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ARTICLE INFO ABSTRACT
Keywords: Seroprevalence studies can estimate proportions of the population that have been infected or vaccinated,
COVID-19 pandemic including infections that were not reported because of the lack of symptoms or testing. Based on information

Serial, cross-sectional serosurveys
SEIR metapopulation modeling
SARS-CoV-2 transmission

Impact of mitigation measures
Vaccination strategies

from studies in the United States from mid-summer 2020 through the end of 2021, we describe proportions of the
population with antibodies to SARS-CoV-2 as functions of age and time. Slices through these surfaces at arbitrary
times provide initial and target conditions for simulation modeling. They also provide the information needed to
calculate age-specific forces of infection, attack rates, and — together with contact rates — age-specific proba-
bilities of infection on contact between susceptible and infectious people.

We modified the familiar Susceptible-Exposed-Infectious-Removed (SEIR) model to include features of the
biology of COVID-19 that might affect transmission of SARS-CoV-2 and stratified by age and location. We
consulted the primary literature or subject matter experts for contact rates and other parameter values. Using
time-varying Oxford COVID-19 Government Response Tracker assessments of US state and DC efforts to mitigate
the pandemic and compliance with non-pharmaceutical interventions (NPIs) from a YouGov survey fielded in the
US during 2020, we estimate that the efficacy of social-distancing when possible and mask-wearing otherwise at
reducing susceptibility or infectiousness was 31% during the fall of 2020. Initialized from seroprevalence among
people having commercial laboratory tests for purposes other than SARS-CoV-2 infection assessments on 7
September 2020, our age- and location-stratified SEIR population model reproduces seroprevalence among
members of the same population on 25 December 2020 quite well.

Introducing vaccination mid-December 2020, first of healthcare and other essential workers, followed by older
adults, people who were otherwise immunocompromised, and then progressively younger people, our meta-
population model reproduces seroprevalence among blood donors on 4 April 2021 less well, but we believe that
the discrepancy is due to vaccinations being under-reported or blood donors being disproportionately vacci-
nated, if not both. As experimenting with reliable transmission models is the best way to assess the indirect
effects of mitigation measures, we determined the impact of vaccination, conditional on NPIs. Results indicate
that, during this period, vaccination substantially reduced infections, hospitalizations and deaths.

This manuscript was submitted as part of a theme issue on “Modelling COVID-19 and Preparedness for Future

Pandemics.”
1. Introduction building ships while sailing or planes while flying, metaphors that
emphasize the uncertainties associated with newly emerging human
Mitigating outbreaks with pandemic potential has been compared to pathogens. While each pathogen is unique, historical pandemics share

Abbreviations: COVID-19, coronavirus disease 2019; SEIR, susceptible-exposed-infectious-removed; SARS-CoV-2, severe acute respiratory syndrome coronavirus
2; NPIs, non-pharmaceutical interventions; IFRs, infection-fatality ratios.
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Fig. 1. Diagram of a modified SEIR Model. This metapopulation model includes asymptomatic and pre-symptomatic stages, disease-induced mortality, vaccination,
and the waning and boosting of immunity, features of COVID-19 that affect SARS-CoV-2 transmission. It is cross-classified by age and location.

many characteristics. Most have resulted from respiratory diseases
caused by airborne pathogens (Wang et al., 2021), the substance of
much mathematical epidemiology. Model evaluations of possible stra-
tegies can inform public policymaking, but unless predictions are ac-
curate, the utility of forecasts or simulated scenarios is questionable
(Toannidis et al., 2022).

Early in the COVID-19 pandemic, we built a framework (super-
structure in the airplane or shipbuilding analogy) that we could use,
together with local information, to answer urgent public health ques-
tions. We chose the Susceptible-Exposed-Infectious-Removed (SEIR)
epidemiological structure, but included biological features of COVID-19
that might affect the transmission and control of SARS-CoV-2, including
asymptomatic, pre-symptomatic and hospitalized states, disease-
induced mortality, and vaccination (Fig. 1).

In earlier work, we modeled SARS-CoV-2 transmission in host pop-
ulations stratified by age or location to assess the impact of various non-
pharmaceutical interventions (NPIs). Here we model transmission in the
United States’ population stratified by both age and location (the 50
states plus Washington, DC, but neither Puerto Rico nor other terri-
tories) considering infection- and vaccination-acquired immunity
equivalent. As susceptibility to SARS-CoV-2 reinfection may depend on
the variant with which previously infected (Rossler et al., 2022) and
waning of immunity from that infection or vaccination, elsewhere we
have stratified hosts by exposure to more or less related variants and by
infection, vaccination, and both (in preparation).

Here we determine the simpler model’s ability to reproduce trans-
mission in the United States during the last quarter of 2020, when the
ancestral strain was circulating and NPIs were in effect, and first of
2021, when vaccination began and the alpha variant became dominant
(Lambrou et al., 2022). After demonstrating the accuracy of this
particular metapopulation (a term coined by Levins in 1969 for a pop-
ulation composed of sub-populations) framework, we evaluate the
impact of vaccinating healthcare and other essential workers, then
elderly, otherwise immunocompromised, and finally, healthy younger
people, conditional on NPIs. And we discuss an alternative strategy,
results of whose evaluation we report elsewhere (Vo et al., submitted).

2. Methods
2.1. Model Equations

The model diagrammed in Fig. 1 can be represented as a system of
ordinary differential equations, where S; is the number who are sus-
ceptible in group i (here i indexes ages, locations, or combinations; there
are n such groups), E; is the number who have been infected, but are not
yet infectious, V; is the number who have received one dose of vaccine
(>14 days ago), I, (w = a, p, s, h) are the numbers infectious in group i
who are asymptomatic, pre-symptomatic, symptomatic, or hospitalized,
R; is the number who have recovered or been vaccinated a second time
(>14 days ago), and are temporarily immune, B; is the number whose
immunity has waned, but can be boosted by revaccination, and M; is the
number in group i who have died:

S;’ =qiwBi +o,V; - [’li(t) +)(”}Sh

B; = oR; — [qiw + (1 — g)) &35, + (1 — &)4:(1)]B;,
E, =4S+ (1 —e)A()V; + (1 — €3)(t)B; — kE;,
V= 1S = [(1 = €):(t) + o, + €22,,]Vi,
L, = kpiEi = Viglia,

I, = k(1 = p)E; — &y,

I;,y =&l — [vis + 0iismnlllss

I;h = ¥ is—nlis = Yindins

R, =yl + O, lis + Onyindin + €240 Vi + (1 — qi)€3x3,B; — oR;,
M; = (1= 04)7iis + (1 = O)yiln, i=1

, 2, .,

where the force or hazard rate of infection among susceptible people in
group i (and those receiving one vaccine dose, whose susceptibility to
infection is 1 — €1, where €; is the efficacy of a single dose) is
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Table 1
Symbol definitions, approximate values, and sources.
Symbol Meaning Values Source
pi Proportions of Infectious people who are Asymptomatic (or Symptomatic, 1 — p;) Tbl 2 Clark, et al. 2020
qi Proportions not receiving booster doses when eligible t
k Per capita rate of progression from Exposed, E to Asymptomatic, I, or Pre-symptomatic, I, (1/3 to 1/5 days depending on variant) ~ 1/4 dys He, et al. 2020
EVs—h Per capita rates of progression from Pre-symptomatic, I, to Symptomatic, I; and Symptomatic to Hospitalized, I 1/2 dys He, et al. 2020
Ya Per capita rate at which people with Asymptomatic infections recover (become no longer infectious) 1/7
s Per capita rate at which people with Symptomatic infections who are not hospitalized recover (again, become no longer 1/5 dys He, et al. 2020
infectious)
Yh Per capita rate at which Hospitalized people recover (NB: may well differ from the discharge rate) 1/10 dys
Oy Proportions of Symptomatic people who Recover (or Die, 1 - 6,,), which may differ among those Hospitalized (w = s, h) Tbl 2 Levin, et al. 2020
8 Proportions of Symptomatic people who are Hospitalized (proportions with 2+ co-morbidities) Tbl 2 Clark, et al. 2020
X1 X2 X3 Per capita immunization rates, y; = —In[1 — v;]/5t, where v, is the coverage attained during period 5t b
€1, €g, €3 Probabilities of protection upon contact with infectious people 14 or more days after first, second, and booster doses 0.93 El Sahly, et al.
2021
w, W, Per capita rates at which infection- and vaccine-induced immunity is lost 1/365 dys
i Proportion of people complying with social distancing or mask wearing recommendations (compliance) Tbl 2 Jones et al., 2021
bs, by Reduced susceptibility or infectivity (efficacy) by virtue of complying with physical-distancing where possible and mask- 0.31 Estimated
wearing otherwise
Nw Scaling constants (w = a, p, h) representing the infectivity of I, Iip, Iiy relative to I 0.5, 1.25,
0.1

Notes: We assume that people with asymptomatic infections are less infectious than those with symptomatic ones, but that their sojourns are the same. {Calculated

from reports summarized on https://data.cdc.gov/.

(1) + 13 Lip (1) + Lis (1) + 0L (1)
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, where

n
Nj=S;+B+E+Vi+ L+ L+ L+ i + R +Mand N =Y N,
j=1

In this expression, w; =1—cb;s and y; =1 —cby represent re-
ductions in susceptibility and infectiousness, respectively, due to
physical-distancing if possible and mask-wearing otherwise, ¢; is the
proportion of group i that comply with such recommendations and b;g
and by are their respective efficacies. Here the parameter g; is the per
capita contact rate, f; is the probability of transmission per contact be-
tween susceptible and infectious people (a; x p; is the effective contact
rate), and c; is the proportion of their contacts that members of group i
have with those of group j. As we are interested in relatively short pe-
riods during which M; is small relative to Nj, we maintain N constant by
including M; in the equation for Nj.

Values for most transmission model parameters can be found by
carefully reviewing the primary literature or consulting subject-matter
experts (Tables 1 and 2). But the probabilities of infection upon con-
tact must be obtained from populations of interest. In the following
sections, we describe seroprevalence - the humoral (versus cell-

mediated) component of the adaptive immune response — as a func-
tion of age and time from a study involving assays of residual sera from
commercial laboratory tests for purposes other than SARS-CoV-2
infection assessments, and then estimate forces of infection and attack
rates for n discrete age groups. Finally, given age-specific contact rates
and proportions with each of those groups from the literature, we
calculate the requisite probabilities by solving n equations, each with
one unknown.

2.2. Forces of Infection

First, we model national and location-specific proportions seroposi-
tive from studies of commercial laboratory tests, described by Bajema
et al. (2021), or blood donors, described by Jones et al. (2021), as
functions of both age and time via bivariate logistic regressions in which
the independent variables are represented via third-order polynomials
and, because subjects aged a at time t are aged a+1 at time t+1, all
interactions (Fig. 2a). Where observations were lacking, we used adja-
cent ones (e.g., DC is a composite of MD and VA). While we used line-
listings, public-use summaries of these and other CDC data are avail-
able at: https://covid.cdc.gov/covid-data-tracker/#datatracker-home.

Then we discretize these proportions (i.e., assume that they are

Table 2
Parameter values for age-stratified transmission modeling in the United States

Age Population numbers Population proportions Pr(asympl|inf) Pr(hosp|inf) IFR (percentages) Compliance
0-4 19,676,332 0.059444636 0.981400373 1.0435E-05 0.0008 0.706360069
5-9 20,045,152 0.060558887 0.972064267 0.000143099 0.001312163 0.715211185
10-14 21,089,487 0.063713953 0.969763501 0.00027027 0.002400084 0.71952257
15-19 21,242,908 0.064177457 0.960291933 0.003637205 0.004390005 0.720175768
20-24 22,258,745 0.067246426 0.941577238 0.006854725 0.00802978 0.71795013
25-29 23,835,330 0.072009485 0.913456364 0.017709616 0.014687309 0.713574937
30-34 23,052,479 0.069644395 0.880594618 0.025217824 0.026864628 0.707771036
35-39 21,615,791 0.065303982 0.839642887 0.035166793 0.049138219 0.701279533
40-44 20,294,599 0.061312498 0.775783537 0.037368978 0.08987895 0.694876881
45-49 20,053,798 0.060585008 0.708076043 0.051520404 0.164398026 0.689376822
50-54 20,577,807 0.062168104 0.623043155 0.062486388 0.300701205 0.685620487
55-59 21,542,270 0.065081866 0.521907521 0.083247801 0.550014019 0.684456022
60-64 20,669,143 0.062444041 0.421531351 0.090697794 1.006033295 0.686708224
65-69 17,819,027 0.053833488 0.328351424 0.110144916 1.840140307 0.693136453
70-74 14,354,863 0.043367819 0.2503706 0.118491978 3.365809369 0.704376296
75+ 22,874,916 0.069107955 0.163464241 0.139755917 14.30030403 0.744380002
Wtd Avg 0.715196 0.047154 1.373312 0.705841

Notes: Populations, proportions without co-morbidities (assumed asymptomatic) and requiring hospitalization if infected are from Clark et al. (2020), the infection-
fatality ratios (IFRs) are from Levin et al. (2020), and the compliances are our estimates, obtained from Jones (2020) as described in the text.
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Fig. 2. Seroprevalence in the United States. a) Bivariate logistic regression of observations from analyses of surplus sera from commercial laboratory testing for
purposes other than evaluation of possible exposures to SARS-CoV-2. b) Slices through the surface at arbitrary times.
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Fig. 3. Parameters Derived from Synthetic US Contacts. We use these a) average marginal contact rates by age group, a;, to which authors commonly refer as
activities, and b) proportions of the contacts that members of each age group have with members of all age groups, including their own, c;.

constant within intervals, Feng and Glasser 2019a). Ages and times were
recorded in conventional units, but such surfaces are continuous, so we
can choose any intervals. Information needed for transmission modeling
typically is available in 5-year age groups, so we chose age unit years.
Time is continuous in most of our models, so we chose time unit days.
We number these discrete periodsap=0,a; =1,a2 =2, ...;tp=0,t; =1,
ty = 2, and so on. Here we use the indices a and t to denote continuous
age and time and i and j to denote their discrete analogs.

ALJ) +x(@j) = —InfS(i.j)/S@,j—1)] =

Because all SARS-CoV-2 vaccines used in the United States target the
spike protein, most vaccinated people have anti-spike (anti-S) anti-
bodies. Most infected people also have antibodies to a nucleocapsid
protein (anti-N antibodies). The national commercial laboratory sero-
prevalence study includes all ages, but measures only anti-N. The blood-
donor study measures antigens to both spike and nucleocapsid proteins,
but does not include children. While neither study population is a
random sample, their anti-N seroprevalences are comparable (results
not shown). We use results from both studies in this work.

Post-vaccination onset, we let S(i, j) = 1 - Ig(i, j) denote the pro-
portion susceptible among those aged a;.1 < a < q; at time tj.; < t < t;,
where the proportion immune, Iz = I; + Iy, with I; by virtue of infection

and Iy vaccination (i.e., 1 - Ip is the probability of having escaped both).
Further, we let A(i, j) and y(i, j) denote the specific rates of infection and
immunization in the appropriate intervals of age and time.

Because neither Ij(i, j) nor Iy(i,j) increases monotonically with age,
but both increase monotonically with time (Fig. 2b), and forces of
infection and vaccination can be calculated using either (Hens et al.,
2010), we write S(i,j) = S(i,j — 1)exp{ — [4(i,j) + x(i,j)] }, which leads,
first by rearrangement and then by substitution, to

—In{[1 —Ip(i,j) ]/l —Is(i,j — 1) ]}

Similarly, writing y(i,j) = —In{[1 — Iv(i,j)]/[1 — Iv(i,j — 1)] }, we obtain
the forces or hazard rates of infection, A(i, j) as the difference. Pre-
vaccination, S(Gi, j) = 1 - I(i, j), whereupon A(i,j) =
~In{[1 - L(ij)]/[1 ~ Iij ~1)]}.

2.3. Attack rates

We calculate age-specific attack rates as products of probabilities of
remaining susceptible at time t and the corresponding forces of infec-

tion. Because for any age, Ps(t) = exp[—f;o A7) +;{(r)dr], where

Pg(t) denotes the probability of remaining susceptible at time t (i.e.,
neither infected nor immunized), and 1 — Pg(t) the cumulative
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Fig. 4. Probabilities of Infection upon Contact. We estimated other parameters of the n equations, 4; = a;$;> x_; ¢ (Ir/Nk), from the information illustrated in Fig. 2a
and synthetic US contact matrix (Fig. 3) and then solved them simultaneously for these unknown probabilities, ;.

probability of being immune (i.e., either or both), — dPs(t)/dt = - Ps’(t) =
[A(t) + y(®)] x Ps(t). Further, A(t) x Ps(t) are rates of new infections at
time t, commonly called attack rates, and y(t) x Ps(t) are rates of new
immunizations.

As explained earlier, given contact rates, a; and proportions with
each age group, ci from a contact study (those illustrated in Fig. 3 are
from Prem et al., 2017), we calculate the age-specific probabilities of
infection on contact, ; by solving n equations, 4; = aif;> ;i (I /Nk),
each with one unknown (Fig. 4). The quantity Ii/Ny represents the
probability that an individual aged k is infectious and — Ps’(t) is the rate
at which individuals are removed (from the susceptible state) at exactly
time t. Thus, integrating the derivative over time intervals yields prob-
ability density functions. Because vaccination moves individuals from
the Sto V, not I state, however, equating those probabilities and Ii/Ny, as
we do here, is safest pre-vaccination.

As vaccination began on 14 December 2020 and the f; had declined
slightly among older people having commercial laboratory testing by 17
February 2021 (Fig. 4), the probabilities of infection on contact used in
our transmission modeling were derived from the forces of infection and
attack rates on 26 November 2020.

2.4. Mixing

In the simplest models, host populations are constant in size and
homogeneous. In more complex models, they may be stratified, gener-
ally by age, a proxy for conditions (e.g., co-morbidities) that may

A

Dc

10000 12000

2000 4000 6000 2000

Density (people per unit area)

Ralative Acthvity

increase the risk of serious disease. Age stratification also permits de-
mographic dynamics (e.g., ageing, births by age of mother, deaths by
age) that may be needed for long-term simulations. Model populations
also may be spatially stratified, permitting locations to differ in popu-
lation density (e.g., urban and rural) and other characteristics affecting
transmission. Stratification also permits non-random mixing.

Age-specific observations usually are contacts per participant aged x
with people aged y together with the numbers of participants aged x.
One calculates average numbers of contacts per participant aged x with
people aged y, C; if x and y are grouped. Contacts should balance (i.e., N;
x Cj = Nj x Cj), but rarely do, so we calculate means of corresponding
elements (e.g., square roots of products of empirical matrices and their
transposes). Then c; = Cj/a;, where a; = >, Cy. Matrices of the pro-
portions, cj;, are referred to as mixing matrices and marginal sums of the
contact matrix, g; as activities. In our age-structured models, we create
mixing matrices from local contact studies where possible or use syn-
thetic ones (Fig. 3).

In the spirit of Hethcote and van Ark (1987), we model contacts
within locations as a saturating function of population density (e.g.,
natural logarithms increase with density at decreasing rates, Fig. 5a).
Consequently, the average per capita contact rate, a; = In (p;), where p; is
the quotient of the population size and land area of location i, and decay
exponentially with distance between locations, dj, at rates, b. Thus,

oC

0.0

State (FIPS Code)

Fig. 5. Contacts are a Function of Population Density. Multiplying contacts within locations (Fig. 3a) by ratios of natural logs of population density, a) saturating
functions of density, and that of the entire country, b) reduces to twofold the difference in activities between the most and least densely populated locations.
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Fig. 6. Rates at which Contacts Decline with Distance. Proximity to others affects the probability of contacting them. Feng et al. (2017) assumed an exponential
function. Distances are between population centers (https://www.census.gov/geographies/reference-files/2010/geo/2010-centers-population.html).

Cp= aiexp( —bx d,-,,)/Zexp( —bxdy),
3

Cip = Cip/zcilm
k

where Cj, is the contact matrix (e.g., contacts per person per day) and c;
is the mixing matrix (i.e., proportions of contacts between members of
group i and all groups k, including i).

In our age- and location-stratified models, we combine these ap-
proaches, multiplying age-specific contacts within locations by ratios of
the natural logs of location-specific and overall population densities
(Fig. 5b). Consequently, marginal contacts within more (less) densely
populated locations are greater (less) than the average (Fig. 3a). The
District of Columbia, for example, is almost 12K times as densely
populated as Alaska (Fig. 5a), but their respective log ratios differ from
average only by a factor of 2 (Fig. 5b). Between locations, contacts
decline exponentially with distance at age-specific rates (Fig. 6) whose
calculation Feng et al. (2017) describe. Here distances are “as the crow
flies” between population centers, but other measures may be indicated
(e.g., in a mountainous Argentine province, distances were shortest
routes by car).

Thus, in our age- and location-stratified models, mixing matrix ele-
ments are

bagdyyy
C C‘(gf)‘qe o
ligjlyag = n (s) —ba.dpp.’
Do Ca,,,,_e ar s
where
In(p?)
) = Cya, X , 1<i, psm; 15, g<n.

In these expressions, p is population density, with the indices i and p
denoting locations, of which in the model described here there are m =
51 (50 states plus Washington, DC), and j and g denoting age groups, of
which there are n = 16 (ages 0-4, 5-9, ..., 75+ years). Thus, the m
matrices cg"lq and one matrix Clajlyag have n? = 256 and (mxn)? =
665,856 elements, respectively. We drop the compound notation in
future equations. For more about our mixing models, please see Feng
and Glasser (2019b).

3. Other Parameter Values and Initial Conditions

Other parameter values were gleaned from the primary literature or
subject-matter experts (Tables 1 and 2). Our proportions asymptomatic
are US proportions without co-morbidities from Clark et al. (2020),
which vary inversely with age (Table 2). Dichotomizing what likely is a
spectrum of illness is bound to lead to a range, but our weighted average
exceeds most estimates of the proportion asymptomatic.

Clark et al. (2020) also provide proportions requiring hospitalization
if infected, but — as people with asymptomatic infections don’t require
hospitalization — we applied their proportions (Table 2) to symptomatic
infections. We assumed that hospitalized people sought care within two
days of symptom onset, but — as only about 70% of deaths were among
inpatients (https://www.cdc.gov/nchs/nvss/vsrr/covid weekly/index.
htm#PlaceDeath) — evidently some people who needed hospital-based
care did not receive it. Similarly, we converted the infection fatality
ratios (IFRs) of Levin et al. (2020) into symptomatic infection fatality
ratios (i.e., so-called case fatality rates). Sojourns (residence times) in
our various states are largely from He et al. (2020).

We initialized our age- and location-stratified model of the trans-
mission of SARS-CoV-2 in the United States from location-specific sur-
faces like that illustrated for the entire United States in Fig. 2a on 7
September 2020 (t = 251 days from 31 December 2019) and incidence
on the preceding x days:

Si(t) = 1= Ry(1),

—12

E;(t) = Zl,-j(t —x) X Syt —x) x e,
I;(t) = iiii(t*X) x Syt —x) x (1 —e™/*),
a () = x Ij(t) x (1 = Pr[CM +1]);,
Ly (1) = &7 x I(1) x PriCM +;,
Iy () = 7: x I

1) x PriCM +],,
).

(
Ry(1) = Pr(S +],(

In these approximations, i and j denote location and age, t denotes
time, e/ the exponential survival probability for an epidemiological
state with a mean sojourn of k! days, Pr[CM+] proportions with any co-
morbidity that increases the risk of severe disease or hospitalization


https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm
https://www.census.gov/geographies/reference-files/2010/geo/2010-centers-population.html
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(Table 2), which vary only with age in our US model, Pr[S+] proportions 4.1. Non-Pharmaceutical
with antibodies to nucleocapsid (with or without antibodies to spike),
and the respective mean sojourns in E, I, and I; are 1/k, 1/¢, and 1/y;
days (Table 1).

In our model of the transmission of SARS-CoV-2 in the United States,
consequently, we multiplied contact rates within locations by time-
varying complements of Oxford Stringency Indices (Hale et al., 2021)
expressed as proportions (Fig. 7). For compliance, we scored responses
(always = 1, frequently = 0.75, sometimes = 0.5, rarely = 0.25, never =
0) to “How often have you worn a face mask outside your home (e.g.,
when on public transport, going to a supermarket, going to a main
road)?” by n = 33,940 US YouGov survey participants aged 18 to 99
years surveyed from March to December of 2020 (Jones, 2020). Our
parameter values are age-group averages from logistic regressions of
scored responses as a cubic function of age (Table 2).

4. Interventions

In prior work with populations subject to national regulations, offi-
cials in ministries of health and education helped us to model imposing
and relaxing NPIs (e.g., closing schools and non-essential businesses,
restricting meeting sizes, imposing curfews, requiring physical-
distancing or mask-wearing in public places, and recommending out-
door or adequately-ventilated indoor activities) mechanistically for
impact assessments, but — because their nature and timing was spatially
heterogeneous in the United States — that was impractical.
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Fig. 7. Effect of Non-pharmaceutical Interventions. From a) time-varying Oxford Stringency Indices for each location, illustrated here for the entire United States, we
derive b) functions by which we multiply age-specific contact rates to account for local governmental efforts to mitigate the pandemic.
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Fig. 8. Observed numbers with antibodies to SARS-CoV-2, from the national commercial laboratory (Anti-N) or blood donor (Anti-S or Anti-N) seroprevalence study,
and predicted numbers temporarily immune (Removed) from simulations with (A and B) and without (C and D) vaccination on 25 December 2020 (A and C) and 4
April 2021 (B and D). Vaccination had no discernible impact on 25 December 2020 serology.
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4.2. Vaccination

In the United States, vaccination began on 14 December 2020 with
healthcare and other essential workers, followed by those at risk of
serious illness, hospitalization, or death (i.e., older adults and people
who were immunocompromised), and then progressively younger peo-
ple. Booster doses were not reported before 4 April 2021. Federal
eligibility recommendations were generally followed, but jurisdictions
differed in the levels of vaccine coverage or disease incidence at which
NPIs were imposed and relaxed.

We have modeled vaccination using either 1) age-, time-, and
location-specific immunization rates from the serological survey of
blood donors (calculated as described in section 2.3) or 2) age-, time-,
location-, and dose-specific reports to the CDC of vaccines administered.

In the first, susceptible people move directly to the removed class at
weekly immunization rates. In the second, employed in the work
described here, we determined age- and location-specific numbers of
people eligible for vaccination (i.e., susceptible and vaccinated with one
dose) at the beginning of each week by simulation, calculated the pro-
portions vaccinated from the reported first and second doses adminis-
tered that week, simulated with the corresponding rates, y1¢;) and y2g),
and repeated the next week. We would have calculated y3(; similarly,
but no booster doses were reported during the periods studied.

5. Simulation results

Adjusting only the efficacy of physical-distancing when possible and
mask-wearing otherwise at reducing susceptibility or infectiousness, b;
= bg= 0.31, our model fits the prevalence of anti-N among those having
commercial laboratory testing on 25 December 2020 quite well
(Fig. 8a). Using the second method described above, doses administered
reports to the CDC and efficacies of vaccination at preventing infections,
€1 = €9 = 0.93 from El Sahly et al. (2021), the lower of the two mRNA
vaccines authorized for use at the time (Polack et al., 2020), it fits the
prevalence of anti-N or anti-S among blood donors on 4 April 2021 less
well (Fig. 8b).

We compare reported and simulated symptomatic infections and

Table 3

Reported infections and deaths (https://covid.cdc.gov/covid-data-tracker/#da
tatracker-home) and simulated infections, hospitalizations, and deaths during
the periods from 7 September to 25 December 2020 and from 25 December 2020
to 4 April 2021.

7 Sep to 25 Dec 2020 25 Dec to 4 Apr 2021

Outcomes Reported Simulated Reported Simulated
Cases or Infections 12,545,671 45,075,200 11,603,565 23,635,060
Hospitalizations 1,766,850 974,486
Deaths 147,776 176,342 214,902 120,978

Notes: Cases are reported, infections are simulated, of which roughly 75% are
asymptomatic. Consequently, fewer symptomatic infections are predicted than
cases reported. More deaths were simulated than reported during the first
period, but fewer during the second. Hospitalizations are not compiled, but rates
from surveillance of about 10% of the US population are available (https://gis.
cdc.gov/grasp/COVIDNet/COVID19_3.html).

Table 4

Journal of Theoretical Biology 556 (2023) 111296

deaths during the last quarter of 2020 and first of 2021 (Table 3). Case
and death reports are from information summarized on the CDC’s
COVID Data Tracker, cited above. Our model predicts more infections,
but fewer symptomatic ones than reported, and more deaths than re-
ported between 7 September and 25 December 2020 and fewer between
25 December 2020 and 4 April 2021. The age-specific hospitalization
rates of Clark et al. (2020) are comparable to those from COVID-NET
(https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net),
which are based on surveillance of about 10% of the US population.

Predicted 4 April infections without vaccination resemble serology
among commercial laboratory clients (Fig. 8d), suggesting that the
discrepancy with vaccination (Fig. 8b) may be attributable to blood
donors being disproportionately vaccinated (Busch et al., 2022),
including those previously infected. The discrepancy also may be
explicable by vaccine doses administered being under-reported. Simi-
larly, the above-mentioned comparison of reported and simulated cases
and deaths suggests that infections were under-reported too.

5.1. Impact of vaccination

Rather than comparing disparate simulations and reports, we
compare simulated infections, hospitalizations, and deaths with and
without vaccination (Table 4). As one would expect, given that vacci-
nation began mid-December in the United States, impact was modest
during the last quarter of 2020 (7 September to 25 December). In
contrast, impact during the period from 25 December 2020 to 4 April
2021 was substantial, particularly on symptomatic infections and
hospitalizations.

We could also compare actual and hypothetical vaccination strate-
gies the same way. The purpose of the initial strategy was to protect
healthcare and other essential workers, then elderly people and others at
risk of serious disease, hospitalization, and death. Younger and healthier
people were vaccinated subsequently.

Unquestionably, the optimal strategy for protecting healthcare and
other essential workers is to vaccinate them. This direct approach also
might be best for people at risk of serious disease, hospitalization, and
death for reasons other than age, but the immune responses of older
adults may be less effective than those of younger people. Accordingly,
for example, higher dose influenza vaccines are recommended
(https://www.cdc.gov/flu/highrisk/650ver.htm).

6. Discussion

Early in the COVID-19 pandemic, we developed an SEIR-based
framework for modeling the transmission of SARS-CoV-2 that we
could use, together with locally-available information, to answer policy
questions. In one instance, we used information from cell phone trans-
missions to determine which restrictions affected movements and then a
location-stratified version of this model to determine the impact of
movement restriction on transmission. In another, we used an age-
stratified version to determine the impact of closing schools and other-
wise limiting inter-personal contacts.

For this more recent US work, we estimated some parameters of an
age- and location-stratified version of our model from nationwide

Results of simulations with and without vaccination to deduce by difference its impact during the periods from 7 September to 25 December 2020 and from 25

December 2020 to 4 April 2021.

7 Sep to 25 Dec 2020

25 Dec 2020 to 4 Apr 2021

Outcomes Without With Averted Without With Averted
Asymptomatic Infections 34,739,600 33,911,200 828,400 (2.38%) 26,721,000 17,958,500 8,762,500 (32.79%)
Symptomatic Infections 11,447,400 11,164,000 283,400 (2.48%) 9,389,030 5,676,560 3,712,470 (39.54%)
Hospitalizations 1,813,190 1,766,850 46,340 (2.56%) 1,608,080 974,486 633,594 (39.4%)
Deaths 176,349 176,342 7 (<0.01%) 172,549 120,978 51,571 (29.89%)

Notes: As vaccination began mid-December 2020 in the United States, one would not expect much impact during the first period.
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seroprevalence studies and used others from the literature. Initialized
via seroprevalence on and incidence shortly before 7 September 2020,
this model predicts seroprevalence well on 25 December 2020 and less
well on 4 April 2021. The first evaluation compared seroprevalence from
the same survey, among people having commercial laboratory tests,
from which it was initialized and the probabilities of infection on contact
were estimated. The second compared seroprevalence among blood
donors, who may be unusually wellness-oriented and hence dispropor-
tionately vaccinated. Also, results using immunization rates estimated
from the survey of blood-donations (via the first approach described in
section 4.2) are more concordant with observations from that survey
(appendix), suggesting that vaccine doses administered may have been
under-reported to the CDC.

Our model predicts more than twice as many infections as reported,
most presumably asymptomatic or mildly symptomatic infections
among people who were not tested, but the factor by which simulated
infections exceed reported ones declines over time (cf. Jones et al.,
2021). It also predicts more deaths than attributed to COVID-19 during
the last quarter of 2020, most among older adults (because of the IFRs in
Table 2), and fewer afterwards.

Ability to experiment (i.e., to deduce the effects of phenomena by
altering them individually) underlies the scientific method. While
withholding measures of proven efficacy is unethical, we can experi-
ment with models of pathogen transmission among the members of host
populations. Because such models account for infections not caused by
ones that are averted (i.e., indirect as well as direct effects of mitigation
measures), these experiments assess the total impact of public health
interventions, be they actual or hypothetical.

All models are imperfect, but alternative approaches also have
shortcomings. Because it is impossible to control statistically for the
extent to which the vaccination of others reduces the forces of infection
to which unvaccinated people are subjected, natural experiments (e.g.,
Loeb et al.,, 2010) under-estimate indirect effects. Similarly, all else
never is equal, even in the best matched community intervention trials.
In models, however, the impact of vaccination is the difference between
infections, hospitalizations, and deaths with and without vaccination,
but all other conditions identical (e.g., the same NPIs).

6.1. An alternative strategy

Vaccination policymakers generally envision protecting vulnerable
people for whom vaccination is contra-indicated by attaining a popu-
lation immunity above which infectious people contact, on average,
fewer than one susceptible person intimately enough to infect them.
However, as Morens et al. (2022) explain, waning immunity and path-
ogen evolution make attaining an effective reproduction number of one
difficult for COVID-19. Moreover, in heterogeneous population models
(e.g., with age or spatial structure), if not the real world, that condition
could be attained via an infinite number of combinations of sub-
population immunity (Feng et al., 2015). The gradient (multivariate
partial derivative) answers the question, “Which is optimal?”

Besides simulating our model with and without the actual vaccina-
tion strategy, we could also compare the actual strategy with a hypo-
thetical alternative derived via the gradient of the effective reproduction
number with respect to possible immunization rates. Fewer elderly
people might be infected if those who otherwise might infect them were
vaccinated instead. Feng et al. (2015) advocated, and have since used
(Feng et al., 2017; Hao et al., 2019; Feng et al., 2020; Su et al., 2021), the
gradient of the effective reproduction number with respect to possible
vaccination rates to identify strategies that would reduce the average
number of secondary infections per primary most expeditiously. This is
tantamount to determining which groups contribute most.

6.2. Limitations

We began modeling the transmission of SARS-CoV-2 long before
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effective vaccines were developed, much less approved for use, but - to
keep pace with vaccination policy — added one, then two doses, and
finally boosting of infection- or vaccine-induced immunity. However,
we have since learned that the duration and possibly other character-
istics of immunity may depend on whether an individual was infected,
vaccinated or both, and possibly even the sequence of those events
(Goldberg et al., 2022). These developments and the evolution of vari-
ants, several successively dominant, motivated us to develop different
models for later pandemic periods.

We have derived the reproduction numbers from our models and
quantities, such as the gradient and population-immunity threshold,
that can be derived from the effective number. We have written about
this analytical work, including simulations comparing the actual and
this alternative strategy (i.e., direct with indirect protection), elsewhere
(Vo et al., submitted).

7. Summary

All models are imperfect, but — because measures to mitigate infec-
tious diseases have indirect effects that are difficult to estimate via field
studies — reliable transmission modeling arguably is the best way to
assess their impact. Observations from cross-sectional serological sur-
veys conducted in the United States from mid-summer 2020 through the
end of 2021 using stable assays (Peluso et al., 2021) provided the
wherewithal for us to demonstrate that accurate transmission modeling
is possible during pandemics. We modified the familiar SEIR model to
include features of the biology of COVID-19 that might affect trans-
mission of SARS-CoV-2 and consulted the primary literature or subject
matter experts for contact rates and most other parameter values. We
assessed the impact of vaccination, conditional on NPIs, in an age- and
location-stratified model US population during the first quarter of 2021.
Vaccination substantially reduced symptomatic infections, hospitaliza-
tions, and deaths.
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Centers for Disease Control and Prevention [via multiple contracts] and
our modeling in part by the National Science Foundation [via DMS-
1814545 to ZF].

Public-use summaries of these data are available at: https://covid.
cdc.gov/covid-data-tracker/#datatracker-home. We used Mathematica
13.1 (Wolfram Research, Champaign, IL).

As described in the main text, we calculated vaccination rates from reports to the CDC of weekly doses administered by age and dose number,
which - together with efficacy from El Sahly et al. (2021) — determined the numbers immunized. We believe that the discrepancy between the
observed prevalence of antibodies to spike and nucleocapsid proteins among blood donors (anti-S or anti-N on Fig. 8b) and modeled numbers
temporarily immune by virtue of infection or vaccination (removed on Fig. 8b) is due to the disproportionate vaccination of health-conscious blood

donors, under-reporting of doses administered, or both.
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This figure differs from 8b in the main text in that vaccination occurred at immunization rates estimated from seroprevalence among blood donors instead of rates
calculated from reported doses administered together with vaccine efficacy, corroborating our explanation for the discrepancy between predictions and observations.
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