

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to J. Renew. Sustain. Energy 10.1063/5.0172007

J. Renew. Sustain. Energy

**¹ Large-Eddy Simulations of Turbulent Flows in Arrays of Helical- and
² Straight-Bladed Vertical-Axis Wind Turbines**

³ Masoumeh Gharaati,¹ Nathaniel J. Wei,² John O. Dabiri,^{2,3} Luis A. Martínez-Tossas,⁴
⁴ and Di Yang*¹

⁵ *¹⁾Department of Mechanical Engineering, University of Houston, Houston, TX 77204,
⁶ USA*

⁷ *²⁾Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena,
⁸ CA 91125, USA*

⁹ *³⁾Department of Mechanical and Civil Engineering, California Institute of Technology,
¹⁰ Pasadena, CA 91125, USA*

¹¹ *⁴⁾National Renewable Energy Laboratory, Golden, CO 80401,
¹² USA*

¹³ (*Email address for correspondence: diyang@uh.edu)

¹⁴ (Dated: 14 November 2023)

¹⁵ Effects of helical-shaped blades on the flow characteristics and power production of finite-
¹⁶ length wind farms composed of vertical-axis wind turbines (VAWTs) are studied numeri-
¹⁷ cally using large-eddy simulation (LES). Two helical-bladed VAWTs (with opposite blade
¹⁸ twist angles) are studied against one straight-bladed VAWT in different array configura-
¹⁹ tions with coarse, intermediate and tight spacings. Statistical analysis of the LES data
²⁰ shows that the helical-bladed VAWTs can improve the mean power production in the fully
²¹ developed region of the array by about 4.94 ~ 7.33% compared with the corresponding
²² straight-bladed VAWT cases. The helical-bladed VAWTs also cover the azimuth angle
²³ more smoothly during the rotation, resulting in about 47.6 ~ 60.1% reduction in the tem-
²⁴ poral fluctuation of the VAWT power output. Using the helical-bladed VAWTs also reduces
²⁵ the fatigue load on the structure by significantly reducing the spanwise bending moment
²⁶ (relative to the bottom base), which may improve the longevity of the VAWT system to
²⁷ reduce the long-term maintenance cost.

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

²⁸ **I. INTRODUCTION**

²⁹ In recent years, wind energy has gained considerable growth in market share to help meet
³⁰ the continuously growing energy consumption.^{1,2} Two main types of devices are used to harvest
³¹ wind energy, namely the horizontal-axis wind turbine (HAWT) and the vertical-axis wind turbine
³² (VAWT), which are categorized primarily based on the orientation of the turbine rotor axis.^{3,4}
³³ Commercially, large-size HAWTs (i.e, exceeding 100 m in rotor diameter) have been widely used
³⁴ in existing and planned onshore and offshore wind farms due to their high rated power output
³⁵ and efficiency.^{4,5} Although VAWTs are less utilized than HAWTs at the current stage, they have
³⁶ gained growing interests in recent years. Compared with HAWTs, VAWTs are much less sensitive
³⁷ to wind direction and do not require yaw control.⁶ VAWTs may achieve potentially faster wake
³⁸ recovery.⁷ VAWTs usually operate at lower tip-speed ratios (TSRs) than HAWTs,^{8,9} which may
³⁹ lead to less acoustic pollution. VAWTs also tend to have smaller footprint than HAWTs, thus may
⁴⁰ be more feasible if land area is limited. All the above features make VAWTs potentially suitable
⁴¹ to serve as valuable complements to HAWTs (e.g., to be deployed at places where large HAWTs
⁴² are not feasible) to help meet the increasing demand of clean and renewable energy.

⁴³ Unlike HAWTs that have highly converged fundamental design of the rotor,^{3,4} currently there
⁴⁴ exist various designs for VAWTs, which are differed primarily by the blade geometries.^{8,10} Among
⁴⁵ different VAWT types, the straight-bladed Darrieus-type VAWTs (hereinafter referred to as the
⁴⁶ straight-bladed VAWTs) have gained popularity due to the simplicity for designing and manu-
⁴⁷ facturing, thus have been also studied more in research.^{9,11-19} The helical-bladed VAWTs, which
⁴⁸ can be regarded as a variant version of the straight-bladed VAWTs with twisted blades, have also
⁴⁹ drawn increasing attention in recent years.¹⁹⁻²⁴ Recent experimental¹⁹ and numerical²⁴ studies
⁵⁰ have shown that changing the blade geometry from straight to helical can induce additional mean
⁵¹ vertical motion in the VAWT wake flow, which can cause noticeable impact to the turbulence
⁵² statistics and kinetic energy entrainment that affect the wake speed recovery. However, these ef-
⁵³ fects induced by the helical blades were studied based on the wake characterization of a single
⁵⁴ VAWT. For practical applications (such as commercial wind farms), a number of VAWTs are typ-
⁵⁵ ically installed closely in an array for wind energy harvesting. Therefore, it is desired to further
⁵⁶ investigate the potential effects of helical-bladed VAWTs in wind farm environments.

⁵⁷ To date, previous studies on wind farm flows have focused heavily on HAWT-based farms²⁵⁻³⁴
⁵⁸ due to the commercial popularity and success of HAWTs. In contrast, there are only a limited

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

number studies for VAWT-based farm.^{7,14,17,35–37} Moreover, previous numerical studies on VAWT array flows^{17,37} considered arrays of “infinite” streamwise length by using periodic condition on the streamwise boundaries. Despite the valuable insights gained from these idealized infinite-length VAWT farm studies for understanding the fundamental flow characteristics, they cannot capture the streamwise development of the flow through the finite-size array. On the other hand, field experiments of finite-size VAWT arrays can characterize flow phenomena based on realistic conditions, but face challenges for measuring the array-scale flow field information. While measurement techniques such as three-dimensional (3D) particle-tracking velocimetry (PTV)^{18,19} can obtain detailed flow field information within limited measurement window, it is challenging to extend the measurement to the array scale. To obtain field data at array scale, Kinzel, Mulligan, and Dabiri⁷ used a measurement system with seven three-component ultrasonic anemometers (Campbell Scientific CSAT3) mounted on a 10m meteorological tower (Aluma-Towers Inc.) to measure the flow velocity at 11 different positions along the center of a VAWT array. Based on these measurement data, the two-dimensional (2D) contours of the mean velocity, kinetic energy flux, and turbulent intensity were mapped. However, due to the high cost of building multiple sensor towers, the measurements at the 11 positions were not conducted simultaneously,⁷ requiring carefully calibration and coordination for the measurements and making it challenging to further improve the spatial resolution of the mapped contours.

Aiming at obtaining the full-field flow information of the entire VAWT array, in this study the LES model in Gharaati *et al.*²⁴ is further extended to simulate the interactions between boundary-layer turbulence and large VAWT arrays. Similar to Gharaati *et al.*,²⁴ three VAWTs with identical key parameters but different blade geometries are considered: one with straight blades and the other two with helical blades twisted in opposite directions. The three VAWTs are configured based on the commercial 3-blade helical VAWT used in the experiments of Wei *et al.*,¹⁹ which has a rotor equator height of 8.2 m, a rotor diameter of 1.8 m, a blade vertical length of 3.2 m, and a blade twist rate of 39.69°/m. For the VAWT array configuration, three different streamwise/spanwise spacings are considered, covering coarse (56 VAWTs), intermediate (176 VAWTs), and tight (208 VAWTs) layouts. In each case, individual VAWTs in the array rotate independently based on the local inflow condition at a fixed TSR of 1.19 (determined based on the field measurement¹⁹), and are modeled using the actuator line method (ALM) that have been widely used in prior LES modeling of VAWTs and HAWTs.^{9,38–49} The VAWT arrays have finite streamwise length. The inflow of the VAWT array is obtained from a precursor LES model of fully

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

91 developed boundary layer turbulence, which is coupled with the LES model of the VAWT array
 92 flows through a concurrent precursor simulation method.^{29,31} In total, 9 computationally expen-
 93 sive LES cases are performed to obtained the full 3D flow data of the VAWT arrays. Based on the
 94 LES data, systematic statistical analyses are performed to characterize the effects of VAWT helical
 95 geometry on the turbulent flow statistics, VAWT power rate, and VAWT tower bending moment.

96 The remainder of this paper is organized as follows. In Sec. II, the LES-ALM model for
 97 simulating the wind farms is elaborated. Section III explains the setup of the LES cases. In
 98 Sec. IV, the effects of VAWT blade geometry on the flow characteristics in the turbine array are
 99 analyzed based on the LES data. Finally, conclusions are presented in Sec. V.

100 II. DESCRIPTION OF LARGE-EDDY SIMULATION MODEL

101 In the present study, the open-source LES model of turbulent flows developed by the Turbulence
 102 Research Group at Johns Hopkins University, i.e., the LESGO model,⁵⁰ is adopted and modified
 103 to simulate the interaction of boundary-layer turbulence with array of VAWTs. The flow system in
 104 the LES model is formulated based on the 3D Cartesian coordinates $x_i (i = 1, 2, 3) = (x, y, z)$, where
 105 x , y , and z are the coordinates for the streamwise, spanwise and vertical directions, respectively.
 106 The corresponding 3D velocity vector is denoted as $u_i (i = 1, 2, 3) = (u, v, w)$, where u , v , and w
 107 are the velocity components in the x -, y -, and z -directions, respectively. The wind turbulence
 108 is simulated by solving the following filtered Navier–Stokes equations for incompressible flow,
 109 which are written in the index notation form as

$$110 \quad \frac{\partial \tilde{u}_i}{\partial x_i} = 0, \quad (1)$$

$$111 \quad \frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \left(\frac{\partial \tilde{u}_i}{\partial x_j} - \frac{\partial \tilde{u}_j}{\partial x_i} \right) = - \frac{\partial \tilde{p}^*}{\partial x_i} + \nu \frac{\partial^2 \tilde{u}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}^d}{\partial x_j} + \frac{f_p}{\rho} \delta_{i1} - \frac{\tilde{f}_{\epsilon,i}}{\rho}. \quad (2)$$

112 Here, $\tilde{(\dots)}$ denotes the filtering at the LES grid scale Δ ; $\tilde{u}_i = (\tilde{u}, \tilde{v}, \tilde{w})$ is the resolved flow velocity;
 113 ρ is the density of air; ν are the kinematic viscosity of air; $\tau_{ij}^{sgs} = \tilde{u}_i \tilde{u}_j - \tilde{u}_i \tilde{u}_j$ is the subgrid-scale
 114 (SGS) flow stress tensor; $\tau_{ij}^d = \tau_{ij}^{sgs} - \delta_{ij} \tau_{kk}^{sgs} / 3$ is the deviatoric part of τ_{ij}^{sgs} , where τ_{kk}^{sgs} is the trace
 115 and δ_{ij} is the Kronecker delta; \tilde{p}^* is the modified pressure; f_p is an imposed pressure gradient
 116 force to drive the flow; and $\tilde{f}_{\epsilon,i}$ represents the turbine-induced forces to the wind. In particular,
 117 the aerodynamic forces induced by the VAWT blades are modeled using ALM,³⁸ and the modeled
 118 forces are smoothly distributed onto the LES computational grids using a 3D Gaussian kernel
 119 method.^{38,40,41,43} More details of ALM for modeling $\tilde{f}_{\epsilon,i}$ are given in Appendix A.

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

120 In the LES model, τ_{ij}^d is modeled using the Lilly–Smagorinsky eddy-viscosity type model,^{51,52}
 121 i.e., $\tau_{ij}^d = -2v_{sgs}\tilde{S}_{ij} = -2(c_s\Delta)|\tilde{S}|\tilde{S}_{ij}$, where $\tilde{S}_{ij} = (\partial\tilde{u}_j/\partial x_i + \partial\tilde{u}_i/\partial x_j)/2$ is the resolved strain-
 122 rate tensor, $|\tilde{S}| = \sqrt{2\tilde{S}_{ij}\tilde{S}_{ij}}$, $v_{sgs} = (c_s\Delta)|\tilde{S}|$ is the SGS eddy viscosity, and c_s is the Smagorin-
 123 sky model coefficient. In the current LES study, the local and instantaneous value of c_s is de-
 124 termined dynamically during the simulation using the Lagrangian-averaged scale-dependent dy-
 125 namic (LASD) model.⁵³ In particular, the LASD model employs the core idea of the dynamic
 126 Smagorinsky model approach of Germano *et al.*,⁵⁴ i.e., the Germano identity equation that re-
 127 lates the resolved turbulent stress to the SGS stresses at different scales. However, the original
 128 dynamic Smagorinsky model⁵⁴ assumes c_s to be scale invariant and evaluates its value by per-
 129 forming horizontal averaging, which can lead to inaccurate results when modeling wall-bounded
 130 turbulence with horizontal heterogeneity (e.g., the wind farm flows). The LASD model⁵³ over-
 131 comes these weaknesses by allowing c_s to be scale dependent^{55,56} and evaluating its value by
 132 Lagrangian average along fluid trajectories instead of horizontal average.⁵⁷ The LASD model has
 133 been successfully applied to model the SGS turbulence effects in turbine wake flows in several
 134 prior LES studies.^{24,26,27,29,30,32–34,58}

135 Equations (1) and (2) are discretized using the Fourier-series-based pseudo-spectral method in
 136 the x - and y -directions on collocated grids, and the second-order central difference method in the
 137 z -direction on staggered grids. In the basic LES solver, the periodic condition is used at the lateral
 138 boundaries in the x - and y -directions. The free-slip rigid-lid condition ($\partial\tilde{u}/\partial z = \partial\tilde{v}/\partial z = 0, \tilde{w} = 0$)
 139 is applied at the top boundary, which has been commonly used for modeling atmospheric boundary
 140 layer turbulence, canopy flows, and wind farm flows.^{17,26,27,29,30,53,59–62} The local law-of-the-
 141 wall condition^{53,59–61} is applied at the bottom boundary, in which the wall surface shear stress
 142 components ($\tau_{i3}^{\text{wall}}, i = 1, 2$) are modeled as⁵³

$$143 \tau_{i3}^{\text{wall}}(x, y, t) = - \left[\frac{\kappa}{\ln(d_2/z_0)} \right]^2 \left\{ \left[\hat{\tilde{u}}_1(x, y, d_2, t) \right]^2 + \left[\hat{\tilde{u}}_2(x, y, d_2, t) \right]^2 \right\}^{1/2} \hat{\tilde{u}}_i(x, y, d_2, t), \quad (3)$$

144 where $\hat{\tilde{()}}$ represents filtering at the scale 2Δ , $d_2 = \Delta z/2$ is the height of the first grid point above
 145 the bottom boundary, z_0 is the SGS surface roughness, and $\kappa = 0.4$ is the von Kármán constant.

146 The simulation is advanced in time using a fractional-step method, which consists of a velocity
 147 prediction step and a pressure correction step. Full details of the numerical schemes used in the
 148 LESGO model are given in Albertson⁶³ and Albertson and Parlange.⁶⁰

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

TABLE I. Key parameters of VAWTs

Number of blades (N_b)	3
Rotor radius (R)	0.9 m
Rotor diameter (D)	1.8 m
Rotor vertical height (H)	3.2 m
Rotor equator height (z_{eq})	8.2 m
Blade cross section shape	NACA 0018 airfoil
Blade chord length (c)	0.511 m
Blade thickness (t_b)	0.092 m
Turbine solidity ($\sigma = N_b c / \pi D$)	0.271
Blade twist angle (γ)	0°, ±127°

¹⁴⁹ **III. SETUP OF SIMULATION CASES**

¹⁵⁰ In this study, one straight-bladed VAWT and two helical-bladed VAWTs are considered. Table I
¹⁵¹ lists the key parameters of the VAWTs. Except for the geometry of the blades, all three VAWT
¹⁵² types have identical key parameters as summarized here. In particular, each VAWT is composed
¹⁵³ of three blades (i.e., $N_b = 3$) with a cross-sectional shape of the NACA0018 airfoil (with a chord
¹⁵⁴ length of $c = 0.511$ m and a thickness of $t_b = 0.092$ m). The turbine rotor radius (i.e., the radial
¹⁵⁵ distance from the central axis to the chord of each blade) is $R = 0.9$ m; the rotor diameter is
¹⁵⁶ $D = 2R = 1.8$ m; the rotor vertical height is $H = 3.2$ m; and the VAWT equator height (i.e., the
¹⁵⁷ mid-height of the blades) is at $z_{eq} = 8.2$ m above the ground. The corresponding turbine solidity
¹⁵⁸ is $\sigma = N_b c / \pi D \approx 0.271$. In the simulations, all VAWTs are set to rotate at a fixed TSR of $\lambda =$
¹⁵⁹ $R\Omega/U_{ref} = 1.19$ chosen based on the field measurement value reported in Wei *et al.*,¹⁹ where Ω
¹⁶⁰ is the angular speed of the VAWT rotation and U_{ref} is the local reference velocity based on the
¹⁶¹ average of the instantaneous wind velocity sampled along the centerline at $1D$ upstream of the
¹⁶² corresponding VAWT. Compared with the straight-bladed VAWT, the two helical-bladed VAWTs
¹⁶³ have the blades twisted in opposite directions with a fixed twist rate of 39.69° per meter height,¹⁹
¹⁶⁴ yielding a total twist angle of 127° over the vertical height of $H = 3.2$ m. Taking the top end of
¹⁶⁵ the blade as the reference, if the blade is twisted counterclockwise toward the bottom end, the
¹⁶⁶ twist angle γ between the top and bottom edges of the blade is defined to be positive. Conversely,

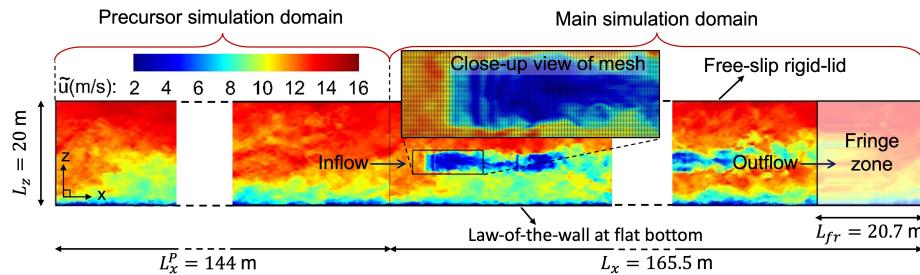


FIG. 1. Illustration of concurrent precursor method and boundary conditions to simulate wind farm. A close-up view of the computational mesh around the first VAWT is also shown. Due to limited space, the middle parts of the precursor and main simulation domains are skipped (as indicated by the dashed lines).

167 if the blade is twisted clockwise from top to bottom, the twist angle is defined as negative, i.e.,
 168 $\gamma = -127^\circ$. It should be noted that the $\gamma = -127^\circ$ helical-bladed VAWT considered in this study
 169 is analogous to the commercial VAWT studied in the field measurement by Wei *et al.*,¹⁹ but with
 170 both blade orientation and direction of rotation of the VAWT mirrored.²⁴ Also the cross-sectional
 171 airfoil profile considered in the current study does not match precisely with that of the commercial
 172 VAWT studied in Wei *et al.*.¹⁹ The commercial helical-bladed VAWT uses a non-standard cross-
 173 sectional aerodynamic profile, for which the lift and drag coefficients are not available. Here, we
 174 choose the NACA0018 airfoil profile for the modeling purpose because of the accessibility of its
 175 lift and drag coefficients data.⁶⁴ As shown in Gharaati *et al.*,²⁴ the essential effects of the VAWT
 176 helical geometry on the wake flow characteristics can still be captured despite the differences in
 177 the blade cross-sectional profile.

178 In this study, we focus on investigating the effects of blade geometry when VAWTs are de-
 179 ployed in array configurations. The VAWT arrays have finite streamwise length, and interact with
 180 a fully developed neutral turbulent boundary layer inflow. To achieve this in the simulations, the
 181 concurrent precursor method developed by Stevens, Graham, and Meneveau²⁹ is employed, which
 182 is illustrated in Fig. 1. In particular, all simulation cases are configured with a precursor simu-
 183 lation domain of size $(L_x^P, L_y, L_z) = (144, 144, 20)$ m for modeling the fully developed turbulent
 184 boundary layer inflow, and a main simulation domain of size $(L_x, L_y, L_z) = (165.6, 144, 20)$ m =
 185 $(92D, 80D, 11.11D)$ for modeling the VAWT array. Additional tests with an increased domain
 186 height (see the Appendix) have confirmed that the 20 m domain height chosen for the reported

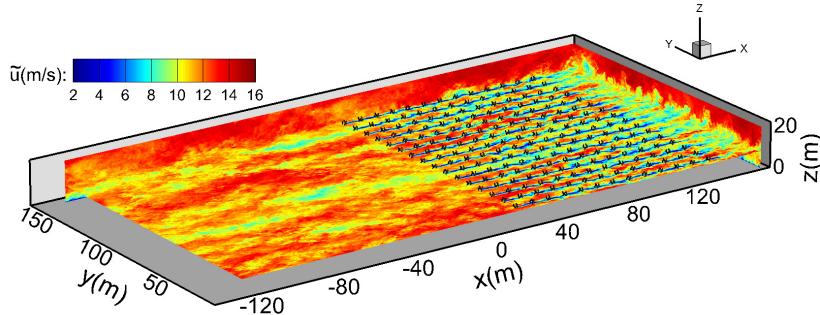


FIG. 2. Illustration of instantaneous flow field obtained from LES case HN5D. The precursor simulation domain occupies $x \in [-144, 0]$ m, and the main simulation domain with 13×16 helical VAWTs occupies $x \in [0, 165.6]$ m with the fringe zone at $x \in [144.9, 165.6]$ m. Contours of \tilde{u} are shown on the two vertical planes and the horizontal plane at the VAWT equator height $z = z_{\text{eq}}$.

simulations is adequate. The precursor and main simulation domains are adjacent at $x = 0$, i.e., the precursor simulation domain occupies $x \in [-L_x^P, 0]$ and the main simulation domain occupies $x \in [0, L_x]$. Following prior LES studies of finite-length wind farms,^{29,31} the precursor simulation domain utilizes periodic boundary conditions in the x - and y -directions to obtain the fully developed boundary-layer turbulence. The main simulation domain utilizes the inflow–outflow boundary condition in the x -direction and periodic boundary condition in the y -direction. In order to apply the inflow–outflow condition properly in the Fourier-series-based pseudo-spectral LES model, the main simulation domain employs the fringe-zone method.^{65–67} As illustrated in Fig. 1, a fringe zone with a streamwise length of $L_{\text{fr}} = L_x/8 = 11.5D = 20.7$ m is adjacent to the outflow boundary, i.e., at $x \in [x_{\text{fr}}, L_x]$ where $x_{\text{fr}} = L_x - L_{\text{fr}} = 7L_x/8 = 80.5D$. This fringe zone serves as a buffer layer to make the exiting flow near the downstream boundary transition smoothly to the inflow condition imposed by precursor simulation at the upstream boundary, which allows the application of the inflow–outflow condition in the periodic spectral solver.^{24,29,68} In particular, within this fringe zone, the flow velocity vector in the LES solver is imposed as²⁹

$$201 \quad \tilde{u}_i(x, y, z, t) = \tilde{u}_i(x_{\text{fr}}, y, z, t) [1 - \psi(x)] + \tilde{u}_{\text{in},i}(y, z, t) \psi(x), \quad \text{at } x \in [x_{\text{fr}}, L_x], \quad (4)$$

202 where $\psi(x) = 0.5 - 0.5 \cos [\pi(x - x_{\text{fr}})/L_{\text{fr}}]$ is the fringe function, and $\tilde{u}_{\text{in},i}$ is the inflow velocity for 203 the main simulation extracted in real time from the precursor simulation at $x = 0$. This concurrent

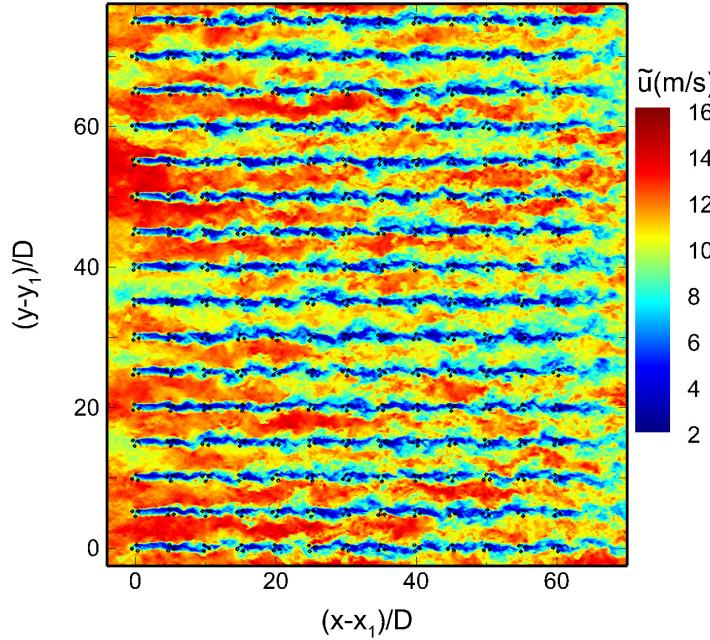


FIG. 3. Top view of the instantaneous flow field in the array of 13×16 helical VAWTs in case HN5D. The contours of the streamwise velocity \tilde{u} are shown on the (x, y) -plane at the VAWT equator height $z = z_{eq}$. The instantaneous cross-sectional locations of the VAWT blades are indicated by the small black circles.

204 precursor simulation method has been successfully applied in several prior LES studies of wind
205 turbine flows.^{24,29,31}

206 Table II summarizes the key parameters for the VAWT array layouts considered in this study.
207 In each case, VAWTs of the same type are placed in an array consisting of aligned rows (i.e.,
208 along the y -direction) and columns (i.e., along the x -direction). Following Calaf, Meneveau, and
209 Meyers,²⁶ the turbine spacing parameters in the x - and y -directions are defined as $S_x = \Delta L_x/D$
210 and $S_y = \Delta L_y/D$, respectively, where ΔL_x is the streamwise distance between the center axes of
211 two neighboring VAWTs in the same column and ΔL_y is the spanwise distance between the center
212 axes of two neighboring VAWTs in the same row. For each of the three VAWT types, three
213 different turbine spacings are considered, i.e., $(S_x, S_y) = (10, 10)$, $(7, 5)$ and $(5, 5)$, for which the
214 corresponding numbers of VAWT rows and columns included in the LES are $(N_{row}, N_{col}) = (7, 8)$,

TABLE II. Key parameters of the VAWT array configurations.

Case	VAWT type	γ	S_x	S_y	N_{row}	N_{col}	# of VAWTs
HN10D	Helical-bladed	-127°	10	10	7	8	56
S10D	Straight-bladed	0°	10	10	7	8	56
HP10D	Helical-bladed	127°	10	10	7	8	56
HN7D	Helical-bladed	-127°	7	5	11	16	176
S7D	Straight-bladed	0°	7	5	11	16	176
HP7D	Helical-bladed	127°	7	5	11	16	176
HN5D	Helical-bladed	-127°	5	5	13	16	208
S5D	Straight-bladed	0°	5	5	13	16	208
HP5D	Helical-bladed	127°	5	5	13	16	208

(11, 16) and (13, 16), respectively. These spacings are chosen based on the prior LES study of turbulent boundary layer flows interacting with arrays of straight-bladed VAWTs.¹⁷ Note that the intermediate spacing (S_x, S_y) = (7, 5) is also close to those considered in previous LES studies of wind farms flows for HAWTs.^{26–28,32,33} In all the reported simulation cases, the center axis of the first VAWT in the array (i.e., the one in the first row and the first column) is located at $(x_1, y_1) = (7.2, 4.5)$ m = (4D, 2.5D). Figure 2 shows an illustration of the 3D flow field for case HN5D obtained from the current LES.

In both the precursor and the main simulation domains, the bottom boundary is set to be flat with a surface roughness of $z_0 = 0.01$ m (used in the wall model Eq. (3)), which falls within the range of the values of $z_0 = O(0.001) \sim O(1)$ m typically used in LES of atmospheric boundary layer turbulence over flat terrains.^{49,53,69,70} The flow in the precursor domain is driven by a prescribed streamwise pressure gradient force as shown in Eq. (2), i.e., $f_p = -dp_\infty/dx$. When the simulated flow in the precursor domain reaches the fully developed statistically steady state, the corresponding wind friction velocity is $u_* = \sqrt{-(L_z/\rho)dp_\infty/dx} = 0.64$ m/s and the mean wind velocity (obtained by time and horizontal planar averaging) at the VAWT equator height is $U_{\text{eq}} = 11.36$ m/s. In the main simulation domain, the flow is driven by the inflow fed into the simulation domain at the $x = 0$ boundary, and no streamwise force is imposed, i.e., $f_p = 0$.

The precursor simulation domain is discretized using $920 \times 920 \times 300$ grid points, and the main simulation domain is discretized using $1058 \times 920 \times 300$ grid points. These computational grid

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

points are evenly spaced in each direction, yielding identical grid resolutions of $(\Delta x, \Delta y, \Delta z) = (0.157, 0.157, 0.067)$ m in both simulation domains. The computational mesh used in this study is illustrated in the close-up view of the (x, z) -plane around the first VAWT in Fig. 1. The size of the Gaussian kernel for the ALM (see Appendix A for details) is set to be $\epsilon = 0.160$ m. This kernel size yields $\epsilon/\Delta \approx 1.36$, where $\Delta = (\Delta x \Delta y \Delta z)^{1/3} \approx 0.118$ m, to ensure good numerical stability when applying the distributed turbine force $f_{\epsilon, i}$ in the LES solver.^{24,38,40,41} Meanwhile, this kernel size yields a ratio of $\epsilon/c = 0.31$, which is close to the optimal kernel width criterion (i.e., $\epsilon/c \sim O(0.4)$) reported in Martínez-Tossas, Churchfield, and Meneveau.⁷¹ Overall, the LES parameters used in this study are similar to those used in Gharaati *et al.*²⁴ The simulations were run using a constant time step of $\Delta t = 6.25 \times 10^{-4}$ s, which is adequate to capture the effects of rotating VAWTs on the wind flow as it corresponds to about 600 \sim 800 time steps per rotation for the VAWTs modeled in the present study. For each case, the simulation was run for about 630 s (i.e., about 50 times of the flow through time estimated based on L_x^p/U_{eq}) to allow the simulated flow field reach the statistically steady state. After then, the simulation was continued for another 50 s duration, from which 4000 instantaneous snapshots of the flow field with a constant time interval of 0.0125 s were sampled to calculate the time-average statistics of the simulated flow.

IV. RESULTS

As illustrated in Figs. 2 and 3, the turbulent flow exhibits complex interactions with the large array of VAWTs. To characterize the flow physics and understand the effects of VAWT blade geometry, in this section the LES results are analyzed by studying the close-up view of the instantaneous flow field around a small subset of the VAWT array (Sec. IV A), as well as by analyzing various flow statistics of the entire array (Secs. IV B–IV E).

A. Instantaneous velocity fields

Figure 4 shows the close-up views of the instantaneous flow fields around the first 4 VAWTs in the second column of the array for cases S10D and HN10D. In both cases, the flow characteristics in the near-wake region of the first VAWT resemble those reported in Gharaati *et al.*²⁴ based on LES of single VAWTs (i.e., without any downstream VAWT). In particular, in case S10D the streamwise velocity \tilde{u} in the near wake of the first VAWT exhibits vertical streak patterns due to

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to J. Renew. Sustain. Energy 10.1063/5.0172007

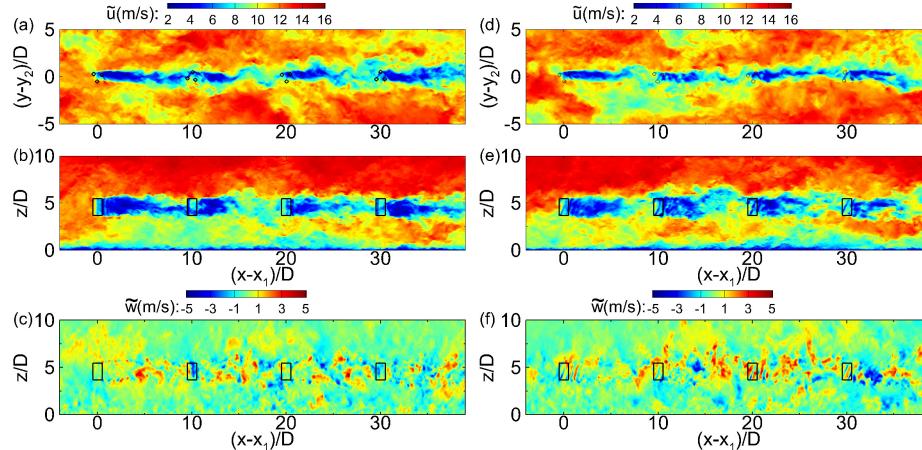


FIG. 4. Instantaneous velocity fields for cases S10D (left panels) and HN10D (right panels): (a,d) \tilde{u} on the (x,y) -plane at the VAWT equator height $z = z_{eq}$; (b,e) \tilde{u} on the (x,z) -plane across the center line of the second column of the VAWT array, i.e., at $y = y_2$; (c) \tilde{w} on the (x,z) -plane at $y = y_2$. In (a,d), the instantaneous cross-sectional locations of the VAWT blades are indicated using the small circles. In (b,c,e,f), the projected VAWT rotor regions are indicated using the rectangles.

262 the drag effect induced by the rotating straight blades (see Fig. 4(b)), and the vertical velocity \tilde{w}
 263 exhibits turbine-induced fluctuations mainly in the two shear layers at the top and bottom edges of
 264 the VAWT wake due to shear instability (see Fig. 4(c)). Differently, in case HN10D the helical-
 265 shaped blades with $\gamma = -127^\circ$ generate inclined low-speed streaks of \tilde{u} behind the first VAWT (see
 266 Fig. 4(e)), where the vertical velocity \tilde{w} exhibits noticeable fluctuations also in the form of inclined
 267 streaks in the near wake (see Fig. 4(f)) due to the three-dimensional wake flow patterns induced
 268 by the helical-shaped blades.²⁴ Compared with case HN10D, in case HP10D (see Fig. 5(a,b)) the
 269 reversed twist direction of the helical blades results in reversed effects on the inclination direction
 270 of the streak patterns for \tilde{u} and \tilde{w} (also see Gharaati *et al.*²⁴ for more detailed comparison).

271 Unlike the first VAWT in the column that faces the undisturbed boundary layer turbulence in-
 272 flow, the downstream VAWTs experience inflow with higher turbulent intensity due to the wake
 273 effect of the upstream VAWTs, resulting in more intensive turbulent fluctuations in their wakes
 274 than that behind the first VAWT. The enhanced turbulent fluctuations due to wake–VAWT interac-
 275 tions are also affected by the spacing between VAWTs in the array. Figures 5 compares the side-
 276 views of the instantaneous flow fields in the arrays of $\gamma = 127^\circ$ helical VAWTs with three different

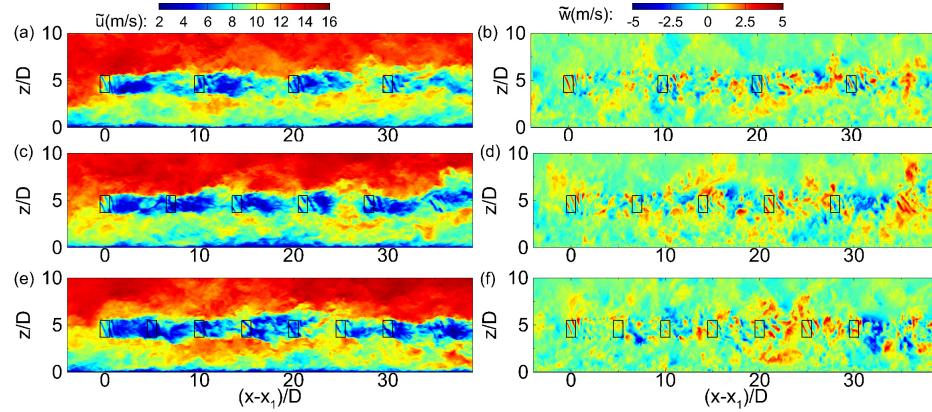


FIG. 5. Instantaneous flow fields in arrays of $\gamma = 127^\circ$ helical-bladed VAWTs with different spacings: (a,b) case HP10D; (c,d) case HP7D; (d,e) case HP5D. The contours of the instantaneous streamwise velocity \tilde{u} (a,c,e) and vertical velocity \tilde{w} (b,d,f) are shown on the (x,z) -plane across the center line of the second column of the VAWT array, i.e., at $y = y_2$. For each case, only a small fraction of the simulation domain is shown for illustration purpose.

277 spacings, i.e., cases HP10D, HP7D and HP5D. The corresponding top views of the instantaneous
 278 flow field for these three cases are shown in Fig. 6. In case HP10D, the wake flow of each VAWT
 279 has adequate space to recover the wind speed and lower the turbulent intensity before reaching the
 280 downstream VAWT. As the streamwise spacing of the VAWTs reduces to $S_x = 7$ in case HP7D and
 281 $S_x = 5$ in case HP5D, wakes of the upstream VAWTs impact the downstream VAWTs when they
 282 still possess low wind speed and high-level turbulent fluctuations, which can impact the power
 283 production and induce fatigue load to the VAWTs located inside the large array. The top-views
 284 of the flow fields within the VAWT arrays shown in Fig. 6 (also see Fig. 2) also exhibit consider-
 285 able spatial variations in the instantaneous flow fields along different VAWT columns in the array.
 286 As a result, it is difficult to compare the results from different simulation cases quantitatively by
 287 checking the instantaneous flow fields. In next subsection, statistical analyses are conducted to
 288 provide more quantitative measures for the effects induced by different VAWT blade geometries
 289 under different array spacing conditions.

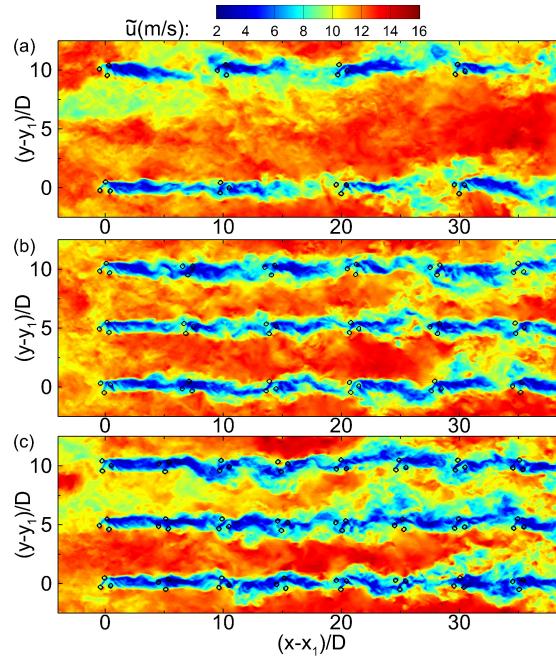


FIG. 6. Top-view of the instantaneous streamwise velocity fields in arrays of helical VAWTs of $\gamma = 127^\circ$ with different spacings: (a) case HP10D; (b) case HP7D; (c) case HP5D. The contours of the streamwise velocity \tilde{u} are shown on the (x, y) -plane at the VAWT equator height $z = z_{\text{eq}}$. For each case, only a small fraction of the simulation domain is shown for illustration purpose.

290 **B. Mean flow field**

291 As illustrated in Fig. 2, the simulated turbine array consists of a large number of VAWTs.
 292 The turbulent boundary layer flow produced by the precursor simulation also exhibits high/low-
 293 speed streaks that interact with different columns of VAWTs in the array. To obtain representative
 294 flow statistics, the ensemble average approach used in Gharaati *et al.*²⁴ is adopted. First, time
 295 average is computed based on 4000 3D instantaneous snapshots of the entire flow field sampled
 296 between $t = 630$ s and 680 s with a constant time interval of 0.0125 s between successive samples.
 297 Furthermore, the time-averaged flow field is evenly decomposed into N_{col} number of subdomains,
 298 each of which is centered along one column of VAWTs. The ensemble average of these N_{col}
 299 subdomains is conducted to further converge the statistics and average out the spatial variations

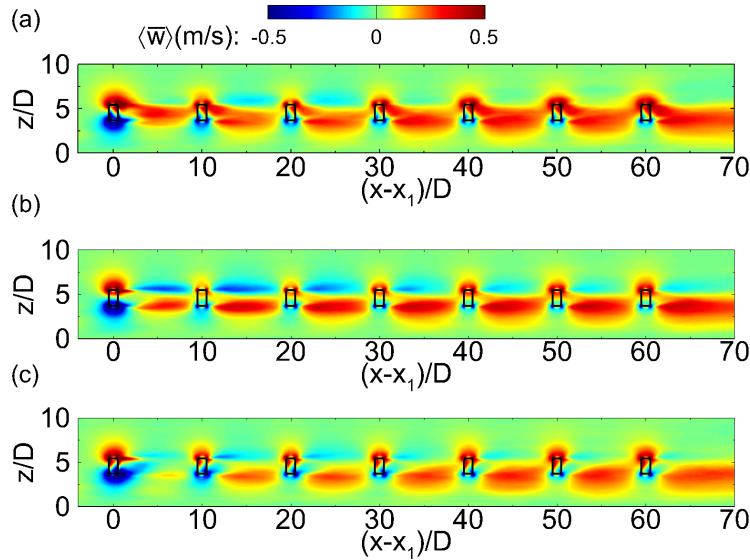


FIG. 7. Mean vertical velocity $\langle \bar{w} \rangle$ on the (x, z) -plane across the center line of the VAWT column for (a): HN10D, (b): S10D, (c): HP10D.

300 caused by the low/high-speed streaks in the boundary layer turbulence. For an instantaneous flow
301 quantity \tilde{f} obtained from the LES, its time average is denoted as \bar{f} and calculated as

$$302 \quad \bar{f}(x, y, z) = \frac{1}{N_{ts}} \sum_{n=1}^{N_{ts}} \tilde{f}(x, y, z, t_n), \quad (5)$$

303 where N_{ts} is the total number of samples for time average and t_n is the corresponding time of
304 the n -th sample. The temporal fluctuation is defined as $f'(x, y, z, t) = \tilde{f}(x, y, z, t) - \bar{f}(x, y, z)$. The
305 ensemble average of the time-averaged quantity is calculated based on

$$306 \quad \langle \bar{f} \rangle(x, y', z) = \frac{1}{N_{col}} \sum_{j=1}^{N_{col}} \bar{f}(x, y' + (j-1)\Delta L_y, z) \quad \text{for } y' \in [0, \Delta L_y], \quad (6)$$

307 where $\Delta L_y = L_y/N_{col}$. Hereinafter, $\langle \bar{f} \rangle$ is referred to as the mean of \tilde{f} .

308 As reported in Wei *et al.*¹⁹ and Gharaati *et al.*²⁴ based on the study of single VAWT's wake,
309 an important effect induced by the helical-bladed VAWT is the mean vertical velocity in the wake
310 flow. Here, this effect is further demonstrated in the VAWT array configuration. In particular,
311 the comparison is made based on the three cases S10D, HN10D and HP10D, which use the same
312 $(S_x, S_y) = (10, 10)$ array configuration. The results from the other 6 cases for $(S_x, S_y) = (7, 5)$ and

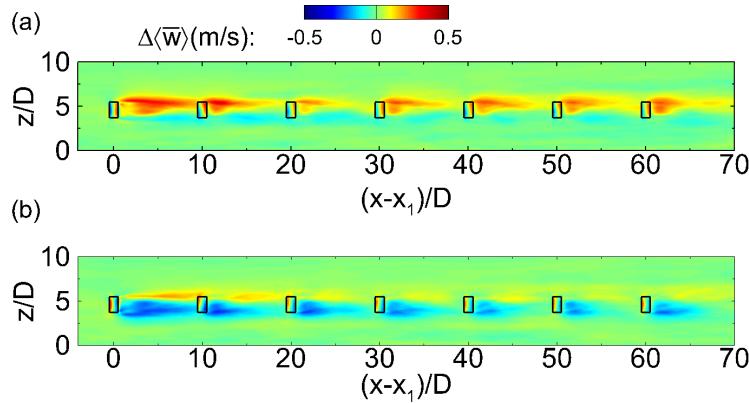


FIG. 8. Differences in the mean vertical velocity relative to case S10D, $\Delta\langle\bar{w}\rangle$: (a) case HN10D; (b) case HP10D. The contours are shown on the (x,z) -plane across the center line of the VAWT column.

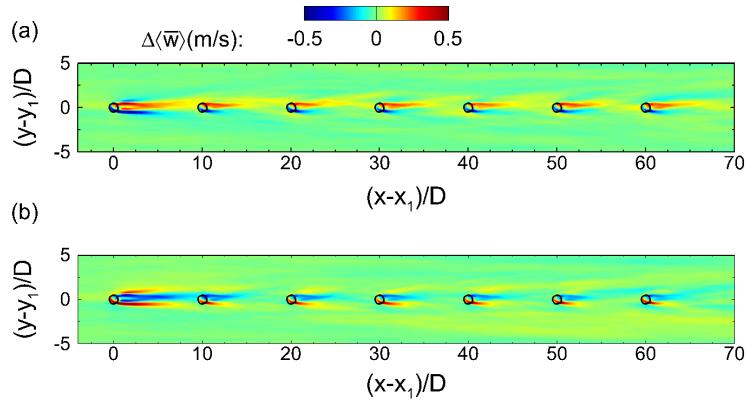


FIG. 9. Differences in the mean vertical velocity relative to case S10D, $\Delta\langle\bar{w}\rangle$: (a) case HN10D; (b) case HP10D. The contours are shown on the (x,y) -plane at the VAWT equator height $z = z_{eq}$.

313 (5,5) exhibit qualitatively similar effect on the mean vertical flow motion induced by the helical
314 blades, thus are not shown here due to space limitation.

315 Figure 7 shows $\langle\bar{w}\rangle$ on the (x,z) -plane along the center of the averaged VAWT column for
316 cases HN10D, S10D and HP10D. Taking the straight-bladed VAWT case S10D (Fig. 7(b)) as the
317 reference, the drag effect induced by the VAWT causes some of the wind flow to pass around
318 the VAWT rotor from above and below, resulting in the positive/negative $\langle\bar{w}\rangle$ near the top/bottom
319 ends of the VAWT rotor region, followed by negative/positive $\langle\bar{w}\rangle$ on the downstream side when

320 the detoured wind reenters the wake region. For the two helical-bladed VAWT cases HN10D and
 321 HP10D (Fig. 7(a,c)), their mean vertical velocities $\langle \bar{w} \rangle$ exhibit noticeable differences from that in
 322 case S10D. For better illustration, the differences in $\langle \bar{w} \rangle$ between cases HN10D/HP10D and S10D
 323 are calculated, i.e., $\Delta \langle \bar{w} \rangle = \langle \bar{w} \rangle - \langle \bar{w} \rangle_s$, where $\langle \bar{w} \rangle_s$ is the mean vertical velocity of case S10D. The
 324 (x, z) - and (x, y) -plane views of $\Delta \langle \bar{w} \rangle$ are shown in Figs. 8 and 9, respectively.

325 For case HN10D with the $\gamma = -127^\circ$ helical VAWTs (Figs. 8(a) and 9(a)), the combination
 326 of the clockwise blade twist (from top to bottom) and the counterclockwise rotation of the VAWT
 327 causes the air flow to be pushed downward by the blades, resulting in a net downward flow near the
 328 spanwise edges of the wake region extended downstream from the blade surface, as indicated by
 329 the negative $\Delta \langle \bar{w} \rangle$ in the (x, y) -plane view shown in Fig. 9(a). This mean downward flow induced
 330 by the helical-shaped blades is balanced by the net upward flow along the center of the VAWT
 331 wake region, as indicated by the positive $\Delta \langle \bar{w} \rangle$ shown in Fig. 9(a). On the (x, z) -plane (Fig. 8(a)),
 332 this mean upward flow motion $\Delta \langle \bar{w} \rangle$ appears to dominate around the upper-edge of the VAWT
 333 wake region. If the twist direction of the helical blades is reversed, as in case HP10D with the
 334 $\gamma = 127^\circ$ helical VAWTs, the sign and distribution pattern of $\Delta \langle \bar{w} \rangle$ also appear to be reversed (see
 335 Figs. 8(b) and 9(b)), which is consistent with the LES results reported in Gharaati *et al.*²⁴ Note
 336 that the VAWTs in the first row of the array face the undisturbed free-stream inflow. With the
 337 same TSR, these first-row VAWTs rotate faster than the VAWTs located inside the array, resulting
 338 in higher magnitude for $\Delta \langle \bar{w} \rangle$ in the wake behind the first VAWT than those behind the downstream
 339 VAWTs (Figs. 8 and 9). Nevertheless, the mean vertical flow effect induced by the helical-bladed
 340 VAWTs persist through the entire VAWT array to affect the flow statistics.

341 A direct consequence of the helical-blades-induced vertical motion is the vertical tilting of the
 342 streamwise velocity deficit region behind the VAWT. Figures 10–12 show the contours of $\langle \bar{u} \rangle$
 343 on the (x, z) -plane across the center of the VAWT column for all the 9 simulation cases. The
 344 corresponding vertical profiles of $\langle \bar{u} \rangle$ extracted at $(x - x_1)/D = 3$ and 39 from Fig. 10 (i.e., cases
 345 HN10D, S10D, and HP10D) and Fig. 12 (i.e., cases HN5D, S5D, and HP5D) are shown in Fig. 13.
 346 In particular, the $(x - x_1)/D = 3$ location is chosen because it is at the same downstream distance
 347 from the first-row VAWTs for both the $(S_x, S_y) = (10, 10)$ and $(5, 5)$ array configurations; and the
 348 $(x - x_1)/D = 39$ location is chosen because it is at the same upstream distance in front of the fifth
 349 row for the $(S_x, S_y) = (10, 10)$ cases and the ninth row for the $(S_x, S_y) = (5, 5)$ cases.

350 The effect of the vertical flow motions induced by the helical-bladed VAWTs can be seen
 351 from Fig. 13(a) as well as from the contours of $\langle \bar{u} \rangle$ behind the first VAWT shown in Figs. 10

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to J. Renew. Sustain. Energy 10.1063/5.0172007

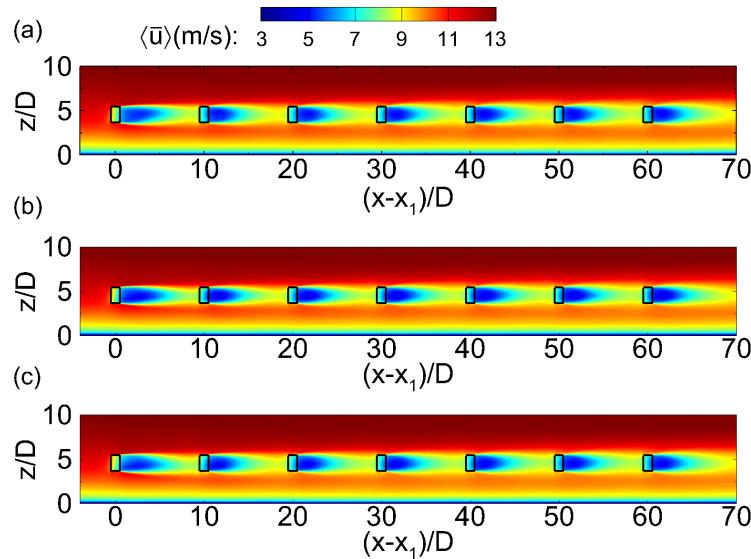


FIG. 10. Mean streamwise velocity $\langle \bar{u} \rangle$ on the (x, z) -plane across the center line of the VAWT column for the cases with $S_x = 10$: (a) HN10D; (b) S10D; (c) HP10D.

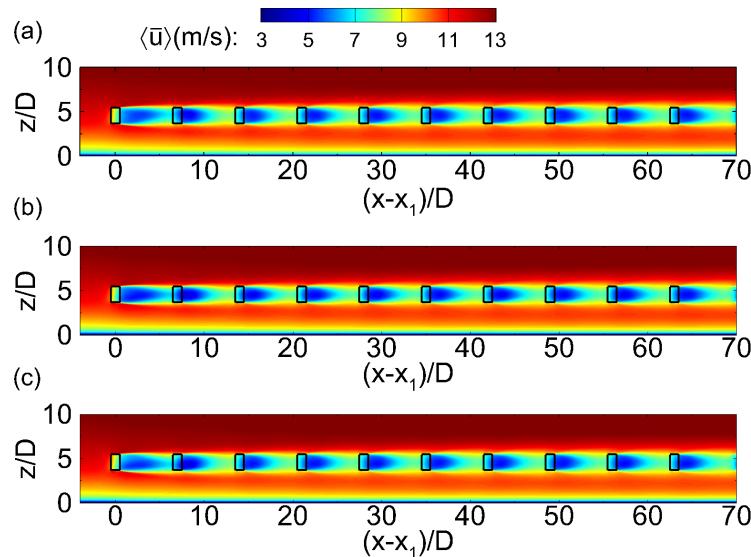


FIG. 11. Mean streamwise velocity $\langle \bar{u} \rangle$ on the (x, z) -plane across the center line of the VAWT column for the cases with $S_x = 7$: (a) HN7D; (b) S7D; (c) HP7D.

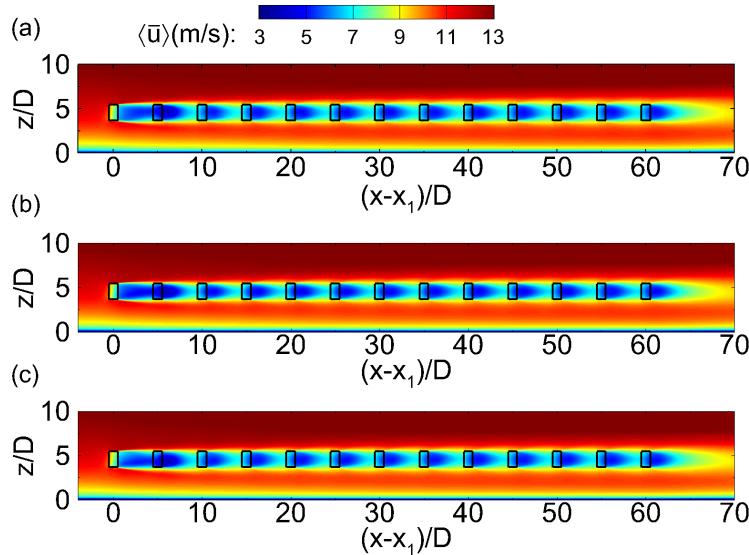


FIG. 12. Mean streamwise velocity $\langle \bar{u} \rangle$ on the (x, z) -plane across the center line of the VAWT column for the cases with $S_x = 5$: (a) HN5D; (b) S5D; (c) HP5D.

352 and 12. The upward/downward mean flow motion along the center region of the wake causes
 353 the upward/downward tilting of the low- $\langle \bar{u} \rangle$ region, resulting in reduction of velocity gradient
 354 $|\partial \langle \bar{u} \rangle / \partial z|$ near the lower shear layer of the wake region for the cases with $\gamma = -127^\circ$ helical
 355 VAWTs (i.e., the two red color profiles in Fig. 13(a)) and near the upper shear layer for the cases
 356 with $\gamma = 127^\circ$ helical VAWTs (i.e., the two blue color profiles in Fig. 13(a)) when compared with
 357 the $\langle \bar{u} \rangle(z)$ profiles for the cases with the straight-bladed VAWTs (i.e., the two green color profiles in
 358 Fig. 13(a)). For the simulation cases considered in this study, changing the VAWT spacings in the
 359 array appears to induce negligible effect on the velocity field behind the first-row VAWTs, as the
 360 velocity profiles of the corresponding cases with identical VAWT geometry overlap with each other
 361 (e.g., cases HN10D and HN5D in Fig. 13(a)). Within the VAWT array, the mean velocity exhibits
 362 convergence towards a fully developed state after the VAWT row located around $(x - x_1)/D = 20$
 363 (i.e., after the third row for cases with $S_x = 10$, the fourth row for cases with $S_x = 7$, and the fifth
 364 row for cases with $S_x = 5$) as indicated by the similarity in the $\langle \bar{u} \rangle$ contours further downstream
 365 as shown in Figs. 10–12. This convergence of VAWT array flow towards the fully developed state
 366 can also be seen from the downstream development of the VAWT power coefficient shown later in
 367 Sec. IV E. Similar fully developed state has been also reported in previous studies of finite-length

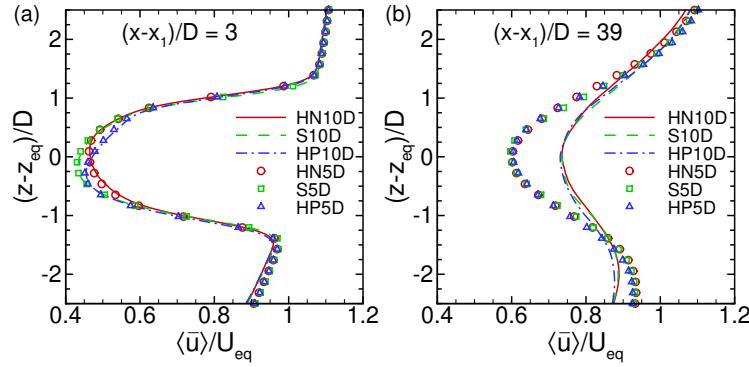


FIG. 13. Vertical profiles of mean streamwise velocity $\langle \bar{u} \rangle$ along the VAWT column centerline for cases with $S_x = 10$ and $S_x = 5$ at: (a) $(x - x_1)/D = 3$; (b) $(x - x_1)/D = 39$. The symbols are plotted for every 5 vertical grid points.

368 wind turbine array flows based on HAWTs.^{29,30,72}

369 Figure 13(b) shows the representative $\langle \bar{u} \rangle(z)$ profiles for the inflow in front of VAWTs located
 370 in the fully developed region of the array. Reducing the streamwise spacing of the VAWTs can
 371 cause considerable reduction on the local inflow wind speed for VAWTs located inside the array.
 372 In particular, the mean streamwise velocity at the equator height (i.e., $\langle \bar{u} \rangle(z = z_{eq})$) can recover to
 373 about 75% of U_{eq} for the cases with $S_x = 10$, but can only recover to about 60% for the cases with
 374 $S_x = 5$. This difference in the mean wind speed for different spacings lead to differences in the
 375 mean power coefficient, which are discussed in Sec. IV E.

376 **C. Turbulence statistics**

377 Compared with VAWTs located in the first row, VAWTs located inside the array operate in a
 378 more complex wind field with reduced mean wind speed but increased turbulent fluctuations due
 379 to the VAWT wake effects. Turbulent fluctuations play an important role on entraining the kinetic
 380 energy into the VAWT array to supply the wind energy extraction.^{25–27,32,33} In this section, the
 381 turbulence statistics of the VAWT wakes in the large array are analyzed.

382 Figures 14 and 15 show the contours of $\langle \bar{u}'\bar{u}' \rangle$ on the (x, z) -plane across the center line of the
 383 VAWT column for the cases with $S_x = 10$ and 5, respectively, and Fig. 16 shows the corresponding
 384 vertical profiles at $(x - x_1)/D = 32$ and 39. Note that $(x - x_1)/D = 32$ is located at $2D$ downstream

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to J. Renew. Sustain. Energy 10.1063/5.0172007

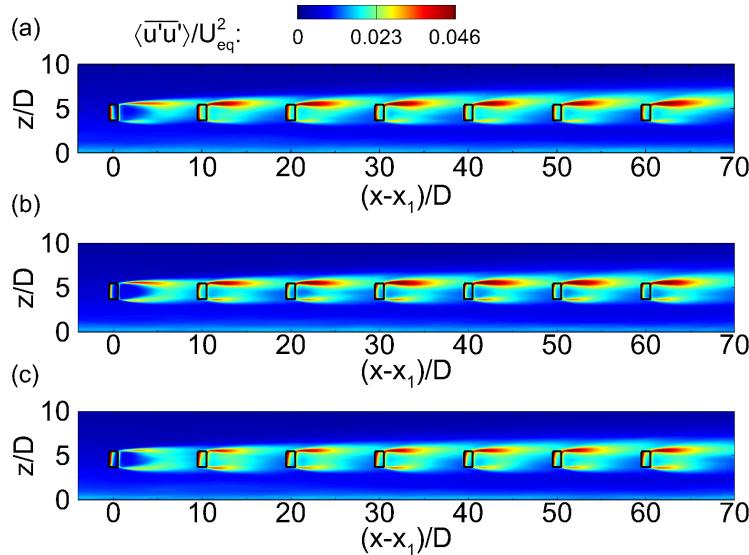


FIG. 14. Covariance of streamwise velocity $\langle \bar{u}'\bar{u}' \rangle$ on the (x,z) -plane across the center line of the VAWT column for cases with $S_x = 10$: (a) HN10D; (b) S10D; (c) HP10D.

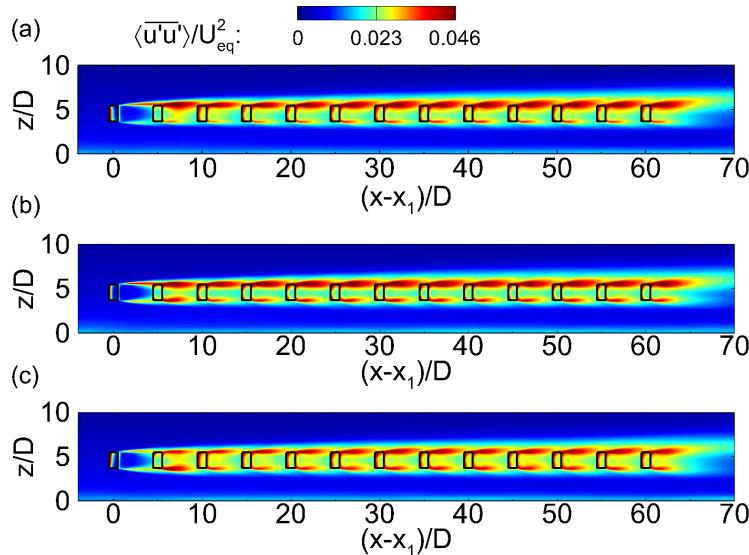


FIG. 15. Covariance of streamwise velocity $\langle \bar{u}'\bar{u}' \rangle$ on the (x,z) -plane across the center line of the VAWT column for cases with $S_x = 5$: (a) HN5D; (b) S5D; (c) HP5D.

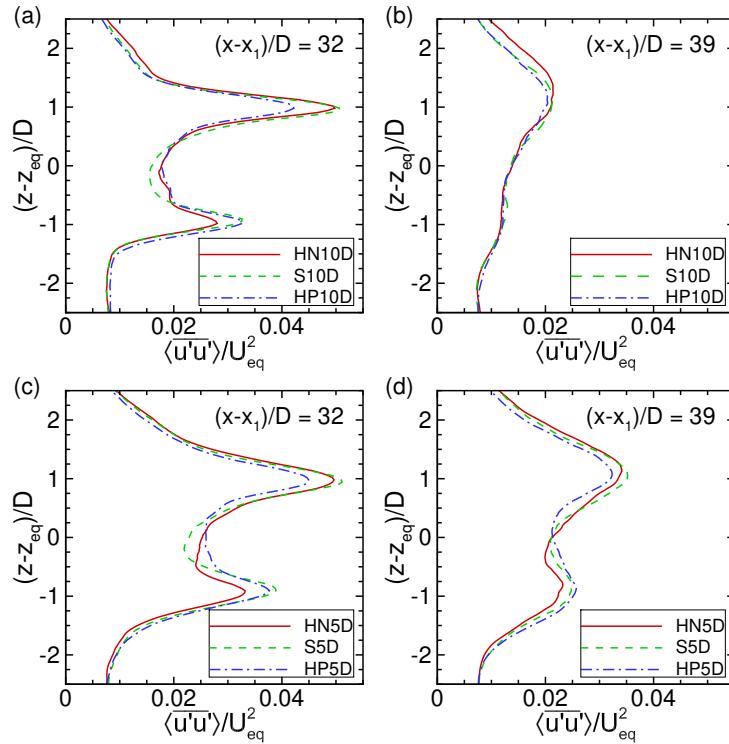


FIG. 16. Vertical profiles of $\langle u'u' \rangle$ across the VAWT column center line at $(x - x_1)/D = 32$ (a,c) and $(x - x_1)/D = 39$ (b,d). Panels (a) and (b) are for $S_x = 10$; panels (c) and (d) are for $S_x = 5$.

385 of the nearest VAWT (i.e., the third row for $S_x = 10$ and the seventh row for $S_x = 5$), and $(x -$
 386 $x_1)/D = 39$ is located at $1D$ upstream of the nearest VAWT (i.e., the fourth row for $S_x = 10$ and
 387 the ninth row for $S_x = 5$). Due to the vertical tilting of the VAWT wake caused by the mean
 388 vertical flow motion induced by the helical blades (see Figs. 8 and 9), the intensity of the vertical
 389 gradient of $\langle \bar{u} \rangle$ is weakened near the lower (upper) shear layer of the wake behind the negative
 390 (positive) helical VAWT when compared with the corresponding straight-bladed VAWT case (see
 391 Fig. 13(a)). This weakening effect on the velocity gradient results in the weakening of $\langle u'u' \rangle$.
 392 Taking as an example the $S_x = 10$ cases shown in Fig. 16(a), case HP10D exhibits smaller peak
 393 value of $\langle u'u' \rangle$ near $(z - z_{eq})/D = 1$ than case S10D, while case HN10D exhibits smaller peak
 394 value than case S10D near $(z - z_{eq})/D = -1$. Reducing the VAWT spacing causes the turbulence
 395 intensity in the near-wake region of the VAWTs to increase, but the overall effect of the helical

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

396 blades appears to be qualitatively similar between the cases with $S_x = 10$ and 5 (see Fig. 16(a) vs.
 397 Fig. 16(c)). Reducing the streamwise spacing of VAWTs induces more significant effect on the
 398 inflow turbulence intensity of VAWTs, as shown in Fig. 16(b,d). With more streamwise spacing,
 399 the wake flow of the upstream VAWTs have more space/time to recover the speed and dissipate
 400 the turbulence fluctuation, which can lead to less fatigue load on the downstream VAWTs.

401 In the VAWT wake, the Reynolds shear stress tensor $\langle \bar{u}_i \bar{u}_j \rangle$ plays an important role on entraining
 402 momentum and kinetic energy from the surrounding high-speed flow into the wake region to
 403 recover the wind speed. In particular, the turbulent entrainment of momentum is governed by
 404 $\langle \bar{u}' \bar{w}' \rangle$ in the vertical direction and by $\langle \bar{u}' \bar{v}' \rangle$ in the spanwise direction. Figures 17 and 18 show
 405 the contours of $\langle \bar{u}' \bar{w}' \rangle$ on the (x, z) -plane across the center line of the VAWT column for the cases
 406 with $S_x = 10$ and 5, respectively. Figure 19 shows the corresponding vertical profiles of $\langle \bar{u}' \bar{w}' \rangle$
 407 at $(x - x_1)/D = 33$ extracted from Figs. 17 and 18. Similar to the effects on $\langle \bar{u}' \bar{u}' \rangle$, the negative
 408 (positive) helical VAWT causes the weakening of $\langle \bar{u}' \bar{w}' \rangle$ near the lower (upper) shear layer com-
 409 pared with the corresponding straight-bladed VAWT case (Fig. 19). In the cases with $S_x = 10$
 410 (Fig. 17), the intensity of $\langle \bar{u}' \bar{w}' \rangle$ exhibits noticeable variation as the wake flow travels through the
 411 10D streamwise distance towards the downstream VAWT row. As the streamwise spacing is re-
 412duced to $S_x = 5$ (Fig. 18), $\langle \bar{u}' \bar{w}' \rangle$ remains at high-intensity level over the smaller 5D streamwise
 413 distance between VAWT rows, forming two continuous shear layers around the upper and lower
 414 edges of the VAWT rotor region that are overall stronger than the two shear layers in the corre-
 415 sponding cases with $S_x = 10$ (Fig. 17). As shown later in Sec. IV D, the enhanced overall $\langle \bar{u}' \bar{w}' \rangle$
 416 intensity (due to less streamwise variation) results in more turbulent entrainment of kinetic energy
 417 to supply the wind power extraction by more VAWTs in the $S_x = 5$ cases.

418 Figures 20 and 21 show the contours of $\langle \bar{u}' \bar{v}' \rangle$ on the (x, y) -plane at the VAWT equator height
 419 $z = z_{\text{eq}}$ for the cases with $S_x = 10$ and 5, respectively, and Fig. 22 shows the corresponding span-
 420 wise profiles of $\langle \bar{u}' \bar{v}' \rangle$ extracted at $(x - x_1)/D = 33$. Similar to the effect on $\langle \bar{u}' \bar{w}' \rangle$, reducing
 421 the streamwise spacing from $S_x = 10$ to 5 leaves less space for $\langle \bar{u}' \bar{v}' \rangle$ to decay before reaching
 422 the successive downstream VAWTs, forming two continuous lateral shear layers aside the VAWT
 423 column with strong turbulent entrainment. Moreover, Fig. 22 shows that the wakes of the two
 424 helical-bladed VAWTs exhibit higher magnitude of $\langle \bar{u}' \bar{v}' \rangle$ than the straight-bladed VAWT near
 425 $(y - y_1)/D = -0.5$, which can lead to more lateral turbulent entrainment of momentum and ki-
 426 netic energy.

427 Here, the shear-induced production of $\langle \bar{u}' \bar{v}' \rangle$ is analyzed to help understand the difference

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to J. Renew. Sustain. Energy 10.1063/5.0172007

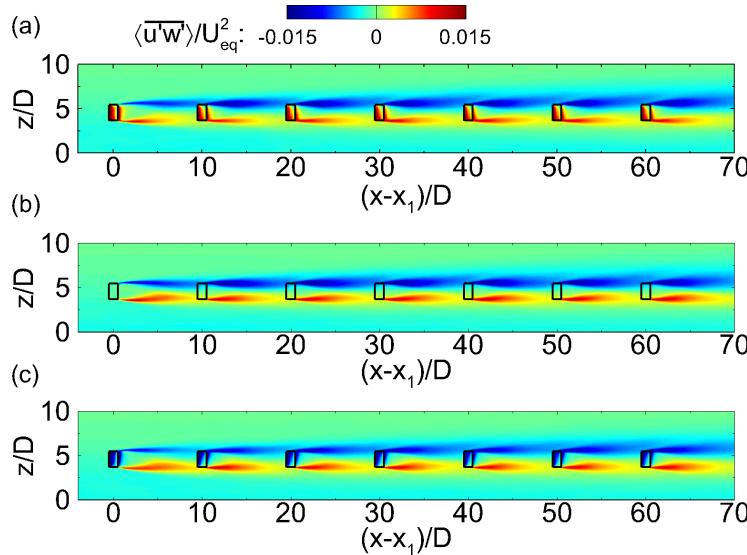


FIG. 17. Reynolds shear stress $\langle u'w' \rangle$ on the (x,z) -plane across the VAWT column center line for the cases with $S_x = 10$: (a) HN10D; (b) S10D; (c) HP10D.

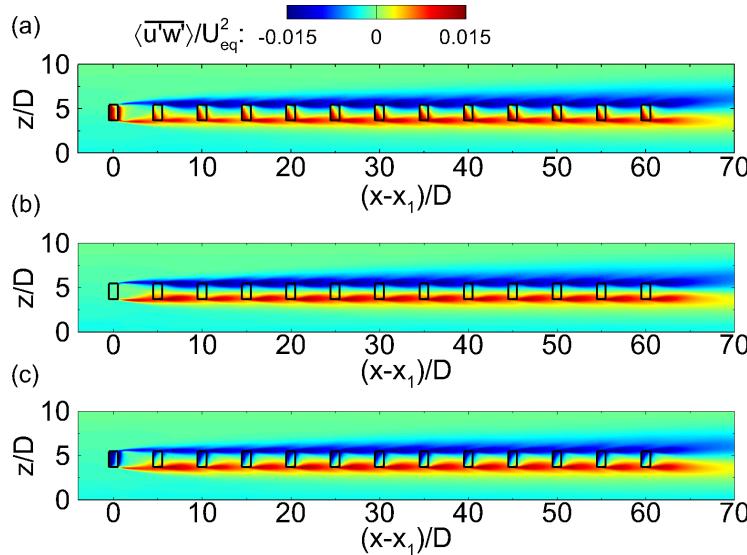


FIG. 18. Reynolds shear stress $\langle u'w' \rangle$ on the (x,z) -plane across the VAWT column center line for the cases with $S_x = 5$: (a) HN5D; (b) S5D; (c) HP5D.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to J. Renew. Sustain. Energy 10.1063/5.0172007

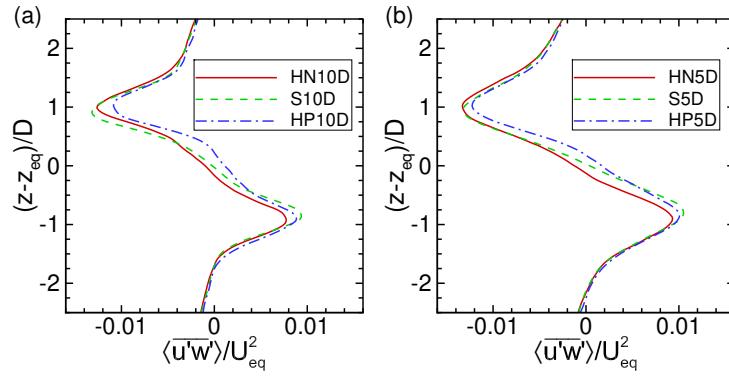


FIG. 19. Vertical profiles of $\langle u'w' \rangle$ across the VAWT column center line at $(x - x_1)/D = 33$. Panel (a) shows the cases with $S_x = 10$; panel (b) shows the cases with $S_x = 5$.

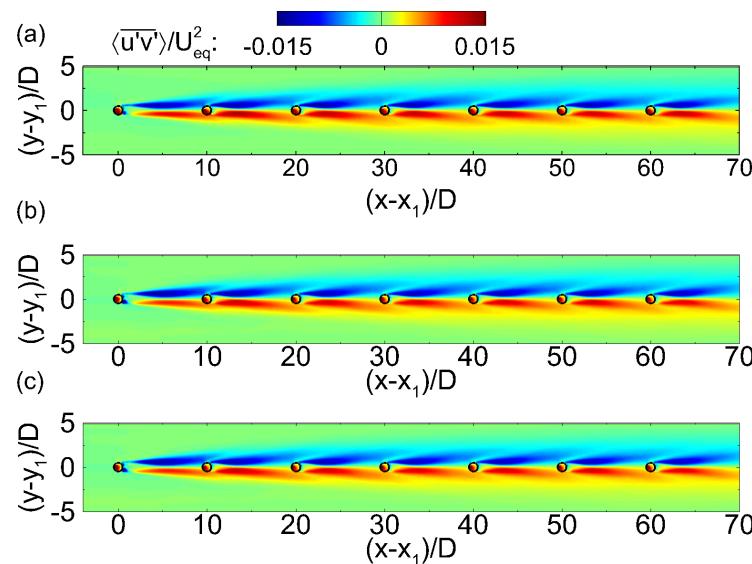


FIG. 20. Reynolds shear stress $\langle u'v' \rangle$ on the (x,y) -plane at the VAWT equator height $z = z_{eq}$ for the cases with $S_x = 10$: (a) HN10D; (b) S10D; (c) HP10D.

428 caused by the VAWT blade geometry. The transport equation for the Reynolds shear stress com-

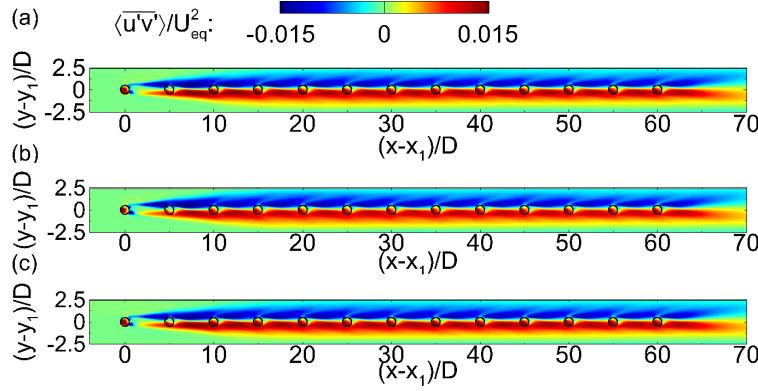


FIG. 21. Reynolds shear stress $\langle u'v' \rangle$ on the (x,y) -plane at the VAWT equator height $z = z_{\text{eq}}$ for the cases with $S_x = 5$: (a) HN5D; (b) S5D; (c) HP5D.

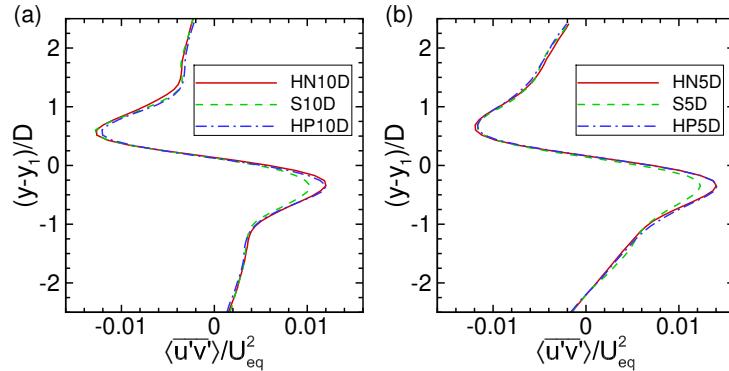


FIG. 22. Spanwise profiles of $\langle u'v' \rangle$ at the VAWT equator height $z = z_{\text{eq}}$ at the streamwise location $(x - x_1)/D = 33$. Panel (a) shows the cases with $S_x = 10$; panel (b) shows the cases with $S_x = 5$.

ponent $\langle u'v' \rangle$ in the VAWT wake can be written as (see Eq. (7.178) in Pope⁷³)

$$\begin{aligned}
 0 = & -\frac{\partial \langle u'v' \rangle}{\partial t} - \langle \bar{u}_j \rangle \frac{\partial \langle u'v' \rangle}{\partial x_j} - \underbrace{\langle u'u'_j \rangle \frac{\partial \langle \bar{v} \rangle}{\partial x_j} - \langle v'u'_j \rangle \frac{\partial \langle \bar{u} \rangle}{\partial x_j}}_{P_{12}} - \underbrace{\frac{1}{\rho} \left\langle u' \frac{\partial p'}{\partial y} + v' \frac{\partial p'}{\partial x} \right\rangle}_{\Pi_{12}} - \underbrace{\frac{\partial \langle u'v'u'_j \rangle}{\partial x_j}}_{T_{12}} \\
 & + \underbrace{v \frac{\partial^2 \langle u'v' \rangle}{\partial x_j^2}}_{D_{12}^V} + \underbrace{\frac{\partial}{\partial x_j} \left\langle v_{\text{sgs}} \frac{\partial \langle u'v' \rangle}{\partial x_j} \right\rangle}_{D_{12}^{\text{sgs}}} - \underbrace{2v \left\langle \frac{\partial u'}{\partial x_j} \frac{\partial v'}{\partial x_j} \right\rangle}_{\varepsilon_{12}^V} - \underbrace{2 \left\langle v_{\text{sgs}} \frac{\partial u'}{\partial x_j} \frac{\partial v'}{\partial x_j} \right\rangle}_{\varepsilon_{12}^{\text{sgs}}}, \quad (7)
 \end{aligned}$$

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to J. Renew. Sustain. Energy 10.1063/5.0172007

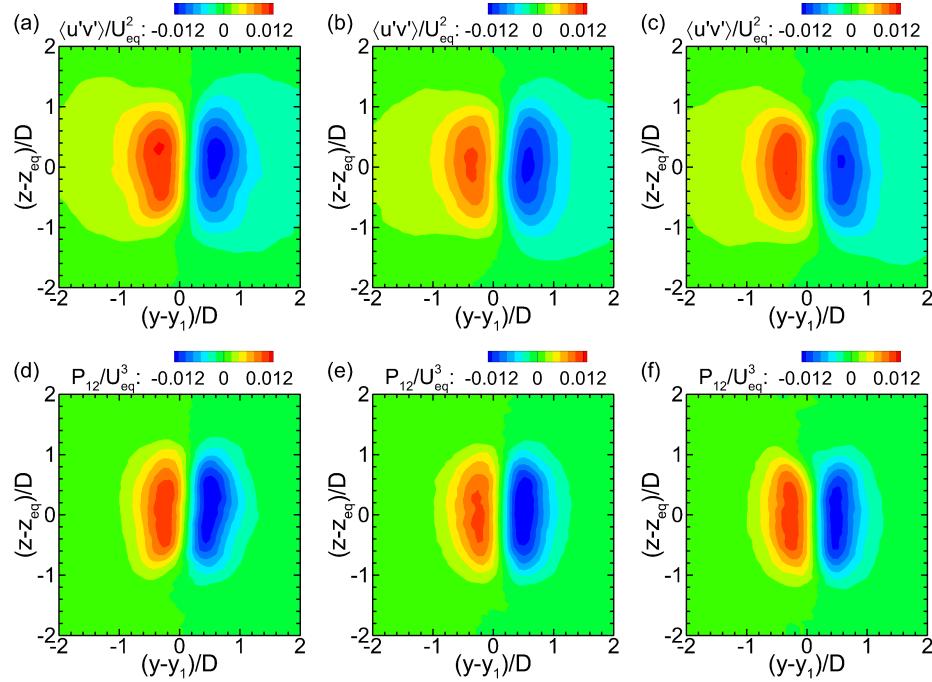


FIG. 23. Reynolds shear stress $\langle u'v' \rangle$ (a–c) and its production P_{12} (d–f) on the (y, z) -plane at $(x - x_1)/D = 33$ for the cases with $S_x = 10$: (a,d) case HN10D; (b,e) case S10D; (c,f) case HP10D.

432 where P_{12} is the total production of $\langle u'v' \rangle$ caused by the shear instability, Π_{12} is the velocity-
433 pressure-gradient tensor, T_{12} is the transport due to resolved turbulence, D_{12}^v is the molecular diffi-
434 D_{12}^{sgs} is the SGS diffusion, ε_{12}^v is the molecular dissipation, and ε_{12}^{sgs} is the SGS dissipation.

435 Figure 23 shows the contours of $\langle u'v' \rangle$ and its production P_{12} on the (y, z) -plane at $(x - x_1)/D =$
436 33 for the three cases with $S_x = 10$. The results for $S_x = 5$ are qualitatively similar, thus are not
437 shown here due to space limitation. The distributions of $\langle u'v' \rangle$ and P_{12} exhibit strong correlation.
438 Both of them exhibit higher magnitude in the shear layer around $(y - y_1)/D = -0.5$ in the two
439 helical-bladed VAWT cases than in the straight-bladed VAWT case, which is consistent with the
440 results shown in Fig. 22(a). Note that P_{12} can be expressed in 6 separate terms as

$$441 \quad P_{12} = \underbrace{-\langle u'u' \rangle \frac{\partial \langle \bar{v} \rangle}{\partial x}}_{P_{12}^a} - \underbrace{\langle u'v' \rangle \frac{\partial \langle \bar{v} \rangle}{\partial y}}_{P_{12}^b} - \underbrace{\langle u'w' \rangle \frac{\partial \langle \bar{v} \rangle}{\partial z}}_{P_{12}^c} - \underbrace{\langle v'u' \rangle \frac{\partial \langle \bar{u} \rangle}{\partial x}}_{P_{12}^d} - \underbrace{\langle v'v' \rangle \frac{\partial \langle \bar{u} \rangle}{\partial y}}_{P_{12}^e} - \underbrace{\langle v'w' \rangle \frac{\partial \langle \bar{u} \rangle}{\partial z}}_{P_{12}^f}. \quad (8)$$

442 For the current VAWT wake flow problem, P_{12}^b , P_{12}^d and P_{12}^e are the dominant terms, among which

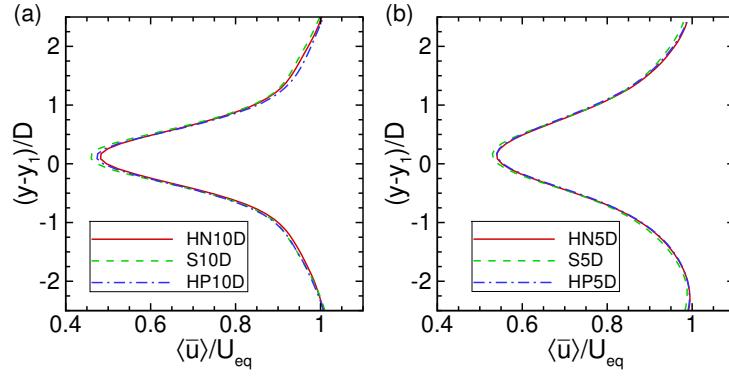


FIG. 24. Spanwise profiles of $\langle \bar{u} \rangle$ at the VAWT equator height $z = z_{eq}$ at the streamwise location $(x - x_1)/D = 33$. Panel (a) shows the cases with $S_x = 10$; panel (b) shows the cases with $S_x = 5$.

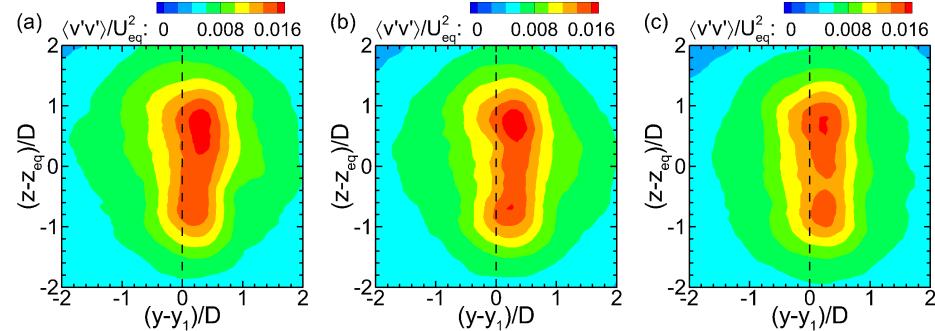


FIG. 25. Covariance of spanwise velocity $\langle \bar{v}'v' \rangle$ on the (y, z) -plane at $(x - x_1)/D = 33$ for the cases with $S_x = 10$: (a) case HN10D; (b) case S10D; (c) case HP10D.

⁴⁴³ P_{12}^b and P_{12}^d have opposite signs (thus lead to considerable cancellation) and are about one order of
⁴⁴⁴ magnitude smaller than P_{12}^e . Therefore, the total production P_{12} is dominated by the contribution
⁴⁴⁵ from $P_{12}^e = -\langle \bar{v}'v' \rangle (\partial \langle \bar{u} \rangle / \partial y)$. As shown in Fig. 24, the spanwise profiles of $\langle \bar{u} \rangle$ are similar for
⁴⁴⁶ the cases with different VAWTs, resulting in similar values for $\partial \langle \bar{u} \rangle / \partial y$. Thus the differences
⁴⁴⁷ in P_{12} are mainly due to $\langle \bar{v}'v' \rangle$. Figure 25 compares the distributions of $\langle \bar{v}'v' \rangle$ on the (y, z) -plane
⁴⁴⁸ at $(x - x_1)/D = 33$ for the three cases with $S_x = 10$. Compared with the straight-bladed case
⁴⁴⁹ S10D, the high-intensity region of $\langle \bar{v}'v' \rangle$ in cases HN10D and HP10D extend more towards the
⁴⁵⁰ $(y - y_1) < 0$ half of the plane. The combination of similar value of $\partial \langle \bar{u} \rangle / \partial y$ with higher value of
⁴⁵¹ $\langle \bar{v}'v' \rangle$ in the shear layer at $(y - y_1) < 0$ in the helical VAWT cases (HN10D and HP10D) results

Accepted to J. Renew. Sustain. Energy 10.1063/5.0172007

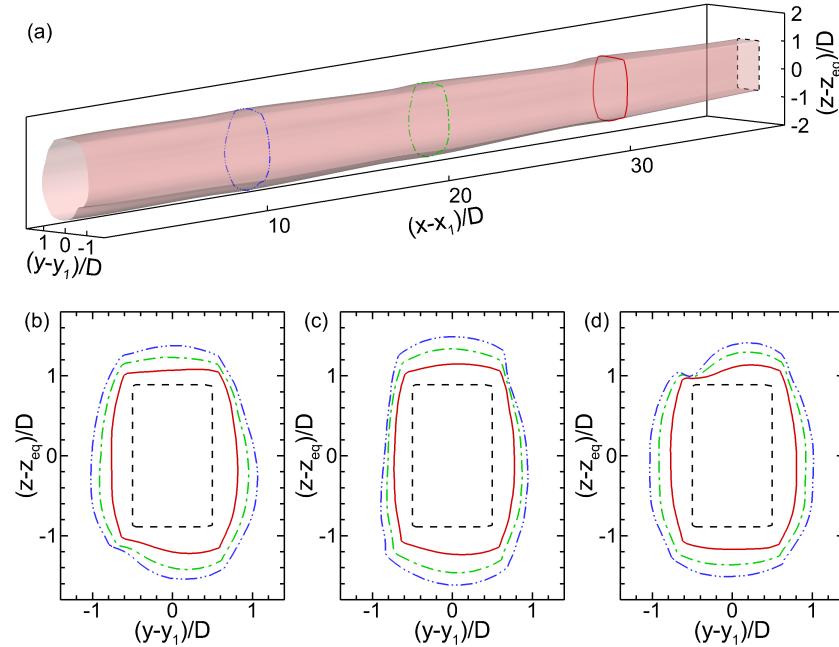


FIG. 26. Mean kinetic energy transport tubes for cases with $S_x = 10$. Panel (a) shows the three-dimensional visualization of the tube for case HN10D. Panels (b)–(d) show the (y, z) -plane views of the tube mantle at $(x - x_1)/D = 38.5$ (black dashed line), 31 (red solid line), 21 (green dash-dot line), and 11 (blue dash-dot-dot line): (b) case HN10D; (c) case S10D; (d) case HP10D.

452 in the higher production P_{12} than that in case S10D, producing higher magnitude of $\langle \bar{u}' \bar{v}' \rangle$ in this
453 region as shown in Fig. 23.

454 **D. Transport tube of mean kinetic energy**

455 To visualize the energy transport in array of VAWTs, here the transport-tube method developed
456 by Meyers and Meneveau⁷⁴ is adopted. In particular, the transport of mean kinetic energy ($K =$
457 $\langle \bar{u}_i \rangle \langle \bar{u}_i \rangle / 2$) is governed by the following equation:

458
$$\frac{\partial F_{K,j}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial (\langle \bar{u}_i \rangle \langle \bar{p} \rangle)}{\partial x_i} + \langle \bar{u}_i' \bar{u}_j' \rangle \frac{\partial \langle \bar{u}_i \rangle}{\partial x_j} + \langle \bar{\tau}_{ij}^{sgs} \rangle \langle \bar{S}_{ij} \rangle - \langle \bar{u}_i \rangle \frac{\langle \bar{f}_{\epsilon,i} \rangle}{\rho}, \quad (9)$$

459 where

460
$$F_{K,j} = K \langle \bar{u}_j \rangle + \langle \bar{u}_i' \bar{u}_j' \rangle \langle \bar{u}_i \rangle + \langle \bar{\tau}_{ij}^{sgs} \rangle \langle \bar{u}_i \rangle \quad (10)$$

461 is the mean kinetic energy flux vector field per unit mass. The four terms on the right-hand side of
 462 Eq. (9) represent the pressure transport, the mean-shear induced production, the SGS dissipation
 463 of the mean kinetic energy, and the work done by the turbine force, respectively. Based on $F_{K,j}$,
 464 the transport velocity for the mean kinetic energy can be determined based on

$$465 \quad \langle \bar{u}_{K,j} \rangle \equiv F_{K,j}/K = \langle \bar{u}_j \rangle + \langle \bar{u}'_i \bar{u}'_j \rangle \langle \bar{u}_i \rangle / K + \langle \bar{\tau}_{ij}^{sgs} \rangle \langle \bar{u}_i \rangle / K, \quad (11)$$

466 where the three terms on the right-hand side of Eq. (11) represent the contributions from the mean-
 467 flow advection, the resolved turbulent transport, and the unresolved SGS transport, respectively.

468 Following Meyers and Meneveau,⁷⁴ a transport tube of K is defined as a tubular region sur-
 469 rounded by the streamlines of the K -transport velocity $\langle \bar{u}_{K,j} \rangle$ in analogy to the concept of a stream
 470 tube for mass transport. In the current analysis, the transport tube of mean kinetic energy is con-
 471 structed based on the streamlines of $\langle \bar{u}_{K,j} \rangle$ traced backwards (i.e., towards the upstream direction)
 472 from 120 evenly spaced starting points on the rectangular mantle of the projected VAWT rotor
 473 area at $(x - x_1)/D = 38.5$. Figure 26(a) shows the 3D illustration of the mean kinetic energy
 474 transport tube based on case HN10D. To show the effect of VAWT blade geometry on the ki-
 475 netic energy transport, three representative streamwise locations are chosen for comparison, i.e.,
 476 $(x - x_1)/D = 31, 21$ and 11 . The cross-sectional shapes of the tube mantle of cases HN10D, S10D
 477 and HP10D at these three streamwise locations are shown in Fig. 26(b-d) for comparison. In all
 478 three cases, the tube cross-section exhibits noticeable expansion when traced upstream, indicating
 479 the entrainment of kinetic energy into the VAWT wake region to recover the wind speed.

480 As shown in Sec. IV C, the straight-bladed VAWT case S10D has stronger vertical turbulent en-
 481 trainment $\langle \bar{u}'w' \rangle$ but weaker spanwise turbulent entrainment flux $\langle \bar{u}'v' \rangle$ than the other two helical-
 482 bladed VAWT cases. As a result, the tube mantle in case S10D shows more vertical expansion and
 483 less spanwise expansion than cases HN10D and HP10D (Fig. 26). In case HN10D (Fig. 26(b)), the
 484 vertical expansion of the tube mantle is dominated by the effect of $\langle \bar{u}'w' \rangle$ and the helical-blade-
 485 induced mean upward flow. Relative to case S10D, in case HN10D the mean upward relative
 486 velocity $\Delta\langle \bar{w} \rangle$ near the upper side of the wake region (see Fig. 8(a)) partially cancels the down-
 487 ward turbulent entrainment effect of $\langle \bar{u}'w' \rangle$, resulting in reduced vertical expansion of the tube's
 488 upper side as traced upstream (see Fig. 26(b) vs. Fig. 26(c)). On the other hand, in case HN10D the
 489 tube expansion on the lower side is weakened due to the weakened $\langle \bar{u}'w' \rangle$ (see Fig. 19(a)). Similar
 490 to the effects on other turbulence statistics, reversing the blade twist direction of the helical-bladed
 491 VAWT causes the effects on the vertical expansion of the mean kinetic energy transport tube to be

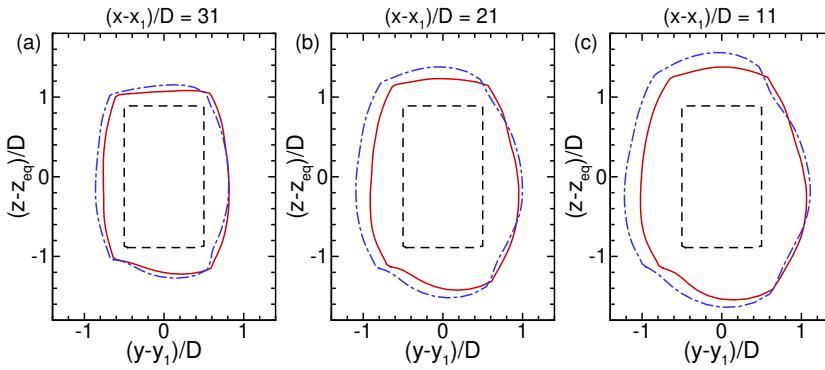


FIG. 27. Comparison of mean kinetic energy transport tubes between cases HN10D and HN5D. The figure shows the (y, z) -plane views of the tube mantle at different streamwise locations $(x - x_1)/D =$: (a) 31; (b) 21; and (c) 11. In each panel, the black dashed line shows the initial rectangular tube mantle prescribed at $(x - x_1)/D = 38.5$, the red solid line is for case HN10D, and the blue dash-dot line is for case HN5D.

492 also reversed, as illustrated by the comparison between Fig. 26(b) and Fig. 26(d).

493 To illustrate the effects of VAWT spacing on the mean kinetic energy transport, the (y, z) -plane
494 cross-sections of the K transport tubes at $(x - x_1)/D = 31, 21$ and 11 for cases HN10D and HN5D
495 are shown in Fig. 27 for comparison. As discussed in Sec. IV C, reducing the streamwise spacing
496 of the VAWT array causes the magnitudes of $\langle u'w' \rangle$ and $\langle u'v' \rangle$ in case HN5D to maintain at a
497 higher intensity level than those in case HN10D, resulting in more turbulent entrainments of mean
498 kinetic energy. This effect is reflected in the more expansion of the transport tube of case HN5D
499 than case HN10D. The comparisons between other corresponding $S_x = 5$ and 10 cases exhibit
500 consistent effect, thus are not shown here due to space limitation.

501 The differences in the transport of mean kinetic energy in the wake regions behind different
502 types of VAWTs can cause different wind speed recovery that can impact the power production of
503 the downstream VAWTs. It should be noted that when a downstream VAWT extracts wind energy,
504 its obstacle effect causes the increase of the pressure in front of the VAWT rotor that can affect
505 the comparison of the wind speed recoveries between different simulation cases. That is to say,
506 the inflow speed in front of a VAWT inside the array is the consequence of the combined effect
507 of upstream VAWT wake recovery and the wind energy extraction (i.e., through the aerodynamic
508 forces) of this downstream VAWT itself. To isolate the effect of wake recovery for a fair compari-
509 son, the wake of the last VAWT row is chosen for analysis. The last row possesses similar inflow

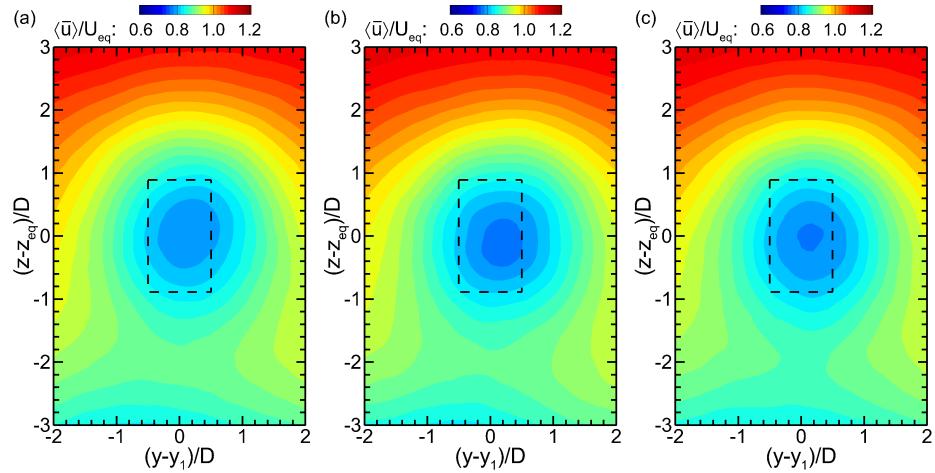


FIG. 28. Mean streamwise velocity $\langle \bar{u} \rangle$ on the (y, z) -plane at $(x - x_1)/D = 69$ for the cases with $S_x = 10$: (a) case HN10D; (b) case S10D; (c) case HP10D.

characteristics as other VAWT rows inside the fully developed region of the VAWT array, but does not have another downstream VAWT row to induce additional pressure effect.

Figure 28 compares the (y, z) -plane distributions of the mean streamwise velocity $\langle \bar{u} \rangle$ for the three $S_x = 10$ cases HN10D, S10D and HP10D. The effects shown by the mean kinetic energy transport tubes in Fig. 26 are reflected here in the mean streamwise velocity contours. For case S10D (Fig. 28(b)), due to more turbulent entrainment of K from the top and bottom sides, the velocity deficit region (i.e., the region with blue contour color) is more round-shaped than those elliptical regions in cases HN10D (Fig. 28(a)) and HP10D (Fig. 28(c)). Due to the stronger turbulent entrainment associated with $\langle u'v' \rangle$ from the lateral direction, cases HN10D and HP10D also exhibit more wind speed recovery than case S10D. Between case HN10D and HP10D, the relatively strong vertical entrainment $\langle u'w' \rangle$ around the upper shear layer in case HN10D (see Fig. 19(a)) causes more mean kinetic energy to be entrained from the high-speed free-stream wind above the VAWT rotor layer into the wake region, resulting in slightly more wind speed recovery than case HP10D. These differences in wind speed recovery rates can impact the wind power extraction for VAWTs in large arrays, which is further quantified and analyzed in Sec. IV E.

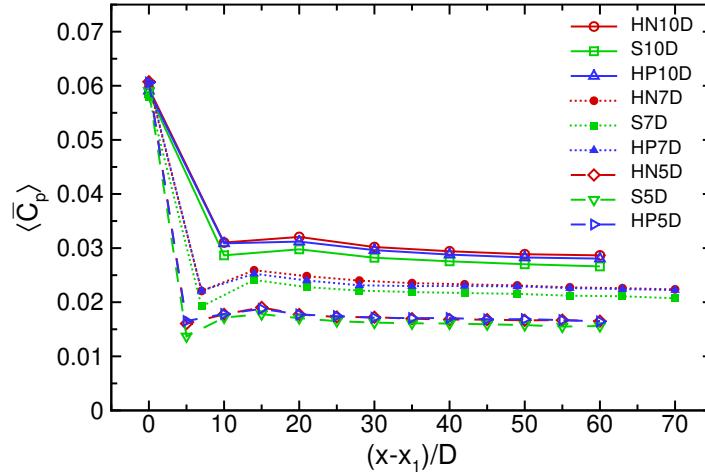


FIG. 29. Mean power coefficients $\langle \bar{C}_p \rangle$ for different VAWT rows in the 9 cases.

525 **E. Power and structural bending moment**

526 The power extracted by a VAWT can be calculated based on the wind-induced torque. Let $\theta_{n,m}$
 527 be the instantaneous rotation azimuth angle of the n -th element of the m -th blade. Its contribution
 528 to the torque is

$$529 \quad \tau_{n,m} = [F_{n,1}(\theta_{n,m}) \sin \theta_{n,m} - F_{n,2}(\theta_{n,m}) \cos \theta_{n,m}]R, \quad (12)$$

530 where the aerodynamic force components $F_{n,1}$ and $F_{n,2}$ are given in Appendix A by Eqs. (A1) and
 531 (A2), respectively. The instantaneous power extracted by the individual VAWT is

$$532 \quad P = \sum_{m=1}^{N_b} \sum_{n=1}^{N_e} \tau_{n,m} \Omega, \quad (13)$$

533 and the corresponding power coefficient is

$$534 \quad C_p = \frac{P}{0.5 \rho H D U_{10}^3}. \quad (14)$$

535 Here, U_{10} is the mean inflow wind speed from the precursor simulation measured at the 10 m
 536 height,¹⁹ which is estimated to be $U_{10} = 11.79$ m/s for the LES cases presented in this study.

537 Similar to the statistical analyses presented in the previous subsections, here the mean power
 538 coefficients $\langle \bar{C}_p \rangle$ of different VAWT rows are calculated by time average as well as ensemble
 539 average among VAWTs in the same row. The values of $\langle \bar{C}_p \rangle$ for all 9 simulation cases are shown

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

540 in Fig. 29. VAWTs in the first row of each case can extract more power because they face the faster
 541 undisturbed wind, while individual VAWTs inside the array produce less power due to the wake
 542 effect from the upstream VAWTs. In each of the 9 simulation cases, the mean power coefficient
 543 converges nearly to a constant value beyond $(x - x_1)/D \approx 20$, which corresponds to the fully
 544 developed flow region shown in Figs. 10–12. Reducing the streamwise turbine spacing S_x causes
 545 the local inflow wind speed to recover less, resulting in lower power coefficients for the VAWTs
 546 inside the array. Moreover, the VAWT blade geometry also causes noticeable effect on the power
 547 production. Taking as an example the $S_x = 10$ cases, the averaged power coefficients in the fully
 548 developed region of the array (denoted as $[C_p]_{fd}$ and calculated based on the VAWTs at $(x -$
 549 $x_1)/D > 21$) for the three different VAWT types follow the order of HN10D > HP10D > S10D,
 550 as shown in Table III. Similar trend is observed for the cases with $S_x = 7$. For $S_x = 5$, both
 551 helical-bladed VAWT cases (i.e., HN5D and HP5D) show higher $[C_p]_{fd}$ than the straight-bladed
 552 VAWT case (i.e., S5D), with the value of case HP5D slightly higher than that of case HN5D.
 553 Overall, the cases with helical-bladed VAWTs exhibit about $4.94 \sim 7.33\%$ higher power than the
 554 corresponding cases with the straight-bladed VAWT.

555 When designing commercial wind farms, it is important to evaluate the power production rate
 556 per unit land area when the availability and cost of land are important factors to consider. Follow-
 557 ing Calaf, Meneveau, and Meyers²⁶ (also see Yang, Meneveau, and Shen³²), the extracted power
 558 density by VAWTs in the fully developed region of the array is defined as

$$559 \quad P_d^* = \frac{[P]_{fd}}{S_x S_y D^2 \rho U_{10}^3} = \frac{[C_p]_{fd}}{S_x S_y (2D/H)}, \quad (15)$$

560 where $[P]_{fd}$ is the averaged power of VAWTs within the fully developed region of the array. Note
 561 that the contribution from the entrance region of the array (i.e., the first few rows of VAWTs at
 562 $(x - x_1)/D \leq 21$) are excluded from the calculation of P_d^* . For large commercial wind farms with
 563 many rows of VAWTs, the major fraction of the total power production is due to the contribution
 564 from VAWTs in the fully developed region and scales as $\sim P_d^* (S_x S_y D^2 N_{fd})$, where N_{fd} are the
 565 total number of VAWTs in the fully developed region spaced evenly with $S_x D$ and $S_y D$ in the x -
 566 and y -directions, respectively.

567 The values of P_d^* for the 9 cases considered in this study are listed in Table III. Changing the
 568 spacing from $(S_x, S_y) = (10, 10)$ to $(7, 5)$ (corresponding to about 186% increase for the number
 569 of VAWTs per unit land area) results in about 125% increase in P_d^* between the corresponding
 570 cases with the same VAWT type. Further reducing the spacing from $(S_x, S_y) = (7, 5)$ to $(5, 5)$

TABLE III. The averaged power coefficient per VAWT ($[C_p]_{fd}$) and the corresponding extracted power density coefficient (P_d^*) for VAWTs located in the fully developed region of the array. The relative increment of power coefficient is defined with respect to the straight-bladed VAWT case of the same array spacing.

Spacing:	$(S_x, S_y) = (10, 10)$			$(S_x, S_y) = (7, 5)$			$(S_x, S_y) = (5, 5)$		
	HN10D	S10D	HP10D	HN7D	S7D	HP7D	HN5D	S5D	HP5D
$[C_p]_{fd}$ (10^{-2}):	2.92	2.73	2.86	2.31	2.15	2.28	1.69	1.60	1.70
P_d^* (10^{-4}):	2.60	2.43	2.55	5.86	5.46	5.78	6.00	5.67	6.03
Relative increase:	7.00%	—	4.94%	7.33%	—	5.86%	5.82%	—	6.35%

571 (corresponding to about 40% increase for the number of VAWTs per unit land area) results in
 572 only $2.39 \sim 4.33\%$ increase in P_d^* for the three different VAWT types. Thus it is apparent that
 573 the $(S_x, S_y) = (7, 5)$ spacing is a more economical choice than the $(S_x, S_y) = (5, 5)$ spacing con-
 574 sidering its lower cost (i.e., less VAWTs for lower cost on initial installation and long-term main-
 575 tenance) for achieving comparable P_d^* . To determine which spacing is more economical between
 576 $(S_x, S_y) = (10, 10)$ and $(7, 5)$, an optimization analysis based on the actual cost of land space,
 577 VAWTs, and long-term maintenance will need to be performed.^{31,75} Note that it is computationally
 578 expensive to use LES for optimization analysis. Alternatively, previous studies (see e.g., Meyers
 579 and Meneveau⁷⁵ and Stevens³¹) used low-cost parameterizations of wind farm flows instead of
 580 LES to determine the optimal spacings and layouts of turbines for HAWT-based wind farms. Sim-
 581ilar optimization analysis may be conducted for VAWT-based wind farms, which goes beyond the
 582 scope of the present work and will be considered in future study.

583 Moreover, the instantaneous torque and power of a VAWT can have considerable temporal
 584 variations due to the effect of its own rotation (during which each blade experiences rapid change
 585 of aerodynamic forces depending on the rotation azimuth angle) as well as the effect of turbulence
 586 in its local inflow. Here, the temporal fluctuation of a VAWT's power coefficient is defined as
 587 $C'_p = C_p - \bar{C}_p$, and its root-mean-square value (i.e., the standard deviation) is denoted as σ_{cp} . The
 588 averaged values of σ_{cp} based on the VAWTs in the same row, i.e., $\langle \sigma_{cp} \rangle$, are calculated for all the
 589 9 simulation cases and the results are shown in Fig. 30. For the straight-bladed VAWT, each blade
 590 is located at a specific rotation angle θ with a difference of $\pm 120^\circ$ relative to the rotation angles
 591 of the other two blades. As the straight-bladed VAWT rotates, the instantaneous power oscillates
 592 as the three blades rotate through the full range of the azimuth angle. In contrast, each blade of

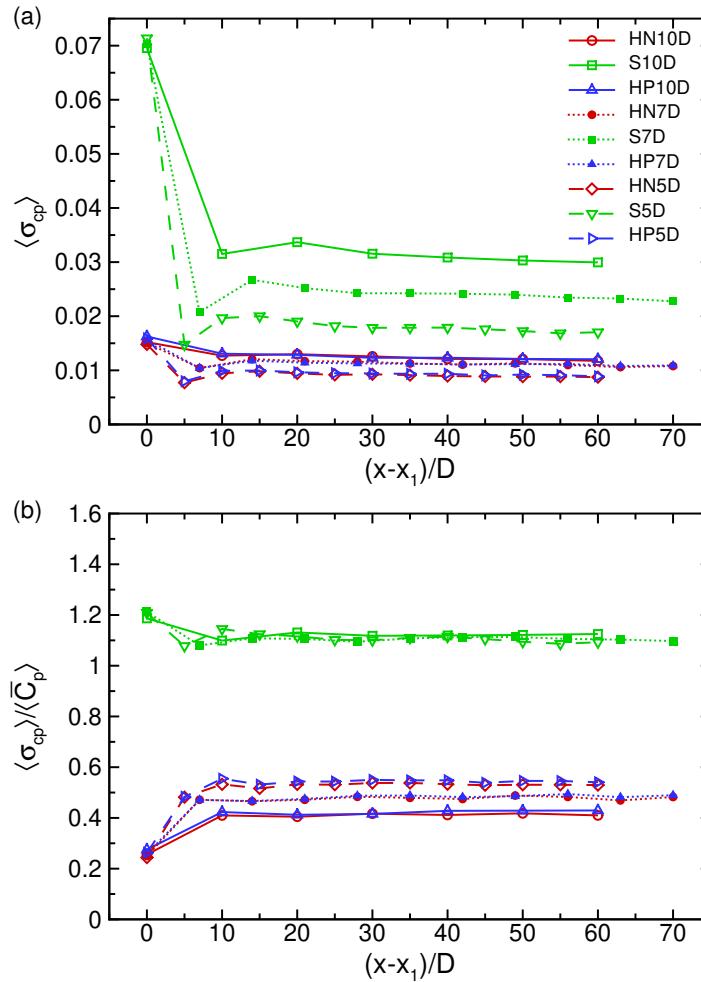


FIG. 30. Row-averaged standard deviation for the temporal variation of the power coefficient, $\langle \sigma_{cp} \rangle$, for different VAWT rows in the 9 simulation cases. Panel (a) shows $\langle \sigma_{cp} \rangle$ and panel (b) shows $\langle \sigma_{cp} \rangle / \langle \bar{C}_p \rangle$.

593 the two helical VAWTs considered in this study covers a 127° range of θ , and the combination
 594 of three blades allows the full coverage of the entire rotation circle at any instantaneous time of
 595 the rotation, resulting in much less temporal fluctuation of the power. As shown in Fig. 30(a),
 596 for each VAWT array spacing the straight-bladed VAWT case exhibits much higher $\langle \sigma_{cp} \rangle$ than
 597 the two corresponding helical-bladed VAWT cases. For the averaged value of $\langle \sigma_{cp} \rangle$ based on the

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

598 VAWTs in the fully developed region of the array, the cases with helical-bladed VAWTs exhibit
599 about 47.6 ~ 60.1% reduction than the corresponding cases with straight-bladed VAWTs.

600 For each VAWT type, Fig. 30 also shows that $\langle \sigma_{cp} \rangle$ reduces if the VAWT spacing is reduced.
601 Such reduction could be due to the reduction of local inflow wind speed associated with array of
602 smaller spacing. Note that the mean power coefficient $\langle \bar{C}_p \rangle$ also reduces with the reduced VAWT
603 spacing due to the wind speed reduction. The ratio $\langle \sigma_{cp} \rangle / \langle \bar{C}_p \rangle$ quantifies the relative magnitude of
604 the temporal fluctuation with respect to the mean. As shown in Fig. 30(b), the values of $\langle \sigma_{cp} \rangle / \langle \bar{C}_p \rangle$
605 for the straight-bladed VAWT for the three different spacings are very close to each other (around
606 1.1), confirming that the temporal oscillation of power coefficient for the straight-bladed VAWT
607 cases is dominated by the effect of blade rotation as discussed above.

608 In contrast, the cases associated with the two helical VAWTs exhibit similar dependence of
609 $\langle \sigma_{cp} \rangle / \langle \bar{C}_p \rangle$ on the VAWT spacing. Due to the smooth coverage of θ by the three helical-shaped
610 blades, the contribution to the temporal oscillation due to blade rotation is much less significant
611 compared with the corresponding straight-bladed VAWT cases. This allows the effects of in-
612 flow turbulence to become more prominent. Note that all the helical-bladed VAWT cases have
613 consistent free-stream inflow condition, resulting in very close values of $\langle \sigma_{cp} \rangle / \langle \bar{C}_p \rangle$ for the first
614 VAWT row (Fig. 30(b)). As the VAWT streamwise spacing is reduced, the turbulence intensity
615 in the local inflow in front of each VAWT inside the array is increased (see Fig. 16(b,d)). Conse-
616 quently, the magnitudes of $\langle \sigma_{cp} \rangle / \langle \bar{C}_p \rangle$ of different helical-bladed VAWT cases follow the order of
617 HN5D/HP5D > HN7D/HP7D > HN10D/HP10D as shown in Fig. 30(b).

618 Besides the effects on the wind power extraction, the VAWT blade geometry and the array
619 spacing can also affect the wind load on the VAWT structure. Wind-induced oscillation can cause
620 fatigue effect and impact the longevity of the VAWT system. Here, the spanwise bending mo-
621 ment relative to the root of the VAWT central axis is analyzed for demonstration purpose. The
622 instantaneous spanwise bending moment M_y can be calculated based on

$$623 M_y = \sum_{m=1}^{N_b} \sum_{n=1}^{N_e} F_{n,1}(\theta_{n,m}) z_n \quad (16)$$

624 where $F_{n,1}(\theta_{n,m})$ is the x -direction force component acting on the n -th element of the m -th blade,
625 and z_n is the vertical coordinate of the blade element (assume the origin of the z coordinate is at the
626 ground level and neglect the thickness of any bottom base structure). The dimensionless bending

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

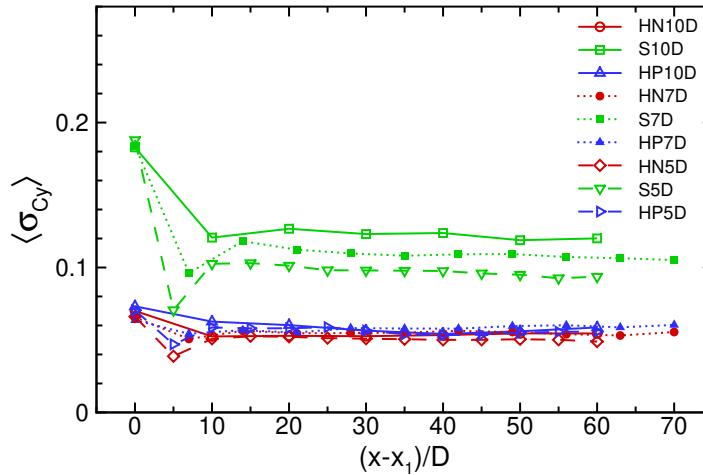


FIG. 31. Row-averaged standard deviation for the temporal variation of the spanwise bending moment, σ_{C_y} , for different VAWT rows in the 9 simulation cases.

627 moment coefficient is defined as

$$628 \quad 629 \quad 630 \quad 631 \quad 632 \quad 633 \quad 634 \quad 635 \quad 636 \quad 637 \quad 638 \quad 639 \quad 640 \quad 641 \quad 642 \quad 643 \quad C_y = \frac{M_y}{0.5\rho HDz_{eq}U_{10}^2}, \quad (17)$$

where HD corresponds to the projected area of the VAWT rotor and z_{eq} is the rotor equator height relative to the ground level (as defined in Sec. III).

For structure health, the crucial component of C_y is its temporal fluctuation part, which can cause fatigue effect to damage the VAWT structure. Here, the standard deviation for the temporal variation of C_y is denoted as σ_{C_y} and is calculated based on the LES data. The row-averaged values $\langle \sigma_{C_y} \rangle$ for different VAWT rows in the 9 simulation cases are shown in Fig. 31. Similar to the blade effect on the power production, the straight-bladed VAWTs experience considerable temporal variations in C_y . Reducing the VAWT spacing causes the reduction of the local inflow speed (thus reduce the rotation speed) for VAWTs located inside the array, resulting in the reduction of $\langle \sigma_{C_y} \rangle$ for the straight-bladed VAWT as shown in Fig. 31. The twisted blades of the helical VAWTs help reduce the temporal variation of C_y by covering the full range of θ smoothly during the rotation. For the helical-bladed VAWTs, the cases with positive twist angle appear to have smaller $\langle \sigma_{C_y} \rangle$ than the corresponding negative twist angle cases. A close-up look of the flow field in the VAWT rotor region suggests that the difference in $\langle \sigma_{C_y} \rangle$ between the positive and negative helical-bladed VAWTs is caused by the effect of vertical flow generated by the twisted blade. Figure 32

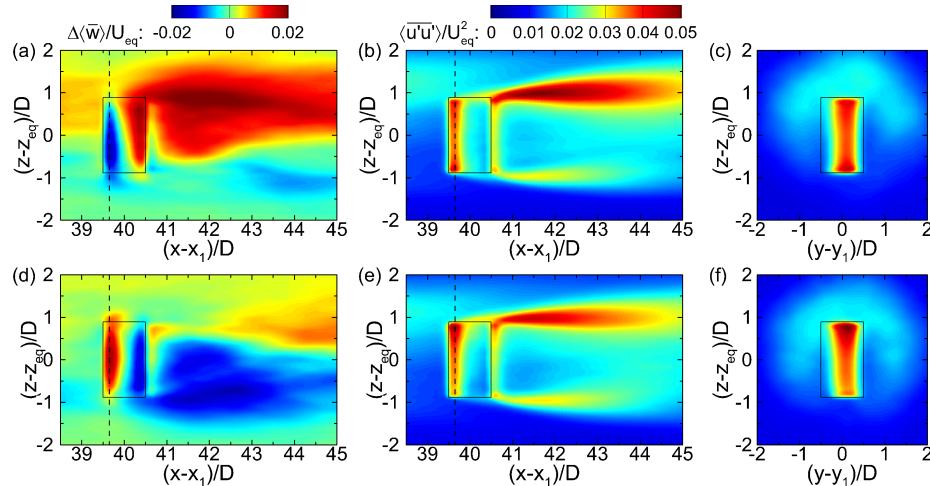


FIG. 32. Close-up views of the mean flow field near the fourth VAWT for cases HN10D (a–c) and HP10D (d–f). Panels (a,d) show $\Delta\langle\bar{w}\rangle$ and (b,e) show $\langle\bar{u'}\bar{u'}\rangle$ on the (x,z) -plane across the center line of the VAWT column. Panels (c,f) show $\langle\bar{u'}\bar{u'}\rangle$ on the (y,z) -plane at $(x-x_1)/D = 39.65$ (indicated by the dashed line in (a,d)). In each panel, the VAWT rotor location is indicated by the rectangle.

644 shows the comparison between cases HN10D and HP10D for demonstration. In case HP10D, the
 645 helical blades induce additional upward flow motion in the rotor region relative to the straight-
 646 bladed VAWT case S10D (see around $(x-x_1)/D = 39.65$ in Fig. 32(d)), causing the distribution
 647 of the streamwise velocity fluctuation $\langle\bar{u'}\bar{u'}\rangle$ to be more biased towards the upper side of the rotor
 648 region (Fig. 32(e,f)). In contrast, the helical blades in case HN10D induces additional downward
 649 flow motion in the rotor region (Fig. 32(a)), which helps make $\langle\bar{u'}\bar{u'}\rangle$ more evenly distributed along
 650 the vertical direction. The bias of turbulent fluctuation inside the rotor region towards the upper
 651 side in case HP10D results in slightly higher $\langle\sigma_{C_y}\rangle$ than that in case HN10D.

652 V. DISCUSSION AND CONCLUSION

653 In this study, the turbulent flow characteristics in large arrays of VAWTs with finite streamwise
 654 length are investigated via LES modeling. A total of 9 cases are simulated and analyzed, covering
 655 three different VAWT spacings (i.e., $(S_x, S_y) = (10, 10), (7, 5)$ and $(5, 5)$) and three different VAWT
 656 types (i.e., one straight-bladed VAWT and two helical-bladed VAWTs with opposite twist angles

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

657 of $\gamma = \pm 127^\circ$). In each case, the array consists of a large number of VAWTs (i.e., 56, 176 and 208
658 for the three different spacings), which rotate independently based on the local inflow speed. The
659 aerodynamic forces of each blade are modeled using ALM. The combination of LES and ALM
660 allows the detailed wake flow characteristics inside the large array of VAWTs to be captured.

661 By performing systematic statistical analysis, the effects of VAWT blade geometry on the tur-
662 bulent flow characteristics, VAWT power production, and structural bending moment fluctuation
663 under different array spacing conditions are investigated. In all reported simulation cases, the flow
664 characteristics in the VAWT array exhibit convergence towards a fully developed state after the
665 VAWT row located around $(x - x_1)/D = 20$ towards the downstream direction. For the same ar-
666 ray spacing, the two helical-bladed VAWTs are found to have about $4.94 \sim 7.33\%$ higher mean
667 power production rate in the fully developed region than the corresponding straight-bladed VAWT
668 cases. Statistical analyses of the flow field inside the VAWT array indicate that the increased
669 power for helical VAWTs is due to the enhanced lateral entrainment of mean kinetic energy to help
670 recover the wake flow speed behind each VAWT. Compared with the straight-bladed VAWT, the
671 helical-bladed VAWTs are found to also extract wind power much more smoothly, exhibiting about
672 $47.6 \sim 60.1\%$ reduction in the temporal fluctuation of the power coefficient (estimated based on
673 the averaged value of $\langle \sigma_{cp} \rangle$ in the fully developed region of the array). The helical-bladed VAWTs
674 also experience much less wind-induced oscillation in the spanwise bending moment relative to
675 the base of the VAWT tower when compared with the straight-bladed VAWT, which suggests
676 that using helical-bladed VAWTs may increase the longevity of the VAWT system and reduce the
677 long-term maintenance cost.

678 It should be noted that due to the high computational cost for simulating large VAWTs arrays,
679 the present study only includes a limited number of simulation cases that cover three different
680 array spacings with all three VAWT types based on the same basic design (only differed by the
681 blade twist angle). More simulations may need to be conducted in the future to consider additional
682 VAWT designs, array spacings, array lengths, etc., in order to further generalize the understanding
683 on the potential performance differences between helical-bladed and straight-bladed VAWTs.

684 It should also be remarked that although ALM-based LES model has been used as the high-
685 fidelity model for uncertainty quantification of other lower-fidelity wind farm models,^{76,77} it may
686 still produce uncertainties due to the complexity involved in modeling wind farm flows. Potential
687 sources for uncertainties when using ALM-based LES to predict the performance of wind farms
688 may include the wind direction variations due to large-scale weather system, LES grid resolution,

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

689 SGS modeling, modeling or parameterization of the blade lift and drag, etc. Uncertainty quan-
690 tification of LES model is quite challenging and computationally expensive.⁷⁶ It goes beyond the
691 scope of the current work but deserves further investigation in future studies.

692 ACKNOWLEDGMENTS

693 This research was supported by the National Science Foundation Fluid Dynamics Program
694 under Grant No. 1804214 to D.Y. and Grant Nos. 1802476 and 2038071 to J.O.D.. N.J.W. ac-
695 knowledges support from the National Science Foundation Graduate Research Fellowship. M.G.
696 and D.Y. acknowledge the use of the Sabine and Carya clusters from the Research Computing
697 Data Core (RCDC) at the University of Houston. This work was authored in part by the National
698 Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S.
699 Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by
700 the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy
701 Technologies Office. The views expressed in the article do not necessarily represent the views of
702 the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting
703 the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-
704 up, irrevocable, worldwide license to publish or reproduce the published form of this work, or
705 allow others to do so, for U.S. Government purposes.

706 APPENDICES

707 Appendix A: Actuator line method for modeling VAWT forces

708 In this section, the implementation of ALM in the LES model is explained briefly. The impor-
709 tant parameters for modeling the VAWT forces are denoted as following: R is the radius of the
710 VAWT rotor (i.e., the radial distance from the central axis to the chord of each blade); $D = 2R$ is
711 the diameter of the VAWT rotor; c is the chord length of the blade cross-section; t_b is the cross-
712 sectional thickness of the blade; H is the vertical height of each blade; and Ω is the angular speed
713 of the VAWT rotation. In this study, the VAWTs are set to rotate counterclockwise.

714 If each VAWT blade is discretized evenly into N_e elements, the vertical height of each blade
715 element is $\Delta H = H/N_e$. For the n -th blade element, the corresponding aerodynamic forces acting

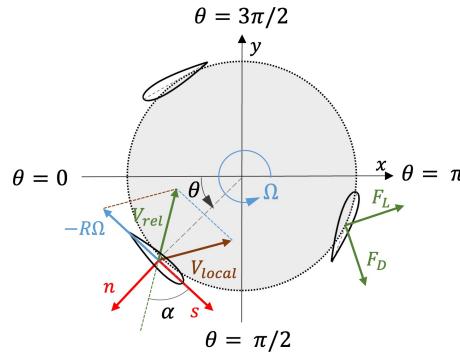


FIG. 33. Schematics of the (x, y) -plane view of the VAWT blades path and the physical quantities involved in the modeling of the aerodynamic forces.

716 on it in the x - and y -directions as modeled as^{9,24,39,44,45,48}

$$717 \quad F_{n,1} = -\frac{1}{2}\rho V_{\text{rel}}^2 c \Delta H [C_L^* \cos(\theta + \alpha) + C_D^* \sin(\theta + \alpha)] , \quad (\text{A1})$$

$$718 \quad F_{n,2} = \frac{1}{2}\rho V_{\text{rel}}^2 c \Delta H [-C_L^* \sin(\theta + \alpha) + C_D^* \cos(\theta + \alpha)] . \quad (\text{A2})$$

719 Here, θ is the azimuth angle of the blade rotation; $V_{\text{rel}} = \sqrt{(\tilde{u} - R\Omega \sin \theta)^2 + (\tilde{v} + R\Omega \cos \theta)^2}$ is
720 the magnitude of the relative horizontal velocity of the local air inflow with respect to the blade
721 element; C_L^* and C_D^* are the lift and drag coefficients with dynamic stall correction.⁷⁸ The angle of
722 attack of the blade element relative to the local inflow, α , can be determined based on the relative
723 direction of the local wind inflow with respect to the local (s, n) coordinate system along the chord
724 and radial directions of the turbine blade element as illustrated in Fig. 33. In the (s, n) coordinates,
725 the local wind velocity vector is written as

$$726 \quad \mathbf{V}_{\text{local}} = \tilde{V}_h \sin(\theta - \beta) \hat{\mathbf{e}}_s - \tilde{V}_h \cos(\theta - \beta) \hat{\mathbf{e}}_n, \quad (\text{A3})$$

727 where $\hat{\mathbf{e}}_s$ is the unit vector along the blade element's chord direction, $\hat{\mathbf{e}}_n$ is the unit vector along the
728 blade element's radial direction, $\tilde{V}_h = \sqrt{\tilde{u}^2 + \tilde{v}^2}$ is the magnitude of the inflow horizontal velocity,
729 and $\beta = \arctan(\tilde{v}/\tilde{u})$ is the angle between the streamwise and spanwise inflow velocities. The
730 relative horizontal velocity of the local air inflow with respect to the blade element in the (s, n)
731 coordinates can be written as

$$732 \quad \mathbf{V}_{\text{rel}} = \mathbf{V}_{\text{local}} - R\Omega \hat{\mathbf{e}}_s = [\tilde{V}_h \sin(\theta - \beta) - R\Omega] \hat{\mathbf{e}}_s - \tilde{V}_h \cos(\theta - \beta) \hat{\mathbf{e}}_n. \quad (\text{A4})$$

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

733 The corresponding angle of attack α is computed as

$$734 \quad \alpha = \arctan \left(\frac{-\cos(\theta - \beta)}{-\sin(\theta - \beta) + R\Omega/\tilde{V}_h} \right). \quad (\text{A5})$$

735 In the present LES study, the modified Boeing–Vertol model⁷⁹ is adopted to model the effect of
736 dynamic stall caused by the rapid changes in angle of attack during rotation.⁷⁸ With the dynamic
737 stall correction, the effective angles of attack for lift and drag are modeled as⁷⁹

$$738 \quad \alpha_L^* = \alpha - \gamma_L \zeta \sqrt{\frac{c \dot{\alpha}}{2V_{\text{rel}}}} \frac{\dot{\alpha}}{|\dot{\alpha}|}, \quad (\text{A6})$$

$$739 \quad \alpha_D^* = \alpha - \gamma_D \zeta \sqrt{\frac{c \dot{\alpha}}{2V_{\text{rel}}}} \frac{\dot{\alpha}}{|\dot{\alpha}|}, \quad (\text{A7})$$

740 respectively, where $\dot{\alpha} = d\alpha/dt$ is the instantaneous rate of change of α , and the dimensionless
741 model coefficients are given by

$$742 \quad \gamma_L = 1.4 - 6 \left(0.06 - \frac{t_b}{c} \right), \quad (\text{A8})$$

$$743 \quad \gamma_D = 1 - 2.5 \left(0.06 - \frac{t_b}{c} \right), \quad (\text{A9})$$

$$744 \quad \zeta = 0.75 + 0.25 \frac{\dot{\alpha}}{|\dot{\alpha}|}. \quad (\text{A10})$$

745 The modified lift and drag coefficients after the dynamic stall correction are modeled as⁷⁹

$$746 \quad C_L^* = \left(\frac{\alpha}{\alpha_L^* - \alpha_0} \right) C_L(\alpha_L^*), \quad (\text{A11})$$

$$747 \quad C_D^* = C_D(\alpha_D^*), \quad (\text{A12})$$

748 where α_0 is the angle of zero lift (which is equal to 0° for symmetric airfoils), and C_L and C_D are
749 the static lift and drag coefficients for the corresponding airfoil shape of the VAWT blade cross
750 section, respectively. In the present LES study, the values for C_L and C_D are obtained from the
751 empirical data reported in Sheldahl and Klimas.⁶⁴

752 In the LES model, a 3D Gaussian kernel method is used to smoothly distribute the forces
753 computed by Eqs. (A1) and (A2) onto the computational grids around the blade element. The
754 distributed body forces $f_{\varepsilon,i}$ ($i = 1, 2$) for Eq. (2) are computed as³⁸

$$755 \quad f_{\varepsilon,i}(x, y, z) = \sum_{n=1}^{N_e} F_{n,i} G_n(x, y, z), \quad (\text{A13})$$

756 where $G_n(x, y, z) = \varepsilon^{-3} \pi^{-3/2} \exp(-r_n^2/\varepsilon^2)$ is the Gaussian kernel function, ε is the kernel width,
757 and $r_n = \sqrt{(x - x_n)^2 + (y - y_n)^2 + (z - z_n)^2}$ is the distance between a space point (x, y, z) and the
758 center point of the n -th blade element (x_n, y_n, z_n) . The specific value for ε is given in Sec. III.

759 **Appendix B: Test of simulation domain height**

760 As reported by Sarlak *et al.*⁴³ based on LES tests, the domain height needs be adequate to
 761 ensure that the turbine blockage ratio does not exceed 5%. In Sarlak *et al.*,⁴³ the LES tests were
 762 done based on a HAWT in a wind tunnel, and the blockage ratio was defined as the ratio of the
 763 rotor swept area to the tunnel cross-sectional area. For the VAWTs array cases considered in this
 764 study, the blockage ratio may be defined as the VAWT rotor cross-sectional area to the domain
 765 cross-sectional area per VAWT (since there are multiple VAWTs per row of the array). In another
 766 LES study of infinite VAWT arrays, Hezaveh *et al.*¹⁷ used a simulation domain height that was
 767 26.7 times of the VAWT rotor diameter D and 5.2 times of the VAWT rotor height H . For the
 768 array layouts considered in their study, the corresponding blockage ratio was reported to be below
 769 3.75%. Two additional cases with increased domain height were tested in their study, and the
 770 reported array-averaged power coefficients showed an insignificant variation of about 2% (based
 771 on the values reported in Table 2 of Hezaveh *et al.*¹⁷).

772 The simulation domain height used in the present study is 20m, which corresponds to $11.11D$
 773 and $6.25H$. As listed in Table IV, the LES cases presented in this paper have the blockage ratios
 774 range from 1.6% for $(S_x, S_y) = (10, 10)$ to 3.2% for $(S_x, S_y) = (5, 5)$, which do not exceed the
 775 5% threshold reported in Sarlak *et al.*⁴³ and is slightly lower than the upper bound reported in
 776 Hezaveh *et al.*¹⁷ Similar to Hezaveh *et al.*,¹⁷ two additional test cases S10D-32 and S5D-32 were
 777 performed (see Table IV), in which the domain heights were increased from 20m to 32m and the
 778 corresponding blockage ratios were reduced to 1% and 2%, respectively. The LES tests show that
 779 the variation of the array-averaged power coefficient is 2.28% between cases S10D and S10D-32,
 780 and 0.56% between cases S5D and S5D-32. Therefore, the 20m domain height is considered

TABLE IV. Simulation parameters and results for testing of domain height.

Case	VAWT type	Domain size (L_x, L_y, L_z) m	Grid resolution ($N_x \times N_y \times N_z$)	Blockage ratio	Array-averaged power coefficient
S10D	Straight-bladed	(165.6, 144, 20)	1058 × 920 × 300	1.6%	3.07×10^{-2}
S10D-32	Straight-bladed	(165.6, 144, 32)	1058 × 920 × 480	1%	3.14×10^{-2}
S5D	Straight-bladed	(165.6, 144, 20)	1058 × 920 × 300	3.2%	1.77×10^{-2}
S5D-32	Straight-bladed	(165.6, 144, 32)	1058 × 920 × 480	2%	1.76×10^{-2}

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

⁷⁸¹ adequate and used in the rest of the simulation cases reported in the present study.

⁷⁸² REFERENCES

⁷⁸³ ¹S. Potrč, L. Čuček, M. Martin, and Z. Kravanja, "Sustainable renewable energy supply networks
⁷⁸⁴ optimization – The gradual transition to a renewable energy system within the european union
⁷⁸⁵ by 2050," *Renewable and Sustainable Energy Reviews* **146**, 111186 (2021).

⁷⁸⁶ ²"Global Wind Report 2022," Tech. Rep. (Global Wind Energy Council, 2022).

⁷⁸⁷ ³J. F. Manwell, J. G. McGowan, and A. L. Rogers, *Wind Energy Explained*, 2nd ed. (Wiley, 2009).

⁷⁸⁸ ⁴T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi, *Wind Energy Handbook* (Wiley, 2011).

⁷⁸⁹ ⁵F. Porté-Agel, M. Bastankhah, and S. Shamsoddin, "Wind-turbine and wind-farm flows: A re-
⁷⁹⁰ view," *Boundary-Layer Meteorology* **174**, 1–59 (2020).

⁷⁹¹ ⁶J. Contrell, T. Stehly, J. Johnson, J. O. Roberts, Z. Parker, G. Scott, and D. Heimiller, "Analy-
⁷⁹² sis of transportation and logistics challenges affecting the deployment of larger wind turbines:
⁷⁹³ Summary of results," Tech. Rep. NREL/TP-5000-61063 (National Renewable Energy Labora-
⁷⁹⁴ tory, 2014).

⁷⁹⁵ ⁷M. Kinzel, Q. Mulligan, and J. O. Dabiri, "Energy exchange in an array of vertical-axis wind
⁷⁹⁶ turbines," *Journal of Turbulence* **13**, N38 (2012).

⁷⁹⁷ ⁸M. Casini, "Small vertical axis wind turbines for energy efficiency of buildings," *Journal of
⁷⁹⁸ Clean Energy Technologies* **4**, 56–65 (2016).

⁷⁹⁹ ⁹S. H. Hezaveh, E. Bou-Zeid, M. W. Lohry, and L. Martinelli, "Simulation and wake analysis of
⁸⁰⁰ a single vertical axis wind turbine," *Wind Energy* **20**, 713–730 (2017).

⁸⁰¹ ¹⁰L. Battisti, A. Brighenti, E. Benini, and M. R. Castelli, "Analysis of different blade architectures
⁸⁰² on small VAWT performance," *Journal of Physics: Conference Series* **753**, 062009 (2016).

⁸⁰³ ¹¹G. Brochier, P. Fraunie, C. Beguier, and I. Paraschivoiu, "Water channel experiments of dynamic
⁸⁰⁴ stall on darrieus wind turbine blades," *Journal of Propulsion and Power* **2**, 445–449 (1986).

⁸⁰⁵ ¹²P. Bachant and M. Wosnik, "Performance and near-wake measurements for a vertical axis tur-
⁸⁰⁶ bine at moderate Reynolds number," in *Proceedings of the ASME Fluids Engineering Summer
⁸⁰⁷ Meeting*, 16575 (2013).

⁸⁰⁸ ¹³D. B. Araya and J. O. Dabiri, "A comparison of wake measurements in motor-driven and flow-
⁸⁰⁹ driven turbine experiments," *Experiments in Fluids* **56**, 150 (2015).

⁸¹⁰ ¹⁴M. Kinzel, D. B. Araya, and J. O. Dabiri, "Turbulence in vertical axis wind turbine canopies,"

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

811 Physics of Fluids **27**, 115102 (2015).

812 ¹⁵D. B. Araya and J. O. Dabiri, "Vertical axis wind turbine in a falling soap film," Physics of Fluids **27**, 091108 (2016).

813 ¹⁶D. B. Araya, T. Colonius, and J. O. Dabiri, "Transition to bluff-body dynamics in the wake of vertical-axis wind turbines," Journal of Fluid Mechanics **813**, 346–381 (2017).

814 ¹⁷S. H. Hezaveh, E. Bou-Zeid, G. Cortina, L. Martinelli, J. Dabiri, and M. Kinzel, "Increasing the power production of vertical-axis wind-turbine farms using synergistic clustering," Boundary-Layer Meteorology **169**, 275–296 (2018).

815 ¹⁸I. D. Brownstein, N. J. Wei, and J. O. Dabiri, "Aerodynamically interacting vertical-axis wind turbines: Performance enhancement and three-dimensional flow," Energies **12**, 2724 (2019).

816 ¹⁹N. J. Wei, I. D. Brownstein, J. L. Cardona, M. F. Howland, and J. O. Dabiri, "Near-wake structure of full-scale vertical-axis wind turbines," Journal of Fluid Mechanics **914**, A17 (2021).

817 ²⁰A. Alaimo, A. Esposito, A. Messineo, C. Orlando, and D. Tumino, "3D CFD analysis of a vertical axis wind turbine," Energies **8**, 3013–3033 (2015).

818 ²¹M. Moghimi and H. Motawej, "Developed DMST model for performance analysis and parametric evaluation of Gorlov vertical axis wind turbines," Sustainable Energy Technologies and Assessments **37**, 100616 (2020).

819 ²²Q. Cheng, X. Liu, H. S. Ji, K. C. Kim, and B. Yang, "Aerodynamic analysis of a helical vertical axis wind turbine," Energies **10**, 575 (2017).

820 ²³U. Divakaran, A. Ramesh, A. Mohammad, and R. K. Velamati, "Effect of helix angle on the performance of helical vertical axis wind turbine," Energies **14**, 393 (2021).

821 ²⁴M. Gharaati, S. Xiao, N. J. Wei, L. A. Martínez-Tossas, J. O. Dabiri, and D. Yang, "Large-eddy simulation of helical- and straight-bladed vertical-axis wind turbines in boundary layer turbulence," Journal of Renewable and Sustainable Energy **14**, 053301 (2022).

822 ²⁵R. B. Cal, J. Lebrón, L. Castillo, H. S. Kang, and C. Meneveau, "Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer," Journal of Renewable and Sustainable Energy **2**, 013106 (2010).

823 ²⁶M. Calaf, C. Meneveau, and J. Meyers, "Large eddy simulation study of fully developed wind-turbine array boundary layers," Physics of Fluids **22**, 015110 (2010).

824 ²⁷M. Calaf, M. B. Parlange, and C. Meneveau, "Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers," Physics of Fluids **23**, 126603 (2011).

825 ²⁸X. Yang, S. Kang, and F. Sotiropoulos, "Computational study and modeling of turbine spacing

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

843 effects in infinite aligned wind farms," (2012) p. 115107.

844 ²⁹R. J. Stevens, J. Graham, and C. Meneveau, "A concurrent precursor inflow method for Large
845 Eddy Simulations and applications to finite length wind farms," *Renewable Energy* **68**, 46–50
846 (2014).

847 ³⁰R. J. Stevens and C. Meneveau, "Temporal structure of aggregate power fluctuations in large-
848 eddy simulations of extended wind-farms," *Journal of Renewable and Sustainable Energy* **6**,
849 043102 (2014).

850 ³¹R. J. Stevens, "Dependence of optimal wind turbine spacing on wind farm length," *Wind Energy*
851 **19**, 651–663 (2016).

852 ³²D. Yang, C. Meneveau, and L. Shen, "Large-eddy simulation of offshore wind farm," *Physics of
853 Fluids* **26**, 025101 (2014).

854 ³³D. Yang, C. Meneveau, and L. Shen, "Effect of downwind swells on offshore wind energy har-
855 vesting – a large-eddy simulation study," *Renewable Energy* **70**, 11–23 (2014).

856 ³⁴S. Xiao and D. Yang, "Large-eddy simulation-based study of effect of swell-induced pitch mo-
857 tion on wake-flow statistics and power extraction of offshore wind turbines," *Energies* **12**, 1246
858 (2019).

859 ³⁵J. O. Dabiri, "Potential order-of-magnitude enhancement of wind farm power density via
860 counter-rotating vertical-axis wind turbine arrays," *Journal of Renewable and Sustainable En-
861 ergy* **3**, 043104 (2011).

862 ³⁶D. B. Araya, A. E. Craig, M. Kinzel, and J. O. Dabiri, "Low-order modeling of wind farm
863 aerodynamics using leaky Rankine bodies," *Journal of Renewable and Sustainable Energy* **6**,
864 063118 (2014).

865 ³⁷S. Xie, C. L. Archer, N. Ghaisas, and C. Meneveau, "Benefits of collocating vertical-axis and
866 horizontal-axis wind turbines in large wind farms," (2017) pp. 45–62.

867 ³⁸J. N. Sørensen and W. Z. Shen, "Numerical modeling of wind turbine wakes," *Journal of Fluids
868 Engineering* **124**, 393–399 (2002).

869 ³⁹S. Shamsoddin and F. Porté-Agel, "Large eddy simulation of vertical axis wind turbine wakes,"
870 *Energies* **7**, 890–912 (2014).

871 ⁴⁰L. A. Martínez-Tossas, M. J. Churchfield, and S. Leonardi, "Large eddy simulations of the flow
872 past wind turbines: actuator line and disk modeling," *Wind Energy* **18**, 1047–1060 (2015).

873 ⁴¹L. A. Martínez-Tossas, M. J. Churchfield, and C. Meneveau, "A highly resolved large-eddy
874 simulation of a wind turbine using an actuator line model with optimal body force projection,"

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0172007

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

875 Journal of Physics: Conference Series **753**, 082014 (2016).

876 ⁴²L. A. Martínez Tossas, R. J. Stevens, and C. Meneveau, "Wind farm large-eddy simulations on
877 very coarse grid resolutions using an actuator line model," AIAA **2016**, 1261 (2016).

878 ⁴³H. Sarlak, T. Nishino, L. A. Martínez-Tossas, C. Meneveau, and J. N. Sørensen, "Assessment
879 of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy
880 **93**, 340–352 (2016).

881 ⁴⁴S. Shamsoddin and F. Porté-Agel, "A large-eddy simulation study of vertical axis wind turbine
882 wakes in the atmospheric boundary layer," Energies **9**, 366 (2016).

883 ⁴⁵M. Abkar and J. O. Dabiri, "Self-similarity and flow characteristics of vertical-axis wind turbine
884 wakes: an les study," Journal of Turbulence **18**, 373–389 (2017).

885 ⁴⁶M. J. Churchfield, S. Schreck, L. A. Martínez-Tossas, C. Meneveau, and P. R. Spalart, "An
886 advanced actuator line method for wind energy applications and beyond," AIAA **2017**, 1998
887 (2017).

888 ⁴⁷V. Mendoza and A. Goude, "Wake flow simulation of a vertical axis wind turbine under the
889 influence of wind shear," Journal of Physics: Conference Series **854**, 012031 (2017).

890 ⁴⁸V. Mendoza, P. Bachant, C. Ferreira, and A. Goude, "Near-wake flow simulation of a vertical
891 axis turbine using an actuator line model," Wind Energy **22**, 171–188 (2019).

892 ⁴⁹V. Mendoza, A. Chaudhari, and A. Goude, "Performance and wake comparison of horizontal
893 and vertical axis wind turbines under varying surface roughness conditions," Wind Energy **22**,
894 458–472 (2019).

895 ⁵⁰·LESGO: A parallel pseudo-spectral large-eddy simulation code,".

896 ⁵¹D. K. Lilly, "The Representation of Small-scale Turbulence in Numerical Simulation Experi-
897 ments," in *Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences*
898 (1967).

899 ⁵²J. Smagorinsky, "General circulation experiments with the primitive equations," Monthly
900 Weather Review **91**, 99–164 (1963).

901 ⁵³E. Bou-Zeid, C. Meneveau, and M. Parlange, "A scale-dependent Lagrangian dynamic model
902 for large eddy simulation of complex turbulent flows," Physics of Fluids **17**, 025105 (2005).

903 ⁵⁴M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, "A dynamic subgrid-scale eddy viscosity
904 model," Physics of Fluids A: Fluid Dynamics **3**, 1760–1765 (1991).

905 ⁵⁵F. Porté-Agel, C. MENEVEAU, and M. B. PARLANGE, "A scale-dependent dynamic model
906 for large-eddy simulation: application to a neutral atmospheric boundary layer," Journal of Fluid

907 Mechanics **415**, 261–284 (2000).

908 ⁵⁶C. Meneveau and J. Katz, “Scale–Invariance and Turbulence Models for Large–Eddy Simula-
909 tion,” Annual Review of Fluid Mechanics **32**, 1–32 (2000).

910 ⁵⁷C. Meneveau, “Transition between viscous and inertial–range scaling of turbulence structure
911 functions,” Physical Review E **54**, 3657–3663 (1996).

912 ⁵⁸X. Yang and F. Sotiropoulos, “LES investigation of infinite staggered wind-turbine arrays,” in
913 *Journal of Physics: Conference Series*, Vol. 555 (IOP Publishing, 2014) p. 012109.

914 ⁵⁹C.-H. Moeng, “A large-eddy-simulation model for the study of planetary boundary-layer turbu-
915 lence,” Journal of the Atmospheric Sciences **41**, 2052–2062 (1984).

916 ⁶⁰J. Albertson and M. Parlange, “Surface length scales and shear stress: Implications for land-
917 atmosphere interaction over complex terrain,” Water Resources Research **35**, 2121–2132 (1999).

918 ⁶¹F. k. Chow, R. L. Street, M. Xue, and J. H. Ferziger, “Explicit Filtering and Reconstruction
919 Turbulence Modeling for Large–Eddy Simulation of Neutral Boundary Layer Flow,” Journal of
920 the Atmospheric Sciences **62**, 2058–2077 (2005).

921 ⁶²O. Coceal, T. G. Thomas, L. P. Castro, and S. E. belcher, “Mean Flow and Turbulence Statistics
922 Over Groups of Urban–like Cubical Obstacles,” Boundary–?Layer Meteorology **121**, 491–519
923 (2006).

924 ⁶³J. D. Albertson, *Large Eddy Simulation of Land-Atmosphere Interaction*, Ph.D. thesis, University
925 of California, Davis (1996).

926 ⁶⁴R. E. Sheldahl and P. C. Klimas, “Aerodynamic characteristics of seven symmetrical airfoil
927 sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis
928 wind turbines,” Tech. Rep. SAND-80-2114 (Sandia National Labs, 1981).

929 ⁶⁵P. R. Spalart, “Direct numerical study of leading-edge contamination,” *In Fluid Dynamics of*
930 *Three–Dimensional Turbulent Shear Flows and Transition*, , 5.1–5.13 (1988).

931 ⁶⁶T. Colonius, “MODELING ARTIFICIAL BOUNDARY CONDITIONS FOR COMPRESS-
932 IBLE FLOW,” Annual Review of Fluid Mechanics **36**, 315–345 (2004).

933 ⁶⁷P. Schlatter, N. Adams, and L. Kleiser, “A windowing method for periodic inflow/outflow bound-
934 ary treatment of non-periodic flows,” Journal of Computational Physics **206**, 505–535 (2005).

935 ⁶⁸S. Chester, C. Meneveau, and M. B. Parlange, “Modeling turbulent flow over fractal trees with
936 renormalized numerical simulation,” Journal of Computational Physics **225**, 427–448 (2007).

937 ⁶⁹E. Bou-Zeid, C. Meneveau, and M. B. Parlange, “Large-eddy simulation of neutral atmospheric
938 boundary layer flow over heterogeneous surfaces: Blending height and effective surface rough-

Accepted to *J. Renew. Sustain. Energy* 10.1063/5.0172007

939 ness," *Water Resources Research* **40**, W02505 (2004).

940 ⁷⁰J. Kleissl, V. Kumar, C. Meneveau, and M. B. Parlange, "Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and 941 942 unstable conditions," *Water Resources Research* **42**, W06D10 (2006).

943 ⁷¹L. A. Martínez-Tossas, M. J. Churchfield, and C. Meneveau, "Optimal smoothing length scale 944 945 for actuator line models of wind turbine blades based on gaussian body force distribution," *Wind Energy* **20**, 1083–1096 (2017).

946 ⁷²L. P. Chamorro and F. Porté-Agel, "Turbulent flow inside and above a wind farm: a wind-tunnel 947 948 study," *Energies* **4**, 1916–1936 (2011).

949 ⁷³S. P. Pope, *Turbulent Flows* (Cambridge University Press, 2000).

950 ⁷⁴J. Meyers and C. Meneveau, "Flow visualization using momentum and energy transport tubes 951 952 and applications to turbulent flow in wind farms," *Journal of Fluid Mechanics* **715**, 335–358 (2013).

953 ⁷⁵J. Meyers and C. Meneveau, "Optimal turbine spacing in fully developed wind farm boundary 954 955 layers," *Wind Energy* **15**, 305–317 (2012).

956 ⁷⁶D. C. Maniacil, A. L. Frankel, G. Geraci, M. L. Blaylock, and M. S. Eldred, "MULTILEVEL 957 958 UNCERTAINTY QUANTIFICATION OF A WIND TURBINE LARGE EDDY SIMULATION MODEL," in *7th European Conference on Computational Fluid Dynamics* (2018).

959 ⁷⁷J. Zhang and X. Zhao, "Quantification of parameter uncertainty in wind farm wake modeling," 960 961 *Energy* **196**, 117065 (2020).

962 ⁷⁸W. J. McCroskey, "The phenomenon of dynamic stall," *Tech. Rep.* 81264 (NASA, 1981).

963 ⁷⁹R. Gormont, "A mathematical model of unsteady aerodynamics and radial flow for application to 964 965 helicopter rotors," *Tech. Rep.* 72-67 (Army Air Mobility Research and Development Laboratory, 1973).