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Abstract—This paper presents a framework to determine
the feasible dispatch limits of solar photovoltaic (PV)
generation in the unbalanced distribution network considering
the interconnection of electric vehicles (EVs) and associated
uncertainties. The proposed framework determines the lower and
upper dispatch limits of PV generation considering the worst-case
realization of a) the minimum and maximum storage capacity
of EVs, b) the minimum and maximum power dispatch of EVs,
c) the lower and upper bounds for the arrival and departure
times, and d) the available energy at arrival and departure times.
The unbalanced operation of the distribution network as well
as the uncertainty in the maximum PV generation and demand
forecasts were considered. The problem formulation and solution
approach are validated using the modified IEEE 34-bus and
IEEE 123-bus distribution systems. The impacts of the budget of
uncertainty and the vehicle-to-grid operation mode of EV clusters
were addressed in the case studies. It is shown that integrating
EVs with charging capability will increase the lower dispatch
limit or increase the upper dispatch limit of the PV generation.
Moreover, the increase in the budget of uncertainty will reduce
the difference between the upper and lower dispatch limits by
increasing the lower dispatch or decreasing the upper dispatch
limit of the PV generation. Finally, it is shown that the vehicle-
to-grid capability will reduce the total lower dispatch limit or
increase the total upper dispatch limit of the PV generation in
the operation horizon.

Index Terms—dispatchable limit, electric vehicle, solar PV
generation.

NOMENCLATURE
A. Sets and Indices:

Index of bus.

Index of demand.

Index of electric vehicle cluster.
Index of distributed generation.
Index of distribution branch.
Index of distribution feeder.
Index of PV generation unit.
Index of scenario.
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Index of phase.
Index of time.

Lower limit for PV generation v.

Upper limit for PV generation v.

Binary variable indicating the arrival of EV
cluster e on phase ¢ in scenario m.
Interconnection of EV cluster e on phase ¢ to
the distribution network.

Auxiliary binary variable to determine the
connectivity of EV clusters.

Auxiliary binary variable to determine the
connectivity of EV clusters.

Binary variable indicating the departure of EV
cluster e on phase ¢ in scenario m.

Energy stored in an EV cluster.

Real power of a unit on phase ¢ at time t.
Charging power of an EV cluster.
Discharging power of an EV cluster.

Reactive power of a unit on phase ¢ at time ¢.
Real power flow of branch [.

Reactive power flow of branch .

Positive slack variable.

Apparent power flow of branch I.
Squared bus voltage vector in scenario m.

Auxiliary binary variable representing the
uncertainty in minimum energy storage
capacity of EV cluster e connected to phase ¢.
Auxiliary binary variable representing the
uncertainty in maximum energy storage
capacity of EV cluster e connected to phase ¢.
Auxiliary binary variable representing the
uncertainty in available energy storage of EV
cluster e connected to phase ¢ at arrival time.
Auxiliary binary variable representing the
uncertainty in available energy storage of EV
cluster e connected to phase ¢ at departure
time.

Auxiliary binary variable representing the
uncertainty in charging power of EV cluster e
connected to phase ¢.
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Auxiliary binary variable representing the
uncertainty in the arrival time of EV cluster
e connected to phase ¢.

Auxiliary binary variable representing the
uncertainty in the departure time of EV cluster
e connected to phase ¢.

Auxiliary binary variable representing the
uncertainty in discharging power of EV cluster
e connected to phase ¢.
Auxiliary variable representing
sequence.

Arrival time for EV cluster e.
Departure time for EV cluster e.

the time

C. Parameters:

A

ADgy
AE.;

Al
ALl,b
AV,
AN,
Ef,min
Eéé,max

E¢,min

e

o, max
E?

Z¢,arv
e
[¢-dep

ZN?,(LM)

léb,dw

D$,ch,mazx
Pe

P(j),dc,maa:
e

ﬁqﬁ,ch,mam
e

Do,de,mazx
Poe

IR},

Area covered by the solar PV cells v connected
to phase ¢.

Element of demand-bus incidence matrix.
Element of energy storage-bus incidence
matrix.

Element of unit-bus incidence matrix.
Element of line-bus incidence matrix.
Element of PV-bus incidence matrix.

Element of feeder-bus incidence matrix.

The lower uncertainty bound for the minimum
available energy for EV cluster e on phase ¢.
The lower uncertainty bound for the maximum
available energy for EV cluster e on phase ¢.
The difference between the lower and upper
uncertainty bounds for the minimum available
energy for EV cluster e on phase ¢.

The difference between the lower and upper
uncertainty bounds for the maximum available
energy for EV cluster e on phase ¢.

The lower uncertainty bound for the available
energy at arrival time.

The lower uncertainty bound for the available
energy at departure time.

The difference between the lower and upper
uncertainty bounds for available energy at
arrival time.

The difference between the lower and upper
uncertainty bounds for available energy at
departure time.

The lower uncertainty bound for the maximum
charging power for EV cluster e on phase ¢.
The lower uncertainty bound for the maximum
discharging power for EV cluster e on phase
.

The difference between the lower and upper
uncertainty bounds for the maximum charging
power of EV cluster e on phase ¢.

The difference between the lower and
upper uncertainty bounds for the maximum
discharging power of EV cluster e on phase ¢.
Solar radiation converted to electricity by the
PV solar generation v at time ¢ in scenario m.
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Vector of available phases on the branch [ in
distribution network (pf € py)-

Apparent power capacity of branch .
Maximum real power of a unit on phase ¢.

Maximum reactive power of a unit on phase ¢.
Maximum apparent power of a unit on phase

.

Acceptable power factor at distribution feeder
n.

Forecasted arrival time for EV cluster e
connected to phase ¢.

Forecasted departure time for EV cluster e
connected to phase ¢.

The lower uncertainty bound for the arrival
time of EV cluster e connected to phase ¢.
The upper uncertainty bound for the arrival
time of EV cluster e connected to phase ¢.
The lower uncertainty bound for the departure
time of EV cluster e connected to phase ¢.
The upper uncertainty bound for the departure
time of EV cluster e connected to phase ¢.
Budget of uncertainty for arrival time on phase
.

Budget of uncertainty for departure time on
phase ¢.

Budget of uncertainty for minimum energy
capacity in EV clusters connected to phase ¢.
Budget of uncertainty for maximum energy
capacity in EV clusters connected to phase ¢.
Budget of uncertainty for charging power
capacity of EV clusters connected to phase ¢.
Budget of uncertainty for discharging power
capacity of EV clusters connected to phase ¢.
Budget of uncertainty for available energy in
EV clusters connected to phase ¢ at arrival
time.

Budget of uncertainty for available energy in
EV clusters connected to phase ¢ at departure
time.

Charging efficiency of EV cluster e.
Discharging efficiency of EV cluster e.

Total simulation period.

I. INTRODUCTION

OLAR power generation is the fastest growing renewable

resource which is expected to provide a quarter of global
electricity needs and reduce the global CO; emission of the
energy sector by 21% by 2050 [1]. Lowering the energy costs,
reducing the carbon footprint of energy supply to electric
vehicles (EVs), and mitigating the reliance on fossil fuel
resources to generate the electricity required to charge EVs,
are among the motivations to leverage PV generation for EV
charging. The global deployment of EV technology has been
growing rapidly in the last decade and the number of passenger
EVs increased by 63% in 2018 compared to the previous
year worldwide [2]. The increase in the installed capacity
of PV generation as the power supply, and the growing



market of EVs as electric loads with storage capability,
introduce operational challenges to the power grid operators.
Considering the uncertainties in the PV generation and EV
interconnections in the distribution networks, managing the
demand and supply to ensure reliability and network security
is a challenging task. This paper presents a framework to
determine the feasible dispatch limits of PV generation that
ensure the security of the distribution network considering the
uncertainty in the EV interconnection. The organization of this
section is as follows: first, the motivation of this research
is presented, later the existing literature in this domain is
discussed and the contribution of the paper is highlighted.
Finally, the organization of this paper is presented.

A. Motivation of research

The increase in EV sales and improvements to the EV
battery capacity will reshape the electricity demand in the
distribution networks. The changes in the distribution network
demand profile stemming from integrating fast charging and
commercial vehicle charging stations, and residential EV
charging hubs introduce operational challenges in network
security and reliability. The increase in the demand as a result
of charging EVs increases the network loss, deteriorates the
power quality with considerable voltage drops, and increases
the stress on power distribution assets. In this context, effective
coordination among the EV operators and other distributed
energy resources would address the challenges imposed by
EVs in the distribution networks.

Among distributed energy resources, solar PV generation
has the largest penetration in the distribution networks.
Rooftop solar PV panels and utility-scale solar plants improve
the reliability and economics of energy supply as such
energy resources could be placed close to the consumers in
the distribution networks. Serving the EVs with solar PV
generation would further reduce the carbon footprint of the
energy supply chain for EVs. The integration of solar PV in the
distribution network introduces several challenges including
voltage fluctuations, voltage imbalances, reverse power flow,
and protection devices’ malfunctions. Coordinating the PV
generation with EV charging/discharging could mitigate the
adverse effects of PV generation in the distribution networks.

Given the limitations of the current assets in serving the
growing EV demand and the current investment portfolio
on solar PV generation resources in distribution networks,
quantifying the dispatchable limits of PV generation is
crucial to maintain the security of the distribution network.
Quantifying the dispatchable PV generation enables the
distribution system operator to gain an understanding of the
feasible dispatch limits of this generation resource to avoid
voltage violations and demand curtailments. The uncertainties
associated with the EV integration, including the arrival and
departure times and the stochasticity in energy and power
capacity limits, are represented as the uncertainties in demand
and available energy storage capacity in the distribution
network. Motivated by such notions, this research is focused
on determining the feasible dispatch limits of PV generation

with the uncertain interconnection of EVs in the distribution
network.

B. Background and related works

The integration of EV in distribution system operation
was addressed in [3]-[7]. In [3], the chargeable region
for EVs was quantified by formulating a two-stage robust
optimization problem with the network’s technical constraints.
The impacts of charging EVs on the distribution network were
evaluated in [5] considering the uncertainties in the EVs’
ownership, rating, and duration of charging as well as the
distributed generation (DG) penetration. As high penetration
of EVs in the distribution network impacts the operational
and technical measures including power loss, nodal voltage
profile, and operation cost; ensuring the reliability and security
of the distribution network imposes capacity limits on the EV
demand served in the distribution network. An approach to
allocating the EV parking lots and renewable energy resources
was presented in [6] that minimizes the loss in the distribution
network. Meta-heuristic approaches are used to minimize
the loss in the distribution network. An online adaptive EV
charging strategy was proposed in [7] to minimize the voltage
imbalances and violations, transformer capacity violations,
and EV charging cost, while considering the EV owners’
convenience.

Earlier research quantified and improved the PV hosting
capacity in the distribution networks. The impacts of PV
generation capacity on the maximum voltage of the feeder
and line loading along the feeder were investigated in [8§]
considering various demand profiles. Voltage regulation was
used in [9] to improve the hosting capacity of PV generation in
the distribution network. The harmonics injected by distributed
generation and demand could reduce the hosting capacity
of solar PV in the distribution network. Passive filters were
designed in [10] to address this challenge, minimize the
loss and maximize the power factor. In [11] the hosting
capacity of PV generation was maximized using network
management strategies including topology reconfiguration,
capacitor switching, and voltage regulation. Monte Carlo
simulation was used to determine PV deployment scenarios
and power flow was used to evaluate possible violations
in voltage and current constraints. In [12], an approach
to determine the dynamic operation set points of the
energy storage was proposed to mitigate the overvoltage in
distribution networks with high penetration of PV generation.
In [13], voltage droop control was used in transformers to
improve the PV hosting capacity in the distribution network
by increasing the voltage variation boundaries. In [14], the PV
hosting capacity of the distribution network was quantified
using a stochastic framework that leverages Monte Carlo
simulation to determine the PV deployment scenarios. An
algorithm to quantify the hosting capacity of PV generation
in a distribution network was presented in [15]. Monte Carlo
simulation was incorporated to procure the PV deployment
scenarios and time-series power flow simulation was used to
determine the nodal voltages and evaluate network constraint
violations. An approach for allocating the series and shunt



voltage source converters was introduced in [16] to improve
the hosting capacity of PV generation in distribution networks.
In [17] the hosting capacity of PV generation was improved by
regulating the heating and cooling loads of the customers in the
distribution network. A distributed framework using Dantzig-
Wolfe decomposition was proposed to address the consumers’
privacy. An approach to determine the PV hosting capacity
of the distribution network was proposed in [18] considering
the smart inverter control strategies for the PV generation and
battery energy storage. PV hosting capacity is evaluated using
an interval overvoltage probability-based approach to decrease
the risk associated with voltage violations in [19] while
considering the uncertainty in PV generation and demand.

The integration of EV in the distribution network impacts
the hosting capacity of PV generation. Earlier research
addressed the interactions between EV and PV technologies
in the three-phase balanced [20]-[24] and unbalanced [25]-
[27] distribution networks. In [20] the authors proposed a
conceptual framework to investigate the large-scale integration
of solar PV generation and EVs, considering the coordination
among these assets with multiple EV penetration levels. To
reduce the solar PV curtailment and customer costs, [21]
proposed an EV charging management scheme using an
auction mechanism that captured the benefit and voluntary
participation of each customer. A two-stage operation
framework for the EV parking stations with rooftop solar PV
generation was proposed in [22] to schedule the EV charging
in the day-ahead and real-time operations, considering the
uncertainties in the available solar power generation and
customer parking behavior. A decision-tree-based algorithm
was proposed in [23] to decrease the peak demand in the
residential distribution networks by coordinating the flexible
EVs with vehicle-to-grid (V2G) capability with solar PV
generation and battery energy storage. Fast response power
electronic compensation at load side and feeder level, was
used in [24] to control the voltage in the distribution network
with variable PV generation and EV loads. A coordinated
scheme for EV charging and PV generation was proposed
in [25] to alleviate the flow imbalances among the phases in
the distribution network. The coordinated operation of PVs
and EVs in an unbalanced distribution network using energy
storage was proposed in [26]. An online control approach
was developed based on a rolling optimization framework to
ensure the security of the distribution network by regulating
the power output of PV generation units, EVs, and tap changer
settings. In [27], differential evolution optimization was used
to determine the PV and EV outputs that minimize the
power loss and improve the voltage profile in an unbalanced
distribution network. The hosting capacity assessment of
combined PV-EV technology is carried out in [28] ignoring
the uncertainty in EV interconnection.

While extensive research works exist on the operation of
the distribution networks considering the uncertainties in the
EV interconnections, EV owners’ preferences, and solar PV
generation; limited research efforts were made to determining
the dispatch limits for PV generation in distribution networks
considering the unbalanced EV interconnections and the
corresponding uncertainties. Quantifying the dispatch limits

for PV generation provides feasible operation regions that
accommodate the PV generation in the distribution network.
Such solutions would help the system operator to determine
the upper and lower limits of the uncertainty sets associated
with the PV generation that are required for solving the
risk-based distribution network operation problems. In the
bulk power network, quantifying do-not-exceed limits for
renewable resources was proposed in [29]-[31]. In [29], a
robust optimization problem was formulated to determine the
dispatchability limits for a renewable resource. In [30] a data-
driven algorithm was presented that aims to maximize the
utilization of variable renewable generation by determining the
do-not-exceed limits of this resource considering the operating
points of the dispatchable resources. In the previous work
[32], the dispatch limits of PV generation in the distribution
network considering the uncertainty in EV interconnection
were addressed using scenarios. This research is extended
in this paper by capturing the worst-case realization of the
maximum and minimum power and energy capacity, the
available energy at arrival and departure times, and the
arrival and departure times of EV clusters. Furthermore, the
formulated problem is extended to a large-scale network in
this paper.

C. Key contributions and organization of the paper

The contributions of this paper are as follows:

— A mathematical formulation is proposed to quantify the
dispatch limits of the PV generation on each phase
considering the unbalanced operation of the distribution
network.

— The proposed formulation addresses the worst-case
realization of a) the arrival and departure times for EVs,
b) the available energy at arrival and departure times, c)
the maximum and minimum available energy and power
for EVs, to quantify the dispatch limits of PV generation
in the distribution network.

— The uncertainties associated with the maximum PV
generation and demand are captured in the developed
formulation using scenarios.

The rest of the paper is organized as follows: section
IT presents the problem formulation, in which the detailed
descriptions of the objective function and constraints are
presented. The robust optimization solution methodology is
presented in section III. The numerical results are discussed in
section IV. In this section, to evaluate the effectiveness of the
proposed approach for small-scale and large-scale distribution
networks, the modified IEEE 34-bus and IEEE 123-bus
three-phase distribution systems are considered. Finally, the
conclusion is presented in section V.

II. PROBLEM FORMULATION

The proposed problem formulation addresses the
uncertainty in the arrival and departure times, the charging
and discharging power capacity, the maximum and minimum
storage capacity, and the available energy at arrival and



departure times for the EVs. The uncertainties in the
forecasted maximum solar PV generation and electricity
demand are captured in scenarios.

The problem formulation is shown in (1)-(60). The
objective of this problem is shown in (1). The first term in the
objective function aims to maximize the difference between
the lower and upper dispatch limits of the PV generation
units while ensuring that the PV outputs are within these
limits. As shown in the second term of the objective function,
the feasibility of the dispatched PV generation is ensured by
minimizing the mismatch in nodal power balance with the
worst-case realization of the uncertain variables. Minimizing
the binary variable Vf,;m maintains the PV generation
within the lower and upper dispatch limits. The next term
is the normalized difference between the upper and lower
dispatch limits of PV generation. In the second part of the
objective function, vector V:f” y" is a vector composed of the

binary variables assomated with the uncertamtles in EVs (i.e.
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The real and reactive power balances at each node of the
distribution network are enforced by (2) and (3) respectively.

The distribution branch power flow is formulated by (4), (5)
as presented in [33]. Here, PL¢ " e PL}", QL e QLY

Ul? e Uy, and R, X ; are obtalned using [33] The big-M
method is used in (4) and (5) to address the availability of
phases on the distribution branch. The circular constraint
representing the complex power flow limit in a distribution
branch is linearized in (6)-(11) using the technique presented
in [34]. The real and reactive power outputs of a DG unit are
bounded by (12) and (13) respectively. Constraints (14)-(19)
enforce the limits on the real and reactive power supply of
the distribution feeder. The acceptable power factor would
limit the exchanged reactive power at the main distribution
feeder as shown in (18) and (19). Constraints (20)-(21) show
the limits on the real and reactive power outputs of the PV
unit. As shown in (20) and (22), the PV generation is limited
by the nominal capacity of the unit and the collected solar
energy. The reactive power output of the PV unit is within
the upper and lower capacity limits as shown in (21). The
relationship between the lower and upper dispatch limits of
PV generation is shown in (23). The upper PV dispatch limit
is constrained by the nominal capacity of the PV generation
unit as shown in (24). As enforced by (25) and (26), if Vf;m
is 0, the PV generation is within the dispatch limits and
otherwise, it is out of the dispatch limits. Here, the worst-case
realization of the PV generation is characterized by the lower
or upper dispatch limits as shown in (27).

In the proposed formulation, EVs with similar
characteristics are considered as a cluster. The uncertainties
associated with the arrival and departure times i.e. 7.$™97"
and 79" %P during which an EV cluster is connected to
the distribution network are addressed by (28)-(44). Here, the
arrival time is between a lower and an upper limit as shown
in (28)-(29). The lower and upper limits are formulated
using the forecasted arrival time and a difference between

the forecasted arrival time and the uncertain boundaries.
Similarly, the departure time is between the lower and upper
limits as shown in (30), (31). The relationship between
the arrival time and the binary variable representing the
arrival of the EV cluster (IC’eA’t’d)’m) is shown in (32), (33).
As shown here, if t > Tj”m’““’ then (ICQ;(b’m = 1) and
otherwise (I Cé ,g(b"m = 0). Similarly, the relationship between
the departure time and the blnary variable representing the
departure of the EV cluster (IC,; D,¢m ™) is shown in (34), (35).
As shown here, if t > T$™ d”) then (IC.; D.¢m- — 0y and
otherwise, (ICff’ = 1). Here, c;’ ™ is an aux1liary variable
that accounts for the time index, and T.$™47% . [ Cﬁ g‘z”m is
a nonlinear term that is further linearized using McCormick
envelopes [35]. A similar technique is used to handle the
nonlinear terms in (33)-(35). The interconnection state of an
EV cluster is determined using (38)-(40). Here, I C’¢ =1
if the vehicle cluster e arrives at the charging station
( C’A %™ — 1), and does not leave the charging station i.e.
Ic; t¢ ™ = 1). The arriving and departing states of an EV
cluster are determined by (41) and (42). Here, if an EV
cluster leaves the charging station then thm =1, and when
an EV cluster arrives at the charging station [ Aftm = 1. The
budgets of uncertainty for arrival and departure times are
enforced by (43) and (44) respectively.
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Once, an EV cluster e is connected to the grid, constraints
(45) and (46) enforce the limits for the available energy in
its batteries. The available energy at arrival and departure
times is enforced by (47)-(50) using the big-M method. The
available energy at arrival and departure times is uncertain and
defined as a portion of the maximum and minimum capacity



of the EV cluster batteries. In (47), the first term on the right-
hand side represents the uncertainty in the state of charge in
terms of the minimum battery capacity of EVs and the second
term represents the uncertainty in the minimum capacity of
EV batteries connected to the distribution network. Similarly,
in (49), the first term on the right-hand side represents the
uncertainty in the state of charge in terms of the maximum
battery capacity of EVs while the second term represents
the uncertainty in the maximum capacity of EV batteries
connected to the distribution network. The power dispatch
for an EV cluster is limited by (51), (52). The charging and
discharging power of an EV cluster before the arrival time and
after the departure time is zero. The hourly stored energy in
an EV cluster is determined by its charging and discharging
power dispatch as shown by (53) and (54). The budget of
uncertainty for the minimum and maximum battery capacity
of EV clusters, the available energy at arrival and departure
times, and the maximum charging and discharging power of
EV clusters are enforced by (55)-(60) respectively.

III. SOLUTION METHODOLOGY

The proposed solution methodology is based on the column
and constraint generation (C&CG) technique. The steps taken
to solve this problem are as follows:

1) Step 1 - Initialization: Initialize the upper and lower bounds
and the iteration counter £ as follows: LB = —oo, UB = oo,
k=0

2) Step 2 - Solve the master problem: Solve the problem (61)-
(67) and update the lower bound.

mmin c'x+n (61)
S.t.
Ax <d (62)
n>b's¥ (63)
Dy* < g;Vw <k (64)
Hy” +s¥ = f;Vw <k (65)
(E+Mo))x+Gy” =h;Vw < k (66)
Nvi + Fy* < g;Vw <k (67)

Here, « represents the vector of first-stage decision variables

l¢,m ugﬁ,m

Le. |l Uyl ,Vfgm}, and y represents the second-stage

¢,m,ch ¢ m,dc
Pe t Ps,t ’

recourse decision variables i.e. Pf, ’tm,
P, PLTL QU QUi QU
PLY™, QLY;™ and U}',. The constraint (62) represents (23)-
(26)5 constraint (64) represents the set of constraints (4)-(22).
The constraint (65) represents (2) and (3). Constraint (66)
represents (27) and constraint (67) represents (45)-(60). The
lower bound is determined using (68).

LB =YY S [V - a1y R
m v ¢} t

+ k1 (68)

3) Step 3 - Solve subproblem: Solve the subproblem (69)-(75)
and update the upper bound using (82). Here, (74) represents

5

and the state variables

(28)-(40) and (42)-(44). The constraint (75) represents (41). To
solve the subproblem, the problem (69)-(75) is transformed
into (76)-(81) using the duality theory. The nonlinear terms
o "m3 and v, are linearized using McCormick envelopes
[35].

UJZZ(LV% ,ansian s (69)
S.t.

Dy <g 1T (70)
Hy+s=f e (71)
Gy=h—-(E+ Mo)z* T3 (72)
Fy<qg— Nv 1Ty (73)
Wz<R (74)

Qz=J (75)
6= U(w?z%gfm SgTﬂ'l—l—fTﬂ'g—i—[h —(E+ Mo)z*|" w5+
- (g — NI/)T wy (76)
D'mi+H 7+G w5+ F wys <0 (77)

Ty < b, T3 free (78)

w, ™4 <0 (79

Wz<R (80)

Qz=J 8D

| oI
UB = min{UB, ; Z %:Xt:(vmg — ’pg,maz’ )+

@*(k-i—l)} (82)

4) Step 4 - Checking the convergence criterion: f UB—LB <
€, then terminate the algorithm, otherwise go to Step 5.

5) Step 5 - Generate columns and constraints: Add constraints
(63)-(67) to the master problem and go to Step 2. Algorithm 1
is the proposed algorithm to determine the PV dispatch limits
in which K represents the maximum number of iterations.

I'V. NUMERICAL RESULTS

Two test cases are considered in this section. The first test
case uses the modified IEEE 34-bus system and the second
test case presents the modified IEEE 123-bus system. The
simulations are performed on a server with dual 14 Core Intel
Xeon 2.6 GHz and 380 GB of memory. CPLEX 12.8 is used
as the solver.



Algorithm 1 The proposed algorithm to quantify the PV
dispatch limits

Initialization: £k =0, <1073, LB = —ococ and UB = ¢
Repeat for m € M

1: while £ < K do

2:  Solve the master problem (61)-(67).
Update the LB as given in (68).
Solve the subproblem (76)-(81).
Update the UB as given in (82).
Check the convergence criteria:
if (UB — LB < ¢) then

Stop
else
10: Generate column and constraints (63)-(67) and set

k=k+1.

11:  end if
12: end while

R AN

A. Modified IEEE 34-bus system

The modified IEEE 34-bus distribution system is considered
as a test case. The hourly peak demand and hourly PV outputs
are shown in Fig. 1. One three-phase and three single-phase
dispatchable DG units are installed as shown in Table 1. Here,
DGl is a three-phase DG unit and DG2-DG4 are single-phase
DG units connected to phases A, B, and C respectively. Three
single-phase PV units, i.e. PV1, PV2, and PV3 are connected
to phases A, B, and C respectively. The characteristics of the
PV generation units are shown in Table II. Table III shows the
characteristics of the EV clusters. Here, the interconnection of
EV cluster 1 is three-phase; however, the EV clusters 2-4 are
connected to phases A, B, and C respectively. The maximum
charging power for each EV is 7.4 kW . The peak demand on
phase A is 593.88 kW, 349.86 kVar, the peak demand on
phase B is 572.32 kW and 337.12 kV ar, and the peak demand
on phase C is 567.42 kW and 336.14 kVar. Considering
the driving range of 27.9 miles per day for each EV [36],
and 30 kW h battery capacity, the forecasted stored energy at
arrival time is 60% of the maximum capacity and the EV. The
charging and discharging efficiency for the EV clusters are
90%. The following cases are considered:

Case 1 — PV dispatch limits with forecasted PV generation
and demand.

Case 2 — PV dispatch limits with forecasted PV generation
and demand, and the uncertainty in the EV interconnection.

Case 3 — PV dispatch limits with stochastic forecasted
PV generation and demand, and the uncertainty in the EV
interconnection.

TABLE I: Dispatchable DG Units’ Characteristics

DG Bus szn Pmaz le’ﬂ Qmﬂ..’lf
&W) (kW) (kVAR) (kVAR)
I i 0 60 30 30
2 6 0 50 25 25
3 24 0 20 15 15
I 16 0 20 15 15

1) Case 1 — PV dispatch limits with forecasted PV
generation and demand: In this case, the PV dispatch limits

TABLE II: PV Generation Units’ Characteristics

PV Bus PTVLZTL P'IILLZIL' min max
(kW) (kW) (kVAR)  (kVAR)
1 17 0 150 -75 75
2 22 0 150 -75 75
3 30 0 150 -75 75

TABLE III: Characteristics of EV Units

EV Number Bus pmer  gprwn pmar
cluster  of vehicles (kW) (kWh)  (kWh)
1 24 4 177.6 72 720
2 3 6 222 9 90
3 4 24 29.6 12 120
4 3 16 222 9 90

are procured without considering any EV interconnection
to the distribution network. The forecasted values of the
maximum PV generation and demand are used in this case.
The PV dispatch limits on each phase are demonstrated in Fig.
2. At hours in which the lower limit of PV generation is greater
than zero, the distribution feeder and DGs are incapable of
supplying the demand, and therefore; the rest of the demand is
supplied by the PV generation units. For example, on phase B
at hour 11, the lower limit of the PV generation is 27.927 kW.
At this hour, the total real power demand is 566.480 kW,
and the dispatch of the main distribution feeder, DGI1, and
DG3, are 498.553 kW, 20 kW, and 20 kW respectively.
Here, DGs and the distribution feeder reached their maximum
capacity on this phase, and consequently, the rest of the load
(i.e. 27.927 kW) is supplied by the PV generation units.
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= 1600 3
<1000} >
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Fig. 1: Demand and maximum PV generation profiles

2) Case 2 — PV dispatch limits with forecasted PV
generation and demand, and the uncertainty in the EV
interconnection: In Case 2, the EV interconnection and the
worst-case realization of the uncertain parameters in the EV
clusters including the maximum and minimum EV battery
capacities, the maximum charging and discharging power for
EVs, the available energy at arrival and departure times, as
well as the arrival and departure times are considered.

The uncertainty sets for maximum available energy are
[684,720] kW h, [81,90] kW h, [108,120] kW h, and [81, 90]
kWh for the first to fourth EV clusters, respectively.
The uncertainty sets for the minimum available energy are
[72,144] kW h, [9,18] kW h, [12,24] kW h, and [9, 18] kW h
for the first to fourth EV clusters, respectively. The uncertainty
sets for available energy at arrival time are [396,468] kW h,
[49.5,58.5] kW h, [66,78] kW h, and [49.5,58.5] kWh for



TABLE IV: Total Lower PV Dispatch Limits with the Budget of Uncertainty

Total lower dispatch limits

Budget of Uncertainty [%] on each phase (kWh) Covergence
Scenario 0% Fmin  [®Fmez THarv Tédep  Téch  Téde phage A Phase B Phase C Iterations
1 (Case 2) 100 100 100 100 100 100 245.630 345.487  268.537 7
2 0 0 100 100 100 100 210.630  293.460 230.770 6
3 0 0 0 0 100 100 179.130  257.460  197.770 4
4 0 0 0 0 0 0 179.130  257.460 197.770 4
- Case 1 80.493 111.88 82.873 2

TABLE V: Worst-Case Realization of Arrival and Departure Times for the IEEE 34-bus System

Arrival and departure times

for EV clusters on buses 6, 24 and 16 [hour]

Scenario TEery Tla,dep le,arv le,dep e Tlc,dep Toary Tzﬂ,dcp T;,arv Té),arv Tearo T;,dep
1 (Case 2) 10 17 10 17 10 17 10 17 10 15 8 15
2 8 15 8 17 8 17 10 15 10 15 10 17
3 10 17 10 17 10 17 10 15 8 17 8 15
4 10 17 10 17 10 17 10 17 10 15 8 15
TABLE VI: Total Lower Dispatch Limits of the PV Generation
. Total lower dispatch limits
Budget of Uncertainty (%) on each phase (kWh)
Scenario AwarvAadep  AbarvAbdep  Acatv Ac,dep Phage A Phase B Phase C
5 (Case 2) 100 100 100 100 100 100 245.630  345.487  268.537
6 50 50 50 50 50 50 223.430  301.033  240.797
7 0 0 100 100 100 100 186.183  345.487  268.537
8 0 0 0 0 100 100 186.183  287.967  268.537
9 0 0 0 0 0 0 186.183  287.967  214.500

first to fourth EV clusters, respectively. The uncertainty sets
for the available energy at departure time are [583.2, 720]
kWh, [72.9,90] KWk, [97.2,120] kW h, and [72.9,90] kW h
for first to fourth EV clusters, respectively. The uncertainty
sets for the maximum charging/discharging power dispatch
are [177.6,213.2] kW, [22.2,26.64] kW, [29.6,35.52] kW,
and [22.2,26.64] kW for the first to fourth EV clusters,
respectively. Finally, the uncertainty sets for arrival and
departure times are 7297 € [8,10] and T2-4eP € [15,17],
respectively.

Fig. 2 demonstrates the dispatch limits for the PV
generation units in this case. As shown in this figure, the lower
PV dispatch limits on all phases at all hours are either equal or
greater than those in Case 1. The solution algorithm converges
after 7 iterations in this case. Considering the interconnection
of EVs to the distribution network, the following observations
were made:

a) The impact of V2G on the dispatch limits of PV generation
To investigate the impacts of V2G on the PV dispatch limits,
it is assumed that the EV clusters are unable to discharge and
inject power back to the grid (non-V2G mode). Fig. 2 shows
the dispatch limits for PV generation with and without V2G
mode. Here, the lower dispatch limits for PV generation at
all hours are either higher than or equal to the lower dispatch
limits in Case 1, because the EVs are incapable of injecting
power to the grid. As shown in Fig. 2¢, on phase C at hours 12,
13, and 14, the lower PV dispatch limits are increased from
0 kW in Case 1 to 33.773 kW, 86.597 kW and 54.767 kW
respectively.

b) The impact of the budget of uncertainty
The budget of uncertainty is defined as the maximum number

of changes allowed for the uncertain parameters within the
defined uncertainty sets. Such changes are represented by

th(f clcllanges¢in t}l:e b(ii)narcylf variables (53 tm s ’yi ’tm, 5$ ’tm’am,
,1,ae ,mM,C ,m,dc S .
5e,t b, et s Met > Tg’m’am’ Tg’m’dep, during the

operation horizon. For instance, for maximum EV clusters’
energy capacity, I'*Fmac = () means that the budget of
uncertainty is 0%, while for the EV clusters on each phase
in 24 hours, ['®>Eme= = 48 indicates that the budget of
uncertainty is 100%. To evaluate the impact of the budget
of uncertainty on the PV dispatch limits, multiple scenarios
shown in Table IV, are considered. This table shows the total
lower dispatch limits for the PV generation in the distribution
network by limiting the budget of uncertainty for 1) the
minimum and maximum EV energy capacity, 2) minimum and
maximum charging and discharging power, and 3) available
energy at arrival and departure times. In these scenarios, the
budgets of uncertainty for the arrival and departure times are
100%. Table V shows the worst-case realization of the arrival
and departure times for the EV clusters on phases A, B, and C
in the scenarios presented in Table I'V. Fig. 3 demonstrates the
PV dispatch limits on phases A, B, and C in these scenarios.

The impacts of the budgets of uncertainty (A®%™ and
A%:4¢P) on the total lower PV dispatch limits are shown using
the scenarios in Table VI. Here, the budgets of uncertainty for
the maximum and minimum energy and power capacities of
EVs as well as the energy at arrival and departure times are
100%. As shown in this table, when the budgets of uncertainty
for arrival and departure times decrease from 100% to 50%,
the total lower dispatch limits on phases A, B, and C decrease
by 9.04%, 12.87%, and 10.33% respectively. It is worth noting
that 100% budget of uncertainty for the arrival and departure
times means, A®*¥ = 2 and A®?P = 2 and 0% budget of
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Fig. 2: The total PV dispatch limits for (a) phase A, (b) phase
B and (c) phase C in Case 1 and Case 2 with and without
V2G.

uncertainty means A% = () and AP = (.

As it is shown in Fig. 3 and Table IV, once the budget
of uncertainty is 100% for all the uncertain variables (Case
2), the total lower PV dispatch limit reaches its maximum
value. In Table IV, the highest total lower PV dispatch limits
are 245.630 kW h, 345.487 kKWh, and 268.537 KWh on
phases A, B, and C respectively. Moreover, once the budgets
of uncertainty for the EVs’ energy and power capacity, and
the available energies at arrival and departure times, are zero
the total lower PV dispatch limits for the PV generation on
phases A, B, and C reach the lowest values of 179.130 kW h,
257.460 kWh, and 197.770 kW h respectively. Table IV
shows the number of iterations in which the proposed solution
algorithm converged.

3) Case 3 — PV dispatch limits with stochastic forecasted
PV generation and demand, and the uncertainty in the EV
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Fig. 3: The total PV dispatch limits for (a) phase A, (b) phase
B and (c) phase C in Case 2 with the budget of uncertainty.

TABLE VII: Lower PV Dispatch Limits Considering the
Uncertainty in the Forecasted PV Generation and Demand

Scenario Phase A Phase B Phase C

S1 122.714 196.331 108.155

S2 127.682  201.118 114.754

S3 257.925  337.235  277.360

S4 319.060 394.124  343.449

S5 415.159  482.840  450.023
Expected Value  238.142  311.915  249.399
Case 2 245.630  345.487  268.537

interconnection: In this case, the forecast errors in demand
and maximum PV generation are captured by generating 100
scenarios. The Gaussian probability distribution is used to
represent the forecast error of the maximum PV generation.
The mean value of the probability distribution is the forecasted
PV generation in Cases 1 and 2, and the standard deviation is
0.0166 of the mean value. The hourly total upper and lower
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Fig. 4: The PV dispatch limits for stochastic PV generation
and demand in 5 scenarios and the expected value for 100
scenarios on phase C.

TABLE VIII: Characteristics of PV Generation Units in the
IEEE 123-Bus System

PV BUS Pmln P"’LCL.’E szn Qm(l.’ﬂ
1 1 0 400 -200 200
2 13 0 400 -200 200
3 18 0 400 -200 200
4 25 0 400 -200 200
5 40 0 200 -100 100
6 48 0 200 -100 100
7 60 0 200 -100 100
8 70 0 400 -200 200
9 81 0 200 -100 100

10 87 0 400 -200 200
11 101 0 400 -200 200
12 115 0 400 -200 200

dispatch limits of PV generation on phase C in 5 scenarios (S1-
S5) and the expected upper and lower limits for 100 scenarios
are shown in Fig. 4. Furthermore, Table VII shows the day-
ahead total lower dispatch limits for 5 scenarios and the
expected value for 100 scenarios for all phases. The expected
upper and lower dispatch limits of PV generation for 100
scenarios are compared to those presented in Case 2. As shown
in Table VII, the expected total lower PV dispatch limits are
smaller than those in Case 2.

B. Modified IEEE 123-Bus System

Here, the real and reactive peak demands on phase A are
1420 kW and 775 kV ar; on phase B are 915 kW, 515 kVar;
and on phase C are 1155 kW and 635 kV ar, respectively. As
shown in Table VIII, 12 solar PV generation units are installed
and the characteristics of the DG units are shown in Table
IX. Here, DG4 and DGS are single-phase DGs connected to
phase A, and other DG units are three-phase resources. The
characteristics of 6 EV clusters are shown in Table X where
EV clusters 1 and 4 are on phase A, EV clusters 2 and 5 are
on phase B, and EV clusters 3 and 6 are on phase C. The
upper and lower limits of PV generation are evaluated in the
following cases:

Case 1 — PV dispatch limits with forecasted PV generation
and demand

Case 2 — PV dispatch limits with forecasted PV generation
and demand, and the uncertainty in the EV interconnection

TABLE IX: Characteristics of DG Units in the IEEE 123-Bus
System

DG BllS P"L’LTL Pmaa: szn ina(t
1 29 0 100 -60 60
2 8 0 100 -60 60
3 44 0 100 -60 60
4 111 0 150 -75 75
5 122 0 50 -25 25

TABLE X: Characteristics of EV Clusters in the IEEE 123-
Bus System

EV cluster Number of Bus Pmaex  pmin  pmax
vehicles
1 20 13 148 60 600
2 12 51 88.8 36 360
3 10 65 74 30 300
4 6 18 44.4 18 180
5 20 40 148 60 600
6 10 88 74 30 300

1) Case 1 — PV dispatch limits with forecasted PV
generation and demand: In this case, the feasible dispatch
limits for PV generation are determined while ignoring the
EV interconnections to the network. The lower and upper
limits for PV generation on phases A, B, and C are shown
in Fig. 5a, Fig. 5b, and Fig. 5c respectively. As shown in
these figures, once the PV generation is more than demand
the excess PV generation is curtailed. At hour 13, the total
real demand on phase A is 1405.80 kW ; the PV generation
units serve the load in this hour and the main distribution
feeder and DGs serve 0 kW. The available PV generation at
this hour is 1776.768 kW and the PV generation curtailment
is 370.968 kW. The lower PV dispatch limits on phases A,
B, and C are zero at all hours, which shows that the main
distribution feeder and DGs can supply the demand on these
phases.

2) Case 2 — PV dispatch limits with forecasted PV
generation and demand, and the uncertainty in the EV
interconnection: In this case, the maximum battery capacity
of each EV is 30 kW h and the minimum capacity is 10% of
maximum capacity. EVs can leave at the departure time with
a fully charged battery and the forecasted available energy at
arrival time is 25% of the maximum EV’s battery capacity.
The uncertainty sets for the maximum available energy in EV
clusters 1-6 are [540,600] KWk, [324, 360] kW h, [270, 300]
kWh, [162,180] kWh, [540,600] kWh, and [270,300]
kW h respectively. The uncertainty sets for the minimum
available energy for EV clusters 1-6 are [60,72] kWh,
[36,43.2] kWh, [30,36] kWh, [18,21.6] kWh, [60,72]
kWh, and [30,36] kW h respectively. The uncertainty sets
for the available energy at arrival time for EV clusters
1-6 are [120,172.8] kWh, [72,103.68] kWh, [60,86.4]
kWh, [36,51.84] kWh, [120,172.8] kWh, and [60, 86.4]
kW h respectively. The uncertainty sets for the available
energy at departure time for EV clusters 1-6 are [480, 600]
kWh, [288,360] kWh, [240,300] KW h, [144,180] kWh,
[480,600] kWh, and [240,300] kWh respectively. The
uncertainty sets for the maximum charging/discharging
power dispatch for EV clusters 1-6 are [148,207.2] kW,



TABLE XI: Total Upper PV Dispatch Limits in Case 1 and
Case 2 with and without V2G

Case Phase A Phase B Phase C

(kWh) (kWh) (kWh)
Case 1 12746.876 9358.380 11124.780
Case 2 (with V2G) 13377.627 10022.187  11422.419
Case 2 without V2G  13252.216 9813.846 11357.312
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TABLE XII: Total Upper PV Dispatch Limits Considering the
Budget of Uncertainty

Total upper limits on each phase (kWh)

Time (Hour)

Scenarios Phase A Phase B Phase C
1 (Case 2) 13377.627 10022.187 11422.419
2 13411.323  10063.659 11435.379

3 13445.019  10105.131 11431.467
4 13445.019  10105.131 11448.339
Case 1 12746.876 9358.380 11124.780
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Fig. 5: The total PV’s dispatch limits for (a) phase A, (b) phase
B and (c) phase C in Case 1, and Case 2 with and without
V2G.

[88.8,124.32] kW, [74,103.6] kW, [44.4,62.16] kW,
[148,207.2] kW, and [74,103.6] kW respectively. The
uncertainty sets for arrival and departure times are similar to
the previous case study. The impacts of V2G operation mode
and the budget of uncertainty on the PV dispatch limits are
investigated.
a) The impact of V2G operating mode on PV dispatch limits
Fig. 5 demonstrates the upper PV dispatch limits with and
without V2G capability of the EV clusters. As shown in this
figure, once the EVs are connected to the distribution network
the upper dispatch limits on all phases are increased compared
to Case 1. Table XI shows the total upper PV dispatch limit
on each phase. As shown in this table, the total upper dispatch
limits are increased with V2G capability compared to the case
in which EVs do not have V2G capability. Similar to Case

1, the total lower PV dispatch limits on all phases are zero
which shows that the main distribution feeder and DGs are
capable of supplying the demand. The solution is procured
in 6 iterations once the V2G capability of EV clusters is
considered.

b) The impact of the budget of uncertainty

Here, similar scenarios shown in Table IV are considered.
For all scenarios, the minimum and maximum arrival and
departure times are similar to the previous test case. Table
XII shows the total upper dispatch limits of PV generation
on phases A, B, and C. As shown in this table, the increase
in the budget of uncertainty from 0% to 100% will decrease
the total upper dispatch limits by 67.392 kW, 82.944 kW
and 25.920 kW on phases A, B, and C respectively. Fig.
6a, Fig. 6b, and Fig. 6¢c demonstrate the effect of the budget
of uncertainty on the hourly upper and lower PV dispatch
limits on phases A, B, and C, respectively. Here, as the
budget of uncertainty decreases the total upper dispatch limits
will increase which means less total PV curtailment in the
operation horizon. Furthermore, the lower dispatch limits are
not affected by the budget of uncertainty. The worst-case
realization of the arrival and departure times for the EV
clusters are shown in Table XIV.

Similar to Table VI, the impacts of the budget of uncertainty
for the arrival and departure times, i.e. A®arv apnd A®dep
on the total upper PV dispatch limits are shown in Table
XIII. Here, when the budget of uncertainty decreases from
100% to 0%, the total upper dispatch limits on phases A, B,

TABLE XIII: Total Upper PV Dispatch Limits with Budget of
Uncertainty for Arrival/Departure Times

Total upper limits on each phase (kWh)  Convergence
Scenarios Phase A Phase B Phase C Iteration
5 13377.627  9968.197 11422.419 6
6 13411.371  10042.433 11422.419 4
7 13421.494  10022.187 11448.747 3
8 13421.494  10076.177 11458.467 3
9 13421.494  10076.177 11469.291 2




TABLE XIV: Worst-Case Realization of Arrival and Departure Times in the IEEE 123-bus system

Arrival and departure times for EV clusters [hour]

Scenario Tla,ar'v Tla,dep sz,arv sz,dep T;,arv T?:z,dep Tf'am} T;,dep T:.m'v TSb,arv Té:,aru T(;:,dep
1 (Case 2) 10 15 8 17 8 15 8 17 10 15 8 15
2 8 17 8 15 8 15 10 17 8 15 8 15
3 10 17 10 15 10 17 10 15 10 17 10 15
4 10 17 10 15 10 17 10 15 10 17 10 15

and C increase by 43.867 kW, 107.98 kW, and 46.872 kW
respectively. Table XIII, also shows the number of iterations
in which the proposed algorithm converged. It is worth noting
that as the number of uncertain variables (i.e. the available
energy at arrival and departure times, the maximum and
minimum energy and power capacity of the EV clusters, and
the arrival and departure times of the EV clusters) increases,
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Fig. 6: The impact of budget of uncertainty on the PV dispatch
limits on (a) phase A, (b) phase B and (c) phase C.

the number of constraints formed by using the McCormick
envelopes increases. This will increase the number of iterations
and the solution time. Table XV shows the simulation times
and the number of iterations for scenarios shown in Table XII
for the IEEE 123-bus system.

V. CONCLUSION

This paper presents a framework to quantify the dispatch
limits for the PV generation in the unbalanced distribution
networks with EV interconnection. The presented framework
captures the uncertainties associated with the interconnection
of EVs, the available energy at arrival and departure times, as
well as the uncertainty in power and energy capacity of the EV
clusters. It is shown that integrating the EVs with no V2G will
increase the lower or upper dispatch limit of the PV generation
as the distribution feeder and DG capacities are limited, and
the energy requirement for charging the EVs will increase the
lower and upper PV dispatch limits. Moreover, the impact of
the budget of uncertainty and the operating mode of EVs (V2G
and non-V2G) on the dispatch limits of the PV generation,
are investigated. It is shown that increasing the budget of
uncertainty for EVs will increase the total lower dispatch limits
or decrease the total upper dispatch limits of PV generation
in the day-ahead operation. Moreover, V2G reduces the total
lower dispatch limits or increases the total upper dispatch
limits of PV generation. To capture the uncertainty associated
with maximum forecasted PV generation and demand, a
scenario-based approach is used to determine the upper and
lower dispatch limits of the PV generation. The worst-case
realization of the EV interconnection parameters is considered
in each scenario and the expected lower and upper PV dispatch
limits are calculated.

Future research in this domain could focus on data-
driven approaches based on a limited number of observed
samples to quantify the uncertainty associated with the EV
interconnection and determine the upper and lower dispatch
limits of PV generation. Such approaches could capture
distribution network loss to quantify the locational PV dispatch
limits in the distribution network.

TABLE XV: Simulation time of scenarios in Tables XIV and
IV for the IEEE 123-bus system

Simulation time

Scenario . Tteration
(hr: min)
1 (Case 2) 3:55 6
2 3:13 5
3 2:38 4
4 3:06 5
Case 1 0:33 2
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