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Abstract—The unbalanced nature of the distribution networks
(DNs) and communication asynchrony pose considerable chal-
lenges to the distributed voltage regulation. In this paper, two
distributed voltage control algorithms are proposed to overcome
these challenges in multiphase unbalanced DNs. The proposed
algorithms can be leveraged in online implementations to cope
with the fast-varying system operating conditions. By adopting
the linearized multiphase DistFlow model, the voltage control
problem is formulated as a convex quadratic programming
problem for which a synchronous distributed algorithm is
developed based on the dual ascent method. To account for
communication delays, an asynchronous distributed algorithm
is proposed evolving from the synchronous one by incorporating
an event-triggered communication protocol. Furthermore, closed-
form solutions to the optimization subproblems are derived
to enhance the computational efficiency, and communication
complexity is reduced significantly to the extent that only
neighborhood information exchange is required. Finally, the
convergence of the proposed algorithms to the global optimality
is established analytically. Numerical tests on the IEEE 123-bus
network not only corroborate that our proposed algorithms are
more efficient in eliminating voltage violations and minimizing
network loss compared with two benchmarks but also validate
their effectiveness for online implementations.

Index Terms—Distribution networks, multiphase unbalance,
online voltage control, synchronous and asynchronous distributed
algorithms.

NOMENCLATURE
Indices and sets:
7 Index of buses/lines
0] Index of phases
e Parent bus of bus i

C; Set of child buses of bus i
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Parameters:

A0 Line-bus incidence matrix

A Reduced line-bus incidence matrix

ag The first column of A°

Z; Impedance matrix of line ¢

r;/x; Resistance/Reactance matrices of line i

o Auxiliary complex vector defined as o := [1 o a?] T,

where o = ¢=3(27/3)

Auxiliary impedance/resistance matrices of line i

defined as z; := diag(a™)z;diag(a) and r; :=

diag(a)r;diag(a™*)

M Auxiliary matrix defined as M := A~ T ®1I5, where

I is the 3-dimensional identity matrix

Matrices that relates nodal active/reactive power in-

jections to squared nodal voltage magnitudes, de-

fined as R := 2M "bdiag ([Re(z;)]) M and X :=

2M "bdiag ([Im(z;)]) M

R, /fix Auxiliary matrices for calculating network loss, de-
fined as R, := M 'bdiag ([Re(¥;)])M and R, :=
M "bdiag ([Im(¥;)]) M

G/ 44 Upper/Lower bound of reactive power injection at

“node (i, ¢)

@;/a; Step sizes for updating 1z;/p.

i/, Step sizes for updating @; /w;

K;  Line parameter of line i

Re(f;) " 'Im(z;) "

R/X

defined as K; :=

B;;  The (i,7)th block of R

Variables:

S;/P; Vectors of complex/active power flow on line ¢

v; Vector of squared voltage magnitudes at bus

S; Vector of complex power injection at bus

p/a  Vectors of active/reactive power injections in DN

"/ p, Dual variables associated with voltage constraints

@;/w, Dual variables associated with reactive power limit
constraints

P, Vector of auxiliary active power flow on line 7 defined

as P; := Re(F;) ' Im(%;) P;

I. INTRODUCTION

HE widespread adoption of distribution energy resources
T (DERs) such as solar photovoltaic (PV) generation can
cause frequent and severe voltage violations in the distribution
networks (DNs) [1]-[3]. Leveraging the advantages of PV
inverters for providing reactive power (VAR) support is a
promising solution to resolve this issue [4]-[6]. However, a key



challenge for coordinating multiple dispersed PV systems to
perform fast and flexible voltage regulation is to handle various
practical operational issues, such as three-phase unbalanced
demand and unbalanced lines in DNs as well as the imperfect
communication.

The voltage regulation problem is essentially an optimal
power flow (OPF) problem. Conventionally, it is solved in a
centralized manner assuming the availability of network-wide
information [7]-[9]. Nonetheless, the centralized framework
is not applicable for the real-time voltage control due to
high dependence on complex communication and computa-
tion and considerable intermittence of PV generation. In this
regard, a particular attention [10]-[19] has been devoted to
the distributed control schemes that are more scalable and
reliable as they only require neighborhood communication.
Ref. [10] summarizes the recent development in the distributed
and decentralized voltage control practices. Nevertheless, the
previous research has rarely investigated the impact of three-
phase unbalanced operation and communication delays on the
distributed online voltage control.

Most existing distributed voltage control algorithms [12]—
[18] are mainly designed for three-phase balanced DNs. For
instance, in [12], assuming the DN is three-phase balanced, the
OPF problem is formulated as a second-order cone program-
ming (SOCP) for which a distributed algorithm is developed.
In [13], a distributed adaptive robust VAR control approach
is proposed to coordinate different control devices using the
single-phase representation of the DN. However, in practice,
DNs are inherently unbalanced due to the unequal loads
on each phase and the untransposed distribution lines [20].
In [21], the proposed linearized multiphase distribution flow
(LinDistFlow) model is proven to be a good approximation
that accounts for the coupling effect between different phases.
Recently, the multiphase LinDistFlow model has been adopted
in voltage regulation problem [22]-[24]. For example, in [22],
a local voltage control strategy is applied to an unbalanced
DN where the power flow solution is procured using the
multiphase LinDistFlow model. Nonetheless, this strategy is
unable to achieve the network-wide optimal solution due to the
lack of coordination between different controllers. In [23], a
distributed control scheme is proposed to minimize the voltage
deviations in unbalanced DNs. Similarly, the authors in [24]
develop a hierarchical distributed OPF algorithm for multi-
phase DN. Nevertheless, all these algorithms need to solve
optimization subproblems iteratively and apply the control
commands after convergence. Consequently, they cannot be
leveraged directly in online implementations, given the fast
variations of system operating conditions.

Some research has been conducted to facilitate the effective
online implementation of voltage control. The authors in [19]
introduce a distributed feedback control scheme that enables
instant voltage regulation. Nevertheless, it only focuses on
minimizing the voltage deviations and overlooks the fact that
adjusting the reactive power of PV inverters has a dramatic
impact on the network power loss. Ref. [17] also proposes a
feedback reactive power control design to achieve the loss
minimization and voltage regulation. In our previous work
[18], a distributed online voltage control algorithm is presented

considering PV curtailment. However, similar to the most
existing algorithms, these designs are built on three-phase
balanced DNs and thus have limited applicability. In [25], to
regulate the voltage profile in AC microgrids, a droop-free
distributed cooperative control strategy is proposed by incor-
porating local measurements, while it relies on synchronous
communication.

Coping with communication asynchrony is another chal-
lenge in distributed voltage control, which has not been con-
sidered in most existing works. Although a freezing strategy
is proposed in [19] to overcome the communication link
failures, it still requires a global timer to synchronize the up-
dates in control variables at different buses. An asynchronous
distributed OPF algorithm is proposed in [26]. While the
proposed algorithm captures the stochastic communication
delays, it has limited capability for online implementation
and is designed for balanced DNs only. The same challenge
has been tackled in other research fields, such as energy
management [27], wide-area oscillation monitoring [28] and
security-constrained OPF [29]. In particular, the proposed
asynchronous distributed optimization approach in [30] allows
local updates to be triggered by local timers only. Motivated
by these, an asynchronous distributed online voltage control
algorithm is proposed in this work to overcome the commu-
nication asynchrony.

Most existing distributed voltage control approaches are de-
signed for three-phase balanced DNs only and could not cater
for the online implementations. Besides, most existing voltage
control algorithms are synchronous without considering the
communication delays. This paper addresses these shortcom-
ings by extending our previous work [18] on distributed
online voltage control in single-phase DNs to the multiphase
unbalanced DNs and developing an asynchronous updating
algorithm. Specifically, we first formulate the voltage control
problem as a convex quadratic programming problem. The
objective is to minimize the network loss and to maintain the
nodal voltages within the feasible ranges using the multiphase
LinDistFlow model. Later, dual ascent method is employed to
develop a synchronous distributed algorithm for solving the
above problem. Finally, the synchronous algorithm is upgraded
to an asynchronous one to address the communication delays.
The contributions of this paper are summarized below:

o Unlike most existing distributed voltage control algo-
rithms that are tailored for simplified single-phase repre-
sentation of DNs, our proposed algorithms are intended
for multiphase unbalanced DNs which are more common
in practice. Moreover, the proposed algorithms incorpo-
rate the most up-to-date information collected through
feedback control. This enables the algorithms to handle
the fast-varying system operating conditions in online
implementations; whereas, most existing works fail to
adapt for such applications.

o To address the issue of communication delays which has
been rarely investigated previously, we propose an asyn-
chronous distributed voltage control algorithm inspired by
[30]. The proposed algorithm allows the updates of con-
trol variables at different agents to be triggered by their
local timers only. The convergence and the optimality-



guarantee of the proposed algorithms are established
analytically and numerically.

o We derive the closed-form solutions to the optimization
subproblems to significantly improve the computational
efficiency. In addition, the communication complexity is
reduced substantially to the extent that only neighborhood
communication is required.

o The numerical results corroborate that our proposed al-
gorithms outperform the benchmark approaches in terms
of loss minimization and voltage regulation. Besides, the
case studies validate that the proposed algorithms can
eliminate voltage violations efficiently and attain the near
global minimum of the network loss rapidly under the fast
variation of system operating conditions.

The remainder of this paper is organized as follows. Section
II introduces the system model and problem formulation. In
Section III, both the synchronous and asynchronous distributed
algorithms are developed. Numerical results are demonstrated
in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the voltage control problem for multiphase
unbalanced DNs is formulated as a quadratic programming
problem. In particular, the linearized multiphase DistFlow
model is adopted and converted to a linear equation between
the squared nodal voltage magnitudes and the nodal power
injections. Furthermore, the network power loss is formulated
as a quadratic function of nodal power injections.

A. Modelling of Multi-phase Distribution Network

Consider a DN which is typically radial. Let G = (N, &)
represent the topology of the DN, where N := {0,1,..., N}
and & represent the bus set and line set, respectively. Each bus
1 except the substation bus (indexed as 0) is directly connected
to a unique parent bus 7; and perhaps a set of child buses,
denoted by C;. Without loss of generality, the buses are labeled
in a way that the index of each bus is always greater than
that of its parent bus. Besides, the line pointing from bus 7;
to bus ¢ is labeled as line ¢ and thus £ := {1,...,N}. Let
A0 e RN*(N+1) denote the line-bus incidence matrix. Hence,
AY; =1if j = m; and AY; = —1if j = i; otherwise AY; = 0.
Partition A into two parts as [ag A], where ay denotes the
first column of A° which is associated with bus 0. Since G is
a connected tree, A is invertible.

Without loss of generality, it is assumed that each bus in
the multiphase unbalanced DN has all three phases. Then, each
system variable associated with each bus or line is represented
by a 3-dimensional vector. For instance, complex vector V; :=
[Vi@ V2 VT denotes three-phase voltages of bus i; I; :=
[I¢ 1P I)T and S; := [S? SP S¢]T denote the line current
and power flow on line ¢, respectively. Different phases are
coupled with each other through Ohm’s law:

V= Vm, —z;1; (D

where z; := r; + jx; € C3*3 denotes the impedance matrix
of line ¢, which is a 3 x 3 full symmetric complex matrix.

In voltage regulation, only voltage magnitudes are useful.
Thus, both sides of (1) are multiplied by their complex
conjugates (x) to eliminate voltage angles, as shown below.

Vi, =Vn, — 2Re [V, © (z7I))] + (z:1;) © (/1)) (2)
where v; == [v¢ v? vf]T = V,; ® Vi € R? is the vector of
squared voltage magnitudes at bus ¢, ® denotes the element-
wise product. Note that the last term on the right-hand side of
(2) is relatively small due to the small entries of z; and thus
can be neglected. To simplify the second term on the right-
hand side of (2), it is further assumed that phase voltages are
approximately balanced [22]. Hence, we approximate V; by
Vicv, where V; denotes the voltage magnitude, o := [1 a a?] T
and o = ¢=7(>7/3)_ Then, the conjugate of line current I¥ can
be approximated by

1
I' =S, 0V,, ~ V—a* oS, 3)

where @ denotes element-wise division. Hence, V., ® (z;I})
can be reformulated as
Vi, © (#T]) = a0 [2] (@ ©8)) ]
= diag(a)z; diag(a™)S; 4)
=Z;S;
where 2; := diag(a*)z;diag(a) € C**3 is a constant matrix.
The first equality follows by plugging V; ~ V;a and (3). The

second equality holds due to the following property: x ©y =
diag(x)y. Thus, (2) is reformulated as (5) by plugging (4).

Vg —V; = 2Re (i;‘SZ) (5)

i

The power flow balance equation at each bus ¢ is given by

Si — (ZzIz) ® I;k — Z Sj = —8; (6)
J€C;
where the second term on the left-hand side represents the
power loss on line ¢, which is relatively small compared to
the line flows and is neglected. The linear approximation of
(6) ignoring the power loss is obtained as

S; — Z S;=—s; (7N
jeC;
Equations (5) and (7) form the linearized multiphase DistFlow
model.

For mathematical conciseness, all variables associated with
non-substation buses are represented by vectors as s =
[s] ---sy]T € C* and v = [v{ ---v]]T € R3" and
all variables associated with lines are shown in vectors S :=
[S{ ---S4]T € C3N. Then, (5) and (7) can be written in
compact form as

(A @ I3)v = 2Re[bdiag(z;)S] — vo - (ag ® 13)
S =Ms

(8a)
(8b)

where bdiag(-) denotes the operator to construct the block-
wise diagonal matrix using a set of square matrices, I3 is the
3-dimensional identity matrix, M := A~ T @ I3 € R3Vx3N
and ® denotes the Kronecker product.



Plugging (8b) into (8a), the linearized multiphase DistFlow
model can be equivalently converted to the following equation.

v =Rp + Xq + volsny 9

where R := 2MT'bdiag([Re(z;)))M and X :=
2M "bdiag ([Im(z;)]) M are 3N x 3N real matrices.

B. Optimization Model of VAR Control

The voltage control can be efficiently accomplished by
adjusting the reactive power outputs of PV inverters, while
the active power outputs are fixed at maximum power points
to fully harvest the solar energy. The reactive power output of
PV inverter on phase ¢ of bus i is constrained by

2 2
— /S = () S iy <SP — (P5s)

where S;  and p; » are the rated apparent power of PV inverter
and the instantaneous maximum available active power.

As discussed earlier, adjusting the reactive power of PV
inverters has a strong impact on the network loss. Hence, it
is necessary to take the network loss into consideration. The
active power loss on line 4, can be expressed as

— V) 'I;] =Re [I] z,I}]

(10)

(1)

where the approximation of I7 is obtained as (3). Here, it is as-
sumed that V., ~ 1, Vi € N\0. Therefore, I} ~ diag(a*)S;.
Plugging it into (11), the approximation of Loss; is shown as

Loss; ~ Re [S/ diag(c)z,diag(a*)S;]

Loss; = Re [(V,

= SHdiag(a)r;diag(a*)S; (12)
=8/'E;S;
where T; = diag(a)r;diag(a*) € C3*3, and S is the

complex Hermitian of S;. Hence, the total active power loss
can be obtained by summing up all line losses as

Loss = SP+S
=s"M"¥Ms
=p R,p+q R.q+2q R,p

13)

where ¥ := bdiag(f;) € C3V>3N R, := M Re(f)M ¢
R3N*3N and R, := M Im(¥)M € R3V*3N_ The second
equality follows by plugging (8b) and the third equality
follows by expanding M "+M and s. Eq. (13) shows the total
power loss is a quadratic function of nodal power injections.

Therefore, the VAR control problem for the multiphase
unbalanced DN can be formulated as

min q' R,q+ 2q' R,p (14a)
q
s.t. v=Rp+ Xq+ vplsn (14b)
vIv<v (14¢)
q<g<q (14d)

where the objective is to minimize the total network loss. Since
only the reactive power is controllable, the term pr{Tp isa
constant and thus dropped. Constraint (14c¢) is to ensure the bus
voltages are within the acceptable ranges and (14d) imposes
limits on the nodal reactive power injections. Specifically,

%4 = Gip = —qid) if node (i,¢) has no PV installation,

where qi » denotes the reactive load at node (i,¢). If node

(i, ¢) has PV installation, 4= —qy—1/ S? 4 — (pi(b)2 and
Gy = _q§,¢ + \/qu5 — (pf’d))Q. Here, each node represents

one phase of a bus.

III. DISTRIBUTED ONLINE VAR CONTROL ALGORITHM

In this section, first, a synchronous distributed algorithm
is developed for solving the problem (14) and the online
implementation is facilitated by incorporating the feedback
control. In particular, the closed-form solutions are derived
for updating the control variables, and the communication
requirement is simplified to the extent that only neighborhood
information exchange is required. Later, an asynchronous
distributed algorithm is presented to overcome the commu-
nication asynchrony.

A. Sychronous Distributed Algorithm

The proposed algorithm is developed by using the dual
ascent method and the core idea is to iteratively update the
primal and dual variables [31]. In the synchronous paradigm,
all agents simultaneously update their local control variables
at each iteration. The Lagrangian function of problem (14) is
formulated as

£=q'R,q+2q R,p+p'(v—Rp-Xq

—volan) + B (Rp+ Xq + volsy — V) (15)
+tw'(@-q)+@ (a-9
where p = [pl, - p )T, Boo= (@], BT, w =
W, -, wh]" and @ := [@],--- , @] are Lagrangian

multipliers (dual variables) related to (14c) and (14d), respec-
tively. B By w; and w; are 3-dimensional vectors associated
with bus i.

1) Update of dual variables: Using gradient projection
method, each bus ¢ can locally update its dual variables at
each iteration using (16) with no communication.

Ez(‘kﬂ) = -Hz('k) +a,(v; — ng))_ : (16a)
= [EP cme® -w)| T aeb)
W™ = [0 44 (q, — )] (16¢)
S = [ 3, —q)] (16d)

where a;, @;, 7, and 7; are the step sizes, and []* denotes
the projection operator onto the non-negative range.

2) Update of primal variables: For mathematical concise-
ness, we omit the iteration index k in the following unless
otherwise specified. Since £ is a quadratic function of q, a
closed-form solution of g that minimizes £ can be calculated

as

1. .
a= ;R (—ZRng X - Xt w— w) (17)



By exploiting the closed-form solution, the computation cost is
significantly reduced as it only involves trivial algebraic oper-
ations. The communication complexity is also minimized such
that each bus only needs to exchange partial information with
its neighbors to update the primal variable q;. To demonstrate
the communication simplicity, two important Propositions are
provided and the updating formula for q; at each bus 7 is
explicitly derived.

Proposition 1. Ler B denote the inverse of ﬁr, ie, B :=
f{; L. We partition B into N x N blocks with each block
being a 3 x 3 square matrix. Then, for any pair of buses (i, j)
that are not directly connected, the corresponding submatrix
B;; is a 3 x 3 zero matrix.

Proof. By definition of R,, we have
R ! = (AT ® I3)bdiag [Re(f;) '[(A ® 1)
= Ubdiag[Re(F;) ']U"
where U := AT ®I3. The same partition is applied to matrix

U and therefore U;, = Ay;I3 and Uj, = Ag;I5. Using the
block matrix multiplication rule, the submatrix B;; can be

calculated by
N
BU = Z UikRe(f"k)_ Ujk = Z AkiAije(f'k)_l
k=1 k=1
(18)

Then, if j # ¢ and bus j is not directly connected to bus
i, ApiAr; = 0,Vk € & according to the definition of A.
Subsequently, B;; is a 3 x 3 zero matrix. O

Proposition 2. Let B := [B] ---BL]T € R3N denote
f{; 1IZNle, where each [3; is a 3-dimensional vector associated
with bus i. Then, the update of (3; only involves information
exchange between bus i and its set of child buses Ci;.

M TRe(¥)M and R, := M Im(¥)M

N

Proof. Plugging R, =
into R,7 'R, p, we have
R, 'R,p =M 'bdiag[Re(F;) "' Im(¥;)| Mp
=M"'bdiag[Re(F;)'Im(F;) | P
=(AT e L)P
where P = [P ---P}]" is the vector of active line flows
and P; € R? is the three-phase active power flow on line
i (from bus 7; to bus i); P := [P{---P}]" and P, =
Re(r;) " 'Im(7;)P;. The second equality in (19) holds due to
P = Mp and the last equality follows by plugging M. Thus,
for each 3;, we have

ZAﬂP] =-P;+ Y P,

jeC;

19)

(20)

where the second equahty in (20) is derived using the defini-
tion of matrix A. Therefore, each bus i only needs its own
information, i.e., 15Z and partial information from its child
buses, i.e., f’j, j € Cy, to update 3;. O

Next, the second and third terms on the right hand side of
the expanded form of (17) are simplified to the extent that
only local information is required for the update at each bus.

Let ¢ :=[¢] ~ ¢L)T € R and = [¢) - Cp)T € RV

denote 1R, !XTy and LR !XT, respectively, where <.
and (; are 3-dimensional vectors associated with bus i.
For conciseness, only the update of ¢, is illustrated as the
update of ¢; can be derived accordingly. Plugging R, :=
M "bdiag[Re(F;)]M and X := 2M " bdiag ([Im(2;)]) M into
iR X Ty, we have

1

if{fXT p =M~ 'bdiag [Re(F )*1Im(ii)T]MH
—M'bdiag [Re(F;) " 'Im(z;) T |A 2D
=(AT ®I3)¢
where A := [A] ---A4]T := My and each A, is a 3-

dimensional vector associated with the corresponding bus i

£:=[¢ .-+ ,€,)" and & = Re(F;)"'Im(z,) T A; € R®. By
observmg @) and (8b), we " have
=2 A -n (22)
JjeC;
Like (20), ¢; can be expressed as
N
C=> Ak =&+ > & (23)
Jj=1 j€C;
Let K; denote Re(¥;)~'Im(Z;) " . Substituting &, = KA, and
(22) into (23), we have
¢ =Kip, + Z(Kj — KA, (24)

Jj€C;

Note that for a large portion of buses in a distribution
system, the line connecting a bus to its parent bus (incoming
line) is homogeneous with the lines connecting it to its child
buses (outgoing lines). Thus, K; = K;,Vj € C}; which
gives rise to C = K;p,. For buses whose incoming line is
heterogeneous with the outgomg lines, K; is unequal to K
for some j € C;. However, due to ||K; — K;|| < || K], the
term > (K —K;)A; can still be neglected for these buses
as it is relatively small compared with other terms. Therefore,
the entries of JR; X Ty and 1R !X T 17 associated with bus
1 are expressed as

gi ~ Kiﬁi
¢~ Kip,;

(252)
(25b)

With Propositions 1 and 2 as well as (25), the explicit update
formula for primal variables at each bus ¢ is derived as

)+ ij(w; — ;)

1
Y. B

jef{i,®;,Ci}

& ~P; — Z P; + Ki(p, —
JjeC;
(26)
where q; is the approximation of q;. It can observed that bus 7
only needs to know its own information and partial information
of its neighbors, i.e., the parent bus 7; and child buses Cj, to
update the primal variables.



Due to the relaxation of constraint (14d), the primal vari-
ables calculated from (26) might be infeasible. Hence, the re-
active power injection on each node (¢, ) should be projected
onto its feasible range as

P ~ Ti,e
qsi;; - |:Qi,¢:|
2i,¢

27)

where [-]2 denotes the projection operator onto the range [a, b].

3) Online Implementation: The proposed distributed algo-
rithm leverages the feedback control to enable online imple-
mentation. Here, each bus only needs minimal communication
and computation overhead to update the local control variables.
Each iteration of the algorithm consists of the following five
steps:

Step 1: Measure the local voltage magnitude and real power
flow on the incoming line at bus 1.

Step 2: Calculate P; and update dual variables using (16).

Step 3: Send 152 to the parent bus and w;,w; to the
neighboring buses. Meanwhile, receive P ; from the child
buses and w,,w; from the neighboring buses.

Step 4: Update primal variables using (26) and project q;
onto the feasible region as (27).

Step 5: Apply the reactive power set points at each bus.

B. Convergence Analysis

Lemma 1. Problem (14) is strictly convex.

Proof. To substantiate strict convexity, it suffices to show the
matrix R, is positive definite. Since the resistance matrix r;

is symmetric and o? = o* = —% —&—j@, we have
1 2r3e frfb —rie
Re(t;) = 3 —rab ot _pbe (28)
b‘ n
-3¢ —r)c  2r
where 7'?* is the self-resistance of phase ¢; and 7*%* is

the mutual-resistance between phase ¢, and phase ¢o. We can
see the matrix Re(%;) is symmetric. Moreover, it is positive
definite because it is strictly diagonally dominant. Hence, the
matrix R, := M bdiag[Re(F;)]M is also positive definite.
Therefore, problem (14) is strictly convex. O

For mathematical conciseness, problem (14) is further
rewritten as the following problem.

(29a)
(29b)

1
min ixTHx +c'x
s.t. Ex<b

where x collects the decision variables of (14); H and c are
the coefficient matrix and vector of the quadratic and linear
terms in the objective function, respectively. E and b are
the coefficient matrix and vector of the linear constraints,
respectively. Since problem (29) is strictly convex, its dual
problem can be derived as

1
maxg(y)=— -y EH 'E'y — (EH 'c+b)'y
y>0 2

1
—-c¢'H ¢

3 (30)

where y is the dual variable collecting p, pt, w and @.

Theorem 1. Given the dual and primal updating formulas (16)
and (26), the updating direction vector of the dual variables is
a close approximation of the gradient of the dual function, i.e.,
Vg. Then, the trajectories of primal variables (q) and dual
variables (u, [, w,w) asymptotically converge to the optimal
primal and dual solutions, respectively, if the step sizes are
selected in a way such that the largest eigenvalue of the matrix
D:EHED? is smaller than 2, where D is the diagonal
matrix of step sizes.

Proof. As we illustrated in our previous work [18], if the
iterations of primal and dual variables follow the exact up-
dating formulas (16) and (17), the updating direction of the
dual variable is the gradient of the dual function, i.e., Vg =
(v—=v)",v-=¥)T,(a—q)",(a—q)"]". Furthermore, the
convergence is guaranteed if the step sizes meet the condition
that the largest eigenvalue of the matrix D:EHE'D:? is
smaller than 2 [31]. Hence, to establish the convergence of
the proposed synchronous distributed algorithm, it suffices to
show that the updating direction of the dual variables Ay
using approximated updating formulas (16) and (26), is a close
approximation of the gradient Vg. To this end, let Aqg; denote
the neglected item in the approximated primal update formula,
i.e.,, q; = q; — Aqg;. Then, Ay can be expressed as

V-V v —v+XAq
V-V v—-v—XAq

Y a-q qa-q+Aq g+dg (1)
a-q q—q—Aq

where dg = [(XAq)",~(XAq)",(Aq)",—(Aq)]". In-
deed, Ay is a good approximation of Vg as dg is negligibly
small due to the following features of DNs. Firstly, a large
portion of buses in DNs have homogeneous incoming and
outgoing lines, which means for most buses q; = q; and hence
Aq; = 0. Secondly, for buses with heterogeneous incoming
and outgoing lines the inequality ||K; — K;|| < || K;|| holds.
Thus, the neglected items >, (K; — K;)A; are relatively
small compared with q;. The third one is that the entries of
the matrix X are comparatively small, and hence the entries
of XAq are high-order small terms. Finally, for most buses
v, <v; <V; and g, < q; < @, and hence [|[Vg[| > [|dg]|.
Therefore, Ay is a good approximation of the gradient Vg
and hence the convergence property in [18] also applies to the
proposed synchronous algorithm. O

C. Asynchronous Distributed Algorithm

In contrast to the synchronous algorithm, the updates of
control variables at different agents/buses are only triggered
by their local timers instead of a global clock. Fig. 1 shows
an example of the updating timelines of two agents using the
asynchronous algorithm. Here, each agent has its own duty
cycle consists of two states, namely the idle state and the
awake state. The duration of the awake state is negligibly short
because of the computation and communication simplicity.

Algorithm 1 summarizes the asynchronous distributed algo-
rithm for online voltage control. Each agent makes decisions



Algorithm 1: Asynchronous Distributed Algorithm for
Online Voltage Control

1 Decision variables: q;, By Py @i, Wi

2 Initialization: set 7;, p , ft;,w;,@; to 0 and q; = —q,
where qf; denotes the reactive load at bus i;

3 IDLE:

4 while 7; < T; do

5 Receive f’j from the child buses j € C;;

6 Receive w,, w; from the neighboring buses

j€{m, Cits

7 end

8 AWAKE:

9 Measure local voltage magnitude V; and active power
flow on the in-coming line P;;

10 Calculate P; and update dual variables B, W, Wi
according to (16);

11 Update q; according to (26);

12 Project q; onto the feasible region as (27) and apple g3
to bus i;

13 Measure P; and calculate f’i. Broadcast f’i to its parent
bus m; and w;,w; to its neighboring buses {m;, Ci};

14 Set 7; = 0, get a new realized awaiting time period T;
and go to IDLE.

One duty cycle Awaiting time

Agent 1 [ | [ | [ | n_
t
Agent 2 [ | [ | [ | [ | [ | >
e t
! B Awake state Information exchange |
Fig. 1. Time line example of two agents using the asynchronous algorithm

independently. At idle state, each agent ¢ only receives infor-
mation from its neighbors. When the time elapsed 7; exceeds
the awaiting time threshold 73, agent ¢ enters into awake state
and immediately measures its local voltage magnitude and real
power flow on its incoming line. Then, it will calculate the
intermediate variable f’i and update the dual variables. Next,
the primal variable q; will be updated and projected onto the
feasible region before applying to bus 7. Later, agent ¢ will
broadcast the relevant information to its neighbors and a new
duty cycle begins by resetting ;.

The dual problem (30) can be reformulated as the following
problem by converting the constraints to the indicator function
and adding it to the objective function.

min I'(y) := —g(y) + ¥(y) (32)
yEeR™

where y = [y ..yN]" and m = N x dim(y;); ¥(y) =:
vazl U, (y;) and U,(y;) is the indicator function of y;, i.e.,
U,(y;) =0if y; > 0 and ¥;(y;) = +00 otherwise.

Lemma 2. The gradient of g(y) is block coordinate-wise
Lipschitz continuous with positive constant Lq,...Ly, i.e.,

[Vig(y + Wisi) — Vig(y)|l < Lillsi||

where V,;g(y) denote the i-th block component of Vg(y); W
is the i-th submatrix of W = [W; Wa.. Wy| and W is a
column permutation of m X m identity matrix.

Proof. According to equation (30), we have Vg(y) =
—~EH'ETy — EH 'c — b. Plugging it into ||V,g(y +
W;s;) — Vig(y)||, we have

IVig(y + Wisi) = Vig(y)| = [W/EH'E"W;s|

< |[W/EH'E"W,||si]

The inequality follows due to the definition of matrix norm.
Hence, L; := |[W,/EH'ETW,]|. O

Assumption 1. The awaiting time T; of each agent v is
an independent and identically distributed (i.i.d.) random
variable with exponential probability distribution.

Theorem 2. Suppose that Assumption 1 holds and in Al-
gorithm 1 each local step size «; is chosen such that 0 <
a; < 1/L;, where L; is the Lipschitz constant for the i-th
block of gradient V g(y). Then the sequences of dual variables
yE = [(y5)T...(y&)T]T generated by Algorithm 1 converges
to the optimal value with high probability. That is for any
£ € (0,T(y°) —T*), there exists k(e, p) > 0 such that for all

k > k we have
Pr(l(y")—-T*<e)>1-p

where y© is the initial value of dual variables, T* is the
optimal value of dual problem and p is the target confidence.

Proof. As illustrated in [30], three conditions need to be
satisfied to establish the convergence of the proposed asyn-
chronous algorithm, i.e., the block coordinate-wise Lipschitz
continuity of the gradient of —g(y), the separability of the
function ¥(y) and the feasibility of problem (32). Lemma
2 and definition of ¥(y) ensure that conditions 1 and 2 are
met in our application. Furthermore, since the primal problem
(29) is a strictly convex quadratic programming with linear
constraints, the strong duality holds [32]. Hence, the feasibility
condition also holds and it suffices to show that the updating
formula of y; can be reformulated in the same format as in
[30]. According to Theorem 1, the dual variables of each agent
are updated as

. +
Yyt = [yF + i Vig(y")] (33)
which is reformulated as
yIth = prox, (.Yf +a;Vig(y" )) (34)

where prox,,.y, (y) denotes the proximal operator. Since (34)
has the same format as the updating formula in [30], the
theorem is proven by following the same arguments as in [30,
Theorem V.14].

O

IV. NUMERICAL RESULTS

The proposed synchronous and asynchronous distributed
online voltage control algorithms - denoted as Dist-S and
Dist-A, respectively - are tested on the three-phase unbalanced
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Fig. 3. Convergence of the maximum nodal voltage magnitude for case 1

IEEE 123-bus DN shown in Fig. 2. The line parameters and
the load data can be accessed from [33]. The base voltage
is 4.16 kV and the voltage magnitudes in the case studies
are expressed in the per-unit values. The locations of PV
installations are indicated in Fig. 2. The generation capacity
and rated apparent power of each PV system are set as
200 kW and 1.05 x 200 kV A, respectively. Three cases
are considered to verify the effectiveness of our proposed
algorithms. In the first case, the performance of Dist-S and
Dist-A are compared with four benchmark approaches. In
the second one, we validate the robustness of Dist-S against
the communication failures. The third case corroborates the
effectiveness of Dist-S and Dist-A under the dynamic system
operating conditions. In all case studies, the actual bus voltage
magnitudes and the active power flows on the incoming lines
obtained from local measurements, are used to update the
primal and dual variables. The lower and upper limits for nodal
voltage magnitude are 0.95 and 1.05 p.u. respectively. All tests
are performed using MATLAB on a personal computer with
an Intel Core i7 of 2.5GHz and 16GB memory.
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A. Performance Comparisons

In this subsection, we compare the performance of our
proposed algorithms with four other benchmark approaches.
The first one is the standard form of linear Q-V droop method,
denoted as Droop. The second one is a recently proposed
ADMM based distributed online VAR control strategy (D-
ADMM) [19] which is designed for reducing the voltage
deviations from the nominal value. Two centralized strategies
(Cen-linear & Cen-SDP) are also adopted to verify the optimal
performance of our proposed algorithms, where Cen-linear is
to solve problem (14) in a centralized manner and Cen-SDP
solves a SDP problem converted from the fully nonlinear AC
OPF problem by relaxing the rank-one constraints [21]. To
make comprehensive comparisons, two representative static
cases are considered, namely case 1 and case 2. Specifically,
case 1 often occurs at noon when PV generation is high (95%
of the peak capacity) and load consumption is low (60% of
the peak load), and thus resulting in over-voltage violations; In
contrast, case 2 often occurs at early night when PV generation
is not available and load consumption is high (peak load), and
thereby giving rise to under-voltage violations.

Since in Dist-A different buses updates their control vari-
ables asynchronously, the count of iterations is redefined
such that one iteration contains the same number of updates
with the synchronous algorithm. In particular, the count of
iteration increases by 1 whenever 122 updates are completed.
The awaiting time 7; of each agent in Dist-A is assumed
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to follow the i.i.d. exponential distribution and the mean of
T; is set as 3 seconds without loss of generality. Figs. 3
and 4 show the convergence of the maximum and minimum
nodal voltage magnitudes using different approaches for cases
1 and 2, respectively. It can be seen from the figures that
the curves of Dist-A are more rugged than those of Dist-S
due to the randomized updates of different agents. Besides,
prior to the deployment of VAR control, severe over-voltage
and under-voltage violations are observed in cases 1 and 2,
respectively. Although the Droop method mitigates the voltage
violations to some extent, it fails to eliminate the over-voltage
violations in case 1 as shown in Fig. 3, due to the lack of
coordination between different PV units, especially when the
VAR resources are insufficient. For D-ADMM strategy, both
the maximum voltage magnitude in case 1 and the minimum
voltage magnitude in case 2 converge very slowly and are
still beyond the limits after 100 iterations. The reason is
that the design of the D-ADMM aiming at reducing voltage
deviations, does not consider the voltage constraints and hence
is unable to incorporate the information of voltage violations.
In contrast, our proposed Dist-S and Dist-A remove all voltage
violations rapidly with just a few iterations, which validates
the advantage of our proposed algorithms in voltage regulation
over the Droop and D-ADMM strategies.

Figs. 5 and 6 depict the convergence of network loss using
different approaches for cases 1 and 2, respectively. It can
be observed in these figures that using Dist-S algorithm, the
network losses converge to the smallest values in both cases,
while the converged network losses using Dist-A algorithm,
are slightly higher. It will be shown in the following that their
converged values are nearly global optimal. Using the Droop
method, the network losses have much higher oscillations
compared to those using Dist-S algorithm. Finally, the network
losses using D-ADMM method are higher than those using
Dist-S and Dist-A algorithms as loss minimization is not
considered in D-ADMM method. Hence, our proposed Dist-
S and Dist-A algorithms outperform Droop and D-ADMM
methods in terms of loss minimization.

To substantiate the optimality of our proposed distributed
algorithms, we also compare their converged results with two
centralized approaches, i.e, Cen-linear and Cen-SDP. Table
I summarizes the network losses using our approaches and

TABLE I
NETWORK LOSSES USING THE PROPOSED ALGORITHMS AND TWO
CENTRALIZED APPROACHES

Casel Case2
Methods Loss/kW  Ratio | Loss/kW  Ratio
Dist-S 891.2 1.007 66.1 1.003
Dist-A 894.5 1.011 66.4 1.008
Cen-linear 977.8 1.105 66.1 1.003
Cen-SDP 885.1 1.000 65.9 1.000
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two centralized strategies. As shown in this table, in both
cases Cen-SDP achieves the lowest network losses. However,
since Cen-SDP relaxes the rank-one constraints in the original
fully nonlinear AC OPF problem, the resulting optimal value
represents a lower bound of the minimal loss, which may not
be attained in practice. Here, the network losses caused by
Dist-S and Dist-A are just slightly higher (0.3%-1.1%) than the
global lower bound, which verifies the near global optimality
of our proposed algorithms. Note that even though Cen-SDP
yields the smallest network loss, it can hardly be used for
real-time voltage control in practice due to the considerable
computational and communication burdens. Moreover, it is
worth noting that the network loss using Cen-linear method
is higher than those using Dist-S and Dist-A approaches in
case 1, even though the latter two are developed using the
same model as Cen-linear. The difference is caused by the
model mismatch of the linearized power flow equations and
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the approximation error in nodal voltage and power flows.
Using Cen-linear method, the power flow is approximated by
the linear model; however, Dist-S and Dist-A methods use the
nodal voltage magnitudes and line flows obtained from local
measurements to update the control variables. Consequently,
the adverse impact of model mismatch is mitigated using Dist-
S and Dist-A methods.

Figs. 7 and 8 show the distributions of three-phase voltages
under different methods for Cases 1 and 2, respectively. As
shown in these figures, the voltage distributions are quite
similar in case 2 using Cen-linear, Dist-S and Dist-A methods;
however, in case 1 the voltage distribution using Cen-linear
method is slightly different with those using Dist-S and Dist-
A approaches. Besides, in case 2, Cen-linear method fails
to eliminate all voltage violations due to the approximation
error in the model. Note that since the relaxation of the rank-
constraints is not exact in Cen-SDP approach, its voltage
distributions are quite different with other three approaches.
Fig. 9 depicts the correlation between the estimated voltage
magnitudes derived from the linear power flow model and the
actual voltage magnitudes. This figure shows that the estimated
voltage magnitudes and the actual ones are closely correlated
and the approximation error grows as the voltage deviation
increases.

B. Robustness

To validate the robustness of our proposed algorithms,
case studies with communication interruptions are carried out.
Since Dist-A is an asynchronous algorithm that takes com-
munication delays into consideration, it is inherently robust
against communication interruptions. Hence, we only need
to validate the robustness of Dist-S algorithm. It is assumed
that the communication interruptions, e.g., packet drop, occur
randomly between any two neighboring agents with a prob-
ability p. Tables II and III ummarize the statistical voltage
magnitude and network loss measures with 20 iterations of

TABLE II
STATISTICAL VOLTAGE MAGNITUDE AND NETWORK LOSS MEASURES
WITH DIST-S ALGORITHM CONSIDERING COMMUNICATION
INTERRUPTIONS FOR CASE 1

B maximum voltage magnitude/p.u. Loss/kW

Probability p mean (std) mean (std)
0 1.048 (0) 891.8 (0)
0.1 1.048 (8.4 x 1075) 891.9 (0.083)
0.2 1.048 (1.0 x 10™%) 892.0 (0.105)
0.3 1.048 (1.2 x 10™%) 892.1 (0.126)
0.4 1.048 (1.3 x 10™%) 892.2 (0.129)

TABLE III

STATISTICAL VOLTAGE MAGNITUDE AND NETWORK LLOSS MEASURES
WITH DIST-S ALGORITHM CONSIDERING COMMUNICATION
INTERRUPTIONS FOR CASE 2

. minimum voltage magnitude/p.u. Loss/kW
Probability p mean (std) mean (std)
0 0.961 (0) 67.6 (0)
0.1 0.961 (5.2 x 1075) 67.8 (0.012)
0.2 0.960 (7.1 x 1075) 67.9 (0.017)
0.3 0.960 (8.1 x 1075) 68.0 (0.019)
0.4 0.960 (8.2 x 1075) 68.1 (0.020)
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methods

Dist-S algorithm for cases 1 and 2, respectively. Here, the
scenarios with p = 0 represent perfect communication, which
are used as benchmarks. For other scenarios, the simulation is
performed 1000 times to obtain the statistical outputs. As can
be observed from the tables, both the network loss and voltage
magnitudes change marginally with the increase in the rate of
communication loss. Therefore, our proposed Dist-S is robust
against communication failures.

C. Dynamic Operation Cases

The proposed algorithms are exposed to the dynamic system
operating conditions that capture the variations of demand
and PV generations. The voltage control is carried out for an
entire day using the same minutely load and PV data as [18].
We assume within each minute the loads and PV outputs are
constant. In Dist-S algorithm, the duration of one duty cycle is
set to 3 seconds, and in Dist-A algorithm, the waiting time for
each agent is randomly generated from a uniform distribution
ranging from 2.5 to 3.5 seconds. The simulation results are
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compared with those procured by using Cen-SDP algorithm to
verify the solution quality of our proposed algorithms under
the variation of system operating conditions. The scenario
without VAR control is also considered as a benchmark. Figs.
10 and 11 depict the daily maximum and minimum nodal volt-
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Fig. 14. Profiles of network loss with the sudden disturbance of PV
generations

age profiles using different VAR control methods, respectively.
It is shown that without VAR control the DN would suffer
from severe under-voltage violations during evening and over-
voltage violations at noon. When Dist-S and Dist-A algorithms
are applied, all voltage violations are mitigated efficiently. Fig.
12 plots the relative gaps between the network loss provided by
Cen-SDP algorithm and those provided by Dist-A and Dist-S
algorithms. It is shown that our proposed algorithms achieve
the minimum network loss as the relative gaps are always
below 1.5%. Furthermore, significant loss reduction can be
achieved by invoking our proposed algorithms as the network
loss without VAR control is considerably large. Therefore,
the proposed Dist-S and Dist-A algorithms are efficient in
regulating voltages and minimizing network loss under the
dynamically varying system operating conditions.

The proposed algorithms are also tested in the scenario
with sudden disturbance of PV generation. Fig. 13 shows the
maximum nodal voltage magnitudes when 50% of the PV
generation is lost at the 20th iteration and recovered at the
40th iteration. As shown in this figure, the sudden change of
PV generation leads to the substantial variations of voltage
magnitudes and sometimes even cause voltage violations.
Nevertheless, both Dist-S and Dist-A algorithms can quickly
restore the voltages within the feasible ranges. Fig. 14 plots the
profiles of the network loss with the sudden disturbance of PV
generation. The global minimal values derived using Cen-SDP
algorithm are also demonstrated in this figure. It is shown that
the network losses using Dist-S and Dist-A algorithms trace
the global minimum with a very fast speed even under the
significant variations of system operating conditions.

D. Discussion

In subsection IV-A, the performance of our proposed Dist-
S and Dist-A is compared with two benchmark approaches,
i.e. Droop and D-ADMM. The results indicate that Dist-S
and Dist-A algorithms are more efficient than Droop and
D-ADMM in eliminating voltage violations and minimizing
network loss because Dist-S and Dist-A algorithms fully
exploit the system-wide information for the updates of control
variables. Then, the optimality of the solutions provided by
Dist-S and Dist-A algorithms are validated by comparing them



with those procured by two centralized approaches. The case
studies show that the results procured by implementing Dist-
A algorithm are just slightly different with those procured by
using Dist-S algorithm. This validates the effectiveness of the
Dist-A algorithm.

In subsection IV-B, the robustness of Dist-S algorithm is
validated against communication interruptions. Whenever the
communication loss occurs between two adjacent agents, they
will use the previously received information to update their
control variables. It is shown that the communication failure
has limited influence on the results.

In subsection IV-C, to account for the online application,
Dist-S and Dist-A algorithms are tested for the cases with fast
variations in system operating conditions. The results show
that the performance of Dist-S and Dist-A algorithms are
comparable with an ideal centralized approach. Moreover, it is
shown that Dist-S and Dist-A algorithms can efficiently handle
the sudden disturbances in PV generation.

In summary, Dist-S and Dist-A algorithms are effective for
online voltage control. The former suits the applications when
a global time exists to trigger the updates for different agents,
and the latter is more applicable in practice considering the
communication delays.

V. CONCLUSIONS

In this paper, two distributed online voltage control algo-
rithms are proposed. Different from most existing voltage
control algorithms, the proposed algorithms are designed for
multiphase unbalanced DNs and enable online implementa-
tion to adapt to the fast-varying system operating conditions.
Firstly, we formulate the voltage control problem as a convex
quadratic programming by adopting the linearized multiphase
DistFlow model. Then, the dual ascent method is applied
to derive the synchronous distributed algorithm with closed-
form solutions for optimization subproblems. Furthermore, we
significantly reduce communication complexity to the extent
that only neighborhood communication is required. To deal
with the communication asynchrony, an asynchronous version
of the distributed algorithm is developed. Numerical results
on the IEEE 123-bus DN validate the effectiveness of the pro-
posed algorithms and demonstrate the improved performance
compared with other methods.
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