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A B S T R A C T   

Seroprevalence studies can estimate proportions of the population that have been infected or vaccinated, 
including infections that were not reported because of the lack of symptoms or testing. Based on information 
from studies in the United States from mid-summer 2020 through the end of 2021, we describe proportions of the 
population with antibodies to SARS-CoV-2 as functions of age and time. Slices through these surfaces at arbitrary 
times provide initial and target conditions for simulation modeling. They also provide the information needed to 
calculate age-specific forces of infection, attack rates, and – together with contact rates – age-specific proba
bilities of infection on contact between susceptible and infectious people. 

We modified the familiar Susceptible-Exposed-Infectious-Removed (SEIR) model to include features of the 
biology of COVID-19 that might affect transmission of SARS-CoV-2 and stratified by age and location. We 
consulted the primary literature or subject matter experts for contact rates and other parameter values. Using 
time-varying Oxford COVID-19 Government Response Tracker assessments of US state and DC efforts to mitigate 
the pandemic and compliance with non-pharmaceutical interventions (NPIs) from a YouGov survey fielded in the 
US during 2020, we estimate that the efficacy of social-distancing when possible and mask-wearing otherwise at 
reducing susceptibility or infectiousness was 31% during the fall of 2020. Initialized from seroprevalence among 
people having commercial laboratory tests for purposes other than SARS-CoV-2 infection assessments on 7 
September 2020, our age- and location-stratified SEIR population model reproduces seroprevalence among 
members of the same population on 25 December 2020 quite well. 

Introducing vaccination mid-December 2020, first of healthcare and other essential workers, followed by older 
adults, people who were otherwise immunocompromised, and then progressively younger people, our meta
population model reproduces seroprevalence among blood donors on 4 April 2021 less well, but we believe that 
the discrepancy is due to vaccinations being under-reported or blood donors being disproportionately vacci
nated, if not both. As experimenting with reliable transmission models is the best way to assess the indirect 
effects of mitigation measures, we determined the impact of vaccination, conditional on NPIs. Results indicate 
that, during this period, vaccination substantially reduced infections, hospitalizations and deaths. 

This manuscript was submitted as part of a theme issue on “Modelling COVID-19 and Preparedness for Future 
Pandemics.”   

1. Introduction 

Mitigating outbreaks with pandemic potential has been compared to 

building ships while sailing or planes while flying, metaphors that 
emphasize the uncertainties associated with newly emerging human 
pathogens. While each pathogen is unique, historical pandemics share 

Abbreviations: COVID-19, coronavirus disease 2019; SEIR, susceptible-exposed-infectious-removed; SARS-CoV-2, severe acute respiratory syndrome coronavirus 
2; NPIs, non-pharmaceutical interventions; IFRs, infection-fatality ratios. 

* Corresponding author at: Division of Viral Diseases, NCIRD, CDC, 1600 Clifton Road NE, Atlanta, GA 30333, USA. 
E-mail address: jglasser@cdc.gov (J.W. Glasser).  

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/yjtbi 

https://doi.org/10.1016/j.jtbi.2022.111296 
Received 11 July 2022; Received in revised form 2 September 2022; Accepted 28 September 2022   

mailto:jglasser@cdc.gov
www.sciencedirect.com/science/journal/00225193
https://www.elsevier.com/locate/yjtbi
https://doi.org/10.1016/j.jtbi.2022.111296
https://doi.org/10.1016/j.jtbi.2022.111296
https://doi.org/10.1016/j.jtbi.2022.111296
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2022.111296&domain=pdf


Journal of Theoretical Biology 556 (2023) 111296

2

many characteristics. Most have resulted from respiratory diseases 
caused by airborne pathogens (Wang et al., 2021), the substance of 
much mathematical epidemiology. Model evaluations of possible stra
tegies can inform public policymaking, but unless predictions are ac
curate, the utility of forecasts or simulated scenarios is questionable 
(Ioannidis et al., 2022). 

Early in the COVID-19 pandemic, we built a framework (super
structure in the airplane or shipbuilding analogy) that we could use, 
together with local information, to answer urgent public health ques
tions. We chose the Susceptible-Exposed-Infectious-Removed (SEIR) 
epidemiological structure, but included biological features of COVID-19 
that might affect the transmission and control of SARS-CoV-2, including 
asymptomatic, pre-symptomatic and hospitalized states, disease- 
induced mortality, and vaccination (Fig. 1). 

In earlier work, we modeled SARS-CoV-2 transmission in host pop
ulations stratified by age or location to assess the impact of various non- 
pharmaceutical interventions (NPIs). Here we model transmission in the 
United States’ population stratified by both age and location (the 50 
states plus Washington, DC, but neither Puerto Rico nor other terri
tories) considering infection- and vaccination-acquired immunity 
equivalent. As susceptibility to SARS-CoV-2 reinfection may depend on 
the variant with which previously infected (Rössler et al., 2022) and 
waning of immunity from that infection or vaccination, elsewhere we 
have stratified hosts by exposure to more or less related variants and by 
infection, vaccination, and both (in preparation). 

Here we determine the simpler model’s ability to reproduce trans
mission in the United States during the last quarter of 2020, when the 
ancestral strain was circulating and NPIs were in effect, and first of 
2021, when vaccination began and the alpha variant became dominant 
(Lambrou et al., 2022). After demonstrating the accuracy of this 
particular metapopulation (a term coined by Levins in 1969 for a pop
ulation composed of sub-populations) framework, we evaluate the 
impact of vaccinating healthcare and other essential workers, then 
elderly, otherwise immunocompromised, and finally, healthy younger 
people, conditional on NPIs. And we discuss an alternative strategy, 
results of whose evaluation we report elsewhere (Vo et al., submitted). 

2. Methods 

2.1. Model Equations 

The model diagrammed in Fig. 1 can be represented as a system of 
ordinary differential equations, where Si is the number who are sus
ceptible in group i (here i indexes ages, locations, or combinations; there 
are n such groups), Ei is the number who have been infected, but are not 
yet infectious, Vi is the number who have received one dose of vaccine 
(≥14 days ago), Iiw (w = a, p, s, h) are the numbers infectious in group i 
who are asymptomatic, pre-symptomatic, symptomatic, or hospitalized, 
Ri is the number who have recovered or been vaccinated a second time 
(≥14 days ago), and are temporarily immune, Bi is the number whose 
immunity has waned, but can be boosted by revaccination, and Mi is the 
number in group i who have died: 

S’
i = qiωBi + ωvVi − [λi(t) + χ1i]Si,

B’
i = ωRi − [qiω + (1 − qi)∊3χ3i + (1 − ∊3)λi(t)]Bi,

E’
i = λi(t)Si + (1 − ∊1)λi(t)Vi + (1 − ∊3)λi(t)Bi − kEi,

V ’
i = χ1iSi − [(1 − ∊1)λi(t) + ωv + ∊2χ2i]Vi,

I’
ia = kpiEi − γiaIia,

I’
ip = k(1 − pi)Ei − ξIip,

I’
is = ξIip − [γis + δiγis→h]Iis,

I’
ih = δiγis→hIis − γihIih,

R’
i = γiaIia + θisγisIis + θihγihIih + ∊2χ2iVi + (1 − qi)∊3χ3iBi − ωRi,

M’
i = (1 − θis)γisIis + (1 − θih)γihIih, i = 1, 2, ..., n,

where the force or hazard rate of infection among susceptible people in 
group i (and those receiving one vaccine dose, whose susceptibility to 
infection is 1 – ∊1, where ∊1 is the efficacy of a single dose) is 

Fig. 1. Diagram of a modified SEIR Model. This metapopulation model includes asymptomatic and pre-symptomatic stages, disease-induced mortality, vaccination, 
and the waning and boosting of immunity, features of COVID-19 that affect SARS-CoV-2 transmission. It is cross-classified by age and location. 
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λi(t) = ψiSaiβi

∑n

j=1
cijψjI

ηjaIja(t) + ηjpIjp(t) + Ijs(t) + ηjhIjh(t)
Nj

, where

Nj = Sj + Bj + Ej + Vj + Ija + Ijp + Ijs + Ijh + Rj + Mj and N =
∑n

j=1
Nj.

In this expression, ψ iS = 1 −cibiS and ψ iI = 1 −cibiI represent re
ductions in susceptibility and infectiousness, respectively, due to 
physical-distancing if possible and mask-wearing otherwise, ci is the 
proportion of group i that comply with such recommendations and biS 
and biI are their respective efficacies. Here the parameter ai is the per 
capita contact rate, βi is the probability of transmission per contact be
tween susceptible and infectious people (ai × βi is the effective contact 
rate), and cij is the proportion of their contacts that members of group i 
have with those of group j. As we are interested in relatively short pe
riods during which Mj is small relative to Nj, we maintain N constant by 
including Mj in the equation for Nj. 

Values for most transmission model parameters can be found by 
carefully reviewing the primary literature or consulting subject-matter 
experts (Tables 1 and 2). But the probabilities of infection upon con
tact must be obtained from populations of interest. In the following 
sections, we describe seroprevalence – the humoral (versus cell- 

mediated) component of the adaptive immune response – as a func
tion of age and time from a study involving assays of residual sera from 
commercial laboratory tests for purposes other than SARS-CoV-2 
infection assessments, and then estimate forces of infection and attack 
rates for n discrete age groups. Finally, given age-specific contact rates 
and proportions with each of those groups from the literature, we 
calculate the requisite probabilities by solving n equations, each with 
one unknown. 

2.2. Forces of Infection 

First, we model national and location-specific proportions seroposi
tive from studies of commercial laboratory tests, described by Bajema 
et al. (2021), or blood donors, described by Jones et al. (2021), as 
functions of both age and time via bivariate logistic regressions in which 
the independent variables are represented via third-order polynomials 
and, because subjects aged a at time t are aged a+1 at time t+1, all 
interactions (Fig. 2a). Where observations were lacking, we used adja
cent ones (e.g., DC is a composite of MD and VA). While we used line- 
listings, public-use summaries of these and other CDC data are avail
able at: https://covid.cdc.gov/covid-data-tracker/#datatracker-home. 

Then we discretize these proportions (i.e., assume that they are 

Table 1 
Symbol definitions, approximate values, and sources.  

Symbol Meaning Values Source 

pi Proportions of Infectious people who are Asymptomatic (or Symptomatic, 1 – pi) Tbl 2 Clark, et al. 2020 
qi Proportions not receiving booster doses when eligible ‡

k Per capita rate of progression from Exposed, E to Asymptomatic, Ia or Pre-symptomatic, Ip (1/3 to 1/5 days depending on variant) 1/4 dys He, et al. 2020 
ξ,γs→h Per capita rates of progression from Pre-symptomatic, Ip to Symptomatic, Is and Symptomatic to Hospitalized, Ih 1/2 dys He, et al. 2020 
γa Per capita rate at which people with Asymptomatic infections recover (become no longer infectious) 1/7  
γs Per capita rate at which people with Symptomatic infections who are not hospitalized recover (again, become no longer 

infectious) 
1/5 dys He, et al. 2020 

γh Per capita rate at which Hospitalized people recover (NB: may well differ from the discharge rate) 1/10 dys  
θw Proportions of Symptomatic people who Recover (or Die, 1 – θw), which may differ among those Hospitalized (w = s, h) Tbl 2 Levin, et al. 2020 
δi Proportions of Symptomatic people who are Hospitalized (proportions with 2+ co-morbidities) Tbl 2 Clark, et al. 2020 
χ1i, χ2i, χ3i, Per capita immunization rates, χi = −ln[1 − νi]/δt, where vi is the coverage attained during period δt ‡

∊1, ∊2, ∊3 Probabilities of protection upon contact with infectious people 14 or more days after first, second, and booster doses 0.93 El Sahly, et al. 
2021 

ω, ωv Per capita rates at which infection- and vaccine-induced immunity is lost 1/365 dys  
ci Proportion of people complying with social distancing or mask wearing recommendations (compliance) Tbl 2 Jones et al., 2021 
bS, bI Reduced susceptibility or infectivity (efficacy) by virtue of complying with physical-distancing where possible and mask- 

wearing otherwise 
0.31 Estimated 

ηw Scaling constants (w = a, p, h) representing the infectivity of Iia, Iip, Iih relative to Iis 0.5, 1.25, 
0.1  

Notes: We assume that people with asymptomatic infections are less infectious than those with symptomatic ones, but that their sojourns are the same. ‡Calculated 
from reports summarized on https://data.cdc.gov/. 

Table 2 
Parameter values for age-stratified transmission modeling in the United States  

Age Population numbers Population proportions Pr(asymp|inf) Pr(hosp|inf) IFR (percentages) Compliance 

0-4 19,676,332 0.059444636 0.981400373 1.0435E-05 0.0008 0.706360069 
5-9 20,045,152 0.060558887 0.972064267 0.000143099 0.001312163 0.715211185 
10-14 21,089,487 0.063713953 0.969763501 0.00027027 0.002400084 0.71952257 
15-19 21,242,908 0.064177457 0.960291933 0.003637205 0.004390005 0.720175768 
20-24 22,258,745 0.067246426 0.941577238 0.006854725 0.00802978 0.71795013 
25-29 23,835,330 0.072009485 0.913456364 0.017709616 0.014687309 0.713574937 
30-34 23,052,479 0.069644395 0.880594618 0.025217824 0.026864628 0.707771036 
35-39 21,615,791 0.065303982 0.839642887 0.035166793 0.049138219 0.701279533 
40-44 20,294,599 0.061312498 0.775783537 0.037368978 0.08987895 0.694876881 
45-49 20,053,798 0.060585008 0.708076043 0.051520404 0.164398026 0.689376822 
50-54 20,577,807 0.062168104 0.623043155 0.062486388 0.300701205 0.685620487 
55-59 21,542,270 0.065081866 0.521907521 0.083247801 0.550014019 0.684456022 
60-64 20,669,143 0.062444041 0.421531351 0.090697794 1.006033295 0.686708224 
65-69 17,819,027 0.053833488 0.328351424 0.110144916 1.840140307 0.693136453 
70-74 14,354,863 0.043367819 0.2503706 0.118491978 3.365809369 0.704376296 
75+ 22,874,916 0.069107955 0.163464241 0.139755917 14.30030403 0.744380002 
Wtd Avg   0.715196 0.047154 1.373312 0.705841 

Notes: Populations, proportions without co-morbidities (assumed asymptomatic) and requiring hospitalization if infected are from Clark et al. (2020), the infection- 
fatality ratios (IFRs) are from Levin et al. (2020), and the compliances are our estimates, obtained from Jones (2020) as described in the text. 
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constant within intervals, Feng and Glasser 2019a). Ages and times were 
recorded in conventional units, but such surfaces are continuous, so we 
can choose any intervals. Information needed for transmission modeling 
typically is available in 5-year age groups, so we chose age unit years. 
Time is continuous in most of our models, so we chose time unit days. 
We number these discrete periods a0 = 0, a1 = 1, a2 = 2, ...; t0 = 0, t1 = 1, 
t2 = 2, and so on. Here we use the indices a and t to denote continuous 
age and time and i and j to denote their discrete analogs. 

Because all SARS-CoV-2 vaccines used in the United States target the 
spike protein, most vaccinated people have anti-spike (anti-S) anti
bodies. Most infected people also have antibodies to a nucleocapsid 
protein (anti-N antibodies). The national commercial laboratory sero
prevalence study includes all ages, but measures only anti-N. The blood- 
donor study measures antigens to both spike and nucleocapsid proteins, 
but does not include children. While neither study population is a 
random sample, their anti-N seroprevalences are comparable (results 
not shown). We use results from both studies in this work. 

Post-vaccination onset, we let S(i, j) = 1 – IB(i, j) denote the pro
portion susceptible among those aged ai-1 ≤ a < ai at time tj-1 ≤ t < tj, 
where the proportion immune, IB = II + IV, with II by virtue of infection 

and IV vaccination (i.e., 1 – IB is the probability of having escaped both). 
Further, we let λ(i, j) and χ(i, j) denote the specific rates of infection and 
immunization in the appropriate intervals of age and time. 

Because neither II(i, j) nor IV(i,j) increases monotonically with age, 
but both increase monotonically with time (Fig. 2b), and forces of 
infection and vaccination can be calculated using either (Hens et al., 
2010), we write S(i, j) = S(i, j − 1)exp{ − [λ(i, j) + χ(i, j)] }, which leads, 
first by rearrangement and then by substitution, to  

Similarly, writing χ(i, j) = −ln{[1 − IV(i, j) ]/[1 − IV(i, j − 1) ] }, we obtain 
the forces or hazard rates of infection, λ(i, j) as the difference. Pre- 
vaccination, S(i, j) = 1 – II(i, j), whereupon λ(i, j) =

−ln{[1 − II(i, j) ]/[1 − II(i, j − 1) ] }. 

2.3. Attack rates 

We calculate age-specific attack rates as products of probabilities of 
remaining susceptible at time t and the corresponding forces of infec

tion. Because for any age, PS(t) = exp
[

−
∫ t

τ=0 λ(τ) + χ(τ)dτ
]
, where 

PS(t) denotes the probability of remaining susceptible at time t (i.e., 
neither infected nor immunized), and 1 – PS(t) the cumulative 

Fig. 2. Seroprevalence in the United States. a) Bivariate logistic regression of observations from analyses of surplus sera from commercial laboratory testing for 
purposes other than evaluation of possible exposures to SARS-CoV-2. b) Slices through the surface at arbitrary times. 

Fig. 3. Parameters Derived from Synthetic US Contacts. We use these a) average marginal contact rates by age group, ai, to which authors commonly refer as 
activities, and b) proportions of the contacts that members of each age group have with members of all age groups, including their own, cij. 

λ(i, j) + χ(i, j) = −ln[S(i, j)/S(i, j − 1) ] = −ln{[1 − IB(i, j) ]/[1 − IB(i, j − 1) ] }.

J.W. Glasser et al.                                                                                                                                                                                                                              
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probability of being immune (i.e., either or both), – dPS(t)/dt = – PS’(t) =
[λ(t) + χ(t)] × PS(t). Further, λ(t) × PS(t) are rates of new infections at 
time t, commonly called attack rates, and χ(t) × PS(t) are rates of new 
immunizations. 

As explained earlier, given contact rates, ai and proportions with 
each age group, cik from a contact study (those illustrated in Fig. 3 are 
from Prem et al., 2017), we calculate the age-specific probabilities of 
infection on contact, βi by solving n equations, λi = aiβi

∑n
k=1cik(Ik/Nk),

each with one unknown (Fig. 4). The quantity Ik/Nk represents the 
probability that an individual aged k is infectious and – PS’(t) is the rate 
at which individuals are removed (from the susceptible state) at exactly 
time t. Thus, integrating the derivative over time intervals yields prob
ability density functions. Because vaccination moves individuals from 
the S to V, not I state, however, equating those probabilities and Ik/Nk, as 
we do here, is safest pre-vaccination. 

As vaccination began on 14 December 2020 and the βi had declined 
slightly among older people having commercial laboratory testing by 17 
February 2021 (Fig. 4), the probabilities of infection on contact used in 
our transmission modeling were derived from the forces of infection and 
attack rates on 26 November 2020. 

2.4. Mixing 

In the simplest models, host populations are constant in size and 
homogeneous. In more complex models, they may be stratified, gener
ally by age, a proxy for conditions (e.g., co-morbidities) that may 

increase the risk of serious disease. Age stratification also permits de
mographic dynamics (e.g., ageing, births by age of mother, deaths by 
age) that may be needed for long-term simulations. Model populations 
also may be spatially stratified, permitting locations to differ in popu
lation density (e.g., urban and rural) and other characteristics affecting 
transmission. Stratification also permits non-random mixing. 

Age-specific observations usually are contacts per participant aged x 
with people aged y together with the numbers of participants aged x. 
One calculates average numbers of contacts per participant aged x with 
people aged y, Cij if x and y are grouped. Contacts should balance (i.e., Ni 
× Cij = Nj × Cji), but rarely do, so we calculate means of corresponding 
elements (e.g., square roots of products of empirical matrices and their 
transposes). Then cij = Cij/ai, where ai =

∑
kCik. Matrices of the pro

portions, cij, are referred to as mixing matrices and marginal sums of the 
contact matrix, ai as activities. In our age-structured models, we create 
mixing matrices from local contact studies where possible or use syn
thetic ones (Fig. 3). 

In the spirit of Hethcote and van Ark (1987), we model contacts 
within locations as a saturating function of population density (e.g., 
natural logarithms increase with density at decreasing rates, Fig. 5a). 
Consequently, the average per capita contact rate, ai = ln (ρi), where ρi is 
the quotient of the population size and land area of location i, and decay 
exponentially with distance between locations, dip at rates, b. Thus, 

Fig. 4. Probabilities of Infection upon Contact. We estimated other parameters of the n equations, λi = aiβi
∑n

k=1cik(Ik/Nk), from the information illustrated in Fig. 2a 
and synthetic US contact matrix (Fig. 3) and then solved them simultaneously for these unknown probabilities, βi. 

Fig. 5. Contacts are a Function of Population Density. Multiplying contacts within locations (Fig. 3a) by ratios of natural logs of population density, a) saturating 
functions of density, and that of the entire country, b) reduces to twofold the difference in activities between the most and least densely populated locations. 

J.W. Glasser et al.                                                                                                                                                                                                                              



Journal of Theoretical Biology 556 (2023) 111296

6

Cip = aiexp
(

− b × dip
)
/

∑

k
exp( − b × dik),

cip = Cip

/
∑

k
Cik,

where Cip is the contact matrix (e.g., contacts per person per day) and cip 
is the mixing matrix (i.e., proportions of contacts between members of 
group i and all groups k, including i). 

In our age- and location-stratified models, we combine these ap
proaches, multiplying age-specific contacts within locations by ratios of 
the natural logs of location-specific and overall population densities 
(Fig. 5b). Consequently, marginal contacts within more (less) densely 
populated locations are greater (less) than the average (Fig. 3a). The 
District of Columbia, for example, is almost 12K times as densely 
populated as Alaska (Fig. 5a), but their respective log ratios differ from 
average only by a factor of 2 (Fig. 5b). Between locations, contacts 
decline exponentially with distance at age-specific rates (Fig. 6) whose 
calculation Feng et al. (2017) describe. Here distances are “as the crow 
flies” between population centers, but other measures may be indicated 
(e.g., in a mountainous Argentine province, distances were shortest 
routes by car). 

Thus, in our age- and location-stratified models, mixing matrix ele
ments are 

cliaj lpaq =
c(p)

ajaq
e−baq dli lp

∑n
r=1

∑m
s=1c(s)

ajar e−bar dli ls
,

where 

c(p)
ajaq

= cajaq ×
ln(ρ(p))

ln(ρ)
, 1⩽i, p⩽m; 1⩽j, q⩽n.

In these expressions, ρ is population density, with the indices i and p 
denoting locations, of which in the model described here there are m =
51 (50 states plus Washington, DC), and j and q denoting age groups, of 
which there are n = 16 (ages 0-4, 5-9, ..., 75+ years). Thus, the m 
matrices c(p)

ajaq 
and one matrix cliaj lpaq have n2 = 256 and (m×n)2 =

665,856 elements, respectively. We drop the compound notation in 
future equations. For more about our mixing models, please see Feng 
and Glasser (2019b). 

3. Other Parameter Values and Initial Conditions 

Other parameter values were gleaned from the primary literature or 
subject-matter experts (Tables 1 and 2). Our proportions asymptomatic 
are US proportions without co-morbidities from Clark et al. (2020), 
which vary inversely with age (Table 2). Dichotomizing what likely is a 
spectrum of illness is bound to lead to a range, but our weighted average 
exceeds most estimates of the proportion asymptomatic. 

Clark et al. (2020) also provide proportions requiring hospitalization 
if infected, but – as people with asymptomatic infections don’t require 
hospitalization – we applied their proportions (Table 2) to symptomatic 
infections. We assumed that hospitalized people sought care within two 
days of symptom onset, but – as only about 70% of deaths were among 
inpatients (https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index. 
htm#PlaceDeath) – evidently some people who needed hospital-based 
care did not receive it. Similarly, we converted the infection fatality 
ratios (IFRs) of Levin et al. (2020) into symptomatic infection fatality 
ratios (i.e., so-called case fatality rates). Sojourns (residence times) in 
our various states are largely from He et al. (2020). 

We initialized our age- and location-stratified model of the trans
mission of SARS-CoV-2 in the United States from location-specific sur
faces like that illustrated for the entire United States in Fig. 2a on 7 
September 2020 (t = 251 days from 31 December 2019) and incidence 
on the preceding x days: 

Sij(t) = 1 − Rij(t),

Eij(t) =
∑−12

x=0
λij(t − x) × Sij(t − x) × e−x/k,

Iij(t) =
∑−12

x=0
λij(t − x) × Sij(t − x) ×

(
1 − e−x/k)

,

Ia(ij)(t) = γ−1
a × Iij(t) × (1 − Pr[CM + ])j,

Ip(ij)(t) = ξ−1 × Iij(t) × Pr[CM + ]j,

Is(ij)(t) = γ−1
s × Iij(t) × Pr[CM + ]j,

Rij(t) = Pr[S + ]ij(t).

In these approximations, i and j denote location and age, t denotes 
time, e−x/k the exponential survival probability for an epidemiological 
state with a mean sojourn of k-1 days, Pr[CM+] proportions with any co- 
morbidity that increases the risk of severe disease or hospitalization 

Fig. 6. Rates at which Contacts Decline with Distance. Proximity to others affects the probability of contacting them. Feng et al. (2017) assumed an exponential 
function. Distances are between population centers (https://www.census.gov/geographies/reference-files/2010/geo/2010-centers-population.html). 
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(Table 2), which vary only with age in our US model, Pr[S+] proportions 
with antibodies to nucleocapsid (with or without antibodies to spike), 
and the respective mean sojourns in E, Ip and Is are 1/k, 1/ξ, and 1/γs 
days (Table 1). 

4. Interventions 

In prior work with populations subject to national regulations, offi
cials in ministries of health and education helped us to model imposing 
and relaxing NPIs (e.g., closing schools and non-essential businesses, 
restricting meeting sizes, imposing curfews, requiring physical- 
distancing or mask-wearing in public places, and recommending out
door or adequately-ventilated indoor activities) mechanistically for 
impact assessments, but – because their nature and timing was spatially 
heterogeneous in the United States – that was impractical. 

4.1. Non-Pharmaceutical 

In our model of the transmission of SARS-CoV-2 in the United States, 
consequently, we multiplied contact rates within locations by time- 
varying complements of Oxford Stringency Indices (Hale et al., 2021) 
expressed as proportions (Fig. 7). For compliance, we scored responses 
(always = 1, frequently = 0.75, sometimes = 0.5, rarely = 0.25, never =
0) to “How often have you worn a face mask outside your home (e.g., 
when on public transport, going to a supermarket, going to a main 
road)?” by n = 33,940 US YouGov survey participants aged 18 to 99 
years surveyed from March to December of 2020 (Jones, 2020). Our 
parameter values are age-group averages from logistic regressions of 
scored responses as a cubic function of age (Table 2). 

Fig. 8. Observed numbers with antibodies to SARS-CoV-2, from the national commercial laboratory (Anti-N) or blood donor (Anti-S or Anti-N) seroprevalence study, 
and predicted numbers temporarily immune (Removed) from simulations with (A and B) and without (C and D) vaccination on 25 December 2020 (A and C) and 4 
April 2021 (B and D). Vaccination had no discernible impact on 25 December 2020 serology. 

Fig. 7. Effect of Non-pharmaceutical Interventions. From a) time-varying Oxford Stringency Indices for each location, illustrated here for the entire United States, we 
derive b) functions by which we multiply age-specific contact rates to account for local governmental efforts to mitigate the pandemic. 
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4.2. Vaccination 

In the United States, vaccination began on 14 December 2020 with 
healthcare and other essential workers, followed by those at risk of 
serious illness, hospitalization, or death (i.e., older adults and people 
who were immunocompromised), and then progressively younger peo
ple. Booster doses were not reported before 4 April 2021. Federal 
eligibility recommendations were generally followed, but jurisdictions 
differed in the levels of vaccine coverage or disease incidence at which 
NPIs were imposed and relaxed. 

We have modeled vaccination using either 1) age-, time-, and 
location-specific immunization rates from the serological survey of 
blood donors (calculated as described in section 2.3) or 2) age-, time-, 
location-, and dose-specific reports to the CDC of vaccines administered. 

In the first, susceptible people move directly to the removed class at 
weekly immunization rates. In the second, employed in the work 
described here, we determined age- and location-specific numbers of 
people eligible for vaccination (i.e., susceptible and vaccinated with one 
dose) at the beginning of each week by simulation, calculated the pro
portions vaccinated from the reported first and second doses adminis
tered that week, simulated with the corresponding rates, χ1(ij) and χ2(ij), 
and repeated the next week. We would have calculated χ3(ij) similarly, 
but no booster doses were reported during the periods studied. 

5. Simulation results 

Adjusting only the efficacy of physical-distancing when possible and 
mask-wearing otherwise at reducing susceptibility or infectiousness, bI 
= bS,= 0.31, our model fits the prevalence of anti-N among those having 
commercial laboratory testing on 25 December 2020 quite well 
(Fig. 8a). Using the second method described above, doses administered 
reports to the CDC and efficacies of vaccination at preventing infections, 
∊1 = ∊2 = 0.93 from El Sahly et al. (2021), the lower of the two mRNA 
vaccines authorized for use at the time (Polack et al., 2020), it fits the 
prevalence of anti-N or anti-S among blood donors on 4 April 2021 less 
well (Fig. 8b). 

We compare reported and simulated symptomatic infections and 

deaths during the last quarter of 2020 and first of 2021 (Table 3). Case 
and death reports are from information summarized on the CDC’s 
COVID Data Tracker, cited above. Our model predicts more infections, 
but fewer symptomatic ones than reported, and more deaths than re
ported between 7 September and 25 December 2020 and fewer between 
25 December 2020 and 4 April 2021. The age-specific hospitalization 
rates of Clark et al. (2020) are comparable to those from COVID-NET 
(https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net), 
which are based on surveillance of about 10% of the US population. 

Predicted 4 April infections without vaccination resemble serology 
among commercial laboratory clients (Fig. 8d), suggesting that the 
discrepancy with vaccination (Fig. 8b) may be attributable to blood 
donors being disproportionately vaccinated (Busch et al., 2022), 
including those previously infected. The discrepancy also may be 
explicable by vaccine doses administered being under-reported. Simi
larly, the above-mentioned comparison of reported and simulated cases 
and deaths suggests that infections were under-reported too. 

5.1. Impact of vaccination 

Rather than comparing disparate simulations and reports, we 
compare simulated infections, hospitalizations, and deaths with and 
without vaccination (Table 4). As one would expect, given that vacci
nation began mid-December in the United States, impact was modest 
during the last quarter of 2020 (7 September to 25 December). In 
contrast, impact during the period from 25 December 2020 to 4 April 
2021 was substantial, particularly on symptomatic infections and 
hospitalizations. 

We could also compare actual and hypothetical vaccination strate
gies the same way. The purpose of the initial strategy was to protect 
healthcare and other essential workers, then elderly people and others at 
risk of serious disease, hospitalization, and death. Younger and healthier 
people were vaccinated subsequently. 

Unquestionably, the optimal strategy for protecting healthcare and 
other essential workers is to vaccinate them. This direct approach also 
might be best for people at risk of serious disease, hospitalization, and 
death for reasons other than age, but the immune responses of older 
adults may be less effective than those of younger people. Accordingly, 
for example, higher dose influenza vaccines are recommended 
(https://www.cdc.gov/flu/highrisk/65over.htm). 

6. Discussion 

Early in the COVID-19 pandemic, we developed an SEIR-based 
framework for modeling the transmission of SARS-CoV-2 that we 
could use, together with locally-available information, to answer policy 
questions. In one instance, we used information from cell phone trans
missions to determine which restrictions affected movements and then a 
location-stratified version of this model to determine the impact of 
movement restriction on transmission. In another, we used an age- 
stratified version to determine the impact of closing schools and other
wise limiting inter-personal contacts. 

For this more recent US work, we estimated some parameters of an 
age- and location-stratified version of our model from nationwide 

Table 3 
Reported infections and deaths (https://covid.cdc.gov/covid-data-tracker/#da 
tatracker-home) and simulated infections, hospitalizations, and deaths during 
the periods from 7 September to 25 December 2020 and from 25 December 2020 
to 4 April 2021.   

7 Sep to 25 Dec 2020 25 Dec to 4 Apr 2021 

Outcomes Reported Simulated Reported Simulated 

Cases or Infections 12,545,671 45,075,200 11,603,565 23,635,060 
Hospitalizations  1,766,850  974,486 
Deaths 147,776 176,342 214,902 120,978 

Notes: Cases are reported, infections are simulated, of which roughly 75% are 
asymptomatic. Consequently, fewer symptomatic infections are predicted than 
cases reported. More deaths were simulated than reported during the first 
period, but fewer during the second. Hospitalizations are not compiled, but rates 
from surveillance of about 10% of the US population are available (https://gis. 
cdc.gov/grasp/COVIDNet/COVID19_3.html). 

Table 4 
Results of simulations with and without vaccination to deduce by difference its impact during the periods from 7 September to 25 December 2020 and from 25 
December 2020 to 4 April 2021.   

7 Sep to 25 Dec 2020 25 Dec 2020 to 4 Apr 2021 

Outcomes Without With Averted Without With Averted 

Asymptomatic Infections 34,739,600 33,911,200 828,400 (2.38%) 26,721,000 17,958,500 8,762,500 (32.79%) 
Symptomatic Infections 11,447,400 11,164,000 283,400 (2.48%) 9,389,030 5,676,560 3,712,470 (39.54%) 
Hospitalizations 1,813,190 1,766,850 46,340 (2.56%) 1,608,080 974,486 633,594 (39.4%) 
Deaths 176,349 176,342 7 (<0.01%) 172,549 120,978 51,571 (29.89%) 

Notes: As vaccination began mid-December 2020 in the United States, one would not expect much impact during the first period. 
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seroprevalence studies and used others from the literature. Initialized 
via seroprevalence on and incidence shortly before 7 September 2020, 
this model predicts seroprevalence well on 25 December 2020 and less 
well on 4 April 2021. The first evaluation compared seroprevalence from 
the same survey, among people having commercial laboratory tests, 
from which it was initialized and the probabilities of infection on contact 
were estimated. The second compared seroprevalence among blood 
donors, who may be unusually wellness-oriented and hence dispropor
tionately vaccinated. Also, results using immunization rates estimated 
from the survey of blood-donations (via the first approach described in 
section 4.2) are more concordant with observations from that survey 
(appendix), suggesting that vaccine doses administered may have been 
under-reported to the CDC. 

Our model predicts more than twice as many infections as reported, 
most presumably asymptomatic or mildly symptomatic infections 
among people who were not tested, but the factor by which simulated 
infections exceed reported ones declines over time (cf. Jones et al., 
2021). It also predicts more deaths than attributed to COVID-19 during 
the last quarter of 2020, most among older adults (because of the IFRs in 
Table 2), and fewer afterwards. 

Ability to experiment (i.e., to deduce the effects of phenomena by 
altering them individually) underlies the scientific method. While 
withholding measures of proven efficacy is unethical, we can experi
ment with models of pathogen transmission among the members of host 
populations. Because such models account for infections not caused by 
ones that are averted (i.e., indirect as well as direct effects of mitigation 
measures), these experiments assess the total impact of public health 
interventions, be they actual or hypothetical. 

All models are imperfect, but alternative approaches also have 
shortcomings. Because it is impossible to control statistically for the 
extent to which the vaccination of others reduces the forces of infection 
to which unvaccinated people are subjected, natural experiments (e.g., 
Loeb et al., 2010) under-estimate indirect effects. Similarly, all else 
never is equal, even in the best matched community intervention trials. 
In models, however, the impact of vaccination is the difference between 
infections, hospitalizations, and deaths with and without vaccination, 
but all other conditions identical (e.g., the same NPIs). 

6.1. An alternative strategy 

Vaccination policymakers generally envision protecting vulnerable 
people for whom vaccination is contra-indicated by attaining a popu
lation immunity above which infectious people contact, on average, 
fewer than one susceptible person intimately enough to infect them. 
However, as Morens et al. (2022) explain, waning immunity and path
ogen evolution make attaining an effective reproduction number of one 
difficult for COVID-19. Moreover, in heterogeneous population models 
(e.g., with age or spatial structure), if not the real world, that condition 
could be attained via an infinite number of combinations of sub- 
population immunity (Feng et al., 2015). The gradient (multivariate 
partial derivative) answers the question, “Which is optimal?” 

Besides simulating our model with and without the actual vaccina
tion strategy, we could also compare the actual strategy with a hypo
thetical alternative derived via the gradient of the effective reproduction 
number with respect to possible immunization rates. Fewer elderly 
people might be infected if those who otherwise might infect them were 
vaccinated instead. Feng et al. (2015) advocated, and have since used 
(Feng et al., 2017; Hao et al., 2019; Feng et al., 2020; Su et al., 2021), the 
gradient of the effective reproduction number with respect to possible 
vaccination rates to identify strategies that would reduce the average 
number of secondary infections per primary most expeditiously. This is 
tantamount to determining which groups contribute most. 

6.2. Limitations 

We began modeling the transmission of SARS-CoV-2 long before 

effective vaccines were developed, much less approved for use, but – to 
keep pace with vaccination policy – added one, then two doses, and 
finally boosting of infection- or vaccine-induced immunity. However, 
we have since learned that the duration and possibly other character
istics of immunity may depend on whether an individual was infected, 
vaccinated or both, and possibly even the sequence of those events 
(Goldberg et al., 2022). These developments and the evolution of vari
ants, several successively dominant, motivated us to develop different 
models for later pandemic periods. 

We have derived the reproduction numbers from our models and 
quantities, such as the gradient and population-immunity threshold, 
that can be derived from the effective number. We have written about 
this analytical work, including simulations comparing the actual and 
this alternative strategy (i.e., direct with indirect protection), elsewhere 
(Vo et al., submitted). 

7. Summary 

All models are imperfect, but – because measures to mitigate infec
tious diseases have indirect effects that are difficult to estimate via field 
studies – reliable transmission modeling arguably is the best way to 
assess their impact. Observations from cross-sectional serological sur
veys conducted in the United States from mid-summer 2020 through the 
end of 2021 using stable assays (Peluso et al., 2021) provided the 
wherewithal for us to demonstrate that accurate transmission modeling 
is possible during pandemics. We modified the familiar SEIR model to 
include features of the biology of COVID-19 that might affect trans
mission of SARS-CoV-2 and consulted the primary literature or subject 
matter experts for contact rates and most other parameter values. We 
assessed the impact of vaccination, conditional on NPIs, in an age- and 
location-stratified model US population during the first quarter of 2021. 
Vaccination substantially reduced symptomatic infections, hospitaliza
tions, and deaths. 
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Appendix 

As described in the main text, we calculated vaccination rates from reports to the CDC of weekly doses administered by age and dose number, 
which – together with efficacy from El Sahly et al. (2021) – determined the numbers immunized. We believe that the discrepancy between the 
observed prevalence of antibodies to spike and nucleocapsid proteins among blood donors (anti-S or anti-N on Fig. 8b) and modeled numbers 
temporarily immune by virtue of infection or vaccination (removed on Fig. 8b) is due to the disproportionate vaccination of health-conscious blood 
donors, under-reporting of doses administered, or both.

This figure differs from 8b in the main text in that vaccination occurred at immunization rates estimated from seroprevalence among blood donors instead of rates 
calculated from reported doses administered together with vaccine efficacy, corroborating our explanation for the discrepancy between predictions and observations. 
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