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A B S T R A C T

A phase-field model for thermomechanically-induced fracture in NiTi at the single crystal
level, i.e., fracture under loading paths that may take advantage of either of the functional
properties of NiTi–superelasticity or shape memory effect–, is presented, formulated within
the kinematically linear regime. The model accounts for reversible phase transformation from
austenite to martensite habit plane variants and plastic deformation in the austenite phase.
Transformation-induced plastic deformation is viewed as a mechanism for accommodation of
the local deformation incompatibility at the austenite–martensite interfaces and is accounted
for by introducing an interaction term in the free energy derived based on the Mori–Tanaka
and Kröner micromechanical assumptions and the hypothesis of martensite instantaneous
growth within austenite. Based on experimental observations suggesting that NiTi fractures in
a stress-controlled manner, damage is assumed to be driven by the elastic energy, i.e., phase
transformation and plastic deformation are assumed to contribute in crack formation and growth
indirectly through stress redistribution. The model is restricted to quasistatic mechanical loading
(no latent heat effects), thermal loading sufficiently slow with respect to the time rate of heat
transfer by conduction (no thermal gradients), and a temperature range below 𝑀𝑑 , which
is the temperature above which the austenite phase is stable, i.e., stress-induced martensitic
transformation is suppressed. The numerical implementation of the model is based on an
efficient scheme of viscous regularization in both phase transformation and plastic deformation,
an explicit numerical integration via a tangent modulus method, and a staggered scheme for
the coupling of the unknown fields. The model is shown able to capture transformation-induced
toughening, i.e., stable crack advance attributed to the shielding effect of inelastic deformation
left in the wake of the growing crack under nominal isothermal loading, actuation-induced
fracture under a constant bias load, and crystallographic dependence on crack pattern.

1. Introduction

Since its discovery in 1963, NiTi has attracted significant interest due to its unique functional properties combined with good
rocessability, corrosion and wear resistance, and biocompatibility. NiTi belongs to a class of materials named Shape Memory Alloys
SMAs), which in general exhibit a diffusionless, solid-to-solid, phase transformation of their crystal structure from austenite to
artensite. Forward phase transformation from austenite to martensite results in large strain accommodation, which can be almost
ompletely recovered during reverse phase transformation, triggered by unloading (superelastic effect) or unloading followed by
eating (shape memory effect). The above functional properties of NiTi renders it desirable in a wide range of applications, from
iomedical stents to solid-state actuators, elastocaloric cooling, robotics, and consumer electronics [1,2]. However, NiTi is prone
to failure, and, therefore, to fulfill the necessary reliability and safety requirements of applications, the NiTi’s fatigue and overload
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fracture response has become a topic of great technological importance. Although polycrystalline NiTi is primary in commercial use
today, single crystal fracture response provides insight into the coupling of crack formation and growth kinetics with the operant
deformation mechanisms, and, potentially, with grain sizes and boundaries, and texture.

NiTi belongs to a relatively brittle class of materials, that of intermetallics, and fails by cleavage of crystallographic planes, which,
epending on the local precipitate size and concentration, is assisted by ductile tearing [3,4]. Ni-rich NiTi alloys are generally
eat treated to produce metastable Ni4Ti3 precipitates of large volume fractions, estimated around 2 ∼ 7% depending on aging.
ecreasing Ni4Ti3 precipitate size results in a less ductile response and fewer dimples on the fracture surface. Nevertheless, both
xperimental observations [4] and numerical simulations [5] suggest that the work expended on the intrinsic damage mechanisms
f void nucleation and growth has a minor contribution to the work balance during crack growth, which is stress-driven. Extrinsic
hielding resulting from inelastic deformation left in the wake of the advancing crack results in toughness enhancement during crack
dvance, i.e., slow and stable crack extension [6], similarly to ductile materials. Transformation from austenite to martensite [7–
1], and vice versa [12], (re)orientation of martensite variants [13], overload and transformation-induced plasticity [10,13–15], and
thermomechanical coupling associated to latent heat [16–18] have an impact on the toughness enhancement observed. Large-scale
phase transformation in front of a crack, resulted, for example, due to thermal actuation, promotes crack advance, counteracting
the aforementioned stabilizing effect of the irrecoverable deformation left in the crack’s wake [15,19,20].

Regarding the NiTi’s fracture response at the single crystal level, Creuziger et al. [21] conducted fracture experiments of notched
NiTi single crystal tension specimens with crystallographic directions [100] and [111] along, the perpendicular to the notch plane,
tensile axis. The distinct feature of crystals is the orientation dependence of the activation of the crystallographic deformation
mechanisms, i.e., martensitic transformation, dislocations, and deformation twins in the case of NiTi, which induces orientation
dependent mechanical anisotropy. In the [100] notched sample, the crack that initiated first was arrested prior to the initiation of
the second crack, which propagated stably through nearly the entire width of the sample on the notch plane. The [111] notched
sample underwent unstable fracture and although the crack appears to have initially propagated on the plane of the notch from
the tip of the notch, its path quickly deviated by over 25◦ from the notch plane before returning to it. Pauses in crack propagation,
initial crack growth arrest, kinking and branching are believed to be a result of TiC precipitates and not significant in comparison to
the overall stable crack growth observed. Crack kinking was evident in fracture experiments performed in CuAlNi single crystals, in
which straight cracks with fixed direction were observed to propagate either stably or unstably at directions forming angles between
−50◦ to 43◦ with the notch plane depending on the crystallographic orientation [22]. These angles cannot be explained by crack
direction criteria for a single phase cubic material, i.e., a non-transforming material, as crack kinking under ‘‘Mode I’’ symmetric
loading in the absence of transformation is predicted only for values of 𝐸11∕𝐸22 greater than 1 [23]; 𝐸11 is the elastic modulus in
the direction of the notch axis and 𝐸22 in the loading axis. Thus, the fracture direction is strongly tied to microstructure formation,
i.e., transformation, in these SMAs. It should be noted, however, that phase transformation may not have a similar impact on the
fracture direction in NiTi due to the different crystal structure and types of transformation that occur in these alloys resulting in
vast larger number (192) of possible martensite plates that can be formed.

The aim, herein, is to develop a phenomenological phase-field model for fracture in NiTi single crystals. The proposed model is
developed by coupling a micromechanics-based constitutive model for the deformation response of NiTi at the single crystal level
with the phase-field approach to fracture. The major advantage of the phase-field approach over discrete fracture models lies on its
ability to model crack nucleation, propagation, merging, and branching without ad hoc additions to the theory and without adaptive
mesh refinement for sufficiently fine mesh resolutions. This stems from the regularization of the sharp crack surface topology by a
diffusive crack zone governed by a scalar auxiliary variable, a phase field, which interpolates between the unbroken and the broken
state of the material. In the phase-field approach to fracture, also known as variational approach to fracture, the solution to the
fracture problem is found as the minimizer of a global energy functional that includes a volumetric approximation of total fracture
energy. The phase-field approach to fracture has been focused mostly on brittle materials at the macroscopic level [24–26] with
proposed modifications to fracture in ductile materials [27–29], geomaterials [30,31], composites [32,33], rubbery polymers [34],
hydrogen embrittlement [35], hydraulic fracturing [36], and recently extended to fatigue as well [37–41]. Relevant to the current
study, the phase-field approach to fracture was employed to SMAs at the polycrystalline level [42,43] and to face centered cubic
single crystals of conventional metals [44–49].

The proposed model includes a 3D, micromechanics-based, description of the deformation response of NiTi, including a
description of transformation-induced plasticity as a mechanism for accommodation of the deformation incompatibility at the
austenite–martensite interface. The model accounts for reversible phase transformation from austenite to martensite and dislocation
slipping in the austenite state, neglecting martensite variant reorientation, detwinning, and deformation twinning in martensite (a
brief review of the deformation mechanisms in NiTi is provided below). The model adopts a single value for the energy expended
to create new surfaces, which corresponds to the fracture toughness of stress-induced martensite – of a rather complex, twinned
microstructure – in the fully-transformed zone near the crack tip. Thus, the model is applicable for temperatures below 𝑀𝑑 ,
i.e., the highest temperature above which martensite can no longer be stress-induced, since, as recently shown in [5,50], the
fracture toughness of SMAs is piece-wise constant with respect to temperature, below and above 𝑀𝑑 , with the value below 𝑀𝑑
corresponding to the fracture toughness of martensite and that above corresponding to austenite. The model further assumes that
inelastic deformation associated with phase transformation and plastic deformation contributes to the fracture response only through
stress redistribution, underpinning the experimental/numerical evidence that the fracture process in SMA is stress-driven [4,5].

The paper is structured as follows. A brief overview of the deformation mechanisms in NiTi single crystals is provided in Section 2.
The governing equations of the proposed subgranular phase-field approach to fracture in NiTi are outlined in Section 3. In Section 4,
the finite-element implementation of the model is described. In Section 5, numerical examples and presented and discussed and,
2

lastly, conclusions are drawn in Section 6.
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2. Deformation mechanisms in NiTi single crystals

In NiTi, austenite, which is characterized by a cubic B2 crystallographic structure, transforms into 12 monoclinic martensite
ariants (B19′ crystallographic structure) by mechanical loading and/or cooling, during which chemical composition remains
naltered while the atoms are organized in a new crystallographic lattice (non-diffusive, first-order phase transition). The martensite
hase is formed as thin platelets, needles, or laths within the austenite parent phase with the two phases fitting together along planes,
alled invariant or habit planes, that remain unchanged, i.e., neither deform nor rotate. These planes/interfaces are between austenite
and twins of martensite variants, called Habit Plane Variants (HPVs), that comprise of two Lattice Correspondent Variants (LCVs).
Crystallographic theory predicts 192 HPVs, i.e., 192 possible distinct interfaces between austenite and martensite [51]. Movement
of interfaces between HPVs is referred to as HPV reorientation, and movement of interfaces between LCVs as detwinning. Plastic defor-
mation in austenite is strongly influenced by ⟨100⟩ {011} and ⟨101⟩ {001} slip modes and, as recently observed, by ⟨111⟩ {110} [52].
islocation slipping is observed even if the overall applied stress is lower than the yield stress of austenite as a mechanism to
ccommodate the deformation incompatibility at the austenite–martensite interfaces [53], thus termed TRansformation-Induced
lasticity (TRIP). TRIP in austenite is observed during phase transformation as a mechanism to accommodate the deformation
ncompatibility at the austenite–martensite interfaces. The plastic deformation in martensite is mainly due to twin activity, 11
ossible twinning systems were pointed out by [54], while only one slip system (001)[100] exists due to the low symmetry of the
artensite monoclinic crystal structure.

. Phase-field model for the fracture response of single NiTi crystals

The adopted single crystal model accounts for reversible phase transformation from austenite to HPVs, dislocation slipping in the
ustenite state, and elastic anisotropy for the two phases [55]. The interaction between the two phases is described by a mean-field
pproach through the Eshelby tensor by regarding the HPVs as ellipsoidal inclusions embedded in the austenite matrix in order
o reflect the internal stress states that can activate dislocation slipping, i.e., TRIP, even for applied load levels that are not high
nough to do so otherwise [56].

.1. Kinematics

The inelastic deformation of an SMA crystal is defined as an average over a Representative Volume Element (RVE), which should
e large enough to include a sizable set of martensite HPVs and slip systems within a single crystal austenite. It is further assumed
hat the austenite–martensite formed interfaces are coherent and their motion along with the dislocation motion is rate-independent.
Assuming small strains, the total macroscopic strain tensor

ε = ε𝑒 + ε𝑡 + ε𝑝, (1)

s additively decomposed to elastic, ε𝑒, transformation, ε𝑡, and plastic, ε𝑝, strain tensors. Thermal strain, which is an order of
agnitude smaller than the transformation strain, is not included for simplicity; its proper implementation in a single crystal model
s not trivial [57,58] given the highly anisotropic thermal expansion of the monoclinic martensite variants [59].

.1.1. Transformation strain
By the rule of mixtures, the transformation strain can be written as

ε𝑡 =
𝑁𝑡
∑

𝛼=1
ε̂(𝛼)𝑡 𝜉(𝛼), (2)

here ε̂(𝛼)𝑡 = 1
2 𝑔𝑡

(

𝒍(𝛼) ⊗ 𝒅(𝛼) + 𝒅(𝛼) ⊗ 𝒍(𝛼)
)

, 𝒍(𝛼), 𝒅(𝛼), and 𝑔𝑡 are the stress free transformation strain, the habit plane normal,
he transformation direction, and the magnitude of transformation, respectively, for each of the 𝑁𝑡 martensite HPVs, given by
rystallography considerations, and 𝜉(𝛼), restricted by 0 ≤ 𝜉(𝛼) ≤ 1, stands for the volume fraction of martensite corresponding to the
th-HPV system in an RVE. The total volume fraction of martensite, 𝜉 = ∑

𝛼 𝜉
(𝛼), must also lie in the range 0 ≤ 𝜉 ≤ 1.

The rate of ε𝑡 thus reads as

ε̇𝑡 =
𝑁𝑡
∑

𝛼=1
ε̂(𝛼)𝑡 𝜉̇(𝛼). (3)

.1.2. Plastic strain
The overall plastic strain tensor can be similarly written by the rule of mixtures as

ε𝑝 = (1 − 𝜉)ε𝑝𝐴 +
𝑁𝑡
∑

𝛼=1
𝜉(𝛼)ε𝑝𝑀(𝛼)

, (4)

where ε𝑝 and ε𝑝 stand for the plastic strain tensors in the regions occupied by austenite and 𝛼 -martensite HPV, respectively.
3

𝐴 𝑀(𝛼) th
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The rate of ε𝑝 is thus given as

ε̇𝑝 = (1 − 𝜉)ε̇𝑝𝐴 +
𝑁𝑡
∑

𝛼=1
𝜉(𝛼)ε̇𝑝𝑀(𝛼)

−
𝑁𝑡
∑

𝛼=1
𝜉̇(𝛼)

(

ε𝑝𝐴 − ε𝑝𝑀(𝛼)

)

= (1 − 𝜉)

[

ε̇𝑝𝐴 −
𝑁𝑡
∑

𝛼=1

𝜉̇(𝛼)

1 − 𝜉

(

ε𝑝𝐴 − ε𝑝𝑀(𝛼)

)

]

+
𝑁𝑡
∑

𝛼=1
𝜉(𝛼)

[

ε̇𝑝𝑀(𝛼)
−
𝜉̇(𝛼)

𝜉(𝛼)
(

ε𝑝𝐴 − ε𝑝𝑀(𝛼)

)

]

. (5)

he rate of ε𝑝 can moreover be described by crystallographic slip mechanisms in the austenite phase

ε̇𝑝 = (1 − 𝜉)
𝑁𝐴
∑

𝑙=1
𝐴ε̂

(𝑙)
𝑝 𝛾̇

(𝑙)
𝐴 , (6)

here 𝐴ε̂
(𝑙)
𝑝 = 1

2

(

𝒒(𝑙)𝐴 ⊗ 𝒓(𝑙)𝐴 + 𝒓(𝑙)𝐴 ⊗ 𝒒(𝑙)𝐴
)

is the orientation tensor of the 𝑙th-slipping system of austenite, 𝒒(𝑙)𝐴 , 𝒓
(𝑙)
𝐴 , 𝛾̇

(𝑙)
𝐴 are the respective

hear direction, slip plane normal, and average shearing rate, respectively, and 𝑁𝐴 denotes the number of slip systems.
Eqns (5) and (6), which hold for every 𝜉(𝛼), 𝛼 = 1,… , 𝑁𝑡, yield

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε̇𝑝𝐴 =
𝑁𝑡
∑

𝛼=1

𝜉̇(𝛼)

1 − 𝜉

(

ε𝑝𝐴 − ε𝑝𝑀(𝛼)

)

+
𝑁𝐴
∑

𝑙=1
𝐴ε̂

(𝑙)
𝑝 𝛾̇

(𝑙)
𝐴 ,

ε̇𝑝𝑀(𝛼)
=
𝜉̇(𝛼)

𝜉(𝛼)
(

ε𝑝𝐴 − ε𝑝𝑀(𝛼)

)

.

(7)

hus, the rates of plastic strain in the austenite and 𝛼th-martensite HPV are dependent on the dislocation slip rates on austenite’s
lip systems and on the rates of expansion/shrinkage of the HPVs, thus, the model accounts for the inheritance of plastic strain from
ne phase to another.

.2. Balance laws and entropy inequality principle

The phase-field model for fracture in NiTi single crystals is derived by postulating a microforce balance in addition to the usual
balance laws and entropy inequality principle [60].

The local forms of the postulated balance laws are derived from their respective global forms, given below, which hold for all
subregions  of the continuum body, , with a sufficiently smooth boundary 𝜕. All integrands are at least 𝐶0-continuous.

.2.1. Balance of linear momentum (equilibrium)

∫𝜕
σ ⋅ 𝐧 𝑑𝑠 + ∫

𝐛 𝑑𝒙 = 0 ⇒ 𝛁 ⋅ σ + 𝐛 = 0, (8)

here σ is the Cauchy stress, 𝐛 the body force per unit volume, and 𝛁 is the differential nabla operator.

.2.2. Balance of angular momentum

∫𝜕
𝐫 × (σ ⋅ 𝐧) 𝑑𝑠 + ∫

𝐫 × 𝐛 𝑑𝒙 = 0 ⇒ σ = σ𝑇 , (9)

here 𝐧 the outward unit normal of 𝜕, 𝐫 the position vector of a material point, and × denotes the cross product between two
vectors.

3.2.3. Microforce balance
Following [60], the balance of a microforce system is postulated

∫𝜕
ζ ⋅ 𝐧 𝑑𝑠 + ∫

𝜋 𝑑𝒙 = 0 ⇒ 𝛁 ⋅ ζ + 𝜋 = 0, (10)

where 𝜋 is an internal scalar microforce and ζ a vector stress that exerts a scalar traction ζ ⋅ 𝐧 on 𝜕.

3.2.4. Energy balance
The energy balance is stated as

∫
𝑢̇ 𝑑𝒙 = ∫𝜕

𝐭 ⋅ 𝒖̇ 𝑑𝑠 + ∫
𝐛 ⋅ 𝒖̇ 𝑑𝒙 + ∫𝜕

(ζ ⋅ 𝐧)𝑐̇ 𝑑𝑠 + ∫
𝑟 𝑑𝒙 − ∫𝜕

𝐪 ⋅ 𝐧 𝑑𝑠

(10)
⇒ 𝑢̇ = σ ∶ ε̇ + ζ ⋅ 𝛁𝑐̇ − 𝜋𝑐̇ + 𝑟 − 𝛁 ⋅ 𝐪, (11)

where 𝑢 is the internal energy per unit volume, 𝒖 is the displacement vector, 𝑐 is the phase-field parameter (or order parameter) to
e further defined below, 𝐪 is the heat flux, and 𝑟 is a heat source.
Under the assumptions 𝑟 = 0 and 𝛁 ⋅ 𝐪 = 𝟎, the above equation simplifies to

̇

4

𝑢̇ = σ ∶ ε + ζ ⋅ 𝛁𝑐̇ − 𝜋𝑐̇. (12)
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3.2.5. Entropy inequality principle
Under the above assumptions, the second law of thermodynamics reads as

∫
𝑠̇𝑑𝒙 ≥ −∫𝜕

𝐪 ⋅ 𝐧
𝑇

𝑑𝑠⇒ 𝑠̇ ≥
𝐪 ⋅ 𝛁𝑇
𝑇 2

,

where 𝑠 is the entropy per unit mass density and 𝑇 is the absolute temperature.
Assuming 𝛁𝑇 = 𝟎, the entropy inequality principle can be stated in terms of dissipation, 𝐷, as

𝐷 = 𝑠̇𝑇 ≥ 0, (13)

In view of the energy balance equation (12) and the Legendre transformation,

𝑢 = 𝜓 + 𝑇 𝑠, (14)

where 𝜓 is the Helmholtz free energy, the dissipation inequality can be further stated as

𝐷 = σ ∶ ε̇ − 𝑠𝑇̇ + ζ ⋅ 𝛁𝑐̇ − 𝜋𝑐̇ − 𝜓̇ ≥ 0. (15)

The assumption of a uniform throughout the material, at every instant, temperature distribution, 𝛁𝑇 = 𝟎, corresponds to assuming
the rate of both the mechanical and thermal loading being sufficiently slow with respect to the time rate of heat transfer by
conduction.

3.3. Constitutive response

Given the balance equations, the constitutive equations can now be derived in a thermodynamically consistent manner by
postulating the Helmholtz free energy.

3.3.1. Helmholtz free energy
Following the choice of the applied strain tensor ε and absolute temperature 𝑇 as external state variables, the Helmholtz free

energy per unit reference volume is taken to be

𝜓
(

ε, 𝑇 , 𝜉(𝛼), 𝛾 (𝑙)𝐴 , 𝑐,𝛁𝑐
)

= 𝜓𝑒𝑙
(

ε, 𝑇 , 𝜉(𝛼), 𝛾 (𝑙)𝐴
)

+ 𝜓𝑖𝑛𝑡
(

ε, 𝑇 , 𝜉(𝛼), 𝛾 (𝑙)𝐴
)

+ 𝜓𝑐ℎ
(

𝑇 , 𝜉(𝛼)
)

+ 𝜓𝑓𝑟 (𝑐,𝛁𝑐) ,

where the various contributions are described below.
Elastic energy.– The elastic contribution on the free energy is postulated as

𝜓𝑒𝑙
(

ε, 𝑇 , 𝜉(𝛼), 𝛾 (𝑙)𝐴
)

= 𝑔(𝑐)W+
𝑒𝑙

(

ε, 𝑇 , 𝜉(𝛼), 𝛾 (𝑙)𝐴
)

+W−
𝑒𝑙

(

ε, 𝑇 , 𝜉(𝛼), 𝛾 (𝑙)𝐴
)

, (16)

where

W+
𝑒𝑙 =

(

𝐶11 +
𝐶12
6

)

⟨tr(ε𝑒)⟩2+ + 𝐶44
(

ε𝑒𝑑𝑒𝑣 ∶ ε
𝑒
𝑑𝑒𝑣

)

+
(

𝐶11 − 𝐶12
2

− 𝐶44

) 3
∑

𝑟=1

(

𝜀̄𝑒𝑑𝑒𝑣,𝑟𝑟
)2
, (17)

and

W−
𝑒𝑙 =

(

𝐶11 +
𝐶12
6

)

⟨tr(ε𝑒)⟩2− . (18)

In the above, the notation ⟨𝛼⟩± = 1
2 (𝛼 ± |𝛼|) denotes the positive and negative parts of an expression 𝛼, ε𝑒𝑑𝑒𝑣 is the deviatoric part of

the elastic strain tensor, i.e., ε𝑒𝑑𝑒𝑣 ∶= ε
𝑒 − ε𝑒𝑣𝑜𝑙, where ε

𝑒
𝑣𝑜𝑙 ∶=

1
3 tr(ε

𝑒)δ is the volumetric elastic strain tensor and δ is the unit tensor
ith components 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗, 𝐶11, 𝐶12, and 𝐶44 are elastic constants of the fourth-order elasticity tensor
𝑖𝑗𝑘𝑙 = 𝐶12𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐶44

(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

+
(

𝐶11 − 𝐶12 − 2𝐶44
)

𝛿𝑖𝑗𝑘𝑙 of austenite in the reference system of the cubic crystal unit cell of
ustenite, where 𝛿𝑖𝑗𝑘𝑙 = 1 if 𝑖 = 𝑗 = 𝑘 = 𝑙 and 𝛿𝑖𝑗𝑘𝑙 = 0 otherwise, ε̄𝑒 ∶= 𝐑ε𝑒𝐑𝑇 , where 𝐑 = Θ3Θ2Θ1 is the rotation matrix between
he reference system of the crystal unit cell and the fixed orthonormal reference frame,

𝛩1 =
⎡

⎢

⎢

⎣

cos 𝜃1 sin 𝜃1 0
− sin 𝜃1 cos 𝜃1 0

0 0 1

⎤

⎥

⎥

⎦

, 𝛩2 =
⎡

⎢

⎢

⎣

cos 𝜃2 1 − sin 𝜃2
0 1 0

sin 𝜃2 0 cos 𝜃2

⎤

⎥

⎥

⎦

, 𝛩3 =
⎡

⎢

⎢

⎣

cos 𝜃3 sin 𝜃3 0
− sin 𝜃3 cos 𝜃3 0

0 0 1

⎤

⎥

⎥

⎦

, (19)

𝜃1, 𝜃2, 𝜃3} are the Euler angles, and 𝑔(𝑐) is a degradation function such that 0 ≤ 𝑔(𝑐) ≤ 1, 𝑔(0) = 1, 𝑔(1) = 0, and 𝑔′(𝑐) < 0, where
he prime denotes differentiation with respect to argument. Note that the effective stiffness tensor, 𝐂, could be evaluated in terms
f the martensite volume fraction, 𝜉, by the rule of mixtures, however, the assumption 𝐂 = 𝐂𝐴 = 𝐂𝑀(𝛼)

, where the subscripts 𝐴 and
(𝛼) denote austenite and the 𝑎th- martensite HPV, is adopted here for simplicity since first principal calculations show that the
lastic properties of the B2 and B19′ phases are similar [61].
The above volumetric/deviatoric decomposition of the elastic energy, which accounts for cubic symmetry [45], is essentially
tension/compression split introduced to prevent cracking in regions under compression and was initially proposed by [62] for
lastic isotropy. In the literature, there are different options for the tension/compression split with some common split models for
5

lastic isotropy discussed in [62,63] and their generalization to anisotropy in [64]. The degradation function 𝑔(𝑐) links the crack



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116677D. Kavvadias and T. Baxevanis

i

a

σ

t

h

phase-field and the mechanical fields. Common choices for the degradation function may be found in [65,66]. The typically assumed
quadratic function

𝑔(𝑐) = (1 − 𝑐)2, (20)

s adopted here.
Interaction energy.– The interaction energy is defined through its rate as in [56]1

𝜓̇𝑖𝑛𝑡 = (𝐂 ∶ ε𝑒) ∶ ε̇𝑝 − σ𝐴 ∶ (1 − 𝜉)
𝑁𝐴
∑

𝑙=1
𝐴ε̂

(𝑙)
𝑝 𝛾̇

(𝑙)
𝐴 , (21)

nd

σ𝐴 = 𝐂 ∶ ε𝑒 +
𝑁𝑡
∑

(𝛼)=1
𝜉(𝛼)𝐂 ∶

(

𝐈 − 𝐒(𝛼)
)

∶
(

ε̂(𝛼)𝑡 + ε𝑝𝑀(𝛼)
− ε𝑝𝐴

)

, (22a)

σ𝑀(𝛼)
= σ𝐴 − 𝐂 ∶

(

𝐈 − 𝐒(𝛼)
)

∶
(

ε̂(𝛼)𝑡 + ε𝑝𝑀(𝛼)
− ε𝑝𝐴

)

. (22b)

𝐴 and σ𝑀(𝛼)
stand for the average stress values in the austenite and the 𝛼th-martensite HPV, 𝐒(𝛼) stands for the Eshelby’s tensor of

the 𝛼th-martensite HPV, which depends on the elastic constants and shape of the variant, and 𝐈 is the fourth-order unit tensor.
Chemical energy.– The chemical energy reads as

𝜓𝑐ℎ
(

𝑇 , 𝜉(𝛼)
)

= 𝑐𝑣

[

(𝑇 − 𝑇0) − 𝑇 ln
(

𝑇
𝑇0

)]

+ 𝜆
𝑇𝑇

(𝑇 − 𝑇𝑇 )𝜉, (23)

where the specific heat, 𝑐𝑣, is assumed to be phase-independent, which is a common engineering assumption. The parameter 𝑇𝑇 is
the phase equilibrium temperature and 𝜆 is the latent heat of transformation at temperature 𝑇𝑇 .

Fracture energy.– As standard in the phase-field modeling of fracture, the volumetric approximation of total fracture energy
hrough a crack density functional 𝛤𝑐 is adopted

∫𝛤
𝑐𝑑𝑠 ≈ ∫

𝑐𝛤𝑐 (𝑐,𝛁𝑐)𝑑𝒙, (24)

where the evolving internal discontinuity boundary, 𝛤 , represents a set of discrete cracks, 𝑐 is the energy expended to create a unit
area of fracture surface, and the damage-like, phase-field variable, 0 ≤ 𝑐 ≤ 1, approximates the fracture surfaces, taking the value 0
away from the crack and the value 1 within the crack, and, thus, the phase-field contribution on the free energy is postulated as

𝜓𝑓𝑟 (𝑐,𝛁𝑐) = 𝑐𝛤𝑐 (𝑐,𝛁𝑐). (25)

The crack density functional is typically given as

𝛤𝑐(𝑐,𝛁𝑐) =
1
𝑤0

[ 1
𝓁
𝑤(𝑐) + 4𝓁 (𝛁𝑐 ⋅ 𝛁𝑐)

]

; 𝑤0 = 8∫

1

0

√

𝑤(𝑠)𝑑𝑠, (26)

where 𝓁 > 0 is a model length parameter that controls the width of the smooth approximation of the cracks, 𝑤(𝑐) ∈ [0, 1], subject to
the constraints 𝑤(0) = 0 and 𝑤(1) = 1, is a function that governs the shape of the regularized profile of the phase field, and 𝑤0 > 0
is a normalization constant. A quadratic function 𝑤(𝑐) = 𝑐2 is most widely used, yielding

𝛤𝑐(𝑐,𝛁𝑐) =
1
4𝓁

(

𝑐2 + 4𝓁2𝛁𝑐 ⋅ 𝛁𝑐
)

. (27)

Other choices have also been explored in literature [66–68].

3.3.2. Constitutive equations & dissipation inequality
The standard thermodynamical procedure, commonly referred to as the Coleman–Noll procedure, applied to the dissipation

inequality

𝐷 = σ ∶ ε̇ − 𝑠𝑇̇ +ζ ⋅ 𝛁𝑐̇ − 𝜋𝑐̇ − 𝜓̇ =

(

σ − 𝑔(𝑐)
𝜕W+

𝑒𝑙
𝜕ε𝑒

−
𝜕W−

𝑒𝑙
𝜕ε𝑒

)

∶ ε̇𝑒 +
(

𝑠 − 𝑐 ln 𝑇
𝑇0

+ 𝜆
𝑇0
𝜉
)

𝑇̇

+
𝑁𝑡
∑

𝛼=1

[

σ ∶ ε̂(𝛼)𝑡 − 𝜆
𝑇𝑇

(𝑇 − 𝑇𝑇 )
]

𝜉̇(𝛼) + (1 − 𝜉)σ𝐴 ∶
𝑁𝐴
∑

𝑙=1
𝐴ε̂

(𝑙)
𝑝 𝛾̇

(𝑖)
𝐴

+
(

ζ − 𝑐
𝜕𝛤𝑐
𝜕𝛁𝑐

)

⋅ 𝛁𝑐̇ −
(

𝜋 + 𝑔′(𝑐)W+
𝑒𝑙 + 𝑐

𝜕𝛤𝑐
𝜕𝑐

)

𝑐̇ ≥ 0, (28)

1 The derivation of the interaction term in [56] is based on the Mori–Tanaka and Kröner micromechanical assumptions and the instantaneous growth
6

ypothesis according to which the martensitic domains form instantaneously.
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obtained via chain rule differentiation on the Helmholtz free energy with respect to its variables set, yields the constitutive
relationships

σ = 𝑔(𝑐)
𝜕W+

𝑒𝑙
𝜕ε𝑒

+
𝜕W−

𝑒𝑙
𝜕ε𝑒

(29)

𝑠 = 𝑐 ln 𝑇
𝑇0

− 𝜆
𝑇0
𝜉 (30)

ζ = 𝑐
𝜕𝛤𝑐
𝜕𝛁𝑐

= 2𝑐𝓁𝛁𝑐, (31)

and the reduced dissipation expression

𝐷 =
𝑁𝑡
∑

𝛼=1

[

σ ∶ ε̂(𝛼)𝑡 − 𝜆
𝑇𝑇

(𝑇 − 𝑇𝑇 )
]

𝜉̇(𝛼) + (1 − 𝜉)σ𝐴 ∶
𝑁𝐴
∑

𝑙=1
𝐴ε̂

(𝑙)
𝑝 𝛾̇

(𝑙)
𝐴 −

(

𝜋 + 𝑔′(𝑐)W+
𝑒𝑙 + 𝑐

𝜕𝛤𝑐
𝜕𝑐

)

𝑐̇ ≥ 0. (32)

Assuming the material to be strongly dissipative, inequality (32) can be satisfied if

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐷𝑡 =
𝑁𝑡
∑

𝛼=1

[

σ ∶ ε̂(𝛼)𝑡 − 𝜆
𝑇𝑇

(𝑇 − 𝑇𝑇 )
]

𝜉̇(𝛼) > 0; ∃ 𝜉̇(𝛼) ≠ 0,

𝐷𝑝 = (1 − 𝜉)σ𝐴 ∶
𝑁𝐴
∑

𝑙=1
𝐴ε̂

(𝑙)
𝑝 𝛾̇

(𝑙)
𝐴 > 0; ∃ 𝛾̇ (𝑙)𝐴 > 0,

𝐷𝑐 = −
(

𝜋 + 𝑔′(𝑐)W+
𝑒𝑙 + 𝑐

𝜕𝛤𝑐
𝜕𝑐

)

𝑐̇ ≥ 0; 𝑐̇ > 0,

(33)

are enforced. It is assumed that these inequalities are obeyed at all times so that the dissipation inequality is concurrently satisfied.

3.3.3. Evolution equation for the phase-field parameter
The above dissipation inequality (33)c and possibly crack irreversibility, i.e., 𝑐̇ ≥ 0, are satisfied by assuming

𝜋 = −𝑔′(𝑐)𝑒 − 𝑐
𝜕𝛤𝑐
𝜕𝑐

, (34)

where the history functional, 𝑒, introduced by [24], is subject to the Kuhn–Tucker conditions for loading and unloading

W+
𝑒𝑙 −𝑒 ≤ 0, ̇𝑒 ≥ 0, ̇𝑒

(

W+
𝑒𝑙 −𝑒) = 0, (35)

i.e., represents the maximum positive elastic energy obtained in a loading process.
In the above formulation, the evolution of the phase field variable, i.e., the creation of new crack surfaces, is not recognized as

a dissipative process since 𝐷𝑐 ≡ 0. This is the case in general for rate-independent processes derived by the balance of a microforce.
Given (10), (27) and (31), the phase-field evolution equation (34) reads

2𝑐𝓁𝛁 ⋅ 𝛁𝑐 = 𝑔′(𝑐)𝑒 +
𝑐
2𝓁
𝑐, (36)

Note that the driving force for damage, −𝑔′(𝑐)𝑒, is assumed to be driven by the elastic energy in accordance with experimental
bservations suggesting that SMAs fracture in a stress-controlled manner, i.e., phase transformation and plastic deformation are
assumed to contribute in crack formation and growth indirectly through stress redistribution.

3.3.4. Evolution equations for the internal state variables
From the above dissipation expressions, (33)a and b, the driving forces for phase transformation and plastic deformation can

be invoked as the quasi-conservative thermodynamic forces conjugate to the respective internal variables. The evolution laws of
martensitic transformation and plastic deformation are given as rate-dependent, power-law relations, in which the exponents are
chosen sufficiently large to approximate rate-independent conditions [69].

Martensitic transformation.– For transformation of austenite to a particular martensite HPV, the driving force, 𝐹 𝑡(𝛼), for this
HPV should satisfy the following nonequilibrium condition

𝐹 (𝛼)
𝑡 = σ ∶ ε̂(𝛼)𝑡 − 𝜆

𝑇𝑇
(𝑇 − 𝑇𝑇 ) = 𝑓𝑓

(𝛼)
𝑡 , (37)

where 𝑓𝑓
(𝛼)
𝑡 > 0 is the HPV hardness, and σ ∶ ε̂(𝛼)𝑡 is the resolved stress on the 𝛼th-transformation system, but not in the classical

Schmid sense since 𝒍(𝛼) is typically not perpendicular to 𝒅(𝛼).
For this particular martensite HPV to transform back to austenite, the following condition must be met

− 𝐹 (𝛼)
𝑡 = −σ ∶ ε̂(𝛼)𝑡 + 𝜆

𝑇𝑇
(𝑇 − 𝑇𝑇 ) = 𝑟𝑓

(𝛼)
𝑡 , (38)

where 𝑓 (𝛼) > 0.
7

𝑟 𝑡
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The evolution law for the volume fraction of the 𝛼th-martensite HPV follows the power-law relation

𝜉̇(𝛼) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜉̇0

(

𝐹 (𝛼)
𝑡

𝑓𝑓
(𝛼)
𝑡

)𝑛

; 𝐹 (𝛼)
𝑡 > 0, austenite → martensite

−𝜉̇0
⎛

⎜

⎜

⎝

|

|

|

𝐹 (𝛼)
𝑡

|

|

|

𝑟𝑓
(𝛼)
𝑡

⎞

⎟

⎟

⎠

𝑛

; 𝐹 (𝛼)
𝑡 < 0, martensite → austenite

(39)

here
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑓𝑓
(𝛼)
𝑡 =

𝑁𝑡
∑

(𝛽)=1
𝐻 (𝛼)(𝛽)
𝑡 𝜉(𝛽) + 𝜉(𝛼)𝐽𝑡𝛾 + 𝑐

𝑓𝑓
(𝛼)
𝑡 ,

𝑟𝑓
(𝛼)
𝑡 =

𝑁𝑡
∑

(𝛽)=1
𝐻 (𝛼)(𝛽)
𝑡 𝜉(𝛽) +

(

1 − 𝜉(𝛼)
)

𝐽𝑡𝛾 + 𝑐
𝑟𝑓

(𝛼)
𝑡 ,

(40)

̇0 is a reference transformation strain rate,
[

𝐻 (𝛼)(𝛽)
𝑡

]

is the interaction energy (constant) matrix between the different martensite
PVs, the scalar 𝐽𝑡 > 0 describes the transformation hardening due to plastic deformation, 𝛾 =

∑𝑁𝐴
𝑙=1

|

|

|

𝛾 (𝑙)𝐴
|

|

|

is the accumulated total
lip, and 𝑐

𝑓𝑓
(𝛼)
𝑡 , 𝑐𝑟𝑓

(𝛼)
𝑡 are positive scalars.

Plastic deformation of austenite.– For plastic deformation of austenite, the driving force for dislocation slip of the 𝑙th-slip
ystem, 𝐴𝐹

(𝑙)
𝑝 , should satisfy the following condition

|

|

|

𝐴𝐹
(𝑙)
𝑝
|

|

|

= |

|

|

(1 − 𝜉)σ𝐴 ∶ 𝐴ε̂
(𝑙)
𝑝
|

|

|

= 𝐴𝑓
(𝑙)
𝑝 , (41)

here 𝐴𝑓
(𝑙)
𝑝 > 0 is the respective slip system hardness.

The slip rate in the 𝑙𝑡ℎ-slip system of austenite is given as

𝛾̇ (𝑙)𝐴 = 𝛾̇0

(

𝐴𝐹
(𝑙)
𝑝

𝐴𝑓
(𝑙)
𝑝

)

⎛

⎜

⎜

⎝

|

|

|

𝐴𝐹
(𝑙)
𝑝
|

|

|

𝐴𝑓
(𝑙)
𝑝

⎞

⎟

⎟

⎠

𝑛−1

, (42)

with the evolution law of the hardness, 𝐴𝑓
(𝑙)
𝑝 , reading as

𝐴 ̇𝑓 (𝑙)
𝑝 =

𝑁𝐴
∑

𝑟=1
𝐴𝐻

(𝑙)(𝑟)
𝑝

|

|

|

𝛾̇ (𝑟)𝐴
|

|

|

, 𝐴𝑓
(𝑙)
𝑝 (0) = 𝑐

𝐴𝑓
(𝑙)
𝑝 , (43)

where 𝛾̇0 is reference plastic strain rate, the matrix

𝐴𝐻
(𝑙)(𝑟)
𝑝 = 𝐴𝐻𝑝

[

𝑞(𝑙) + (1 − 𝑞(𝑙))𝛿𝑙𝑟
]

(

1 −
𝛾
𝛾0𝑝

)𝑚𝑝

, (44)

describes the history-dependent rate of increase of the deformation resistance on slip system 𝑙 due to shearing on slip system 𝑟, given
n terms of the accumulated total slip, 𝑞(𝑙) stands for a constant latent-hardening parameter that ranges between 1 and 1.04, the
ositive scalar 𝐴𝐻𝑝 is the initial slip-system hardening rate, 𝑚𝑝 is the strain hardening exponent, and 𝑐

𝐴𝑓
(𝑙)
𝑝 , 𝐴𝐻𝑝, 𝑚𝑝, 𝛾0𝑝 are positive

calars.

.3.5. Strong-form, boundary-value problem
In summary, the strong-form, boundary-value problem of the constitutive response reads as
Kinematics ((1), (2), (4), (7)). –

ε = ε𝑒 + ε𝑡 + ε𝑝, ε𝑡 =
𝑁𝑡
∑

𝛼=1
ε̂(𝛼)𝑡 𝜉(𝛼), ε𝑝 = (1 − 𝜉)ε𝑝𝐴 +

𝑁𝑡
∑

𝛼=1
𝜉(𝛼)ε𝑝𝑀(𝛼)

,

ε̇𝑝𝐴 =
𝑁𝑡
∑

(𝛼)=1

𝜉̇(𝛼)

1 − 𝜉

(

ε𝑝𝐴 − ε𝑝𝑀(𝛼)

)

+
𝑁𝐴
∑

𝑙=1
𝐴ε̂

(𝑙)
𝑝 𝛾̇

(𝑙)
𝐴 , ε̇

𝑝
𝑀(𝛼)

=
𝜉̇(𝛼)

𝜉(𝛼)
(

ε𝑝𝐴 − ε𝑝𝑀(𝛼)

)

,

here

𝜉 =
∑

𝛼
𝜉(𝛼).

Mechanical equilibrium (8). –
8

𝛁 ⋅ σ + 𝐛 = 0.
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Microforce balance ((36), (35), (17)). –

2𝑐𝓁𝛁 ⋅ 𝛁𝑐 = 𝑔′(𝑐)𝑒 +
𝑐
2𝓁
𝑐,

here 𝑒 is subject to

W+
𝑒𝑙 −𝑒 ≤ 0, ̇𝑒 ≥ 0, ̇𝑒

(

W+
𝑒𝑙 −𝑒) = 0,

and

W+
𝑒𝑙 =

(

𝐶11 +
𝐶12
6

)

⟨tr(ε𝑒)⟩2+ + 𝐶44
(

ε𝑒𝑑𝑒𝑣 ∶ ε
𝑒
𝑑𝑒𝑣

)

+
(

𝐶11 − 𝐶12
2

− 𝐶44

) 3
∑

𝑟=1

(

𝜀̄𝑒𝑑𝑒𝑣,𝑟𝑟
)2
,

Constitutive equation ((29), (18)). –

σ = 𝑔(𝑐)
𝜕W+

𝑒𝑙
𝜕ε𝑒

+
𝜕W−

𝑒𝑙
𝜕ε𝑒

,

here

W−
𝑒𝑙 =

(

𝐶11 +
𝐶12
6

)

⟨tr(ε𝑒)⟩2− .

Evolution equations ((39), (37), (40), (42), (41), (43), (44), (22a)). –

𝜉̇(𝛼) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜉̇0

(

𝐹 (𝛼)
𝑡

𝑓 𝑓
(𝛼)
𝑡

)𝑛
; 𝐹 (𝛼)

𝑡 > 0, austenite → martensite,

−𝜉̇0

(

|

|

|

𝐹 (𝛼)
𝑡

|

|

|

𝑟𝑓
(𝛼)
𝑡

)𝑛

; 𝐹 (𝛼)
𝑡 < 0, martensite → austenite,

here

𝐹 (𝛼)
𝑡 = σ ∶ ε̂(𝛼)𝑡 − 𝜆

𝑇𝑇
(𝑇 − 𝑇𝑇 ),

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑓𝑓
(𝛼)
𝑡 =

𝑁𝑡
∑

(𝛽)=1
𝐻 (𝛼)(𝛽)
𝑡 𝜉(𝛽) + 𝜉(𝛼)𝐽𝑡𝛾 + 𝑐

𝑓𝑓
(𝛼)
𝑡

𝑟𝑓
(𝛼)
𝑡 =

𝑁𝑡
∑

(𝛽)=1
𝐻 (𝛼)(𝛽)
𝑡 𝜉(𝛽) +

(

1 − 𝜉(𝛼)
)

𝐽𝑡𝛾 + 𝑐
𝑟𝑓

(𝛼)
𝑡

, 𝛾 =
𝑁𝐴
∑

𝑙=1

|

|

|

𝛾 (𝑙)𝐴
|

|

|

,

nd

𝛾̇ (𝑙)𝐴 = 𝛾̇0

(

𝐴𝐹
(𝑙)
𝑝

𝐴𝑓
(𝑙)
𝑝

)

⎛

⎜

⎜

⎝

|

|

|

𝐴𝐹
(𝑙)
𝑝
|

|

|

𝐴𝑓
(𝑙)
𝑝

⎞

⎟

⎟

⎠

𝑛−1

,

where

𝐴𝐹
(𝑙)
𝑝 = (1 − 𝜉)σ𝐴 ∶ 𝐴ε̂

(𝑙)
𝑝 ,

⎧

⎪

⎨

⎪

⎩

𝐴 ̇𝑓 (𝑙)
𝑝 =

𝑁𝐴
∑

𝑟=1
𝐴𝐻

(𝑙)(𝑟)
𝑝

|

|

|

𝛾̇ (𝑟)𝐴
|

|

|

𝐴𝑓
(𝑙)
𝑝 (0) = 𝑐

𝐴𝑓
(𝑙)
𝑝

, 𝐴𝐻
(𝑙)(𝑟)
𝑝 = 𝐴𝐻𝑝

[

𝑞(𝑙) + (1 − 𝑞(𝑙))𝛿𝑙𝑟
]

(

1 −
𝛾
𝛾0𝑝

)𝑚𝑝

.

𝝈𝐴 = 𝐂 ∶ ε𝑒 +
𝑁𝑡
∑

(𝛼)=1
𝜉(𝛼)𝐂 ∶

(

𝐈 − 𝐒(𝛼)
)

∶
(

ε̂(𝛼)𝑡 + ε𝑝𝑀(𝛼)
− ε𝑝𝐴

)

.

oundary conditions. – The equilibrium equations are subject to the boundary conditions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒖||
|𝜕𝑢

= 𝒖̄,

σ ⋅ 𝐧||
|𝜕𝑡

= 𝐭̄,

𝛁𝑐 ⋅ 𝐧||
|𝜕

= 0,

(45)

here 𝒖̄ and 𝐭̄ are prescribed displacement and tractions on the Dirichlet, 𝜕𝑢, and von Neumann, 𝜕𝑡, boundaries, respectively
𝜕 = 𝜕𝑢 ∪ 𝜕𝑡 and ∅ = 𝜕𝑢 ∩ 𝜕𝑡).

. Algorithmic implementation
9

The variational form of the boundary-value problem given above reads as:
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s
q
c
t
r

d

v

Given 𝐛 and 𝐭̄, find (𝒖, 𝑐) ∈ 𝑢 ×𝐻1(𝑡), such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫
[σ ∶ ∇𝒗 − 𝐛 ⋅ 𝒗] 𝑑𝒙 − ∫𝜕

𝐭̄ ⋅ 𝒗 𝑑𝑠 = 0,

∫

[

2𝑐𝓁𝛁𝑐 ⋅ 𝛁𝑤 + 𝑔′(𝑐)𝑒𝑤 +
𝑐
2𝓁
𝑐𝑤

]

𝑑𝒙 = 0,
(46)

for all (𝒗, 𝑤) ∈ 0
𝑢 ×𝐻

1(), where

𝑢 =
{

𝒖 ∈ 𝐻1(); 𝒖||
|𝜕𝑢

= 𝒖̄
}

, 0
𝑢 =

{

𝒖 ∈ 𝐻1(); 𝒖||
|𝜕𝑢

= 0
}

. (47)

Due to the non-convexity of the free energy 𝜓 in both the unknown fields 𝒖 and 𝑐, conventional monolithic solvers of the above
ystem suffer from associated iterative convergence issues. A line search solver [70], a modified Newton–Raphson method [71],
uasi-Newton methods [72–74] and an arc-length method based on fracture energy [75] have been proposed, among others, to
ircumvent the convergence issues. Staggered solution schemes take advantage of the convexity of 𝜓 in each argument separately
o algorithmically decouple the governing equations by keeping one field frozen while solving for the other. Staggered schemes are
obust but computationally demanding often requiring small time steps and large number of iterations for convergence [24,26].
Here, following the Galerkin method and a usual finite-element approximation of the functional spaces of the weak form, the

iscretized version of the above system of equations is solved by a single-pass staggered scheme [24] as follows.
Given the converged values

{

𝒖𝑡, 𝑐𝑡,𝑒
𝑡 , 𝜉

𝛼
𝑡 ,
(

𝛾 𝑙𝐴
)

𝑡

}

at a time 𝑡 and the predefined temperature value at 𝑡 + 𝛥𝑡, 𝑇𝑡+𝛥𝑡, where the
alue of a quantity 𝛼 at time 𝑡 is denoted as 𝛼𝑡 and the increment in 𝛼 over a time interval 𝛥𝑡 as 𝛥𝛼 = 𝛼𝑡+𝛥𝑡 − 𝛼𝑡:

• Compute 𝑐𝑡+𝛥𝑡 from the microforce balance equation (46)b using 𝑒
𝑡 .

• Compute 𝒖𝑡+𝛥𝑡 from the linearized mechanical equilibrium equation (46)a

∫
σ ∶ ∇𝒗𝑑𝒙 + ∫

∇
(

𝛥𝒖𝑖
)

∶ 𝜕σ
𝜕∇𝒖𝑖

∶ ∇𝒗𝑑𝒙 − ∫
𝐛 ⋅ 𝒗𝑑𝒙 − ∫𝜕

𝐭̄ ⋅ 𝒗 𝑑𝑠 = 0, (48)

using the Newton–Raphson method, which results in a global loop of displacement incrementation, where 𝒖𝑖 stands for the
displacement at iteration 𝑖 and 𝛥𝒖𝑖 is the unknown increment to be solved for. At every iteration during this loop, compute the
stress value 𝝈

(

𝒖𝑖, 𝑐𝑡+𝛥𝑡, 𝜉𝛼𝑡+𝛥𝑡,
(

𝛾 𝑙𝐴
)

𝑡+𝛥𝑡 , 𝑇𝑡+𝛥𝑡
)

by the change in martensite volume fractions, 𝛥𝜉𝛼 and shear rates, 𝛥𝛾 𝑙𝐴, through
an explicit numerical integration method, which results in a tangent stiffness expression considerably reduced from the elastic
stiffness; in explicit integration, the maximum allowable time step is inversely related to the relevant material stiffness [76,77].
𝛥𝜉𝛼 and 𝛥𝛾 𝑙𝐴 are computed by the system of equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝜉𝛼 = 𝜉̇𝛼𝑡

[

1 + 𝜃𝑛
(𝛥𝐹 𝛼𝑡
𝐹 𝛼𝑡

−
𝛥𝑓 𝛼𝑡
𝑓 𝛼𝑡

)]

𝛥𝑡,

𝛥𝛾 𝑙𝐴 =
(

𝛾̇ 𝑙𝐴
)

𝑡

[

1 + 𝜃𝑛

(

𝛥𝐴𝐹 𝑙𝑝

𝐴𝐹 𝑙𝑝
−
𝛥𝐴𝑓 𝑙𝑝

𝐴𝑓 𝑙𝑝

)]

𝛥𝑡,
(49)

where the parameter 𝜃 ranges from 0 to 1, which is consistent, i.e., can be solved for small time steps. The above system of
equations results by linear interpolation within 𝛥𝑡

⎧

⎪

⎨

⎪

⎩

𝛥𝜉𝛼 =
[

(1 − 𝜃)𝜉̇𝛼𝑡 + 𝜃𝜉̇𝛼𝑡+𝛥𝑡
]

𝛥𝑡,

𝛥𝛾 𝑙𝐴 =
[

(1 − 𝜃)
(

𝛾̇ 𝑙𝐴
)

𝑡 + 𝜃
(

𝛾̇ 𝑙𝐴
)

𝑡+𝛥𝑡

]

𝛥𝑡,
(50)

and replacing 𝜉̇𝛼𝑡+𝛥𝑡 and
(

𝛾̇ 𝑙𝐴
)

𝑡+𝛥𝑡 with their Taylor expansion

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜉̇𝛼𝑡+𝛥𝑡 = 𝜉̇𝛼𝑡 +
𝜕𝜉̇𝛼𝑡
𝜕𝐹 𝛼𝑡

|

|

|

|

|𝑡
𝛥𝐹 𝛼𝑡 +

𝜕𝜉̇𝛼𝑡
𝜕𝑓 𝛼𝑡

|

|

|

|

|𝑡
𝛥𝑓 𝛼𝑡 ,

(

𝛾̇ 𝑙𝐴
)

𝑡+𝛥𝑡 =
(

𝛾̇ 𝑙𝐴
)

𝑡 +
𝜕
(

𝛾̇ 𝑙𝐴
)

𝑡

𝜕𝐴𝐹 𝑙𝑝

|

|

|

|

|𝑡
𝛥𝐴𝐹 𝑙𝑝 +

𝜕
(

𝛾̇ 𝑙𝐴
)

𝑡

𝜕𝐴𝑓 𝑙𝑝

|

|

|

|

|𝑡
𝛥𝐴𝑓 𝑙𝑝,

which in view of the evolution equations read as

⎧

⎪

⎪

⎨

⎪

⎪

𝜉̇𝛼𝑡+𝛥𝑡 = 𝜉̇𝛼𝑡

[

1 + 𝑛
(𝛥𝐹 𝛼𝑡
𝐹 𝛼𝑡

−
𝛥𝑓 𝛼𝑡
𝑓 𝛼𝑡

)]

,

(

𝛾̇ 𝑙𝐴
)

𝑡+𝛥𝑡 =
(

𝛾̇ 𝑙𝐴
)

𝑡

[

1 + 𝑛

(

𝛥𝐴𝐹 𝑙𝑝

𝐴𝐹 𝑙𝑝
−
𝛥𝐴𝑓 𝑙𝑝

𝐴𝑓 𝑙𝑝

)]

.
(51)
10
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• Determine the history variable

𝑒
𝑡+𝛥𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑊 +
𝑒𝑙

(

𝒖𝑡+𝛥𝑡, 𝑐𝑡+𝛥𝑡, 𝜉𝛼𝑡+𝛥𝑡,
(

𝛾 𝑙𝐴
)

𝑡+𝛥𝑡

)

, 𝑊 +
𝑒𝑙

(

𝒖𝑡+𝛥𝑡, 𝑐𝑡+𝛥𝑡, 𝜉𝛼𝑡+𝛥𝑡,
(

𝛾 𝑙𝐴
)

𝑡+𝛥𝑡

)

> 𝑒
𝑡 ,

𝑒
𝑡 , otherwise.

The above algorithm is implemented in ABAQUS suite via a UMAT and a HETVAL subroutines [78]. The above implementation is
conditionally stable and requires the time increments employed to be sufficiently small.

5. Numerical examples

The material parameter values in the numerical simulations presented below are listed in Table 1 [55]. The transformation and
slip parameters were determined from the experiments of Gall et al. [79] on Ni50.9Ti (at.%). Of the 192 possible HPVs predicted
by the crystallographic theory of martensite only the 24 Type II-1 HPVs frequently observed in experiments are considered. The
components of the vectors 𝒍𝛼 and 𝒅𝛼 are given in [80,81] and 𝑔𝑡 = 0.1308. The interaction matrix

[

𝐻 (𝛼)(𝛽)
𝑡

]

, given in [82], is not
ccounted for since simulations showed that its inclusion overestimates the strain hardening observed in the experimental data. The
‘viscous’’ parameter 𝑛 is set to a high value, 𝑛 = 50, to approximate the rate-independent response of NiTi. The initial critical forces
or forward phase transformation are assumed identical for all martensite HPVs, 𝑐𝑓𝑓

𝛼
𝑡 = 𝑐

𝑓𝑓𝑡, and, similarly
𝑐
𝑟𝑓

𝛼
𝑡 = 𝑐

𝑟𝑓𝑡 and 𝐻
𝛼
𝑡 = 𝐻𝑡.

xperimentally, only slip in the system families ⟨100⟩ {001}, ⟨100⟩ {011}, ⟨110⟩ {111} has been observed [52], and, thus, only these
lip families are included in the simulations. The initial critical forces for slip in these systems, 𝑐𝐴𝑓

𝑙
𝑝, are assumed identical for each

amily, and are thus reduced to 𝑐
𝐴𝑓

𝑟
𝑝 (𝑟 = 1, 2, 3). Note that 𝛾0𝑝 and 𝑚𝑝 in (17) cannot be reliably calibrated from the experiments

eported in [79] and are thus assumed null. The reference transformation rate value, 𝜉̇0, and the reference plastic strain rate,
̇ 0, are representative of the applied loading rate [83]. The Eshelby tensor is assumed identical for all HPVs and corresponds to
blate spheroids – the martensite phase is formed as thin platelets, needles, or laths within the austenite parent phase – in an
sotropic matrix obtained by the isotropization of the stiffness tensor, 𝐂𝑖𝑠𝑜 ≡

(

𝐂 ∶∶ 𝐈𝑉
)

𝐈𝑉 + 1
5

(

𝐂 ∶∶ 𝐈𝐷
)

𝐈𝐷, where 𝐈𝑉 = 1
3𝜹 ⊗ 𝜹

nd 𝐈𝐷 = 𝐈𝑠 − 𝐈𝑉 are the volumetric and deviatoric projection tensors, respectively, 𝐈𝑠 designates the fourth-order tensor with
omponents 𝐼𝑠𝑖𝑗𝑘𝑙 =

1
2

(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

, and 𝐀 ∶∶ 𝐁 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑙𝑘𝑗𝑖 for any fourth order tensors 𝐀 and 𝐁. The lengths of the semi-axes of
the ellipsoidal HPV inclusions are set as 𝑎1 = 𝑎2 = 𝑎, 𝑎3 = 𝑎∕𝑏, for 𝑏 > 1. In the simulations, 𝑏 is assumed equal to 4. The fracture
oughness is reported in [5,50] while the length scale parameter 𝓁 is selected with consideration of the ultimate tensile strength of
the material [24,25]. A scaled fracture toughness 𝐺𝑠𝑐 = 𝐺𝑐∕[1 + ℎ𝑑∕(4𝓁)], where ℎ𝑑 is the minimum mesh size (ℎ𝑑 =

√

𝐴 (or 3
√

𝐴)
is the area (or volume) of an element is used in the simulations as discussed in [84]. Finally, the meshes were generated so as to
ensure that ℎ𝑑 < 𝓁∕3.

.1. Single-crystal specimen: Mechanical fracture

.1.1. Single-notched specimen
The single-notched specimen shown in Fig. 1 is considered first. A notch runs in the middle of the specimen up to the center

f it. The upper surface of the specimen is set to be displaced by a distance 𝑢𝑏 = 3.3 mm with a strain rate equal to 4 ⋅ 10−4 at
emperature 𝑇 = 275 K while both vertical and horizontal displacements are restricted on the bottom edge as depicted in the figure.
he dimensionless load parameter 𝑢̄ stands for the ratio 𝑢(𝑡)∕𝑢𝑏. Plane-strain conditions are imposed by preventing displacements in
he through-thickness direction, thus, while the elements (6320 C3D8RT and C3D6T) and the formulation are 3D, the problem is
ffectively 2D.
The influence of the crystallographic orientation is investigated by performing simulations under loading in the [110], [111],

nd [221] directions. The crystallographic direction alters the elastic, phase transformation, and plastic deformation response
esulting in different reaction force, 𝐹𝑟𝑒𝑎𝑐𝑡, vs load parameter, 𝑢̄, curves (Fig. 1). In all simulations there is a stable crack growth
egime due to irrecoverable strains left in the wake of the growing crack that provide crack shielding followed by abrupt rupture.
onvergence of the solution during abrupt rupture is problematic. An initial drop in the load associated with the first instance
f crack growth is observed in all cases. The distribution of martensite volume fraction, 𝜉, and the accumulated plastic strain,
̄𝑝 =

√

3
2 𝜀

𝑝
𝑖𝑗𝜀

𝑝
𝑖𝑗 , are depicted in Fig. 2 and the phase field parameter, 𝑐, in Fig. 3. Large transformation and plastic deformation zones

f crystallographically dependent shapes are observed. Note that in all simulations the crack path is the mode I predicted path. Such
response is considered acceptable given (i) the cubic material symmetry (in terms of its elastic response) [23], (ii) the loading
ymmetry, which is sufficiently preserved by a nearly symmetric phase transformation zone (attributed to the large number of HPVs
hat form, more than 12 HPVs in all cases), and (iii) the experimental observation of a crack growing in the mode I predicted path
n one of the two fracture experiments presented in [21].

.1.2. Asymmetrically double-notched specimen
An asymmetrically double-notched plane strain specimen is investigated next to model mixed-mode fracture under different

oading directions. The geometry is depicted in Fig. 4. In the simulations performed, the boundary conditions, strain rate, and
emperature are the ones described in the previous section (Section 5.1.1) with the only difference that the specimen’s upper surface
isplacement is set to 𝑢 = 6.6 mm. The domain is discretized using 25655 C3D8RT and C3D6T elements.
11
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Fig. 1. Geometry, boundary conditions, and loading for the fracture of the single-notched single crystal NiTi specimen. The reaction force on the upper surface,
𝐹react, vs the load parameter, 𝑢̄, curves for loading along three crystallographic direction, i.e., [110], [111], and [221], are also indicated and in the inset figure
the 𝐹react vs 𝛥𝑎∕𝑎0 curves, where 𝛥𝑎∕𝑎0 stands for the ratio of the change in crack length, 𝛥𝑎, over the initial crack length, 𝑎0.

Fig. 2. Distribution of the (a) martensite volume fraction, 𝜉, and (b) plastic strain accumulation, 𝜀̄𝑝, at initiation of crack advance and at the end of the
simulations.
12



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116677D. Kavvadias and T. Baxevanis

i
c
e
i
i
b
p

Table 1
Model parameter values. The crystallographic data for the 24 martensite HPVs in NiTi is given
in [80,81] and 𝑔𝑡 = 0.1308. The strain rate exponent 𝑛 is set to a high value, 𝑛 = 50.
(a) Thermoelastic Parameters

parameter value

specific heat 𝑐𝑣 [MJ/(m3 K)] 2.1
Austenite elastic constant 𝐶𝐴

11 [GPa] 130
elastic constant 𝐶𝐴

12 [GPa] 98
elastic constant 𝐶𝐴

44 [GPa] 34
HPVs elastic constants 𝐂𝑀(𝛼)

= 𝐂𝐴

(b) Transformation Parameters

parameter value

equilibrium transformation temperature, 𝑇𝑇 , [K] 257
latent heat of transformation per unit volume, 𝜆, [MJ/m3] 154
critical force for forward phase transformation, 𝑐

𝑓𝑓 𝑡, [MPa] 2
critical force for reverse phase transformation, 𝑐𝑟𝑓 𝑡, [MPa] 20
hardening coefficient, 𝐽𝑡,[MPa] 50

(c) Austenite Plastic Deformation Parameters

parameter value

critical force for slip in ⟨100⟩ {001}, 𝑐
𝐴𝑓

1
𝑝 , [MPa] 700

critical force for slip in ⟨100⟩ {011}, 𝑐
𝐴𝑓

2
𝑝 , [MPa] 550

critical force for slip in ⟨110⟩
{

1̄11
}

, 𝑐
𝐴𝑓

3
𝑝 , [MPa] 500

hardening coefficient, 𝐴𝐻𝑝, [MPa] 40
ratio of self to latent hardening, 𝑞 1.4

(d) Phase-field parameters

parameter value

𝓁 [mm] 0.725
𝑐 [MPa.mm] 150

Fig. 3. The distribution of the phase-field parameter, 𝑐, at the end of the simulations.

The martensite volume fraction, 𝜉, accumulated plastic strain, 𝜀̄𝑝, and the phase field parameter, 𝑐, distributions are shown
n Figs. 5 and 6. Similarly to the single-notched specimen, the shapes of the transformation and plastic deformation zones are
rystallographically dependent. In all simulations, the failure of the specimen is due to cracks extending from the notches towards
ach other, initially in a stable manner before abrupt rupture takes place. An initial drop in the load associated with the first
nstance of crack growth is observed in all cases. Contrary to the single-notched specimen, crystallographic directions do have an
mpact on the crack path; it is conjectured that the effect of crystallography in the driving force for crack advance is augmented
y the mixed-mode of fracture. The ability to naturally predict the path of the two distinct cracks is a significant advantage of the
13

hase-field approach over other fracture modeling approaches that require explicit crack tracking algorithms.
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Fig. 4. Geometry, boundary conditions, and loading for the fracture of the asymmetrically double-notched single crystal NiTi specimen. The reaction force on
the upper surface, 𝐹react, vs the load parameter, 𝑢̄, curves for loading along three crystallographic direction, i.e., [110], [111], and [221], are also indicated.

Fig. 5. Distribution of the (a) martensite volume fraction, 𝜉, and (b) plastic strain accumulation, 𝜀̄𝑝, at initiation of crack advance and at the end of the
simulations.
14
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Fig. 6. The distribution of the phase-field parameter, 𝑐, at the end of the simulations. Please, note that for visualization purposes the distributions are presented
both for (up) 𝑐 > 0.5 and (down) 𝑐 > 0.

5.2. Polycrystalline specimen: Thermomechanical fracture

The simulations presented in this section are for the single-notched geometry depicted in Fig. 7 but for a polycrystalline material.
The domain consists of 501 grains of random orientation and size and is discretized into 41973 C3D8RT and C3D6T elements.
The grains are created by Voronoi tessellation in Neper and the discretization is performed in BETA CAE. Two simulations are
performed:

• Simulation M.– the boundary conditions, strain rate, and temperature used are the ones described in Section 5.1.1, resulting
in isothermal mechanical fracture.

• Simulation TM.– the upper surface of the specimen is first loaded to 1023 N, which corresponds to approximately 176 MPa
stress, at temperature 𝑇 = 275 K, with a load rate equal to 2.33 N/s while both vertical and horizontal displacements are
restricted on the bottom edge and then the specimen is cooled with a temperature rate −0.4375 K/s while the bias load is kept
fixed; such loading path can utilize SMAs as actuators and results in thermomechanical fracture.

The martensite volume fraction, 𝜉, accumulated plastic strain, 𝜀̄𝑝, and the phase field parameter, 𝑐, distributions at the end of
Simulation M are shown in Fig. 8. The effect of the crystallographic direction of the grains in the 𝜉 and 𝜀̄𝑝 distributions is evident.
The crack travels through the grains, changing its direction as it propagates due to texture, while it remains nearly perpendicular
to the applied load, as depicted in Fig. 9.

In Fig. 10, the martensite volume fraction, 𝜉, and effective plastic strain 𝜀̄𝑝, evolution and crack growth pattern at the end of
mechanical loading and at the end of the simulation are shown for Simulation TM. Mechanical loading alone was not sufficient
to induced crack advance. Cooling, however, resulted in a large-scale phase transformation and an associated stress redistribution
sufficient to promote crack advance, leading to an unstable crack growth at 𝑇 ≈ 247 K. Such a thermomechanical fracture has been
observed experimentally in double-notched NiTi specimen [85] and discussed in [86]. The crack path is again nearly perpendicular
15

to the load direction while changing its direction as it travels through the grains.
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Fig. 7. The single-notched polycrystalline NiTi specimen. The dimensions are those in Fig. 1. Also indicated are (up) the reaction force on the upper surface,
𝐹react, vs the load parameter, 𝑢̄, curve for Simulation M with the corresponding loading conditions shown in the inset and (up) the displacement on the upper
surface, 𝑢̄ = 𝑢∕𝑢𝑀 , vs temperature, 𝑇 , curve, where 𝑢𝑀 is the displacement at the end of mechanical loading, for Simulation TM with the corresponding loading
conditions shown in the inset.

6. Conclusions

A phase-field model for thermomechanically-induced fracture in single crystal NiTi is proposed under the small strain assumption.
The model accounts for reversible phase transformation from austenite to martensite HPVs and plastic deformation in the austenite
phase. Interactions between transformation and plastic deformation are accounted for by a mean-field micromechanics evaluation of
the internal stress raise due to deformation incompatibility at the austenite–martensite interfaces, which results in transformation-
induced plastic deformation. Based on experimental observations that indicate NiTi fracture as stress-driven, only the elastic strain
energy is assumed to contribute to the driving force for crack formation and growth, i.e., inelastic deformation is assumed to
have a negligible contribution to the evolution of the intrinsic damage mechanisms at the fracture process zone. The algorithmic
implementation is based on viscous regularizations of the phase transformation and plastic deformation treatments, i.e., all HPVs
and slip systems are active at all times, an explicit numerical integration, which results in a tangent stiffness expression considerably
reduced from the elastic stiffness, and a staggered solution scheme, which algorithmically decouples the governing equations.
The model is restricted to quasistatic mechanical loading, thermal loading sufficiently slow with respect to the time rate of heat
transfer by conduction, and a temperature range in which stress-induced martensitic transformation is not suppressed. The model
16
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Fig. 8. Distribution of the martensite volume fraction, 𝜉, plastic strain accumulation, 𝜀̄𝑝, and phase-field parameter, 𝑐, at the end of Simulation M.

Fig. 9. Evolution of crack advance at different loading instances of Simulation M.

s shown able to capture transformation-induced toughening, i.e., stable crack advance attributed to the shielding effect of inelastic
eformation left in the wake of the growing crack under nominal isothermal loading, actuation-induced fracture under a constant
ias load, and crystallographic dependence on crack pattern.
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Fig. 10. Distribution of the martensite volume fraction, 𝜉, plastic strain accumulation, 𝜀̄𝑝, and phase-field parameter, 𝑐, at the end of Simulation TM.
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