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Abstract—This paper proposes a data-driven distributionally
robust co-optimization model for the peer-to-peer (P2P) energy
trading and network operation of interconnected microgrids
(MGs). In particular, three-phase unbalanced MG networks
are considered to account for the implementation practices,
and the emerging soft open point (SOP) technology is used
for the flexible connection of the multi-MGs. First, the energy
management in individual MGs is modeled as a distributionally
robust optimization (DRO) problem considering the P2P energy
trading options and various operational constraints. Later, a
novel decentralized and incentive-compatible pricing strategy is
developed for P2P energy trading using the alternating direction
method of multipliers (ADMM). Furthermore, the uncertain-
ties in load consumption and renewable generation (RG) are
taken into account and the Wasserstein metric (WM) is used
to construct the ambiguity set of the uncertainty probability
distributions (PDs). Consequently, only historical data is needed
rather than prior knowledge about the actual PDs. Finally, the
equivalent linear programming reformulations are derived for
the DRO model to achieve computational tractability. Numerical
tests on four interconnected MGs corroborate the advantages of
the proposed P2P energy trading scheme and also demonstrate
that the proposed DRO model is more effective in handling the
uncertainties compared to the robust optimization (RO) and the
stochastic programming (SP) models.

Index Terms—Distributionally robust optimization, decentral-
ized pricing approach, networked microgrids, peer-to-peer energy
trading.

NOMENCLATURE

Parameters:
pL
i,t/q

L
i,t Active/reactive load at bus i

βDG
i,g /β

RG
i,k Binary parameter indicating whether DG g /RG k

is located at bus i
βES
i,b Binary parameter indicating whether BES b is lo-

cated at bus i
βni,m Binary parameter indicating whether bus i is one

terminal of the SOP interconnecting MGs m and n
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pDG
φ,g,t

/pDG
φ,g,t Lower/upper bound of active power for DG g in

phase φ
qDG
φ,g,t

/qDG
φ,g,t Lower/upper bound of reactive power for DG g

in phase φ
qRG
φ,k,t

/qRG
φ,k,t Lower/upper bound of reactive power for RG k

in phase φ
pC
φ,b,t/p

D
φ,b,t Maximum charging/discharging power for BES b

in phase φ
ηC
b /η

D
b Charging/discharging efficiency of BES b

c1gκ/c
0
gκ Linear/constant generation cost coefficient for seg-

ment κ of DG g

ω̂φ,j Total power deviation in phase φ of sample j

Variables:
pDG
g,t/q

DG
g,t Active/reactive power output of DG g

pRG
k,t/q

RG
k,t Active/reactive power output of RG k

pD
b,t/p

C
b,t Discharging/charging power of BES b

Pm
i,t/Q

m
i,t Active/reactive power flow on line i in MG m

pnm,t Active power transferred from MG n to MG m

Um
i,t Squared nodal voltage magnitude at bus i in MG m

Smi,t Apparent power flow on line i in MG m

λnm,t P2P energy trading price between MGs m and n

rDG
φ,g,t/r

DG
φ,g,t Upward/Downward reserve of DG g in phase φ

rES
φ,b,t/r

ES
φ,b,t Upward/Downward reserve of BES b in phase φ

Eb,t State of charging (SOC) of BES b

αDG
φ,g,t Affine participation factor of DG g in phase φ

αES
φ,b,t Affine participation factor of BES b in phase φ

∆pDG
φ,g,t Real-time power adjustment of DG g in phase φ

∆pES
φ,b,t Real-time power adjustment of BES b in phase φ

p̂nm,t Auxiliary variable duplicating the value of pnm,t

I. INTRODUCTION

MCROGRID (MG) has become the common practice
for addressing various operation challenges stemming

from the increase in the penetration level of distributed en-
ergy resources (DERs) such as photovoltaic (PV) panels [1].
Networking multiple self-governed MGs enables the power
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exchange among the interconnected MGs and has been verified
as an effective strategy to improve the overall reliability and re-
silience of the energy supply [2]. Conventionally, the operation
of the networked MGs is supervised by the distribution net-
work (DN) operator in a centralized manner [3], [4]. However,
this operation scheme may lead to operational inefficiencies
in MGs as they are owned and operated by private entities
[2]. Although P2P energy trading could improve economic
benefits to individual MGs, merely considering this economic
objective could undermine the network operation performance
by causing nodal over-voltage and under-voltage violations, as
well as the voltage unbalance. Therefore, it is imperative to
resolve the economic issues in energy trading and the technical
issues in MG operation in a holistic manner through joint
optimization of P2P energy trading and network operation
while preserving the privacy and autonomy of individual MGs.

One typical method for networking the multi-MGs is to
interconnect them through the local DN [5], [6]. However,
such connections have several drawbacks. First, the connection
will be disrupted once a fault occurs on the distribution path
between the interconnected MGs. Furthermore, the power flow
between the interconnected MGs is not fully controllable as
it follows Kirchhoff’s laws. Thanks to the fast development
in power electronics, the recently emerging soft open point
provides a satisfactory alternative for the flexible connection
of the multi-MGs [7]. The SOP is fully controllable as it is
developed from two back-to-back voltage source converters.
Moreover, the fault within each MG can be easily isolated due
to the isolation of the DC link in an SOP. To fully leverage the
advantages of SOP, further research is demanded to address
the interactions among MGs.

The energy trading or sharing among the multi-MGs without
considering the detailed connection modes has been investi-
gated extensively [8]–[15]. In particular, earlier works merely
focused on designing fair energy trading mechanisms and
oversimplified the energy scheduling within each MG [8]–
[11]. To name a few, a Nash bargaining-based energy trading
scheme was proposed in [8] for multi-MGs, whereas each
MG was simplified as a lumped node without considering the
detailed network constraints. In [9], the energy trading problem
among multi-MGs was solved by a distributed optimization ap-
proach, while the internal scheduling of each MG was reduced
to a power balance equation. In [10], the authors developed a
distributed transactive energy management scheme for multi-
MGs. Nonetheless, network constraints were neglected. To
overcome this drawback, recently, some efforts have been
devoted to the joint optimization of energy trading and network
operation [12]–[15]. For instance, in our previous work [12],
we proposed a distributed transactive energy framework by
seamlessly integrating a bilateral energy trading mechanism
with the optimal operation of the DN. In [13], a sensitivity
analysis-based method was incorporated to ensure that P2P
energy transaction did not violate the network constraints. Ref.
[14] formulated the energy trading among multi-MGs as a
generalized Nash bargaining problem that involved the DN op-
erational constraints. Nonetheless, all these mentioned works
failed to account for the underlying uncertainties associated
with the electricity demand and renewable generation.

To effectively handle the uncertainties, various approaches
including stochastic programming [16]–[18], robust optimiza-
tion [19], [20], and DRO [21], [22] have been developed in
the literature. In [17], the energy sharing problem for the
PV prosumers was modeled as an SP problem where the
uncertainty of PV generation was represented by a group of
scenarios generated using a predefined probability distribution
function (PDF). In [18], the chance-constrained approach was
applied to the joint P2P energy and reserve market where the
uncertainty of the renewable generation was represented by a
versatile PD. In [23], the demand uncertainty and upstream
price uncertainty were considered in the proposed P2P energy
trading market design, and a probabilistic strategy was devel-
oped to address the uncertainty. However, the accurate PDF
of random variables is generally unknown and only limited
historical data is available [24], [25]. On the contrary, RO
only requires limited information regarding the support set of
random variables [19]. In [20], RO was applied to the energy
trading problem to tackle different types of uncertainties. In
[26], a hybrid robust and stochastic approach was developed to
handle the uncertainty of renewable energy resources in energy
trading between MGs. However, since RO merely optimizes
the objective for the worst-case scenarios, it inevitably leads
to an over-conservative outcome.

The recently emerging DRO approach provides an excellent
alternative to the SP and RO as it remedies the SP’s suscep-
tibility and RO’s insensitivity to the probabilistic information
[21]. In DRO, the true distribution of uncertainties lies in an
ambiguity set with high confidence, and thus the obtained
solution is immune to all distributions in the ambiguity set
[21]. The Wasserstein metric-based DRO directly constructs
the ambiguity set of PDs from the historical samples and
therefore, it is considered as a data-driven approach. This
approach was used in various applications and demonstrated
improved performance compared to the SP and RO [27]–[31].
To name a few, in [27]–[29], the Wasserstein metric-based
DRO approach was utilized to investigate the optimal power
flow (OPF) problem in the transmission networks. In [31],
a data-driven DRO model was proposed for the scheduling
of a microgrid with hydrogen fueling stations. In [32], the
unit commitment problem was formulated as a DRO model
to mitigate the risk associated with the wind power forecast
errors. Motivated by the outstanding merits of the Wasserstein
metric-based DRO, this approach is adopted here to handle
the uncertainties in P2P energy trading.

To sum up, most existing works e.g. [8]–[11], either did
not consider the co-optimization of P2P energy trading and
network operation or oversimplified the individual MG as a
lumped node for the computation tractability. Furthermore,
previous works preferred using SP or RO in handling the
uncertainties in P2P energy trading. Nevertheless, as afore-
mentioned, SP requires prior knowledge about the precise
PDF of the uncertain variables and RO suffers from the over-
conservativeness. Hence, DRO formulation is proposed to
address the shortcomings of SP and RO. This paper endeavors
to fill these gaps by proposing a data-driven distributionally
robust model for the co-optimization of P2P energy trading
and network operation in the multiple interconnected MGs.
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In particular, three-phase unbalanced MGs are considered to
account for the implementation practices and the detailed
network constraints are represented by the linearized multi-
phase DistFlow model. First, a DRO model is formulated for
individual MGs to minimize the operation cost with the given
P2P trading prices. Then, a novel decentralized pricing strategy
is developed for P2P energy trading. Finally, the ambiguity
set is constructed using the Wasserstein metric and linear
programming reformulations are derived. The contributions of
this paper are three-fold as follows:

• Unlike most of the existing works that merely focus on
the energy trading mechanisms, a co-optimization model
is proposed for the P2P energy trading and network
operation in multi-MGs considering various operational
constraints. The SOP technology is used for the flexible
interconnection of multi-MGs. Here, MGs are considered
as autonomous entities with three-phase unbalanced net-
works as opposed to most of the related works in which
MGs are oversimplified as lumped nodes.

• The co-optimization problem is formulated as a data-
driven DRO model to handle the uncertainties of load
and renewable generation. This is the first effort to apply
the data-driven DRO approach to the multi-MG energy
trading and operation problem. The Wasserstein metric is
employed to construct the ambiguity set and equivalent
linear programming reformulations are derived for the
DRO model to reduce computational complexity.

• A novel fully decentralized pricing scheme that is
incentive-compatible is developed for P2P energy trading.
A closed-form solution to the subproblem is derived
to improve computational efficiency. Furthermore, the
proposed pricing scheme achieves the minimum overall
social cost.

The remainder of this paper is organized as follows. Section
II introduces the problem formulation of energy management
of three-phase unbalanced MGs incorporating P2P energy
trading. In Section III, a decentralized pricing scheme is
developed. In Section IV, the ambiguity set of uncertainty
PDs is constructed using the Wasserstein metric and linear
programming reformulations are provided for the DRO prob-
lem. Numerical results are demonstrated in Section V. Finally,
Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Notations

The subscripts/superscripts m, t and φ denote the indices
of MGs, time intervals, and phases, respectively; their corre-
sponding sets are represented by M, T and Φ, respectively.
The subscripts g, k and b denote the indices of dispatchable
distributed generation (DG), renewable generation and battery
energy storage (BES) in each MG, and their corresponding
sets are represented by Gm, Km and Bm, respectively. We
use bold letters to denote the vectors. For example, pDG

g,t =
[pDG
a,g,t p

DG
b,g,t p

DG
c,g,t]

> is a column vector of the 3-phase active
power output of DG g. The frequently used notations in this
paper are illustrated in the Nomenclature.












 















 



 

 



   

       



























 



 



 

 

 

















Fig. 1. (a) Example of two interconnected multi-phase unbalanced MGs (b)
the illustration of the proposed co-optimization framework

Consider MG m with a radial network as a connected tree
Tm(Nm, Em), where Nm := {0, 1, ..., N} and Em represent
the bus and line sets, respectively. The point of common couple
(PCC) is indexed as 0. Each bus i is directly connected to a
unique parent bus πi and perhaps a set of child buses, denoted
by Λi. The buses are labeled from the upstream buses to the
downstream buses in the ascending order, i.e., πi < i. Besides,
the line pointing from the parent bus πi to bus i is labeled as
line i and thus Em := {1, ..., N}.

B. Energy Management in Each MG

Fig. 1(a) shows an example of two multi-phase unbal-
anced MGs that are interconnected through an SOP composed
of two back-to-back voltage source converters. The power
transferred through the SOP is fully controllable, and this
lays a solid technical foundation for the P2P energy trade
among the interconnected MGs. To promote P2P energy
trading and ensure operational security and reliability, a data-
driven distributionally robust co-optimization model of energy
trading and network operation, is proposed for individual
MGs. The overall illustration of the proposed framework is
demonstrated in Fig. 1(b). As shown in the figure, each MG
can either procure energy from the main grid at a given
price or from the P2P trading at a contracted price. In this
section, we temporally assume the P2P prices are known
and will develop a decentralized pricing scheme to determine
such prices in the next section. Furthermore, since the RG
and load consumption (LD) are uncertain at the day-ahead
(DA) stage, the data-driven DRO approach is adopted to
handle the uncertainties. Particularly, in the proposed data-
driven approach, the true PDs of the uncertain variables are
ambiguous and only historical samples are available for the
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construction of the ambiguity sets. DGs and BESs in each
MG are dispatched to minimize the operation cost for each MG
and provide the upward/downward reserves at the DA stage to
facilitate the real-time power adjustment after the realization
of uncertainties.

1) System Model: The linearized multiphase DistFlow
model is adopted to describe the power flows in three-phase
unbalanced MGs.

Pm
i,t +

∑
g∈Gm

βDG
i,g · pDG

g,t +
∑
k∈Km

βRG
i,k · pRG

k,t +
∑

n∈M\m

βni,m · pnm,t

+
∑
b∈Bm

βES
i,b · (pD

b,t − pC
b,t)− pL

i,t =
∑
j∈Λi

Pm
j,t (1a)

Qm
i,t +

∑
g∈Gm

βDG
i,g · qDG

g,t +
∑
k∈Km

βRG
i,k · qRG

k,t − qL
i,t =

∑
j∈Λi

Qm
j,t

(1b)

Um
πi,t −U

m
i,t = 2Re

(
z̃∗m,iS

m
i,t

)
∀i ∈ Em (1c)

Um
i ≤ Um

i,t ≤ U
m

i ∀i ∈ Nm (1d)

max
φ∈Φ

∣∣∣∣Umφ,i,t − Uma,i,t + Umb,i,t + Umc,i,t
3

∣∣∣∣ ≤ ε ∀i ∈ Nm (1e)

Constraints (1a) and (1b) represent the active and reactive
power balance at each bus. The voltage drop on the distribution
line is enforced by (1c), where z̃∗m,i is a 3×3 complex matrix
that represents the converted line impedance. For the detailed
derivation of (1c) and the structure of the matrix z̃∗m,i, the
interested reader is referred to Ref [33]. Here, (1d) imposes
the upper and lower limits on the nodal voltage magnitudes
and (1e) ensures that the voltage unbalance rate [34] at each
bus does not exceed the upper limit ε.

At the DA stage, each MG decides the energy transaction
quantity with the main grid and other interconnected MGs.
As seen from (1a), the active power exchange between MG
m and the main grid at time t is Pm

0,t. Hence, the cost (profit)
of MG m for buying (selling) energy from (to) the main grid
in the time interval t is expressed in (2), where λbt (λst ) is
the price for buying (selling) energy from (to) the main grid
and (·)+ denotes a projection operator, i.e. (x)+ = max(x, 0).
Generally, λbt is higher than λst [8].

Ωm,1t

(
Pm

0,t

)
= λbt · (1>Pm

0,t∆t)
+ − λst · (−1>Pm

0,t∆t)
+ (2)

Likewise, the cost (profit) of MG m for P2P energy trading
at time interval t is represented by (3).

Ωm,2t

(
pnm,t

)
=

∑
n∈M\m

(λnm,t)
>pnm,t∆t (3)

2) DG and RG Operation Constraints: At the DA stage,
the pre-dispatch of energy and reserve is decided for DGs to
minimize the overall operation cost and to ensure the gener-
ation adequacy for the real-time adjustment. The operation
constraints for each DG (∀g ∈ Gm) are presented in (4).
Constraint (4a) ensures that the active power of DG minus
the downward reserve does not fall below the lower bound
of the active power output. Constraint (4b) guarantees that
the active power of DG plus the upward reserve does not
exceed the upper bound of the active power output. Here, (4c)
illustrates that the reserves are non-negative; (4d) imposes the

limits on the reactive power of each DG; and (4e) ensures that
the power unbalance rate at each 3-phase DG does not exceed
its tolerance δg .

pDG
φ,g,t − rDG

φ,g,t ≥ pDG
φ,g

∀φ ∈ Φ (4a)

pDG
φ,g,t + rDG

φ,g,t ≤ pDG
φ,g ∀φ ∈ Φ (4b)

rDG
φ,g,t ≥ 0, rDG

φ,g,t ≥ 0 ∀φ ∈ Φ (4c)

qDG
φ,g
≤ qDG

φ,g,t ≤ qDG
φ,g ∀φ ∈ Φ (4d)∑

φ,ψ,φ 6=ψ

(
|pDG
φ,g,t − pDG

ψ,g,t|+ |qDG
φ,g,t − qDG

ψ,g,t|
)
≤ δg (4e)

The active power outputs of RGs are assumed to be maintained
at the maximum power point to harvest as much renewable
energy as possible. The reactive power outputs of RGs are
maintained within the feasible ranges as enforced by (5).

qRG
φ,k,t

≤ qRG
φ,k,t ≤ qRG

φ,k,t ∀φ ∈ Φk, k ∈ Km (5)

3) BES Operation Constraints: The pre-scheduling of en-
ergy and reserve for BES is also implemented at the DA
stage. The operation constraints for each BES (∀b ∈ Bm) are
introduced as,

pC
φ,b,t ≥ 0, pD

φ,b,t ≥ 0, rES
φ,b,t ≥ 0, rES

φ,b,t ≥ 0 (6a)

pC
φ,b,t + rES

φ,b,t ≤ pC
φ,b,t ∀φ ∈ Φb (6b)

rES
φ,b,t ≤ pC

φ,b,t + pD
φ,b,t ∀φ ∈ Φb (6c)

pD
φ,b,t + rES

φ,b,t ≤ pD
φ,b,t ∀φ ∈ Φb (6d)

rES
φ,b,t ≤ pD

φ,b,t + pC
φ,b,t ∀φ ∈ Φb (6e)

Eb,t = Eb,t−1 +
∑
φ∈Φb

(
ηC
b · pC

φ,b,t − pD
φ,b,t/η

D
b

)
·∆t (6f)

Eb ≤ Eb,t ≤ Eb (6g)
Eb,T = Eb,0 (6h)

Constraint (6a) indicates the charging and discharging powers,
as well as the downward and upward reserves, are non-
negative. Constraint (6b) illustrates that the charging power
plus the downward reserve should not exceed the maximum
charging power when BES is in a charging state. Furthermore,
(6c) shows that the upper bound of the downward reserve for
BES unit is the maximum charging power plus the discharging
power when BES is in discharging state. Similarly, (6d)
guarantees that the discharging power plus the upward reserve
does not exceed the maximum discharging power when BES is
in discharging state. Constraint (6e) imposes the upper bound
on the upward reserve when BES is in a charging state and (6f)
shows the temporal variation of the SOC of BES b. Finally,
(6g) imposes the limits on the SOC and (6h) indicates that the
SOC at the end of the day is equal to the SOC at the beginning
of the day.

To avoid over-exploitation of BES, the degradation cost of
BES is included. Here, the degradation cost is formulated as a
linear function of charging and discharging power as shown in
(7), where θb is the cost coefficient associated with the lifetime
degradation of the BES b [17].

Ωm,3t

(
pC
b,t,p

D
b,t

)
=
∑

b∈Bm,φ∈Φb

θb · (ηC
b · pC

φ,b,t + pD
φ,b,t/η

D
b ) (7)
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4) SOP Operation Constraints: To save the capacity for
transferring active power and reduce the power loss, the
reactive power generation/absorption by SOP is restrained.
Constraint (8a) shows the power balance in each phase of
SOP, where pLoss

φ,m,t is the power loss on phase φ of SOP in
MG m. Here, (8b) indicates that the power loss in SOP is
linearly related to the power exchange, where ASOP

m is a very
small constant (e.g. 0.02) which represents the loss coefficient
[7], [35]. Furthermore, (8c) shows that the power exchange
should not exceed the SOP capacity SSOP

φ,m.

pnφ,m,t + pLoss
φ,m,t + pmφ,n,t + pLoss

φ,n,t = 0 ∀φ ∈ Φ (8a)

pLoss
φ,m,t = ASOP

m · pnφ,m,t ∀φ ∈ Φ (8b)∣∣pnφ,m,t∣∣ ≤ SSOP
φ,m ∀φ ∈ Φ (8c)

5) Affine Adjustment for the Uncertain Power Deviations:
After the realizations of uncertainties in RG and LD at the
real-time stage, the reserves provided by DGs and BESs are
deployed to maintain the power balance in each MG. Inspired
by the AGC mechanism, affine rules for the power adjustment
of DGs and BESs are adopted as (9).

∆pDG
φ,g,t = αDG

φ,g,t · ωmφ,t ∀φ ∈ Φ, g ∈ Gm (9a)

∆pES
φ,b,t = αES

φ,b,t · ωmφ,t ∀φ ∈ Φ, b ∈ Bm (9b)

0 ≤ αDG
φ,g,t ≤ 1 ∀φ ∈ Φ, g ∈ Gm (9c)

0 ≤ αES
φ,b,t ≤ 1 ∀φ ∈ Φ, b ∈ Bm (9d)∑

g∈Gm

αDG
φ,g,t +

∑
b∈Bm

αES
φ,b,t = 1 ∀φ ∈ Φ (9e)

−rDG
φ,g,t ≤ ∆pDG

φ,g,t ≤ rDG
φ,g,t ∀φ ∈ Φ, g ∈ Gm (9f)

−rES
φ,b,t ≤ ∆pES

φ,b,t ≤ rES
φ,b,t ∀φ ∈ Φ, b ∈ Bm (9g)

Here, (9a) and (9b) show the affine rules for the power
adjustments of DG and BES, where ωmφ,t is a random variable
representing the total power deviation on phase φ of MG m.
Constraints (9c)-(9e) illustrate the restrictions on the participa-
tion factors. Moreover, (9f) and (9g) guarantee that the reserves
provided by each DG and BES are within their capacities. We
introduce penalties for the reserve violations; therefore, violat-
ing the upward and downward reserve constraints lead to load
shedding and renewable generation curtailment, respectively.
Thus, the penalty for the reserve violations on each phase φ
at time interval t is a function of decision variables and the
uncertainty variable ωmφ,t. Such penalty is formulated in (10),
where θU

t and θL
t are the unit cost for the load curtailment and

renewable generation curtailment [27].

Ψm
φ,t = θU

t

[∑
g∈Gm

(αDG
φ,g,tω

m
φ,t − rDG

φ,g,t)
+ +

∑
b∈Bm

(αES
φ,b,tω

m
φ,t − rES

φ,b,t)
+
]

+θL
t

[∑
g∈Gm

(−αDG
φ,g,tω

m
φ,t − rDG

φ,g,t)
+ +

∑
b∈Bm

(−αES
φ,b,tω

m
φ,t − rES

φ,b,t)
+
]

(10)

Due to the affine power adjustment, the total generation
cost of DG is represented as a function of uncertainties.
The piece-wise linear generation cost function is adopted.
With some mathematical manipulation, the total generation
cost is reformulated as a piece-wise linear function of the
uncertain variable ωmt as shown in (11). Here, αDG

g,t :=

[αDG
a,g,t α

DG
b,g,t α

DG
c,g,t]

>; c1gκ and c0gκ are the cost coefficients for
segment κ; aDG

κ,g,t := c1gκ ·αDG
g,t and bDG

κ,g,t := c1gκ ·1>pDG
g,t+c

0
gκ.

Note that the adoption of piece-wise linear function is to
reduce computational complexity. Even though the actual
generation cost may not be linear like quadratic function, it
could still be approximated by the piece-wise linear function.

fg,t
(
pDG
g,t ,α

DG
g,t ,ω

m
t

)
= max
κ∈Ki

c1gκ
∑
φ∈Φ

(pDG
φ,g,t + ∆pDG

φ,g,t) + c0gκ

= max
κ∈Ki

(aDG
κ,g,t)

>ωmt + bDG
κ,g,t (11)

Calling the reserve of BES at the real-time stage would
cause deviation from the desired charging/discharging schedul-
ing decisions at the DA stage. Thus, BES adjustment cost
is introduced to quantify the unwillingness for this deviation.
This cost is modeled as a linear function of the power deviation
as formulated in (12), where αES

b,t := [αES
φ,b,t]φ∈Φb ; δb,t is the

unit deviation cost for BES b at time t; aES
1,b,t := δb,t · αES

b,t

and aES
2,b,t = −aES

1,b,t.

hb,t
(
αES
b,t,ω

m
t

)
= δb,t

∣∣∣∑
φ∈Φb

∆pES
φ,b,t

∣∣∣ = max
κ∈{1,2}

(aES
κ,b,t)

>ωmt (12)

Let `mt (xmt ,ω
m
t ) denote the total cost associated with

the uncertainties at time t, which is the summation of DG
generation cost, BES adjustment cost and the penalty for
reserve violations as shown in (13). Here, xmt collects the
decision variables of MG m at time t.

`mt (xmt ,ω
m
t ) =

∑
g∈Gm

fg,t +
∑
b∈Bm

hb,t +
∑
φ∈Φ

Ψm
φ,t (13)

6) Distributionally Robust Energy Management Model in
Each MG: The overall operation cost of each MG can be
divided into two parts such that the first part is associated
with the decisions that are independent of the uncertainties
and the second part is associated with the decisions affected
by the imposed uncertainties. Thus, the objective of each
MG is to minimize the energy procurement and battery
degradation costs plus the expected total cost associated with
the uncertainties considering the worst-case realization of the
probability distributions as shown in (14). Here, Fmt (xmt ) :=
Ωm,1t + Ωm,3t .

min
∑
t∈T

{
Fmt (xmt ) + Ωm,2t + sup

Pt∈P̂t
EPt

[
`mt (xmt ,ω

m
t )
]}

(14a)

over xmt :=
{(
pDG
g,t , q

DG
g,t , r

DG
g,t , r

DG
g,t ,α

DG
g,t

)
g∈Gm

,
(
qRG
k,t

)
k∈Km

,(
pD
b,t,p

C
b,t, r

ES
b,t, r

ES
b,t,α

ES
b,t

)
b∈Bm

,
(
pnm,t

)
n∈M\m,(

Pm
i,t ,Q

m
i,t,U

m
i,t

)
i∈Nm

}
s.t. (1), (4)-(6), (8c), (9a)-(9e) ∀t ∈ T (14b)

III. DECENTRALIZED PRICING APPROACH FOR P2P
ENERGY TRADING AMONG MULTI-MGS

In this section, first the energy management model for multi-
MGs is formulated and then a novel decentralized pricing
approach that achieves the minimum overall social cost is
developed for the P2P energy trading. It is further validated
that the proposed pricing approach is incentive compatible.
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A. Energy Management for Multi-MGs

The objective is to minimize the overall social cost that
sums up the operation cost of individual MGs. Since the
payments for P2P trading circulate within multi-MGs, they
are canceled out in the objective function. The problem
formulation for the energy management is shown in (15),
where x = {xmt }m∈M,t∈T . Here, (15c) is simplified from
(8a) by neglecting the power loss in SOP as it is relatively
small compared with the power flow in the SOP.

min
x

∑
m∈M

∑
t∈T

{
Fmt (xmt ) + sup

Pt∈P̂t
EPt

[
`mt (xmt ,ω

m
t )
]}

(15a)

s.t. (1), (4), (6), (8c), (9a)-(9e) ∀t ∈ T ,m ∈M (15b)
pnm,t + pmn,t = 0 ∀t ∈ T ,m/n ∈M,m 6= n (15c)

To derive the pricing algorithm, (15c) is reformulated as
(16a)-(16b) by introducing an auxiliary variable p̂nm,t.

p̂nm,t + p̂mn,t = 0 ∀t ∈ T ,m/n ∈M,m 6= n (16a)

pnm,t = p̂nm,t ∀t ∈ T ,m/n ∈M,m 6= n (16b)

B. Decentralized Pricing Algorithm

From the economic perspective, the optimal Lagrangian
multipliers (dual variables) associated with constraints (15c)
represent the shadow prices for the P2P energy trading. To
determine these prices, a fully decentralized optimization
algorithm based on ADMM is developed. Let ymt denote the
collection of auxiliary variables, i.e, ymt := {p̂nm,t}n∈M\m,
and λnm,t be the Lagrangian multiplier associated with (16b).
The augmented Lagrangian can be formulated as (17).

L(x,y,λ) =
∑
m∈M

∑
t∈T
Lmt (xmt ,y

m
t ,λ

m
t ) (17)

where Lmt (xmt ,y
m
t ,λ

m
t ) = Fmt (xmt ) + sup

Pt∈P̂t
EPt

[
`mt (xmt ,ω

m
t )
]

+
∑

n∈M\m

[
(λnm,t)

>(pnm,t − p̂nm,t) +
ρ

2
‖pnm,t − p̂nm,t‖22

]
and

λmt := {λnm,t}n∈M\m.
Let τ denote the iteration index. Then, the iterative proce-

dure of the proposed decentralized pricing algorithm can be
summarized as follows.

1) Update of xm: Thanks to the decomposable structure of
the augmented Lagrangian and the constraints (15b), xm could
be updated in a fully decentralized manner. Each MG m solves
the problem (18) to update its local variable xmt by fixing the
auxiliary variable ym,τt and the Lagrangian multiplier λm,τt .

xm,τ+1
t := arg min

xmt ∈Xmt

∑
t∈T
Lmt (xmt ,y

m,τ
t ,λm,τt ) (18)

After solving (18), each MG m broadcasts pn,τ+1
m,t to MG n.

2) Update of ym: The auxiliary variable y is updated by
solving problem (19).

min
y
L(xτ ,y,λτ ) (19a)

s.t. (16a) (19b)

Note that in problem (19), each p̂nm,t is only coupled with
p̂mn,t and the objective function is also decomposable. Thus,
each pair of p̂nm,t and p̂mn,t can be solved from the following
problem which is decomposed from problem (19).

min
p̂nm,t
−(λnm,t)

>p̂nm,t − (λmn,t)
>p̂mn,t +

ρ

2

∥∥p̂nm,t − pnm,t∥∥2

2

+
ρ

2

∥∥p̂mn,t − pmn,t∥∥2

2
(20a)

s.t. (16a) (20b)

Hence, the closed-form solution of p̂nm,t can be derived as
(21) by solving the KKT condition of (20). Thus, ym can be
locally updated by MG m without a central coordinator. Upon
receiving pm,τ+1

n,t and λm,τn,t , MG m updates p̂nm,t accordingly.

p̂n,τ+1
m,t = −p̂m,τ+1

n,t =
pn,τ+1
m,t − pm,τ+1

n,t

2
+
λn,τm,t − λ

m,τ
n,t

2ρ
(21)

3) Update of λm:

λn,τ+1
m,t = λn,τm,t + ρ

(
pn,τ+1
m,t − p̂n,τ+1

m,t

)
(22)

MG m locally performs the update of Lagrangian multipliers
and then sends λn,τ+1

m,t to MG n.
Remark: The original formulated multi-MG energy man-

agement problem (15) is in a multi-block structure, while the
convergence of the multi-block ADMM cannot be guaranteed.
Thus, the auxiliary variable p̂nm,t is introduced to convert
the original problem into an equivalent problem with dual-
block structure by replacing the constraint (15c) with (16a)
and (16b). The first block of variables includes the network
operation decision and the energy trading decisions, and the
second block of variables consists of the auxiliary variables.
It has been verified in [36] that the two-block ADMM for
solving convex problems globally converges.

It will be shown in the next section that the DRO problem
(15) can be reformulated as a linear programming problem
using the Wasserstein metric. Hence, the convergence of
the ADMM algorithm is guaranteed. Furthermore, we have
λnm,t = λmn,t because of (21) and (22). Therefore, problem (18)
is equivalent to problem (14) when the consensus constraint
(16b) is satisfied. This implies that the converged solution
represents a Nash equilibrium.

IV. REFORMULATION BASED ON WASSERSTEIN METRIC

A. Wasserstein Metric Based Ambiguity Set

To evaluate the expectation value of a random variable ω,
its PD is required. However, in practical applications, the true
PD P is usually ambiguous and only a set of historical samples
ω̂ := {ω̂1, ω̂2, ..., ω̂N} is available. In this paper, we use the
Wasserstein metric to construct the ambiguity set P̂N as it has
the following properties [21]: 1) out-of-sample performance
guarantee, 2) asymptotic guarantee, which implies that the
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ambiguity set converges to the true distribution as the number
of samples tends to increase to infinity, 3) tractability, which
indicates that a computationally tractable reformulation can be
obtained.

Given a set of historical samples, an empirical PD P̂N =
1
N

∑N
k=1 δω̂k can be derived to estimate P, where δω̂k denotes

the Dirac measure of ω̂k. Generally, the WM is a way to
measure the ”distance” between the estimated PD and the true
PD, defined as (23). Here, Ξ is the compact support of the
random variable, and Π is a joint distribution of ω and ω̂ with
marginal PD P and P̂N , respectively.

W (P̂N ,P) = inf
Π

{∫
Ξ2

‖ω − ω̂‖Π(dω, dω̂)
}

(23)

Then the ambiguity set can be constructed as (24), where ε(N)
is the radius of the ambiguity set P̂ whose center is P̂N .

P̂ :=
{
W (P̂N ,P) ≤ ε(N)

}
(24)

According to [28], ε(N) is a function of the confidence level
β and the sample number N , which can be expressed as

ε(N) = D

√
2

N
ln(

1

1− β
) (25)

where D is a constant that represents the diameter of the
support of random variable. Interested reader is referred to
[28] for the computation of D.

Another widely used metric in DRO is the KL divergence
[37], [38]. Compared with the Wasserstein metric, the KL
divergence is asymmetric and does not satisfy the triangle
inequality. Besides, the KL divergence only considers the
probabilities of the observed points, while the Wasserstein
metric takes into account the vicinity of the support points.
Furthermore, the Wasserstein metric-based ambiguity set con-
tains all continuous and discrete PDs that are sufficiently close
to the empirical one, while the KL divergence based ambiguity
set may exclude continuous PDs.

B. Problem Reformulation

For mathematical conciseness, the superscripts m and t
will be dropped in the following. Furthermore, the worst-case
expected cost is approximated by an upper bound through
interchanging the maximum and summation as shown in (26).
Here, the first two terms on the right-hand side represent the
worst-case expected generation cost and the BES adjustment
cost, and the last term is the worst-case expected penalty cost.

sup
P∈P̂

EP

[
`(x,ω)

]
≤
∑
g∈G

sup
P∈P̂

EP

[
fg(x,ω)

]
+

∑
b∈B

sup
P∈P̂

EP

[
hb(x,ω)

]
+
∑
φ∈Φ

sup
P∈P̂

EP

[
Ψφ(xφ, ωφ)

] (26)

As the worst-case PDs of the right-hand side (RHS) may
not be identical with the worst-case PD of the left-hand side
(LHS), the RHS represents an upper bound for the LHS. It
has been verified in [27] that interchanging the maximum and
the summation would only introduce a small error. However,
the overall computational complexity is reduced exponentially

as the total number of pieces of the loss function is reduced
considerably.

Given (11) and (12), the worst-case expected generation cost
and BES adjustment cost can be generalized as (27).

sup
P∈P̂

EP

[
max

1≤κ≤K
a>κω + bκ

]
(27)

We assume that the support of ω can be expressed as a
polytope, i.e. Ξ = {ω : Cω ≤ d}. Then, according to
Corollary 5.1 in [21], the problem (27) admits a reformulation
as (28). Here, ω̂j is the j-th sample of ω. Note that aκ
and bκ are linear functions of x. Therefore, (28) is a linear
programming with respect to x and {µ, sj ,γjκ}.

inf
µ,sj ,γjκ

µε+
1

N

N∑
j=1

sj (28a)

s.t. bκ + a>κ ω̂j + γ>jκ(d−Cω̂j) ≤ sj ∀j ≤ N,κ ≤ K (28b)

‖C>γjκ − aκ‖∞ ≤ µ ∀j ≤ N,κ ≤ K (28c)
γjκ ≥ 0 (28d)

Similarly, supP∈P̂ EP
[
Ψφ(xφ, ωφ)

]
can be reformulated as

(29) according to Theorem 1 in [22].

inf
νφ,ζφ,j

νφε+
1

N

N∑
j=1

ζj,φ (29a)

s.t. sup
ωφ∈[ωφ,ωφ]

(
Ψφ(xφ, ωφ)− νφ

∣∣ωφ − ω̂φ,j∣∣) ≤ ζj,φ ∀j ≤ N (29b)

Since Ψφ(xφ, ωφ) is the point-wise supremum of some linear
functions of ωφ according to (10), it is a convex function of ωφ.
Hence, the LHS of (29b) is to maximize a convex function over
a compact interval. Therefore, the maximization is attained
either on the boundaries (ωφ and ωφ) or ω̂φ,j and thus the
problem (29) can be further rewritten as (30).

inf
νφ,ζφ,j

νφε+
1

N

N∑
j=1

ζφ,j (30a)

s.t. Ψφ(xφ, ωφ) + νφ
(
ωφ − ω̂φ,j

)
≤ ζj,φ ∀j ≤ N (30b)

Ψφ(xφ, ωφ)− νφ
(
ωφ − ω̂φ,j

)
≤ ζj,φ ∀j ≤ N (30c)

Ψφ(xφ, ω̂φ,j) ≤ ζj,φ ∀j ≤ N (30d)

Likewise, problem (30) is a linear programming with respect to
x and {νφ, ζφ,j}. Therefore, both problems (15) and (18) can
be reformulated as linear programming problems by replacing
supP∈P̂ EP

[
`(x,ω)

]
with (28) and (30).

C. Implementation

Algorithm 1 summarizes the distributed algorithm for solv-
ing the co-optimization of P2P energy trading and MG op-
eration with a decentralized pricing scheme based on the
ADMM approach. The first step is to initialize the auxiliary
variables and the Lagrangian multipliers also known as the
P2P energy trading prices. Then the iterative process begins at
the 2nd step until the primal and dual residuals fall below the
tolerance level at the 9th step. During the iteration, each MG
m cyclically updates the primal variables, auxiliary variable,
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Algorithm 1: Distributed algorithm for solving the co-
optimization of P2P energy trading and MG operation

1 Initialize p̂nm,t and λnm,t for all m ∈M, n ∈M\m,
t ∈ T . Set the convergence tolerance level ε1. Initialize
the iteration index, i.e. τ = 0 ;

2 repeat
3 for m = 1 to |M| do
4 Each MG m updates the primal variables xm,τi,t

according to (18) by jointly solving the
reformulated DRO problem (28) and (30);

5 Each MG m updates the auxiliary variables ym,τt ,
i.e. {p̂n,τm,t}n∈M\m according to (21);

6 Each MG m updates the Lagrangian multipliers
λn,τm,t according to (22);

7 Update the iteration index τ = τ + 1;
8 end
9 until max

(
‖pn,τm,t − p̂

n,τ
m,t‖

)
≤ ε1 and max

(
ρ‖p̂n,τm,t−

p̂n,τ−1
m,t ‖

)
≤ ε1;

and Lagrangian multipliers. The primal variables include the
energy trading and MG operation decisions which are renewed
at the 4th step. The auxiliary variables and the Lagrangian
multipliers are updated at the 5th and 6th steps, respectively.

V. NUMERICAL RESULTS

The proposed DRO model for the co-optimization of P2P
energy trading and network operation is tested on four in-
terconnected 3-phase unbalanced MGs which are constructed
from the IEEE 123-bus DN as shown in Fig 2. The line
parameters and the load data can be obtained from [39].
The locations of DERs and the boundaries of the MGs are
indicated in Fig. 2. The capacities of 3-phase and single-
phase PV units are 300 kW and 100 kW , respectively. The
power and energy capacities of each BES are 100 kW and
1000 kWh, respectively. The capacity of each DG and wind
turbine (WT) are 300 kW and 500 kW , respectively. Without
the loss of generality, the energy purchasing price from the
main grid is set as $0.08/kWh during the off-peak periods
(11:00 p.m.-6:00 a.m.) and $0.1/kWh during other periods,
and the selling price is set as $0.04/kWh. Furthermore, like
Refs [27], [28], the samples generated from the predefined
PDs are used in the case studies to represent the empirical
data without loss of generality. The prediction errors of PV,
wind, and loads are represented by Gaussian distributions with
zero means. The standard deviations (SDs) for the PV and
wind power prediction errors are set as 10% of the predicated
outputs and the SDs for the load prediction errors are set
as 5% of the nominal values. Three cases are considered to
verify the effectiveness of the proposed framework. In the first
case, the advantages of P2P energy trading are corroborated as
well as the effectiveness of the proposed decentralized pricing
scheme. In the second one, the merits of the co-optimization
of P2P energy trading and network operation are validated
through comparison with a scheme that only conducts P2P
energy trading. In the last one, the performance of DRO is
compared with three benchmarks. All tests are performed

 



Fig. 2. Four interconnected 3-phase unbalanced microgrids constructed from
IEEE 123-bus distribution network

TABLE I
TOTAL ENERGY PROCUREMENT COST/PROFIT OF EACH MICROGRID

WITH/WITHOUT P2P ENERGY TRADING

Total energy cost/profit ($) Cost reduction ($)Without P2P trading With P2P trading

MG1 28.5 −87.7 116.2
MG2 1475.7 1192.8 282.9
MG3 −330.7 −692.0 361.3
MG4 1416.3 1248.0 168.3
Total 2589.8 1661.1 928.7

using MATLAB on a PC with an Intel Core i7 of 2.5GHz
and 16GB memory.

A. Effectiveness of Proposed P2P Trading and Pricing Scheme

In this subsection, the effectiveness of the P2P energy
trading and the proposed decentralized pricing scheme is
validated. Fig. 3 shows the energy procurement of each MG
during the DA planning. Here, the negative values in the sub-
figures indicate that the energy is sold to other entities. As
shown in the figure, the energy surplus of MG1 is sold to
MG4, and MG3 sells the majority of its excess energy to
MG2 and the rest to MG4. Besides, during hours 9-16 when
PV generation is high, the local energy supply within the
multi-MGs is sufficient to serve all loads and both buyers
(MG2 and MG4) acquire all their energy through the P2P
trading. This implies that MGs prefer P2P trading over the
transaction with the main grid. Table I summarizes the energy
procurement cost/profit of each MG with and without P2P
trading. As shown, implementing the P2P trading is beneficial
to all MGs. Furthermore, the total cost is reduced by more
than 35% which highlights the economical advantages of the
proposed P2P energy trading scheme.

Fig. 4 depicts the corresponding P2P trading prices derived
through the proposed decentralized pricing scheme as well as
the prices for buying/selling energy from/to the main grid,
denoted by λb and λs, respectively. The P2P price between
MG i and MG j is denoted by λij . The results demonstrate that
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Fig. 3. Energy procurement (a) MG1 (b) MG2 (c) MG3 (d) MG4

the P2P prices for all three phases are identical since the power
exchange through the SOP does not reach the upper limit.
We can observe from Fig. 4 that the P2P prices are within
the interval [λs, λb]. Consequently, both the energy sellers
and buyers are better off by participating in the P2P trading,
which verifies that the proposed pricing strategy is incentive
compatible. Besides, since λ32 is higher than λ34, MG3 prefers
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Fig. 4. Hourly prices for P2P energy trading among 4 interconnected MGs
and prices for buying/selling energy from/to the main grid
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Fig. 5. Distribution of nodal voltage magnitudes under the scheme only
considering P2P energy trading

selling energy to MG2 over MG4 and thus MG3 provides
the excessive energy to MG4 only when the demand in MG2
is satisfied as shown by Figs. 3(b) and 3(c). Likewise, since
λ14 is lower than λ34, MG4 prefers procuring energy from
MG1 over MG3. Thus, the first choice of energy procurement
to MG4 is from MG1 and the last choice is from the main
grid as shown by Fig. 3(d). Moreover, Fig. 4 indicates that
the P2P prices are inversely correlated with the total available
generation within the interconnected MGs. Specifically, they
are high when the total generation is insufficient, and low when
the local generation is abundant, which further validates the
effectiveness of the proposed decentralized pricing scheme.

B. Merits of Co-optimization Strategy

To demonstrate the merits of the proposed co-optimization
scheme over the benchmark scheme that only conducts P2P
energy trading, the comparison between the two schemes is
demonstrated in terms of the operation performance of MGs.
Figs. 5 and 6 show the distribution of the nodal voltage
magnitudes in the interconnected MGs over the entire day
using the proposed co-optimization scheme and the benchmark
scheme, respectively. It can be observed from Fig. 5 that only
considering the P2P energy trading would result in severe
under-voltage violations due to the negligence of the network
operation. In contrast, all nodal voltage magnitudes are regu-
lated within the secure range (i.e. 0.95− 1.05 p.u.) when the
P2P energy trading and network operation are jointly consid-
ered as shown by Fig. 6. As previously discussed, the phase



10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (h)

0.96

0.98

1

1.02

1.04

V
o

lt
a

g
e

 m
a

g
n

it
u

d
e

 (
p

.u
.)

Fig. 6. Distribution of nodal voltage magnitudes under the co-optimization
scheme
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Fig. 7. Profile of the maximum voltage unbalance rate in four MGs ignoring
the three-phase unbalance

voltage unbalance rate which is defined as the percentage of
the maximum phase voltage deviation from the average of the
three-phase voltages, should not exceed a certain limit (e.g.
2%) [34]. Figs. 7 and 8 depict the profiles of maximum voltage
unbalance rate in all MGs without and with considering the
three-phase unbalance of the network, respectively. We can
observe from Fig. 7 that when the three-phase unbalance is
ignored, MG2 and MG3 would suffer from severe voltage
unbalance which would, in turn, cause considerable damage to
the three-phase loads such as induction motors. Nevertheless,
the voltage unbalance rates in all MGs are maintained well
below the upper limit when the three-phase unbalance is
considered as shown by Fig. 8. To sum up, our proposed co-
optimization scheme is more advantageous than the benchmark
scheme in maintaining the network operational security.

C. Performance Comparison

In this subsection, we compare the performance of our
proposed data-driven DRO-based model, denoted as DRO,
with three benchmark approaches, i.e., deterministic method
denoted as DET, stochastic programming denoted as SP, and
robust optimization denoted as RO. Moreover, we demonstrate
the relationship between the sample size and solution quality
by using sample sets of different sizes in the proposed model.
Specifically, four sets are considered with 10, 20, 50, and 100
samples. Another sample set with 5000 samples is used to
evaluate the out-of-sample performance.
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Fig. 8. Profile of the maximum voltage unbalance rate in four MGs
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Fig. 9. Comparison of optimal overall social cost using different methods
with different sample sizes (ambiguity set with 95% confidence level)

TABLE II
IN-SAMPLE COST AND OUT-OF-SAMPLE MEAN USING SP AND DRO

WITH DIFFERENT SAMPLE SIZES

Methods SP DRO

Sample In-sample Out-of-sample In-sample Out-of-sample
size cost ($) mean ($) cost ($) mean ($)

10 2885.0 3016.9 3238.4 3007.7
20 2907.7 2981.0 3209.0 2980.6
50 2921.9 2957.0 3157.6 2965.7

100 2934.8 2950.0 3121.6 2960.7

TABLE III
IN-SAMPLE COST AND OUT-OF-SAMPLE MEAN USING DET AND RO

Methods In-sample cost ($) Out-of-sample mean ($)

DET 3231.9 5867.0
RO 3639.9 3127.8

Fig. 9 shows the optimal values (in-sample costs) of the
overall social cost using RO, DRO, and SP with different
sample sizes. It is shown that RO yields the highest in-sample
cost due to its conservativeness, whereas SP achieves the
lowest in-sample cost as it underestimates the true expected
cost. The in-sample cost of DRO is significantly lower than
that of RO but higher than that of SP as it represents the worst-
case expected cost for a given ambiguity set. Furthermore, with
the increase in the sample size, the size of the ambiguity set
decreases and so does the in-sample cost of DRO. Table II
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Fig. 10. Out-of-sample distribution of the overall social cost

lists the in-sample costs and the expected out-of-sample cost
using SP and DRO. We can observe that for all considered
sample sizes, the in-sample costs of SP are optimistically
biased as they underestimate the true expected costs that are
approximated by the out-of-sample means. With the increase
of sample size, the bias in SP is reduced. In contrast, the
in-sample cost of DRO provides an upper bound for the out-
of-sample cost. Moreover, both the in-sample cost and the
expected out-of-sample cost of DRO decline with the increase
in the sample sizes. We also compare the computational
performance of RO, SP, and DRO. It is shown that RO needs
the shortest computational time which is 5.2 seconds per
iteration of the ADMM based algorithm. However, RO yields
the highest out-of-sample cost as will be shown subsequently.
The computational times for DRO and SP are 26.8 and 20.5
seconds per iteration, respectively. Thus, the computational
complexity of DRO is quite comparable with SP.

Fig. 10 demonstrates the distribution of the out-of-sample
social cost of DRO and SP with 100 in-sample size. Although
the difference between the expected social costs is small using
DRO and SP, the distribution of the out-of-sample cost using
DRO is more concentrated than that using SP. This implies
that the solution generated by DRO is more robust compared
to that generated using SP. Table III summarizes the in-sample
cost and expected out-of-sample cost using DET and RO. We
can see that RO has the highest in-sample cost compared to
DET and DRO, while DET yields the highest expected out-of-
sample cost compared to DRO and RO as it fails to account
for the uncertainties. In contrast, the DRO achieves the lowest
in-sample cost and out-of-sample mean. Therefore, DRO is
less conservative than RO but more robust than SP.

VI. CONCLUSION

In this paper, a data-driven DRO model is proposed for the
co-optimization of P2P energy trading and network operation
in multi-MGs that are interconnected using the flexible SOP
technology. Three-phase unbalanced MGs are considered with
detailed network constraints. First, a DRO-based energy man-
agement model is presented for individual MGs to minimize
the operation cost with the given P2P trading prices. Then, a
fully decentralized pricing algorithm that achieves the mini-
mum overall social cost is developed. Finally, the Wasserstein
metric is used to construct the ambiguity set and the DRO

model is converted into an equivalent linear programming
problem. The proposed co-optimization scheme of energy
trading and network operation is tested in a system with
4 interconnected three-phase unbalanced MGs. The results
validate the effectiveness of the proposed scheme and show the
improved performance compared to RO and SP-based models.
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