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Enabling 3-D Object Detection With
a Low-Resolution LiDAR

Lin Bai
and Xinming Huang

Abstract—Light detection and ranging (LiDAR) has been
widely used in autonomous vehicles for perception and local-
ization. However, the cost of a high-resolution LiDAR is still
prohibitively expensive, while its low-resolution counterpart is
much more affordable. Therefore, using low-resolution LiDAR
for autonomous driving is an economically viable solution, but the
point cloud sparsity makes it extremely challenging. In this letter,
we propose a two-stage neural network framework that enables
3-D object detection using a low-resolution LiDAR. Taking input
from a low-resolution LiDAR point cloud and a monocular cam-
era image, a depth completion network is employed to produce
dense point cloud that is subsequently processed by a voxel-
based network for 3-D object detection. Evaluated with KITTI
dataset for 3-D object detection in bird-eye view (BEV), the
experimental result shows that the proposed approach performs
significantly better than directly applying the 16-line LiDAR
point cloud for object detection. For both easy and moderate
cases, our 3-D vehicle detection results are close to those using
64-line high-resolution LiDARs.

Index Terms—3-D vehicle detection, camera, low-resolution
light detection and ranging (LiDAR).

I. INTRODUCTION

N RECENT years, much research has been focused on

the autonomous driving technology. Light detection and
ranging (LiDAR) is one of the most important sensors for
perception tasks, such as drivable region segmentation, object
detection, and vehicle tracking. Different from images cap-
tured by cameras, point cloud generated by LiDARs supplies
3-D spatial information of the objects in the form of (x, y,
z) coordinates and intensity. This alleviates the barrier of dis-
tance estimation and makes 3-D object detection or tracking
much more accurate. However, the price of high-resolution
LiDARs is much higher than their low-resolution counter-
parts. The specifications of the most popular Velodyne 64-line
LiDAR HDL-64E and 16-line LiDAR VLP-16 are compared
in Table I. As we can see, the cost of a low-resolution LiDAR
is only about 1/18 of the high-resolution ones. Therefore, it is
more economical to consider low-resolution LiDARs in order
to build low-cost autonomous driving systems. However, it is
a major challenge to perform object detection from the point
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TABLE I
COMPARISON OF VLP-16 AND HDL-64E LIDARS

LiDAR type [ VLP-16 | HDL-64E__|

Channel number 16 64
Res.(vertical / horizontal) | 2°/ 0.2° | 0.4°/ 0.1728°
Power (Watts) 8 60

Price (USD) $4°000 $75°000

cloud produced by a low-resolution LiDAR since it is too
sparse to even show the shapes of objects. As illustrated in
Fig. 1, we can barely find objects from the depth map captured
from a 16-line LiDAR, while in the 64-line LiDAR objects are
more visible.

II. RELATED WORKS
A. Low-Resolution LiDAR and Depth Completion

Some research works focused on segmentation using low-
resolution LiDARs. Gigli ef al. [1] introduced the local normal
vector for the LiDAR’s spherical coordinates as an input chan-
nel. Based on the existing LoDNN architectures [2], its road
segmentation performance using low-resolution LiDAR was
close to that from high-resolution LiDAR within a reason-
able degradation. A supervised domain adaptation was utilized
by [3] to predict the low-resolution point cloud into high-
resolution point cloud in spherical coordinate and further
evaluated the results in 3-D semantic segmentation task. Low-
resolution LiDARs had been also employed for object tracking
tasks. In [4], an LIDAR-based system was proposed for estima-
tion of actual positions and velocities of the detected vehicles.
Some other works utilized depth completion for 2-D object
detection, such as [5] and [6]. In [5], a weighted depth filling
algorithm was proposed to make the high-resolution (HDL-
64E) LiDAR depth map even denser. Subsequently, this dense
depth map was concatenated with the corresponding RGB
image as the input of YOLOV3 [7] network for 2-D object
detection. Similarly, Farahnakian and Heikkonen [6] intro-
duced a self-supervised depth completion network to fill the
high-resolution depth map before detection 2-D objects.

B. High Resolution LiDAR for BEV Object Detection

Nearly all state-of-the-art object detectors utilize high-
resolution LiDAR. In [8], it first transformed the point
cloud into bird-eye view (BEV) map, and then extracted
the ground and proposed the objects in two branches sepa-
rately. Finally, the objects were predicted by a post-processing
block. Barrera et al. [9] further refined the previous version
into an end-to-end model and achieved better performance.
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Comparison of depth map from 16-line LiDAR (bottom) and 64-line LiDAR (middle) to their RGB image (top), on which red boxes represent

the short-range vehicles, orange boxes show the medium range vehicles, and the far vehicles are marked by blue boxes. Green boxes illustrate the occluded
vehicles. (a) Image scenario 1. (b) Image scenario 2. (c) Image scenario 3. (d) Dense depth map scenario 1. (¢) Dense depth map scenario 2. (f) Dense depth
map scenario 3. (g) Sparse depth map scenario 1. (h) Sparse depth map scenario 2. (i) Sparse depth map scenario 3.

Single-stage detector, PIXOR, was proposed in [10] by using
2-D convolution on the voxelized BEV map. Without any
anchor, it achieved real-time processing speed.

As mentioned earlier, due to the extreme sparsity, low-
resolution LiDAR depth map does not supply enough shape
information of the objects, but some subsamples of the precise
depth information. Meanwhile, the RGB image supplies rich
context information. Thus, we argue that when fusing sparse
depth map and RGB image together, 3-D object detection
becomes possible.

III. PROPOSED 3-D OBJECT DETECTION FRAMEWORK

In this letter, we investigate the possibility of low-resolution
LiDAR usage in BEV object detection task. In Fig. 1, red box,
orange box, and blue box represent the vehicle in short range,
medium range, and long range, respectively. For short range
vehicles, their shapes are clearly visible from dense depth
maps. In sparse depth maps, the shapes are very blurry but still
recognizable since the number of points hitting on the vehi-
cles is still large enough. Concerning the medium and long
range vehicles (in orange and blue boxes), we can only get a
small number of points even using 64-line LiDAR. While in
the sparse depth map from 16-line LiDAR, the number of hit
points is few to none. Taking the medium range vehicles in
orange boxes in Fig. 1(h) for example, it is easy to recognize
them as obstacles due to sharp distance distinction but diffi-
cult to recognize them as vehicles. This also applies to vehicles
with occlusion [green boxes in Fig. 1(c), (f), and (i)]. The long
range vehicles in blue box [in both Fig. 1(e) and (h)] get too
few points to be correctly localized and classified. According
to the analysis above, we found that unlike the depth map
from 64-line LiDAR, 16-line LiDAR depth map does not show
reliable context information but accurate distance information.
This implies that 16-line LiDAR depth map is more useful
for depth estimation rather than context information extrac-
tion. Therefore, to better use the information from 16-line
depth map, we put a depth completion network prior to the
object detector to generate a dense depth map with context
information. After the dense depth map is generated, it is sent
to 3-D object detector, as demonstrated in Fig. 2.

A. Depth Completion Network

The depth completion network aims to fill the sparse depth
map from 16-line LiDAR point cloud with the help of RGB
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Fig. 2. Proposed framework for 3-D object detection using low-resolution
point cloud and RGB image.
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image. The state-of-the-art depth completion network [11] is
adopted here with some modifications. It requires two inputs,
RGB image and low-resolution sparse depth map. The RGB
image supplies the context information in detail, while the
sparse depth map supplies the precise depth information for
some pixels on the image. The sensor fusion strategy adopted
here is also referred as early fusion. To make the network
more compact, we first replace the ResNet-34 backbone with
ResNet-18. For performance improvement, global attention
modules, and an atrous spatial pyramid pooling (ASPP) [13]
module are placed to bridge the encoder and decoder.

As shown in Fig. 3, the global attention module is used
to extract global context information of the feature map by
global pooling layer, and then fuse the global information
back to guide the feature learning. Through adding this mod-
ule, the global information is merged into features without
up-sampling layer. This helps the decoder part to achieve bet-
ter performance. Besides, an ASPP module is placed between
encoder and decoder, with each convolution dilated rate 2,
4, 8, and 16. The ASPP module concatenates feature maps
with different fields of perception, so that decoder has a better
understanding of the context information.

The loss function of depth completion network is the mean
square error (MSE) between the predicted depth map and the
ground truth.
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Fig. 4. Comparison of depth map from 16-line LiDAR with and without
GAM module to their RGB image and ground truth. (a) Image. (b) Depth
ground truth. (c¢) Depth map without GAM. (d) Depth map with GAM.

TABLE I
DEPTH COMPLETION PERFORMANCE COMPARISON WITH
AND WITHOUT GAM MODULES

with GAMs | RMSE (1/mm) | MAE (1/mm)
Yes 1592.74 537.81
No 1651.68 578.14

B. Object Detection Network

The object detection network used in this framework is
PIXOR [10]. Its main idea is to take advantage of 2-D
convolution and anchor-free network to realize super-fast point
cloud object detection in BEV. PIXOR consists of two steps.
The first step is to reform the representation of input point
cloud. It reduces 3 degrees of freedom to 2 in BEV, and
extracts the third freedom (z or height) as another input feature
map channel. So that 2-D convolution instead of 3-D convo-
lution is necessary to greatly decrease the computation com-
plexity. The second step is to feed the reformed input feature
map into an anchor-free one-stage object detector network. For
the highly efficient computation on dense predictions, a fully
convolutional architecture is utilized to build the backbone and
header of PIXOR. Without any predefined anchors and propos-
als, PIXOR outputs the predicted class and orientation from
header in a single network.

Concerning the loss function, the total loss of object detec-
tion consists of the classification loss and the regression
loss (1), where A5 and A are the corresponding coefficients.
The classification loss L. targets to correctly predict the
object (cars in our case) and the regression loss L, aims
to refine the size, center, and the orientation of the predicted
bounding boxes

£detect = )Lclsl:cls + )\regﬁreg- (D

C. Implementation Details

The depth completion network is first trained on KITTI
depth completion dataset. The depth completion network is
trained with batch size of 4, and learning rate starts at le-4
which decreases every five epochs. The total number of train-
ing epoch is 10. After training the depth completion network
and keeping as it is, we move on to train the object detector
from scratch. The KITTI object detection dataset has been split
into training and validation parts according to [12]. The opti-
mizer is Adam, with batch size 8. The learning rate starts at
le-3 and reduces by a factor of 2 when the validation loss does
not decrease. Finally, we fine-tune the entire framework with
both depth completion network and object detection network
together, with 16-line point cloud and images as input and
vehicles in BEV as output.
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Fig. 5. Visualization of object detection from the proposed framework, where
the green boxes are ground truth and the blue boxes represent the predicted
results.

IV. EXPERIMENT RESULTS
A. Evaluation Dataset

Training and evaluation of the whole framework both
employ KITTI dataset (both depth completion and object
detection). Before feeding into the framework mentioned
above, the point clouds are down-sampled to emulate the VLP-
16 low-resolution LiDAR. KITTI depth completion dataset
contains 85898 training data and 1000 selected validation
data. Its ground truth is produced by aggregating consecutive
LiDAR scan frames into a semi-dense depth map, about 30%
annotated pixels. KITTI object detection dataset has 7481 train-
ing data and 7518 testing data. Evaluation is categorized into
three regimes: 1) easy; 2) moderate; and 3) hard, representing
objects at different occlusion and truncation levels.

B. Depth Completion Performance Evaluation

As described in Section III-A, in order to enhance the depth
completion performance, multiple GAM modules have been
added to bridge the encoder and the decoder of depth com-
pletion network. The performance comparison on validation
dataset is illustrated in Table II. Adding GAM modules results
in the performance improvement of about 3.6% and 7.0% mea-
sured by root mean square root (RMSE) and mean average
error (MAE), respectively.
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TABLE III
BEV PERFORMANCE COMPARISON ON KITTI OBJECT DETECTION VALIDATION DATASET. THIS TABLE SHOWS APgEgy (IN %)
OF THE CAR CATEGORY, CORRESPONDING TO AVERAGE PRECISION OF THE BEV

Detection Networks Input

ToU=0.5 ToU=0.7

Easy | Moderate | Hard | Easy | Moderate | Hard

PIXOR[10] LiDAR only (64-line)

94.2 86.7 86.1 85.2 81.2 76.1

PIXOR LiDAR only (16-line)

60.7 51.2 46.8 | 53.8 47.1 39.1

Ours LiDAR (16-line) + Camera

89.0 75.8 68.1 | 75.4 61.2 55.2

Car

Precision

—Easy
— Mo derate

Hard

01 02 03 04

Recall

05 06 08

Fig. 6.
dataset.

Precision-Recall curve of the proposed framework on KITTI val

Fig. 4(b) and (c) demonstrate the predicted depth maps
of depth completion networks with and without GAM mod-
ules, respectively. And, the bottom figure shows the ground
truth. In this example, the depth map from depth completion
network with GAM module gives objects slightly better shape
representation.

C. Object Detection Performance Evaluation

The performance of our framework on KITTI object detec-
tion validation dataset is illustrated in Table III and Fig. 5.
The results are shown in two circumstances IoU = 0.5 and
IoU = 0.7, respectively. When IoU = 0.5, our framework
achieves 89.0%, 75.8%, and 68.1% detection accuracy for
easy, moderate, and hard cases, respectively. While in case
of IoU = 0.7, the prediction accuracy is decreased to 75.4%,
61.2%, and 55.2%, respectively. Compared to feeding 16-line
point cloud directly into PIXOR, our framework pulls up the
detection accuracy significantly in all cases. If compared to
PIXOR with 64-line point cloud as input, the performance
of our framework is relatively comparable in easy and mod-
erate cases. But in hard case, the prediction accuracy drops
around 20% in both IoU criteria. The precision-recall curve is
demonstrated in Fig. 6.

In regard to the computations, when running on RTX
2080Ti, the inference time of proposed network is 25.4 ms
or 39.8 frames per second (fps). Besides, as the network is
aiming for embedded systems, we also tested it on DRIVE
PX2 that contains two discrete Pascal GPUs. The inference
latency for each point cloud frame is 581.7 ms. If two GPUs
run as two threads, the throughput increases to 3.4 fps.

V. CONCLUSION

This letter presents a framework that enables 3-D object
detection using a low-resolution LiDAR. By cascading a depth
completion network with an object detector, it first converts the
sparse point cloud into a denser depth map that is subsequently
processed for 3-D object detection. It demonstrates 3-D object
detection with only a 16-line LiDAR and a camera. When
evaluated on KITTI dataset, the proposed solution achieves
high accuracy in object detection for both easy and moderate
cases, comparable to the benchmarks using 64-line LiDARs.
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