(ℓ−1)
u then au = au + 1 else

au = 0; if au = Ncs then ℓ⋆u = ℓ

7 if CSrun = 0 then
8 U (v)

cs = {u ∈ U|ℓ⋆u < ℓ}; if |U (v)
cs | > 0 then

w = 1 and CSrun = 1

9 if CSrun = 1 then
10 if CSiso = 0 then ℓv,w = ℓ; CSiso = 1
11 if CSiso = 1 then
12 if ℓ = ℓv,w +Ns − 1 then compute r̄oldv,w

using (26); apply new codebook Tnew
v,w

using (27)
13 if ℓ = ℓv,w + 2Ns − 1 then
14 Compute r̄newv,w using (28); decide

codebook using (29); w = w+ 1 and
CSiso = 0

15 if w > |U (v)
cs | then v = v + 1; CSrun = 0

16 Output: Rotated codebook T (N)
u , ∀u ∈ U

As the CS described above runs for each agent in U (v)
cs ,

total 2Ns|U (v)
cs | near-RT loops are spent to complete the

CS run v. For every run, each agent tries a new codebook
generated using a random rotation and decides to keep
whichever codebook that yields higher reward. The
algorithm starts its very first CS run at ℓ = minu∈U ℓ⋆u
and continuously conducts each subsequent CS run. By
changing the codebook only when it is determined to
be better, the algorithm proceeds to find the best set of
U codebooks that minimizes the degree of PC. Note
that, in order to evaluate the codebooks, our CS scheme
utilizes the reward r

(ℓ)
u (p), which is obtained during our

PA scheme. Therefore, no additional information needs
to be collected the O-DUs to conduct the CS. The overall
procedure for our CS scheme is summarized in Alg 2.

IV. NUMERICAL EVALUATION

In this section, we evaluate our pilot assignment (PA)
scheme under O-RAN CFmMIMO channel estimation
scenarios with various system parameters. We analyze



both channel estimation performance and computational
complexity to discuss the scalability and practicality of
our method. In addition, we compare the performance of
our proposed approach against different baselines which
include [31], [32] among others.
A. Simulation Setup, Performance Metrics, and Baselines

We consider different combinations of O-DUs (U = 4),
single-antenna O-RUs (M = 96), and single-antenna
users (K ∈ {24, 36}) placed in an area of 100 m×150 m
geometry to create O-RAN CFmMIMO systems. We
assume the same number of O-RUs connected to each
O-DU (i.e., |MDU

u | = M
U , ∀u) and the same number of

users paired with each agent in the near-RT RIC (i.e.,
|KDU

u | = K
U , ∀u). We set a channel estimation interval

Te = 1 ms, implying our O-RAN RT loop occurs once
every 1 ms. Each scenario is simulated with a maximum
N = 10000 RT loops, which corresponds to 10 seconds
with Te = 1 ms. We assume Nn = 10 RT loops occur
per O-RAN near-RT loop and L = 9 internal experience
generation per near-RT loop unless stated otherwise. For
mobile scenarios, we generate initial (i = 0) and final
(i = N ) positions for each user such that the velocity vk
ranges from 0 m/s (or 0 km/h) to 1.4 m/s (or 5 km/h).
Then, for each i = 0, 1, . . . , N , the position of each user
is updated according to vk. Such a mobile scenario for
96× 24 CFmMIMO (where M ×K refers to M O-RUs
and K users) with U = 4 O-DUs (equivalently, U = 4
agents in the near-RT RIC) is demonstrated in Fig. 7. The
large-scale fading factor β(i)

km, ∀k,m is assumed to follow
the 3GPP urban-micro line-of-sight pathloss model [40]
with carrier frequency fc = 2 GHz, O-RU height of
10 m, and user height of 1.5 m. We consider a pilot
length of Tp = 4 and a RU cluster size of MUE

k = 8, ∀k
unless stated otherwise. For our codebook search (CS)
scheme, we consider an agent to be stable if the PA is
consistent for Ncs = 100 consecutive times and assume
the codebook evaluation interval Ns = 5.

We use the same DQN design for all agents: one
convolutional neural network (CNN) with 32 kernels of
size |KDU

u | × Tp followed by two fully connected layers
of width |KDU

u |Tp. All layers use ReLU activation and
the Adam optimizer with learning rate of 0.001. The
discount factor for the weight update is set γ = 0.5.
We also set the size of replay memory Dm = 1000 and
train the neural network using Db = 128 samples per
minibatch. The train network weights are updated via
SGD and synchronized with the target network whenever
200 and 400 new additional experiences are stored in
the replay memory, respectively. We implement ϵ-greedy
action-selection [45] with the probability of selecting
a random action in the ℓ-th near-RT loop computed as
ϵℓ = e−(Γ/N)Nnℓ, where Γ = 15 is the scaling factor.

We now describe the baseline methods for performance
comparison. We first consider a random assignment
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Fig. 7: Geographical layout of O-RAN CFmMIMO with U = 4,
M = 96, and K = 24. O-RUs connected to the same O-DU have
the same color. Each user moves from the initial (circle) to the final
position (cross) in 10 seconds.

strategy (PA-RA) where pilots are assigned randomly for
each user. The strategy does not impose any complexity
but yields mediocre channel estimation performance. We
also consider an exhaustive method (PA-ES) where the
entire TK

p combinations of pilots are searched to find the
PA having the lowest MSE, which is evaluated using βkm

and σ2 assumed to be known a priori. PA-ES provides
the best MSE performance but is considered impractical
in terms of computational complexity as the search space
exponentially increases with the number of users. We also
consider two PA algorithms in the recent literature: PA
strategies using Tabu-search [31] and Hungarian [32]
methods. To solve our PA problem, we design the
algorithms to utilize sum-MSE as the metric. The sum-
MSE expression is a function of the assigned pilots and
therefore provides an effective metric to optimize the PA.
Tabu-search-based PA (PA-TS) utilizes the Tabu-search
framework to find the MSE-minimizing pilot combination
while the PA using the Hungarian algorithm (PA-HG)
iteratively solves a reward matrix to find the PA solution.
Both require prior knowledge of βkm and σ2 and have
computational complexity that becomes prohibitive as the
number of users increases. Also, these methods do not
consider practical framework (e.g., decentralized PA) but
simply rely on centralized processing, which makes them
hard to integrate into O-RAN architecture. Also, they do
not take the user mobility into account and fail to adapt
to the change imposed by the time-varying dynamics.

We next discuss our PA scheme to be simulated for
detailed evaluation. We conduct the learning process
described in Sec. III-D with inter-DU message passing
(PA-DRL+MSG), i.e., p̃(ℓ)u is computed by each O-DU
and transferred to the agent. In addition, we apply
the CS scheme described in Sec. III-E along with PA-
DRL+MSG (PA-DRL+MSG+CBS) to assess the im-
provement brought by adjusting the codebook orientation
across O-DUs. As our PA scheme is specifically tailored
to the O-RAN architecture, practical implementation with
scalable computation is possible. Since we base our
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Fig. 8: Sum-MSE vs. SNR with K = 24 (left) and K = 36 (right).

learning on the DRL framework, which offers training
that is adaptive to the dynamic environment, and conduct
CS that checks the real-time observation, our PA scheme
can reflect the user mobility.

We evaluate the performance of our proposed PA
scheme over two different metrics: (i) the sum-MSE de-
fined for the objective function in Pu, i.e.,

∑
k∈K MSE

(i)
k ,

and (ii) the runtime it takes to obtain the converged MSE.
For the numerical results, we run each scenario 50 times
and take their average to make our analysis statistically
significant. In each run, we use the same O-RU topology
but randomize the locations of K users. All the algorithms
were implemented in Python and tested on hardware with
a Tesla T4 GPU and 12.7 GB RAM.

B. Performance of O-RAN CFmMIMO
1) Impact of PA on channel estimation: We first

demonstrate the impact of PA on channel estimation
in our O-RAN CFmMIMO system. In Fig. 8, we provide
sum-MSE versus signal to noise ratio (SNR) plots for
different values of Tp and K, where we define SNR as
1
σ2 , and discuss the following observations. First, we see
that Tp = 8 yields lower MSE than Tp = 4. It is expected
since the number of users sharing the same pilot tends to
be smaller for larger Tp. Next, for lower SNRs, the MSE
gap between PA-RA and PA-ES is not significant since
the noise dominantly contributes to channel estimation
error. However, as SNR increases, interference due to
PC becomes more dominant and forces an error floor,
making the curves almost horizontal. For the case of
50 dB SNR, we find that with Tp = 4 and K = 24,
optimizing PA can reduce the sum-MSE up to 27%. For
the remaining experiments, we use SNR of 50 dB to
focus on the interference-limited regime.

2) Impact of O-RAN parameters: We assess the impact
of O-RAN-dependent system parameters on the perfor-
mance of our PA scheme. The sum-MSE curves (moving-
averaged with a window size of 500) of PA-DRL+MSG
over the O-RAN RT loop for different values of Nn and
L are shown in Fig. 9. Recall that Nn is the number of
RT loops for a single near-RT loop, and L is the number
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Fig. 9: Sum-MSE vs. RT loop with K = 24.

of extra experiences generated per near-RT loop by the
agent. Both Nn and L are dependent on the capability
of O-RAN in which CFmMIMO network is built.

Now, we make the following observations from Fig. 9.
First, regardless of the parameter values, our scheme
shows stabilized (i.e., converged) sum-MSE performance,
which verifies the effectiveness of our learning when
implemented under O-RAN architecture. Second, a lower
Nn yields improved MSE regardless of L. Here, lower Nn

implies more near-RT loops during the given number of
RT loops, allowing agents to interact with the environment
more frequently and take more actions to find better
solutions. Third, a higher L (more internal loops) allows
us to achieve greater sum-MSE reduction in earlier RT
loops, validating that more experiences collected in replay
memory within the same period are beneficial. Thus, as
the size of the dataset increases, our scheme is expected
to find the PA faster with low sum-MSE.

C. Performance Comparison Against Different Baselines
Now we assess our proposed PA scheme and compare

its performance with several baselines over two metrics:
channel estimation MSE and algorithm runtime.

1) Comparison in MSE: First, we consider static
scenarios, i.e., vk = 0, ∀k. The plots showing sum-
MSE performance (moving-averaged with a window
size of 500) over RT loops for K = 24 and K = 36
are presented in Fig. 10 and Figs. 11, respectively.
Note that the PA solutions obtained by PA-HG, PA-
TS, and PA-ES required true pathloss information and
were fixed for the entire RT loops. Among these ap-
proaches, it is verified from both figures that PA-ES
yields much better MSE performance than PA-TS and
PA-HG. We also considered the case where PA-HG and
PA-TS are conducted using estimated pathloss, which
yields a considerable performance gap compared to the
case of using true pathloss knowledge. The estimated
pathloss is computed by averaging ten instantaneous
power measurements from isolated signal transmissions,
which yields around a 25% error magnitude compared
to true pathloss. Given that these baselines require prior
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Fig. 11: Sum-MSE performance of different PA schemes over 36
stationary users

knowledge (preferably accurate) to achieve the given
performance, our learning-based PA scheme, which does
not impose such requirement, is still able to show compet-
itive performance against them. PA-DRL+MSG clearly
outperforms PA-HG and PA-TS with estimated pathloss
and provides comparable performance with the ones with
true pathloss. Once we utilize CS scheme, our proposed
PA-DRL+MSG+CBS shows significant improvement and
achieves better performance than PA-ES as a result of
jointly optimizing both PA and codebook orientation.
In Table II, we extend our sum-MSE evaluation up to
K = 72. We observe that, regardless of K, the relative
performance among the algorithms is preserved, which
verifies that our proposed scheme obtains consistent
improvements as the system size increases.

Note that we compare our proposed scheme only to
centralized baselines for two reasons. First, we aim to
minimize the performance loss due to decentralization,
and thus we can directly evaluate how well our algorithm
performs in terms of MSE compared to centralized PA.
Second, to the best of our knowledge, there is no existing
work on decentralized PA to have a valid comparison.

Next, we consider scenarios in which users move over
time (i.e., β(i)

km changes over i, and vk > 0, ∀k ∈ K).
Fig. 12 shows the sum-MSE performance (moving-
averaged with a window size of 500) of different PA

TABLE II
Sum-MSE performance of various PA schemes over different K values

K 24 36 48 60 72
PA-HG (true pathloss) 0.348 0.949 1.705 2.765 4.179
PA-TS (true pathloss) 0.339 0.875 1.657 2.677 4.049
PA-DRL+MSG+CBS 0.319 0.811 1.455 2.361 3.617

TABLE III
UL and DL SEs in bits/s/Hz for different PA algorithms.

Algorithm K = 24 K = 36
UL DL UL DL

PA-HG (true pathloss) 9.79 9.03 7.65 7.10
PA-TS (true pathloss) 9.89 9.11 7.81 7.23

PA-DRL + MSG + CBS 10.18 9.40 8.06 7.55

algorithms with K = 24 evaluated at three different
user velocities: 1, 5, and 10 km/h. The values of user
velocity were selected so that the users still remain in the
coverage area after their movement. PA solution obtained
by the baselines at the beginning (i.e, i = 0) becomes
less effective as time advances, showing a different
degree of steady increase by the velocity. Unlike the
baselines, as our schemes make their decisions based on
the real-time observations, in PA-DRL+MSG+CBS, PAs
can be performed in an adaptive manner, maintaining its
performance as shown in Fig. 12. Hence, our scheme can
yield competitive performance with the prior knowledge-
constrained baselines under a dynamic environment.

While our evaluation assumes ideal link connections,
imperfect connection links are a significant factor for
practical systems. Hence, we extended our experiment
to assume probabilistic link failures on O-FH and inter-
DU connections and analyze their impact on the channel
estimation performance. We observe that the overall sum-
MSE increases with the increase of link failure proba-
bilities. Such a result is expected as failed connections
prevent the agents from collecting necessary observations
and computing accurate rewards. For more details, see
Appendix A in our online technical report [49].

To consider a wider range of scenarios, we also
considered our experiment under three additional setups:
non-uniform user distribution, Rician channel fading with
different k-factor values [39], and correlated pathloss with
different shadowing variance [26]. We observe that the
sum-MSE performance of our scheme and the baselines
remains unchanged except for the case of increased
shadowing. With greater shadowing, the expected degree
of PC increases, and this results in increased sum-MSE
of channel estimation for all algorithms. For more details,
see Appendix B in our online technical report [49].

Overall, our scheme provides satisfactory performance
in MSE as it exploits the decentralized architecture of
O-RAN CFmMIMO via distributed learning and CS.

2) Comparison in SE: We evaluate uplink (UL) and
downlink (DL) achievable SEs by computing

∑
k∈K Ru

k

and
∑

k∈K Rd
k, respectively, for different PA algorithms.

The result is provided in Table III, and we make the
following observations. First, the SE performance with
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Fig. 12: MSE performance of different PA schemes over 24 mobile users with different velocities: 1 km/h, 5 km/h, and 10 km/h.
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Fig. 13: Relative runtime measurements of various PA schemes over different system parameters. Measurements for each PA algorithm are
normalized to the case of the smallest parameter value.

K = 36 is lower than the one with K = 24, which
is resulted from increased user density imposing a
larger degree of PC. Second, the performance order we
observe in Figs. 10 and 11 is preserved for the sum-
rate performance. This verifies that improving channel
estimation accuracy via effective PA results in the SE
improvement in both uplink and downlink phases.

3) Behavior comparison in relative runtime: Now,
we evaluate the computational complexity behavior of
different PA algorithms. In Fig. 13a, we vary the number
of users K from 24 to 72 and measure the relative
runtimes (i.e., the increase of runtime with respect to
the case K = 24) of different PA methods. We do
not report absolute runtimes as our implementations do
not factor in inter-node bandwidth, latency, and other
implementation/hardware-specific factors that can impact
head-to-head comparisons among the algorithms. In
Fig. 13a, we see that both centralized PA-TS and PA-
HG exhibit a polynomial increase in K. Hence, these
centralized algorithms can be rendered impractical when
PA needs to be executed over a CFmMIMO network
with a growing network size. On the other hand, our
PA algorithm shows a linear increase in the relative
runtime. Overall, combined with the MSE results, we see
that our decentralized PA approach obtains advantages
both in terms of pilot contamination and scalability. The
steady increase in runtimes from our PA scheme are
due to the utilization of (i) O-RAN architecture where
duration-varing tasks are distributed across the network

and (ii) DNNs of fixed size which only perform a forward
computation to determine each pilot update step over
near-RT loop. We observe a slight increase in runtime
when we consider inter-DU messages into our PA scheme
because generating a new set of messages imposes extra
computations. Note that our CS scheme barely adds
any runtime as it utilizes the rewards already computed
during our PA scheme. We hence conclude that our
low-complexity PA scheme is a scalable strategy that
supports large-scale CFmMIMO systems. As we have
previously shown, our PA scheme provides consistently
strong performance in terms of sum-MSE regardless of
K, which highlights the scalability advantage of our
approach, especially for large-scale systems. Note that
PA-ES, which is the best baseline in MSE minimization,
requires an extreme amount of runtime as it searches over
all TK

p combinations of PA. On the other hand, PA-RA
requires no extra runtime but shows much worse MSE
performance than other PA schemes (Figs. 10 and 11).

Next, we assess the runtime required to conduct PA
schemes over different values of Tp (Fig. 13b) and MUE

k

(Fig. 13c), where we normalize the measurements in
the same way as Fig. 13a. For varying Tp (the size of
codebook), only PA-HG shows undesirable behavior in
complexity since the size of the reward matrix used in
the Hungarian algorithm depends on Tp. With respect
to MUE

k (the size of RU cluster), both PA-TS and PA-
HG display a linear increase. Meanwhile, our proposed
scheme provides consistent runtimes for both parameters,



which verifies their scalability to support a network with
large system parameters.

V. CONCLUSION

In this paper, we developed a learning-based PA scheme
for the decentralized CFmMIMO system framed in O-
RAN. We adopted O-RAN as a practical system architec-
ture where distinct network functions and multi-timescale
control loops efficiently govern the framework of our
scheme. After formulating the PA problem and designing
the corresponding Markov game model, we developed
a PA algorithm based on the MA-DRL framework.
We also developed a CS scheme that accelerates our
learning-based PA in MSE-minimization without any
significant additional complexities. Compared to the state-
of-the-art baselines, our approach provided satisfactory
performance in terms of both channel estimation MSE
and computational scalability. Furthermore, unlike most
of the existing PA strategies, our scheme does not require
any prior channel knowledge.
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