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Abstract—Machine Learning on graph-structured data is an
important and omnipresent task for a vast variety of applications
including anomaly detection and dynamic network analysis. In
this paper, a deep generative model is introduced to capture
continuous probability densities corresponding to the nodes of an
arbitrary graph. In contrast to all learning formulations in the
area of discriminative pattern recognition, we propose a scalable
generative optimization/algorithm theoretically proved to capture
distributions at the nodes of a graph. Our model is able to
generate samples from the probability densities learned at each
node. This probabilistic data generation model, i.e. convolutional
graph autoencoder (CGAE), is devised based on the localized
first-order approximation of spectral graph convolutions, deep
learning, and the variational Bayesian inference. We apply our
CGAE to a new problem, the spatio-temporal probabilistic solar
irradiance prediction. Multiple solar radiation measurement sites
in a wide area in northern states of the US are modeled as an
undirected graph. Using our proposed model, the distribution
of future irradiance given historical radiation observations is
estimated for every site/node. Numerical results on the National
Solar Radiation Database show state-of-the-art performance for
probabilistic radiation prediction on geographically distributed
irradiance data in terms of reliability, sharpness, and continuous
ranked probability score.

Index Terms—Graph-structured Data, Deep Generative Model,
Spatio-temporal Regression, Probabilistic Forecasting, Spectral
Graph Convolutions, Variational Bayesian Inference

I. INTRODUCTION

N recent years, the rapid exhaustion of fossil fuel sources,

the environmental pollution concerns, and the aging of
the developed power plants are considered as crucial global
concerns. As a consequence, the renewable energy resources
including wind and solar have been rapidly integrated into the
existing power grids. The reliability of power systems depends
on the capability of handling expected and unexpected changes
and disturbances in the production and consumption, while
maintaining quality and continuity of service. The variability
and stochastic behavior of photovoltaic (PV) power caused
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by the solar radiation uncertainty lead to major challenges
including voltage fluctuations, as well as local power quality
and stability issues [1], [2], [3]. Hence, accurate solar irra-
diance forecasting for PV estimation is required for effective
operation of power grids [4]. The studies in the area of solar
irradiance and PV power forecasting are mainly categorized
into four major classes:

1) The persistence model is applied as a baseline that
assumes the irradiance values at future time steps is equal
to the same values at the forecasting time. Due to such a
strong smoothness assumption, the persistence scheme is only
effective for intra-hour applications [2].

2) Physical models employ physical processes to estimate
the future solar radiation values using astronomical relation-
ships [5], meteorological parameters, and numerical weather
predictions (NWPs) [6]. In [7], an hourly-averaged day-ahead
PV forecasting approach is presented based on least squares
optimization of NWPs using global horizontal irradiance
(GHI) and the zenith angle. Some NWPs make use of the
clear sky radiation modeled by earth-sun geometry [8] or panel
tilt/orientation along with several meteorological parameters
such as temperature or wind speed [9]. Other works apply
cloud motion vector (CMV) frameworks [10] for accurate
short-term predictions, using static cloud images [11], satellite
images [12], or the sensor networks [13].

3) Statistical and Artificial intelligence (Al) techniques are
recently presented for a number of solar irradiance and PV
power estimation/regression problems. As discussed in [14],
the non-stationary and highly nonlinear characteristics of solar
radiation time series lead to the superiority of Al approaches
over the traditional statistical models. Machine learning al-
gorithms are employed as target function approximators, to
estimate future solar irradiance or PV power. Highly nonlinear
regression methodologies including ANNs [15], [16] and sup-
port vector machines/regression (SVM/R) [17] have been em-
ployed for short-term purposes. [17] presents a benchmarking
of supervised neural networks, Gaussian processes and support
vector machines for GHI predictions. In [18], [19] a bootstrap-
ping approach is presented to estimate uncertainties involved
in the prediction of wind/solar time series. Here, a number
of Extreme Learning Machine (ELM) ANNSs are trained as
regression models using resampled training data. The uncer-
tainties in solar/wind data and the model uncertainties are
modeled as two classes of uncertainties to provide probabilistic
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predictions. This model has low generalization capability as
both uncertainties are associated with a strong prior knowledge
that forces the uncertainties to be Gaussian. [20] employs k-
nearest neighborhood (k-NN) method to find days with similar
weather condition. Kernel Density Estimation (KDE) is further
applied to estimate the probability density function (PDF) of
PV for the neighbors of k-NN. [21] provides a comprehensive
review of non-parametric methods that employ k-NN to find
the expected value of their assumed probability distribution
functions for solar irradiance and PV forecasting. [22] applies
k-NN for short-term predictions with less than 20-min ahead
horizons. Also, [23] employs k-NN and gradient boosting
with various meteorological measurements such as surface
pressure, total cloud cover, and relative humidity for 24-hr
ahead forecasts.

Quantile Regression (QR) is another statistical method
employed in non-parametric prediction models. In recent lit-
erature, QR is well-studied for the estimation of statistical
parameters (e.g. mean and variance) of predefined probability
distributions for future solar values [21]. In [24], the ELM
neural network utilizes a QR-based parameter estimation for
hourly solar predictions. Also, [25] employs the combination
of QR and ELM for very short-term applications with 5-min
horizon length. In [26], a probabilistic prediction model is
proposed based on linear QR, combining the point prediction
obtained by a deterministic forecasting approach with the in-
formation retrieved from ground measurements. Moreover, QR
is recently utilized as a non-parametric model in combination
with physical methods [21]. In [27], a combination of QR
and NWP is presented for daily predictions. Furthermore, [28]
proposes an intra-day prediction approach based on multiple
QR in combination with the radial basis functions and the
alternating direction method of multipliers.

As discussed in [29], [30], fuzzy logic has been recently
applied to capture the uncertainties exits in solar datasets. In
[31], fuzzy systems are incorporated with neural networks to
accurately estimate the real values of future solar irradiance
under different sky and temperature conditions. Moreover, [32]
presents a fuzzy clustering algorithm to find days with similar
irradiance patterns. The solar data corresponding to similar
days is further fed to an ELM optimized by Genetic Algo-
rithm (GA) in order to compute daily irradiance predictions.
Evolutionary algorithms including GA, Ant Colony [21], and
Particle Swarm Optimization [29] help fuzzy systems and
ELM to find near-optimal solutions by avoiding erroneous
parameter settings caused by poor local optima solutions.

Bayesian approaches have been widely applied to solar pre-
diction problems. In [33], two advanced probabilistic models
are proposed based on Bayesian inference for short-term PV
prediction. Moreover, new probabilistic indices are presented
to compare probabilistic approaches in such a way that the
estimated PV values are partially anticipated by the forecasters
in their quality-assessment procedures. [34] presents a Naive
Bayes model for the prediction of daily PV energy production.
The model uses daily average temperature, total sunshine
duration, as well as total global solar radiation to predict future
power generation. Furthermore, [35] presents a multi-ahead
prediction Multi-Layer Perceptron Neural Network, whose

parameters are estimated by a probabilistic Bayesian learn-
ing technique. The Bayesian model computes the confidence
intervals and estimates the error bars of the Neural Network
predictions.

4) Ensemble methods aggregate a set of predictors (i.e.
base learners) to increase the prediction accuracy of individual
prediction models. As shown by [36], several top-entry PV
forecasting models employ ensemble frameworks including
QR Forest (QRF) with Gradient Boosting Decision Trees
[37], Multiple QR [38], and Gradient Boosting Machines
incorporated with NWP [39]. The ensemble models generally
use bagging techniques that apply bootstrap sampling to obtain
data subsets for training the base learners [38]. Also, some
ensemble approaches apply the boosting algorithm which
improves the performance of base models by combining them
together using a particular cost function (i.e. majority vote)
[37]1, [39]. These techniques decrease prediction variance;
hence, prevents the prediction model from overfitting on
the training set. In this line of research, [40] proposed a
novel probabilistic prediction model based on a competitive
ensemble of various base predictors for short-term forecasting
of PV power. Three probabilistic methods including Bayesian
model, Markov Chain model, and QR were trained as base
predictors in order to obtain an ensemble of the predictive
distribution with optimal sharpness and reliability metrics.
The simulation results of ensemble models show improvement
in these metrics compared to single-model methodologies;
however, such models need more computational power and
increase the time complexity of the predictor [21].

In this paper, a new problem, probability distribution learn-
ing in graph-structured data, is solved as a recent pattern recog-
nition challenge. First, generative modeling (learning mathe-
matical patterns from a dataset for the aim of generating new
samples under the observed data distribution) is introduced
as an optimization problem where the probability of observed
data in a given dataset is maximized. Then, our novel graph
learning model, Convolutional Graph Autoencoder (CGAE),
is presented that is mathematically proved to/learn continuous
probability density functions from the nodes in an arbitrary
graph. Our CGAE is defined based on the first-order ap-
proximation of graph convolutions (for learning a compact
representation from an input graph) and standard function
approximation (more specifically, deep neural architectures
with high generalization capacity). The proposed deep learning
model is able to generate new samples corresponding to each
node, after observing historical graph-structured data, while
learning the nodal distributions.

In this study, the problem of spatio-temporal probabilistic
solar radiation forecasting is presented as a graph distribution
learning problem solved by the CGAE. First, a set of solar
measurement sites in a wide area is modeled as an undirected
graph, where each node represents a site and each edge
reflects the correlation between historical solar data of its
corresponding nodes/sites. CGAE is applied to the graph in
order to learn the distributions corresponding to the solar data
at each site/node. Our CGAE is mathematically guaranteed to
efficiently generate samples corresponding to the future solar
irradiance values. The samples generated by this model result
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in a probabilistic solar radiation forecast for the future time
step.

The key contributions of this work are: 1) Our CGAE is
the first model devised in the area of machine learning, for
the problem of nodal distribution learning in graph-structured
data. The presented work is a universal model/algorithm that
can be applied to any arbitrary graph for the probability
approximation problems. 2) This is the first study of generative
modeling for the prediction of renewable resources. Although
generative adversarial networks have been applied in [41]
for the problem of scenario generation of renewable energy
production, this category of machine learning models has
not been studied for the prediction tasks as these models do
not estimate the probability densities of future observations
given the historical measurements. The previous prediction
works including all ANNs [15], [18], [19], regression [21],
and kernel methods such as SVMs and SVRs [17], as well
as all KNN-based methodologies [20], follow discriminative
modeling [42], and no generative modeling was introduced in
the literature of solar forecasting. Also, in similar areas such
as probabilistic load forecasting, most approaches including
ANNSs [29] and Quantile Regression models [43] are discrim-
inative rather than generative. As shown by the mathematical
proof, our generative model leads to accurately understanding
the underlying distribution of solar data, while discriminative
modeling cannot provide such capability. 3) A spatio-temporal
probabilistic forecasting framework is presented that makes
use of the knowledge obtained from neighboring solar sites to
enhance the prediction reliability and sharpness. 4) In contrast
to previous ANN-based approaches [15], [18], [19] that merely
apply shallow architectures, i.e. models with a small number
of hidden layers, here, our model is able to have as many latent
layers as it needs in order to provide the optimal generalization
capability to increase the validation accuracy. As a result,
the generalization capability and the learning capacity of our
proposed deep network are much higher than previous works.
Increasing the number of layers in previous models, even with
the existence of a regularization error term, is infeasible as
it would lead to the vanishing gradient problem. However,
here, we solve the issue of having low gradient magnitude
that arises in ANN architectures. 5) CGAE is compared
with state-of-the-art temporal approaches including Quantile
Regression [26], Kernel Density Estimation [20], and Extreme
Learning Machine [18], [19] in terms of reliability, sharpness,
and Continuous Ranked Probability Score (CRPS) using the
National Solar Radiation Database (NSRDB) [44]. Moreover,
CGAE is compared with recently proposed state-of-the-art
spatio-temporal models including Space-time Copula (ST-
Copula) [45], Spatio-temporal QR-Lasso (ST-QR-Lasso) [46],
Compressive Spatio-temporal Forecasting (CSTF) [47], and
Spatio-temporal Support Vector Regression (ST-SVR) [17],
[48]. As shown by the simulation results, CGAE outperforms
all temporal as well as spatio-temporal methodologies for 0.5-
hr up to 6-hr ahead predictions. CGAE improves the average
reliability of the best temporal benchmark, ELM, by 3.64%
in hourly predictions which grows to 4.49% in 6-hr ahead
forecasting. Moreover, CGAE improves the CRPS of ELM
by 3.35% for hourly predictions which is further increased

to 5.22% in 6-hr ahead forecasts. Among spatio-temporal
approaches, CGAE outperforms all approaches by improving
the best spatio-temporal benchmark, ST-SVR, by 2.46% in
hourly predictions which is further increased to 4.35% for 6-
hr ahead forecasts. CGAE also improves the CRPS of ST-SVR
by 1.12% and 4.19% for hourly and 6-hr ahead predictions,
respectively. Furthermore, the average widths, as well as the
entropies of CGAE’s prediction intervals show the significant
improvement of prediction sharpness of the proposed method
compared to the state-of-the-art benchmarks.

The paper is organized as follows: In Section II the problem
of probabilistic solar irradiance forecasting is defined. In
section III, first, our proposed generative modeling paradigm is
defined mathematically. Then, our CGAE model is formulated
and its application for solving the forecasting problem is ex-
plained. Theoretical guarantee of the proposed methodology is
available in this section. Section IV explains the performance
metrics and shows numerical results on a large dataset. Finally,
the conclusions and future works on generative modeling are
presented in Section V.

II. PROBLEM FORMULATION FOR PROBABILISTIC SOLAR
IRRADIANCE FORECASTING

The solar irradiance time series measured at 75 solar sites in
northern states of the US near the Lake Michigan are collected
in the National Solar Radiation Database (NSRDB) [44] by the
National Renewable Energy Laboratory. Fig. 1(a) depicts the
latitude-longitude map of solar sites where the spatio-temporal
solar radiation data is collected. The data at each site contains
the GHI time series with 30-min intervals from 1998 up to
2016. Fig. 1(b) is the plot of GHI values at the solar site 14
in 2015. As shown here, GHI increases from 8:00 to 13:00,
and then, decreases until it reaches zero from about 18:00 to
20:00. Generally speaking, we have larger GHI around the day
200 (mid-July), and as we go further, the GHI declines.

The spatio-temporal data is modeled as an undirected graph
where each node represents a solar site and each edge reflects
the correlation between the corresponding nodes/sites. Let us
define a weighted graph G = (Vig, Eg) where Vg is the
set of nodes v; ¢+ = 1,2,...,n and E¢ is the set of edges
ek connecting vy to v;. The weighted adjacency matrix A is
defined by the following formulation:

—D(k,1)
A(kJ):{ e MI (k1) > o 0
0 MI (k) < «
where e is the Euler’s number, and the edge weight between
the nodes v, and v; is denoted by A(k, 1), while their distance
is D(k,l). Also, the normalized mutual information (MI)
between the historical GHI measurements of these two nodes
is denoted by M I (k,1). The edge sparsity parameter v = 0.8
acts as a threshold on MI values; that is, for each pair of nodes
vy, and vy, if the corresponding MI exceeds a, we consider an
edge ey, associated with a weight e (*:!) while for the nodes
with MI less than o, no edges are considered.
Fig. 2 depicts the MI values corresponding to all pairs
of solar sites (i.e. nodes in V(). Considering the latitude-
longitude map in Fig 1(a) and the MI matrix in Fig. 2,
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(a) Latitude-Longitude map of 75 solar sites in the NSRDB
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Fig. 1: Visualization of the solar site locations and GHI measurements in the National Solar Radiation Database
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Fig. 2: Mutual Information matrix for all pairs of nodes in V.
The indices correspond to the indices of solar sites in Fig. 1(a)

we can see that the MI of historical GHI for each pair of
sites has high negative correlation with their distance inside
the latitude-longitude space. That is, shorter distances lead
to higher solar irradiance correlations, which further lead to
larger edge weights in the modeled graph G.

Fig. 3 depicts the structure of our graph with 75 nodes
and 464 weighted edges clustered into six communities using
the Girvan—Newman algorithm [49]. Each community consists
of a subset of nodes densely connected to each other with
relatively large edge weights due to their high mutual infor-
mation. The dense edges inside communities and the sparse
edges between the communities reflect the strong relationship
between the distance of the nodes and their MI.

At each time step t, each node v; contains a GHI time
series T'(v;,t) corresponding to the historical GHI data used
as the input to the forecasting model in order to predict
some future GHI value v;*(# = ¢ + k) with forecast hori-
zon length k& > 0. The problem is to learn a conditional

Fig. 3: Structure of the modeled graph G with 75 nodes and
464 edges. The graph is clustered into six Girvan—Newman
communities. The width of each edge reflects the magnitude
of MI between the corresponding nodes.

probability distribution P*(V*(t)|r) with future GHI tensor
V(') =< vi*(t'), v2*(¥'), ..., v,*(t') > and historical GHI
tensor m =< T'(vy,t),T(ve,t),...,T(vp,t) >. Considering
a training set TS that contains |7'S| historical examples
(7rj,Vj*(t’)) 1 < j < |TS|, we need to estimate P* using
the observed 7; and V(') in the j-th training example.

The data of 1998-2015 is considered for training our model
while the 2016 dataset is used as a test set to evaluate our
method. Fig. 4. shows the mutual information between a GHI
value at the time ¢ with previous time steps ¢ — [ with
lag 1 < [ < 300 for the GHI time series of 1998-2015.
As shown in this plot, the GHI values are more correlated
with their most recent lags as well as the time lags near
1 €{24,48,72,96,120,144}. In this study, in order to make
the information in T'(v;,t) useful for the estimation of P*,
we define T'(v;,t) for each node ¢ to be the GHI values
corresponding to the lags where the mutual information is
equal or greater than some threshold 7 > 0. Here, 7 is a
hyperparameter for our model.

III. PROPOSED GENERATIVE LEARNING FORMULATION
FOR NODAL PROBABILITY DENSITY ESTIMATION IN
GRAPHS

A. Generative Learning for PDF approximation

Here, our problem is to capture a probability distribution
P(X) over n-dimensional data points X in a potentially high
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dimensional vector space X C R™. In fact, we want to be able
to generate many samples X * as close as possible to X. As the
complexity of the dependencies between variables of X’ grows,
the difficulty of learning the true P(X) increases. Hence, we
define a “latent variable”-based model in which the hidden
random vector z € Z embodies the major characteristics
of P(X) (e.g. the PDF of the future GHIL, or any desired
nodal PDF in a graph-structured data). More specifically, z
is sampled following some unknown distribution P(z) over
the high dimensional space Z. To justify that our approach
is generative (i.e. the model can generate samples X* ), we
ensure that there exists at least one configuration Z € Z that
causes the model to generate some sample X in X. Assuming
a family of deterministic functions f(z;6) with parameters
0 € O, each “latent variable-parameter” pair is mapped to a
sample in X using f : Zx© — X'. We find an optimal 6* € ©
such that when z ~ P(z), the value of X* = f(2;6 = 6*)
is as close as possible to some X € X. In other words, the
probability of f creating an output X* similar to the observed
data X is maximized; hence, our optimization is written as:

arg max

6
f(z) is a deterministic function of a random variable z ;

hence, for a fixed 6, f(z;0) is a random variable in the space
X. Therefore, P(X) in (2) can be written as:

0 = [P(X) = / f(z;H)P(z)dz] 2)

P(X)= /P(X|z;9)P(z)dz 3)

As shown in (2), generating X depends on the latent
vector z. Using the Maximum Likelihood framework, if the
model converges to the solution 6%, our generative model is
likely to produce X*. Here, f(z;0) is defined as a Gaussian
distribution P(X|2;0) = N(X|f(2;0),0% « I ) with mean f
and a diagonal covariance matrix with entries computed using
the hyperparameter o as the standard deviation. In order to
solve the optimization (2)-(3), z should be mathematically
defined. Moreover, an estimation for the integral in (2) should
be provided. Our main goal is to learn variable z automat-
ically; that is, we opt to avoid describing the dependencies
between the dimensions of Z, as no prior knowledge is
available/required to solve the problem. Thus, the latent vector
is set to z ~ N(0,I) considering Theorem (1):

Theorem (1): In any space A, any complicated probability
density function over samples can be modeled using a set of
dim(A) random variables with normal distribution, mapped
through a high capacity function.

****************************** | [ e ey
| Error function: KL[Q(z | X;®@) || P(z;®)] | | Error function:|| X — X | !
““““““““““““““““““““ il Wittt Generated sample

1 X'~ P(X)

1
Decoder

#(XI. ) (X CD) Generated sample
: ’bL\ ’ ANN®) [ X"~ P(XY) Trained
Encoder Decoder
@ ANN (P)
ol EX )
XeD z~N(0,])
(a) Training (b) Testing

Fig. 5: Structure of CGAE. (a) shows the training process
where the model generates X* ~ X. (b) shows the testing
process where the trained decoder generates as many sam-
ples X* ~ P(X) as required simply by feeding a random
z ~ N(0,I) to the decoder ANN. The decoder captures PDF
P(X).

As a consequence, an approximator can be learned to map
z to some required (desired) hidden variable ¢ further mapped
to X € X, to maximize the likelihood of samples X in the
dataset D. Here, our f is modeled by an ANN as a standard
function approximator capable of learning highly nonlinear
target functions using multiple hidden layers. The first layers
of these architectures provides a non-linear mapping from z €
Z (with a predefined simple distribution as discussed in this
section) to £ (with an unknown complicated distribution). £ is
further mapped to a sample X € X available in D. Notice that
if the model has sufficient capacity (ample number of hidden
layers, as in the case of deep neural networks), the neural
network is able to solve the maximization in (1) to obtain 6*.
Let us rewrite our optimization in (2) using z ~ N(0, I ) from
Theorem (1):

arg max

0

0" = /N(X\f(z;@), o2« [)N(2|0,1)dz (4)
To solve (4), a distribution function Q(z|X) is defined to
decide the importance of an arbitrary configuration z € Z in
the generation of a sample X. As a consequence, the expected
value of P(X|z) with respect to z, E..q [P(X]z)], can be
computed using the Kullback-Leibler (KL) divergence:

KL[Q(2)[lp(2|X)] = Ez~q [log Q(2) — log P(z[X)] (5)

applying the Bayesian rule for P(z|X), (5) can be written
as:

KLIQ(=)[p(1)] = Exng [log Q(2) — log(PHREE)
=E,.q[log Q(z) —log P(X|z) —log P(z) + log P(X()é)

This equality is further written as:

log P(X) — KL[Q(z][X)||P(z|X)]

= B.ollog P(X]2) — KLIQEX) PG

In order to generate X (that is, create samples X* ~ X ),
our objective is to maximize log P(X) while minimizing the
KL divergence in the left-hand side of (7); hence, we minimize
E.~q [log P(X|z) — KL|Q(2|X)||P(2)]] using SGD. Notice
that, in the formulation of (7), @ can be viewed as an ANN
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encoding X into z, while P is an ANN decoding z to obtain
X. To solve the optimization, @ is defined as:

Q(z|X) = N(z|p(X; @), 5(X; @) ®

with deterministic functions p and ¥ defined by an ANN
with free parameters set ® trained by SGD. As () and P are
both dimensional multivariate Gaussian distributions, the term
KL[Q(z]X)||P(z)] in (7) is computed by:
KL[Q(z[X)|[P(2)]
KLN(2lp(X; ), B(X; ®))| [N (0, 1)]

log S0 — d + tr(S) + (0 — )T (0 — u)}

—log(det(X)) — d + tr(X) + Ty

©))

N[ N

Therefore, in order to optimize (7), the following optimiza-
tion problem is solved:

E..ollog P(X|z; ®)]
CKLQUIX: )Pz ) |

* arg max
0* = ge Exp

Applying the reparametrization technique, (10) can be writ-
ten as:

log P(X |z = n(X)
E.n,n

+8V2(X) xe; @)
—KL[Q(z|X;®)||P(2; )]

* arg max

1T)
Fig. 5(a) shows the training structure of our generative
model based on (8) and (11) to generate X * ~ X. The encoder
ANN, @, takes X observed in dataset D and outputs u and X
(see (8)). The error of the encoder ANN is K L[Q(z|X)||P(z)]
computed in (9). The gradient of this error function is used
by Stochastic Gradient Descent (SGD) method to train this
ANN. After computing x4 and ¥ using (), our latent variable
z = u(X; ®)+X1/2(X; ®) ¢ is obtained using (11). Then, z
is fed to the decoder ANN, P, to obtain our generated sample
X* ~ X. The error function of this ANN is computed by
[|[X — X*||? to reflect the distance between the generated
sample X* and its true (observed) value X. When (Q and
P are trained by SGD, in order to generate a new sample
X* &~ X, one can simply feed some z ~ N(0,I) to P and
obtain X* as shown in Fig. 5(b).

B. Convolutional Graph Autoencoder

In Section III-A, our objective was to learn P(X) in some
high dimensional space X’ by generating X* ~ X. Here, we
aim to learn P*(V*|r), i.e. PDF of V* in G given m. We
present our CGAE shown in Fig. 6 as the first generative model
that captures nodal distribution P*(V*(¢')|r) in a graph G.
Given historical GHI 7, our objective is to generate p samples
V ~ V* to estimate P*(V*|r).

Let us mathematically formalize how CGAE generates 14
as an estimation for V* :

V=uwp(rz)+est 2~ N(0,1), e ~N(0,1) (12)

both z and e are white Gaussian noises. p is imple-
mented by an ANN as in Section III-A. Assuming z ~ @

using PDF Q(z), Bayes rule [50] is applied to compute
E.vqllog P(V* )]z, )] :

E.~qllog P(V*(t')|z,7)] = Eswgllog P(2|V*(t'), 7)—
log P(z|m) 4+ log P(V*(t) \W)}(B)

(13) is rewritten as:
log P(V*(t')[7) — Ezngllog Q(z) — log P(2|m, V*(t')) =
E.~qllog P(V*(t')|2, m) + log P(z|m) — log Q(z)]

Now, following (8), we have Q =
N (m, V*(@)), o/'(m,V*('))) where p/ and o' are
ANNS trained alongside p. Let us denote @ by Q(z|m, V*),
(14) is written as:

log P(V*|m) — KL[Q(z|m, V*)[|P(z|m, V*)] =

E.ollog P(V*|2,m)] - KLIQGlm v IPGm)] )

Considering (15), our objective is to increase F; =
log P(V*|z,m) and By = —KL[Q(z|m, V*)||P(z|r)]. CGAE
is trained by SGD to maximize Ep = FE; + Es. This
leads to maximizing the likelihood of V* while training @
to accurately estimate P(z|r,V*). Note that, similar to our
optimization in Section III-A, we have P(z|r) = N (0, 1). Our
latent vector is z = p/ (7, V*(t')) +ao o' (m, V*(t')) where
a ~ N(0,1) and o is the element-wise product operation. Ep
is differentiable with respect to the whole parameters of CGAE
(including the parameters in ANNs corresponding to u, p’ and
o’ ); hence, the whole CGAE model can be easily tuned by
SGD to maximize E7. In Section III-C, the neural architecture
corresponding to our CGAE is defined based on ANNs.

C. CGAE Architecture

CGAE consists of three ANNs; 1- Graph Feature Extraction
ANN, which gives us a compact representation of 7 stored in
G, denoted by R(G), 2- Encoder ANN, @, that implements
u' and ¢’ to capture Q(z|m,V*), and 3- Decoder ANN, P,
that implements 4(, z) in (12), to produce samples V drawn
from the true future GHI distribution P*(V*(t')|r).

a) Graph Feature Extraction ANN (Computing R(G)):

At each training step ¢, the spectral graph convolutions of G,
which stores 7 =< T'(v1,t), T (v, t), ..., T(vy,t) > inside its
nodes, is computed by g * T = U1/}9UT7T. Here, U is the
eigenvector matrix of the normalized Laplacian L = UQUT
and 0 € R" is the parameter vector for the convolutional filter
g = diag(f) in the Fourier domain. Notice that the Fourier
transformation of 7 is computed by U”w. 1y is defined as
a function of L ’s eigenvalues; hence, our filter is denoted
by 15 (2). Estimating 14 (£2) by Chebyshev Polynomials [51],
[52] P;, we have ¢, ~ Zj:o ijj(ﬁQfI) where Ypax 18
the maximum eigenvalue of L, and w; 1s the j -th Chebyshev
coefficient. Therefore, the spectral graph convolution function
on G is:

(16)

’Ymax

J
2
Yo TRy wiPi(——Q—ID)r
j=0

The convolution in (16) is further simplified by § = wy =
—w; which decreases parameters’ size while vyax = 2 for
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J =1; As aresult, (16) can be computed by:

Y*m &= woPo(L—I)m+wi P (L—I)7
a7
Based on the convolution (17), a graph feature extraction
neural network (GFENN) with Ls hidden layers is defined to
extract spatio-temporal features from GHI observations at all
nodes/sites of GG. Here, the output of each layer 1 < k < Lg
is:
OF = ReLU(MO* '"W*)s.t. M = D~ 3(A+1)D~ % (18)
where D;; = >_j(A + 1I);j. The input of GFENN is
0° = 7 while the output is G ’s spatio-temporal representation
R(G) = Ote,

b) The encoder (Q) and Decoder (P): Since GFENN
captures spatiotemporal features of 7, and stores them
in R(G), one can view CGAE as a model estimating
P*(V*|R(@)) instead of P*(V*|r). In Section III-A, (8)
showed that @) can be viewed as an ANN encoding input
tensor X into the latent vector z while P is a decoding ANN
that maps z to X. As depicted in Fig. 6, Here, the input to
the encoder @ is X = R(G). Our encoder @ is defined by a
deep ANN with L hidden layers and ReLU activations for
each hidden layer, trained to encode V* into a latent vector
z € Z, such that the resulting z can be decoded back to V'*. As
discussed in (15) and also shown in Fig. 6, the error function
for the encoder @ is defined by:

Errg = KL[Q(z|m, V*)||N(0,1)]

— KLIQ(:IR(G). V*)||N (0, 1)] 1

Similar to ), our decoder, P, is implemented by a deep
ANN with Lp hidden layers using ReLU activations to take
the latent vector z learned by (), as well as the graph represen-
tation R(G), and decode them to generate an appr0x1mat10n
of V*, denoted by V. To make the generated sample V (¢), a
close as possible to the real future value V*(¢') we minimize
the following reconstruction error for P :

Errp = ||[V*(t') = V()

Therefore, the total error optimized by the stochastic gradi-
ent descent method is £ = Errg + Errp.

(20)

D. Estimation of P(V*|r)

As shown in Fig. 6(b), during test time, R(G) and z ~
N(0,I) are fed to the decoder ANN and the estimation
V(t') is obtained. No encoding is needed; hence, generating
estimations V () ~ V*(t') is dramatically fast. All we need
to do to generate a new sample V(t’ ), is to sample a new
z ~ N(0,I) and run feed-forward algorithm on the GFENN
(to obtain R(G) ) and the decoder ANN (to obtain the desired
result, i.e. V(¢') ). Following this approach, we generate p
number of samples V ~ P(V*|r) to estimates P(V*|r) using
the decoder. As a result, our decoder P generates the PDF of
future GHI mapping N (0, ) to P(V*|r).
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Fig. 6: Convolutional Graph Autoencoder

IV. NUMERICAL RESULTS

CGAE is compared with recent temporal as well as spatio-
temporal benchmarks utilized for short-term irradiance/PV
probabilistic forecasting. The temporal models include Quan-
tile Regression (QR) [21], Kernel Density Estimation (KDE)
[20], Extreme Learning Machines (ELM) [18], and Probabilis-
tic Persistence (PP) [53], while the spatio-temporal bench-
marks include the Space-time Copula [45], Spatio-Temporal
QR-Lasso [46], Compressive Spatio-Temporal Forecasting
[47], and Spatio-Temporal Support Vector Regression [17],
[48]. The advantages of spatio-temporal feature learning for
the underlying problem is shown. Since no generative model
was presented in the literature, the experiments motivate fur-
ther research on generative modeling for renewable resources
prediction.

A. Experimental Settings

As explained in Section II, the NSRD dataset is applied
to train/test our model. The 1998-2015 data is used to train
CGAE while the 2016 data is applied to evaluate the prediction
performance. In this study, CGAE is trained/tested to forecast
GHI time series from 30 min (horizon length k =1 ) up to 6
hours ahead ( k = 12 ). Batch Gradient Descent with learning
rate n = 5% 10~* is employed to train our CGAE (including
GFENN, encoder ANN, and decoder ANN) by minimizing the
error Krrg + Errp using batch size k£ equal to 400. In this
study, the number of generated samples is p = 10, and the
number of GFENN layers is set to Lg = 2 while Lp = 4 and
Lg = 3. The feature selection hyperparameter is 7 = 0.45.

We employed the Information Theoretical Estimators (ITE)
library [54] to compute the mutual information matrix corre-
sponding to the historical GHI time series in Section II. The
ITE is used as a free and open source toolbox in Matlab 2018.
The graph modeling process of Section II is implemented
in Gephi 0.9.2 [55] which is an open-source software for
network visualization and analysis. Moreover, our proposed
deep neural network, CGAE, is implemented in Python 3.6
with Keras 2.2.4 library [56] and GPU-based Tensorflow 1.7.0
[57] backend. The model is implemented on a computer
system with Intel Core-i7 4.1GHz CPU and NVIDIA GeForce
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GTX 1080-Ti GPU. Our GPU supports CUDA 9.0 which is
a parallel computing platform that helps Tensorflow to speed
up all the computations in Keras.

B. Performance Comparison (Quantitative Results)

The prediction quantiles of our model are compared with
both temporal and spatio-temporal methodologies in terms of
reliability, sharpness and Continuous Ranked Probability Score
(CRPS):

1) Reliability: This criterion shows how closely the predic-
tion probabilities correspond to the observed (real) frequencies
of the GHI data. Here, the bias R'~2“ is computed by:

N1—2a
RI72¢ = ( -(1- 2a)> x 100% (1)
N

where N is the number of test examples, N 1=2a g the
number of observations covered by the nominal coverage rate
(1—2a) x100%. The closer the nominal coverage of prediction
intervals is to the observed (actual) coverage rate, the higher
the reliability is; hence, small R'~2 shows better accuracy. In
fact, R'=2% = ( corresponds to the perfect (ideal) reliability.

Fig. 7 depicts the reliability measurements averaged over all
GHI nodes/sites with various nominal coverage rates ranging
from 10% to 90%. As shown in this figure, the spatio-temporal
prediction models including CGAE, ST-Copula, ST-QR-Lasso,
CSTF, and ST-SVR, lead to more reliable probabilistic fore-
casts compared to the temporal models such as ELM, KDE,
QR, and PP. For instance, the ST-QR-Lasso model which is a
spatio-temporal version of QR, leads to an average deviation
of 5.46% while the QR obtains 9.13% deviation compared to
the ideal prediction model with zero deviation. Among the
temporal models, PP has the worst reliability which results
in the largest average deviation equal to 10.62%. ELM leads
to the highest reliability among temporal models with 6.71%
absolute deviation. This model yields 36.81%, 26.49%, and
22.59% more reliable (less deviated) predictions compared to
PP, QR, and KDE, respectively. The major reason for this ob-
servation is the better generalization of neural network-based
approaches compared to the traditional statistical approaches.
In contrast to other temporal benchmarks, ELM has a large
nonlinear parameter space which helps this model to improve
generalization and obtain more reliable outcomes. Our deep
learning-based generative model, CGAE, outperforms all tem-
poral benchmarks, with 86.35%, 84.12%, 83.28%, and 78.40%
better reliability compared to PP, QR, KDE, and ELM. The
smaller deviation of CGAE compared to ELM is mainly due
to CGAE’s graph-based spatial feature extraction as well as
its larger hypothesis space caused by the higher number of
nonlinear computational layers.

Among the spatio-temporal prediction benchmarks, CGAE
and ST-SVR have the least deviated predictions with 1.45%
and 4.02% average absolute deviations, respectively. The reli-
able performance of ST-SVR is due to its ability to handle
complex high-dimensional feature spaces using the kernel
trick. The smaller deviation of CGAE in comparison with
other spatio-temporal benchmarks shows the effectiveness of
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Fig. 7: Reliability measurements averaged over all GHI
nodes/sites
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Fig. 10: Entropy diagram of CGAE with various temporal and
spatio-temporal benchmarks for the 6-hr ahead forecasts

our GFENN in providing powerful spatial information from
the underlying solar sites.

Fig. 8 shows the average reliability with different look-
ahead times for various temporal and spatio-temporal bench-
marks. As shown in this plot, the slope of the deviation curve
for all benchmarks start to increase significantly from the 3.5-
hr horizon, while CGAE has a much smaller slope. As the
time horizon expands, the improvement of CGAE becomes
more significant. PP has the worst performance, especially in
longer horizons, compared to other methodologies. This is due
to its low generalization capacity resulted from its smooth-
ness assumption of the target function, which undermines its
efficiency in practice. The spatio-temporal approaches have
less than 6.31% deviation for all time horizons while even the
most reliable temporal model, ELM, exceeds this limit for 5.5-
hour and 6-hour ahead predictions. CGAE yields 1.10% and
4.49% better reliability in 3-hr and 6-hr forecasts compared
to ELM, respectively. This shows the superiority of generative
modeling over discriminative modeling introduced in previous
ANN methods in the literature. The relatively small deviation
of spatio-temporal models is resulted by their good unbiased
prediction, while temporal models are more biased, which
degrades their efficiency in practical applications.

Among the spatio-temporal approaches, the CGAE, CSTF,
and ST-SVR have smaller deviation slope with respect to
the time horizon. While ST-QR-Lasso and ST-Copula have
a significant growth in their deviation slope after the 5-hr
time horizon, the CGAE, CSTF, and ST-SVR show a smooth
deviation curve with a relatively small gradient. As shown in
Fig. 8, CGAE shows more reliable predictions in comparison
with all spatio-temporal benchmarks. As the time horizon
expands, the superiority of CGAE becomes more noticeable.
For the 6-hr ahead prediction, CGAE obtains 4.35%, 3.88%,
3.72%, and 3.35% better reliability in terms of the deviation

from the ideal prediction compared to ST-SVR, ST-Copula,
ST-QR-Lasso, and CSTF, respectively.

2) Sharpness:: Sharpness is a complementary metric to the
reliability, which evaluates the concentration of the prediction
distribution. The criterion shows how informative a forecast
is by narrowing down the predicted GHI values. Sharpness
should be analyzed with respect to reliability, as high sharpness
does not necessarily show better prediction when the model
has low reliability (high deviation in Fig. 7 and Fig. 8).
Sharpness is investigated using two performance metrics:

a) Prediction Interval Average Width (PIAW): This
metric, PI AW, evaluates sharpness for the nominal coverage
rate (1 — 2a) x 100% by:

1 N
PLAW, =1 Dl - (] @)

where ¢®(n) and ¢'~%(n) represent the o and 1 — «

prediction quantiles for the n -th test sample. Fig. 9 shows
the average sharpness of 10%-90% nominal coverage rates
normalized by maximum observed GHI. As shown in this
diagram, among temporal models, PP has the sharpest intervals
in all nominal coverage rates; however, as shown by Fig. 7 and
Fig. 8, it has poor reliability compared to other benchmarks
especially when the horizon is expanded. Moreover, ELM
provides overly narrow quantiles leading to higher sharpness
compared to CGAE. However, such high sharpness does not
contribute to forecast accuracy/reliability. Large amount of
sharpness might work in the case of clear sky when no
significant uncertainty is present and GHI is predictable with
high accuracy; however, in other cases (e.g. when GHI is
varying during a rainy day), it would lead to poor performance
as the model would neglect the risk of uncertainties in GHI.
CGAE provides medium sharpness which is not too high to
lead to erroneously narrow quantiles (as in the case of PP and
ELM), and not too low to lose information about future GHI
(as in the case of KDE and QR).

Generally speaking, the spatio-temproal models obtain mod-
erate sharpness values that are neither as high as KDE nor
as low as PP. Among this category of models, ST-Copula is
an exception which provides prediction intervals even sharper
than the PP. The sharpness metric shows that ST-Copula is
likely to provide biased predictions that are over-confident.
In practice, such confidence can lead to poor performance
since the reliability of ST-Copula is lower than the other
spatio-temporal benchmarks. As shown by Fig. 9, the ST-
QR-Lasso, CSTF, and ST-SVR provide similar sharpness for
60% and 70% nominal coverage rates; however, for other
coverage values, the prediction intervals of ST-QR-Lasso,
CSTF, and ST-SVR become too sharp while CGAE maintains
its moderate sharpness.

b) PDF Entropy: The sharpness of a forecast can be
estimated using the entropy of the prediction PDF. Sharper
forecasts lead to smaller PDF entropies. Fig. 10(a) shows the
histogram of the entropies of all temporal benchmarks for
the 6-hr ahead prediction task. As shown in this plot, the
majority of forecasting PDFs for PP and ELM correspond
to low values. The mean entropy of PP and ELM are 2.77
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Fig. 11: CRPS results of 30-min up to 6-hr ahead predictions

and 3.69, respectively. The low entropy of PP is due to the
consecutive clear days in the testing set where the variance of
the prediction PDF is small. Such small entropies/variances
result in overconfident predictions caused by the lack of
knowledge about future GHI uncertainties. The overly narrow
prediction quantiles in ELM lead to low PDF entropies which
degrade accuracy since the uncertainties in the future GHI
are disregarded by predictions less reliable than CGAE (see
Fig. 7 and Fig.8). CGAE has moderate sharpness and medium
entropy values with mean 5.15. KDE has high entropies with
mean 6.77 and a small variance of 0.22 that result in high
uncertainty boundaries for the future GHI and less informative
forecasts compared to CGAE and ELM. In contrast to ELM
and KDE, our CGAE model has entropies that are not too low
(as in the case of ELM) to disregard GHI uncertainties and not
too high (as in the case of KDE) to provide under-confident
predictions.

Fig. 10(b) depicts the histogram of the entropies of all
temporal benchmarks for the 6-hr ahead prediction task. As
shown in this diagram, ST-Capula obtains relatively small
entropy which is reflected by the over-confidence and large
bias in the prediction PDFs of this model. On the other
hand, the CSTF leads to under-confident results with high
entropies. The mean entropy of CSTF is 7.26 which is 19.01%,
23.83%, and 29.06% higher than the ST-SVR, ST-QR-Lasso,
and CGAE, respectively. This is mainly due to having high
variance (high uncertainty) in consecutive sunny days when
predicting by CSTF. Such variance is degraded by ST-SVR,
ST-QR-Lasso, and CGAE as these models provide a better bias
(larger bias) when they encounter multiple consecutive sunny
days in the test set. The moderate entropy obtained by CGAE
shows that this model is not too biased (as in the case of ST-
Copula) to neglect GHI uncertainties in the dataset, and not too
uncertain (as in the case of CSTF) to provide uninformative
predictions with high unreliability.

3) Continuous Ranked Probability Score: CPRS is a metric
evaluating the entire prediction distribution reflecting the de-
viations between the CDF of the predicted and observed data.

One can view CRPS as a metric combining reliability and
sharpness to provide a comprehensive performance evaluation.
CRPS is computed by:

oo

CRPS(F,v) = / (F(z) — Ulz — v))2dz

— 00

st. Uz) = {

with the prediction CDF F' and the Heaviside function U.
The average CRPS of all benchmarks for 30-min up to 6-hr
ahead GHI forecast is depicted in Fig. 11. The smaller CRPS
a model obtains, the better the accuracy it provides. As shown
in this plot, the ANN-based methodologies, ELM and CAGE,
outperform the temporal methods PP, QR, and KDE. ELM
achieves 1.24% and 1.38% better CRPS on average over all
time horizons compared to KDE and QR, respectively. KDE
has slightly better performance in comparison with QR for
30-min up to 2.5-hr ahead predictions. The better accuracy
of KDE becomes more noticeable in the horizon range of 3
hr up to 4.5 hr. Similar superiority is reflected by the better
reliability curve of KDE compared to QR in Fig. 8. Among
all temporal benchmarks, PP has the worst performance. This
model has 1.77% and 1.49% more CRPS on average for 6-
hr prediction, compared to KDE and QR, respectively. As
the forecast horizon length grows, the CRPS of PP increases
by larger amounts compared to other benchmarks. This is
due to low generalization capability and erroneously high
sharpness (low entropy as shown in Fig. 10(a)) which results in
unreliable predictions, especially when the weather condition
changes from sunny to cloudy since this approach suffers
from the naive smoothness assumption. As depicted in Fig.
11, CGAE shows better performance in comparison with all
temporal models because of its high reliability (shown by Fig.
7 and Fig. 8) and appropriate sharpness (i.e., moderate PIAW
and entropy in Fig. 9 and Fig. 10). CGAE outperforms ELM
by 2.98% CRPS for hourly prediction, which is increased
significantly for time horizons of length more than 3 hours
and reaches the 4.90% CRPS improvement for 6-hr ahead
predictions.

The spatio-temporal models generally have smaller CRPS
due to modeling the spatial behavior of GHI observations
as well as the temporal characteristics. For instance, the ST-
Copula leads to 1.29% CRPS improvement compared to ELM
for hourly predictions. Moreover, the ST-QR-Lasso model
obtains 3.29% better average CRPS over all time horizons
compared to its temporal version i.e. QR. While CSTF and ST-
SVR obtain close CRPS curves especially for time horizons
longer than 4 hours, the ST-QR-Lasso significantly dominates
with lower CRPS values. The better performance of ST-QR-
Lasso is mainly due to directly handling the high dimension-
ality and over-fitting issues that characterize the use of large
amounts of data. In fact, the Lasso technique is very useful
to reduce the likelihood of overfitting for most practical ap-
plications where a large number of observations are available.
CGAE obtains 2.53% better CRPS in comparison with the
ST-QR-Lasso. Although both models use L1-regularization
techniques to avoid overfitting, the CGAE model obtains better

1 2>0 @3)

0 <0
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Fig. 12: Predicted densities forecasted by CGAE in four days between June 25! and July 2"¢ with various weather conditions

accuracy due to providing a very large hypothesis space which
leads to better generalization capacity.

C. Qualitative Results

The probabilistic prediction of CGAE is investigated to
show the capability of our model under different weather
conditions. Fig. 12(a) shows the GHI values of eight days,
from June 25" to July 27d in 2016, for a site near the
Michigan Lake. As shown in this plot, the selected days
contain various weather conditions including sunny, partly
cloudy, and overcast, in a short period of time. June 25" and
26" are both sunny with high GHI, while the subsequent day,

June 27", is mostly cloudy with many variations. The next

day, June 28" is sunny with high GHI while June 29" is
overcast with very small irradiance. June 30" and July 1°¢ are
sunny, and the last day, July 2" is a combination of partly
cloudy and sunny. This test case evaluates the performance
of CGAE when the weather changes dramatically from one
day to the other, and within each day. As shown in Fig.
12 (b)-(e), the prediction intervals of CGAE with 50% and
90% confidence rates follow the actual GHI values with high
accuracy resulting in good reliability. In Fig. 12(b), as the
weather changes from sunny to partly cloudy around 9:00,
the confidence boundaries expand showing the increase in the
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prediction uncertainty. In Fig. 12(c), June 28" has a very
smooth GHI curve measured on a clear sunny day, hence,
the model’s uncertainty is very small. In Fig. 12(d)-(e) the
weather has significant changes during overcast in June 29"
and partly cloudy and sunny conditions in July 2"¢. As seen in
these two figures, although the uncertainty is increased in such
conditions, the model still follows the observed GHI with high
reliability. On July 2"¢, at 12:30, the GHI jumps drastically
from 12% of maximum GHI, GHImax, to 86%. Fig. 12(f)
shows the histogram of the predicted GHI for this observation.
As shown in this figure, CGAE could capture this jump more
reliably having heavier probability density around 85%-90%
GHImax. However, ELM and KDE assign a high probability to
smaller values as these models are more affected by previous
small measurements. Moreover, KDE does not provide enough
sharpness for this example, hence, its prediction cannot be
informative. Having much higher generalization capability and
being able to leverage spatio-temporal information from GHI
observations, our CGAE can capture uncertainties in the solar
data with higher accuracy and appropriate sharpness.

D. Running Time Analysis

As mentioned in Section IV-A, our proposed model, CGAE,
is trained offline using the batch gradient descent method. In
the batch gradient descent with batch size k, the gradients
of the error function with respect to k training samples are
aggregated in each batch at each training iteration; therefore,
increasing the batch size k would lead to an increase in
the training speed. Fig. 13 depicts the effect of batch size
on the training time of CGAE for the prediction tasks with
different time horizons. As shown in this figure, the running
time decreases with the increase of batch size. For instance, in
the 1-hr ahead prediction task, £ = 50 leads to a training time
equal to 21.39 min, while using k& = 400 takes 19.90 min.

Fig. 13 also shows the effect of the forecast horizon in the
training time of the proposed model. As shown in this figure,
for a fixed k, the training time increases as the time horizon
is extended. For instance, when k& = 200 CGAE takes 20.33
min to train its parameters for the 1-hr ahead prediction task,
while the training time increases to 25.32 min for 6-hr ahead
forecasts.

As discussed in Section III-D, CGAE uses a simple feed-
forward approach during the testing time; therefore, our model
leads to fast predictions. The average testing time of CGAE
for all forecast time horizons is less than 0.35 sec; hence, the
proposed approach can be effectively used for all real-world
applications.

V. CONCLUSIONS

A novel deep generative model, Convolutional Graph Au-
toencoder, is presented for a new problem, nodal distribution
learning in graphs. The model captures deep convolutional
features from an arbitrary graph-structured data, to learn
the corresponding probability densities of nodes. Here, the
problem of spatio-temporal solar irradiance forecasting is
presented as a graph distribution learning problem where each
node of the graph represents a solar irradiance measurement
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Fig. 13: Running time of the CGAE using various batch size
values

site, while each edge represents the distance between the
sites. Using graph spectral convolutions, the spatial features
of the solar data are extracted, that are further used by an
encoding and decoding ANN to capture the distribution of
future solar irradiance. Our deep learning model is used to
provide probabilistic forecasts for the National Solar Radiation
Database. Simulation results show better reliability, sharpness
and Continuous Ranked Probability Score compared to recent
baselines in the literature.
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