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Abstract— The increase in the installed capacity of small-scale
photovoltaic generation and the growing demand for electric
vehicles introduce operational challenges for the unbalanced
distribution networks. This paper presents a two-stage
optimization problem to determine the dispatchability limits of
photovoltaic generation considering the electric vehicles’
interconnection to ensure the security of the distribution network.
The uncertainty associated with a) the state of charge at arrival
and departure times; b) the energy and power capacity of electric
vehicles; ¢) the maximum forecasted solar radiation and demand
were considered. The proposed optimization problem is solved
using the column-and-constraint-generation approach. A
modified IEEE 13-bus test system is used to evaluate the
effectiveness of the proposed framework.

Index Terms-- dispatchability limits, electrical vehicles,
photovoltaic generation, unbalanced distribution operation,
uncertainty.

I. INTRODUCTION

Electric vehicle (EV) is a promising solution to reduce the
carbon footprint and to improve the economics of transportation
networks. The increase in the penetration level of EVs
introduces challenges to supply energy in the distribution
networks including the increase in the real power loss,
degradation of assets’ lifetime, and reduction in the voltage
stability margin of the distribution network [1]-[3]. Distributed
renewable energy resources (DERs) are considered as a
solution to address some of these challenges. As local
generation resources close to the demand, DERs contribute to
the reduction in real power loss, and improvement in the voltage
profile. Among these resources, solar photovoltaic (PV)
generation is the prominent energy resource connected to the
distribution networks. The variability and uncertainty in PV
generation profile impose technical challenges including
voltage rise, reverse power flow and protection malfunction
[4]. Curtailing PV generation and coordinating PV generation
with energy storage facilities (e.g. battery energy storage or
EVs) could mitigate the adverse effects of this technology and
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improve the penetration level of solar PV in the distribution
networks.

Earlier research addressed the uncertainty in renewable
DERs and EVs in the distribution network operation [5]-[8]. A
two-level optimization problem is formulated in [S] to
maximize the profit of EV parking lot operators and assess the
impact of uncertainty of wind and PV generation on the payoff
of EV parking lot operators. A two-stage robust optimization
problem is formulated in [6] that leverages the conic relaxation
of the distribution branch flow to determine the dispatch of PV
generation considering the uncertainties in PV output in the
distribution networks. A two-stage robust optimization model
is proposed in [7] to regulate the real and reactive power in
certain distribution branches, to mitigate the voltage violations
and to reduce the network loss.

The dispatchability limits for renewable energy resources
were addressed in earlier research works [8]-[9]. In [8], the
maximum dispatchability limits for wind generation in bulk
power network is addressed by formulating a robust
optimization problem solved using three approaches. In [9] a
data-driven approach is proposed to maximize the utilization
of variable wind generation resources by leveraging their
dispatchability limits. While such research works addressed
the dispatchability limits of renewable energy resources,
limited studies were performed on the dispatchability limits of
renewable energy resources in the unbalanced distribution
networks. The contributions of this paper are as follows:

- Determining the upper and lower bounds for PV

generation in the unbalanced distribution network

- Capturing the uncertainty associated with a) the EV

interconnection including the state of charge at arrival
and departure times as well as the maximum energy and
power capacity of EVs connected to the distribution
network; b) maximum PV generation and; c) electricity
demand in the distribution networks

- The proposed formulated problem is solved using the

column-and-constraint-generation (C&CG) approach
to determine the worst-case realization of PV



generation considering the determined upper and lower
bounds.

The rest of the paper is organized as follows; the problem
formulation and solution methodology are presented in Section
II. The numerical analysis and conclusion are presented in
Sections III and I'V respectively.

II.  PROBLEM FORMULATION AND SOLUTION
METHODOLOGY

A. Problem formulation

The problem formulation is shown in (1)-(33). The
objective function is shown in (1). Here, uj, and L, are the
upper and lower bounds of PV generation respectively; and va”t
is the auxiliary binary variable. The objective is to maximize
the difference between the lower and upper bounds of PV

generation while minimizing the violation in nodal real and
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The constraints are shown in (2)-(33). The real and reactive
power balance at each bus is shown in (2) and (3) respectively.
Here, the variables are PL({ft (the real power of the distribution

reactive power represented by positive slack variables s

line [ on phase ¢ at time t), quz (the real power of DG i), an,)t
(the real power of distribution feeder n), Pft (the real power of
PV v), and P:’t (the real power of EV cluster e). Pd(f’tis a
parameter which the real power demand. The matrices AL, Al,
AV, AE, AN, and AD are the line-bus, distributed generation-
bus, PV generation-bus, EV cluster-bus, distribution feeder-
bus, and demand-bus incidence matrices respectively. A
similar constraint for reactive power Q(()) is shown in (3). The
apparent power flow SL,, satisfies (4) and (5) in which, Uy,
is the vector of squared voltage on phases a, b and ¢ of bus k
(V;((t)) as shown in (38); p{p is the availability of phase ¢ of the
line [; Z; is the element-wise product of matrix A and the
branch impedance matrix z; shown in (34)-(36) [10]. Here, r;
is the resistance and x;is the inductive reactance matrix of
branch [. The vector of apparent power SL;, is shown in (37).
The real and reactive power flows of branch [ satisfy (6)-(9)
where SL(lp'maxis the maximum complex power transmitted
through the branch [11]. Similar constraints could be written
for the distribution feeder. The real and reactive powers of DG
are limited by the minimum and maximum limits as shown in
(10) and (11) respectively. The real and reactive powers of
feeder satisfy (12) and (13) to maintain the power factor more
than a certain value (PE,). The real and reactive powers of PV
generation are within the limits as shown in (14) and (15).
Here, PY"™** is the maximum nominal capacity of the PV
generation. The real power dispatch of PV generation is
limited by the available solar radiation as shown in (16). Here,
A?is the area of PV generation unit for phase ¢ and I R, is
solar radiation. The lower and upper bounds for PV generation
satisfy (17)-(20). In order to determine the worst-case
realization of PV generation, the dispatched PV generation is

equal to the lower or upper bound as enforced by (21). Here
O'f (s an auxiliary binary variable. The hourly real power

dispatch of EV cluster e (Pe('_ot) is formulated as (22) where

P;{)t'Ch and Pe(f)t'dcrepresent the charging and discharging powers

of EV cluster e respectively. The charging and discharging
powers for EV fleet e are limited by the charging and
discharging power capacity (PJ"%*¢", pm*%4¢) a5 shown in
(23) and (24) respectively. Here IC,,is a binary parameter
representing the connection of EV cluster e to the distribution
network. If the EV cluster e is connected to the distribution
network IC,, = 1 and otherwise, IC,, = 0. The relationship
between the available energy in EV cluster e and the hourly
power dispatch is shown in (25)-(26) using big-M method. The
energy in the EV cluster is limited by the minimum and
maximum values as shown in (27)-(28). The available energy
in EV cluster is enforced at arrival and departure times by (29)-

32). Here, I?} and I €D are binary parameters that represent the
et et Iy p p

arrival and departure at time ¢t respectively. The slack variables
are positive as shown in (33).
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B. Solution Methodology
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The proposed two-stage optimization problem is solved

using the C&CG approach [12]. The problem is decomposed
into a master problem (39)-(44) with decision variable x and
subproblem (45)-(48) with decision variables y, s and ¢.

min cTx+n (39)
S.t.

Ax <d (40)
n = bTs! (41)
Dy' <y, vVi<k (42)
Cy'+st=f, Vi<k (43)
(E+Mo)x+Gy'=h, VI<k (44)
Here x represents the vector of first-stage decision variables
Le. [ v,t’ 17 t’ ]

max_ min b”s (45)
0€[0,1] y,520

S.t.

Dy<g (46)
Cy+s=f (47)
Gy =h—(E +Mo)x* (48)

Here y represents the second stage recourse decision
variables 1.e. Pq’t, Pft, Pn(pt ,P(p ”, nt, prt S PL(pt and QL

as well as the voltage magnitude on the buses (Up, ;). The dual
form of the sub-problem is shown as follows:

Q =maxg’u + f ', + [h— (E + Mo)x]us (49)
a.u

Du, +Cu, + Gus <0 (50)

U <b (51)

The u,, 4, and p; are dual variables for constraints (46),
(47) and (48) respectively. The C&CG algorithm is described
as follows:

Step 1: Set iteration index k = 0, LB = —oo, UB = 00 and
convergence index € = 1073,

Step 2: Solve the master problem and obtain the optimal
solution, xj,, and 0}, and update the LB = cTxj 1 + Njys1

Step 3: Solve the sub-problem and update the UB =
min{UB, c"xj41 + Qis1}

Step 4: Check the convergence if UB — LB < ¢ terminate
otherwise k = k + 1, add constraints (41)-(44) and go to step
2.

III.  NUMERICAL ANALYSIS

In this paper, a modified IEEE-13 bus system for which the
peak demand is shown in Table I. Four PV units and four
dispatchable distributed generation units (DGs) are installed in
the system. Tables II and III show the characteristics of the DG
and PV units respectively. The PV units and DG1-DG3 are
three-phase generation units and DG4 is a single-phase
distributed generation unit connected to phase C. 30 single-
phase EVs are connected to the system. Table IV shows the
characteristics of EVs. Fig. 1 shows the demand and total PV
generation profiles in the operation horizon. The following
cases are considered:

Case 1 — Deterministic maximum PV generation and demand
without EV

Case 2 — Deterministic maximum PV generation and demand
with EV

Case 3 — Uncertainty in maximum PV generation, demand,
state of charge (SoC) of EVs at arrival and departure times,

capacity and maximum real power dispatch of EVs

TABLE I
DEMAND CHARACTERISTICS
Node Phaseca Phasea Phaseb Phaseb Phasec Phasec
(kW) (kVAr) (kW) (kVAr) (kW)  (kVAr)
1 0 0 0 0 0 0
2 0 0 218.5 1254 0 0
3 0 0 161.5 118.75 0 0
4 16.15 9.5 62.7 36.1 111.15 17.1
5 0 0 0 0 0 0
6 152 104.5 114 85.5 114 85.5
7 0 0 0 0 161.5 76
8 0 0 0 0 0 0
9 365.75 209 365.75 209 365.75 209
10 0 0 0 0 161.5 143.45
11 460.75 180.5 64.6 57 275.5 201.4
12 121.6 81.7 0 0 0 0
13 0 0 0 0 0 0
Total 1116.25 585.2 987.05 631.75 11894 73245
TABLE II
DISPATCHABLE DG UNITS’ CHARACTERISTICS
DG Bus pmin pmax Qmin Qmax
1 4 0 200 -145 145
2 6 0 200 -145 145
3 13 0 250 -180 180
4 7 0 40 -20 20
TABLE III
PV GENERATION UNITS’ CHARACTERISTICS
PV Bus pmin pmax Qmin Qmax
1 13 0 200 -100 100
2 10 0 200 -100 100
3 9 0 200 -100 100
4 4 0 100 -50 50
TABLEIV
CHARACTERISTICS OF EV UNITS
EV # of Bus pmax Emin Emax
cluster  vehicles
1 15 4 45 0 450
2 15 10 45 0 450
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Fig. 1. Load and PV profile

1) Case I — Deterministic maximum PV generation and
demand without EV

In this case, the maximum PV generation and demand are
considered as forecasted values. The dispatchability limits of
PV generation for each phase are shown in Fig. 3. The
dispatchability limits for the PV generation units on phase A
are shown in Fig. 3(a). In this case, the lower bound of
dispatchability limit is increasing from O at hour 9 to 32.917
kW and 10.592 kW at hours 10 and 11 respectively. Here, the
total real power demand at hour 10 is 1116.25 kW and the total
dispatch of DG and main feeder, at hour 10, cannot increase
beyond 1083.33 kW as the DGs reach their maximum capacity
and feeder also reach the maximum apparent power capacity
on this phase. Consequently, the lower dispatchability limit for
the PV generation at hour 10 on phase A reaches 32.917 kW.

2) Case 2 — Deterministic maximum PV generation and
demand with EV.

In this case, the dispatchability limits for PV generation
units are evaluated considering the EVs and forecasted
maximum PV generation and demand. Five EVs are connected
to each phase on buses 4 and 10. All EVs in each cluster, are
considered as the same type. The maximum charging and
discharging power for each EV is 3kW and maximum energy
capacity is 30kWh. The arrival and departure times for EVs are
10:00 and 19:00 respectively. It is assumed that the EVs
remain connected to the network within the arrival and
departure times and EVs have bi-directional power capability
(V2G enabled). The EVs are assumed to have 20% SoC at
arrival time. The state of charge (in percent) is defined as the
ratio between the available energy in EV clusters and the
maximum capacity of the EV clusters. Fig. 3 shows the upper
and lower bounds for dispatchability limits of PV generation
when the SoC of EV clusters at the departure time is 100%. In
this case, the lower bound for dispatchability limit on phase C,
at hour 10 is reduced by 30 kW compared to that in Case 1 and
reached 116.383 kW. At hour 10, 30 kW is injected by the EV
clusters to reduce the lower bound for PV dispatchability limit.
At hour 11, the lower bound for dispatchability limit in Case 1
was 107.946 kW and it increases to 137.946kW in this case as
the batteries of EV clusters on phase C are being charged by
30kW. Fig. 3 also shows the impact of vehicle-to-grid (V2G).
When EV clusters are unable to inject power back to the grid
(no V2G), the lower bound for PV generation is higher or equal
to the lower bound in Case 1.
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Fig. 4 shows the lower bound for the dispatchability limit of
PV generation on phase A and phase C for Case 2 with two
hours shifting in arrival and departure times. The SoC of EVs
at the departure time is 100 percent. As shown in Fig 4(a), on
phase A, the lower bound at hours 10 and 11, are increased
from 2.917 kW and 10.592kW to 62.917 kW and 40.592 kW
when the arrival and departure times are shifted by two hours.
In phase C as it is shown in Fig. 4(b), the lower bound at hour
8 is decreased from 50.291kW to 20.291kW when the arrival
and departure times are shifted by two hours.

3) Case 3 — Uncertainty in maximum PV generation,
demand, state of charge (SoC) of EVs at arrival and departure
times, capacity and maximum real power dispatch of EVs

In this case, the forecast error for maximum PV generation,
load, SoC of EVs at arrival and departure times, capacity and
maximum real power dispatch of EV clusters are represented
by a normal distribution function with a mean equal to those in
Case 2. The standard deviation for maximum PV generation
and demand is 0.0167 of the mean value and the standard
deviation for the SoC of EV clusters at the departure and
arrival times, capacity and maximum real power dispatch of
EV clusters are 0.06 of the mean values. In this case, 200
scenarios are considered. The expected upper bound and lower
bounds for dispatchability limits of PV generation units and
those for Case 2 are shown for phases A and C in Fig. 5(a) and
Fig. 5(b) respectively.
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Fig. 5. The expected dispatchability limits of PV generation
considering the uncertainty in maximum PV generation, SoC of
EV clusters at the arrival and departure times and demand, (a)
phase A (b) phase C

IV. CONCLUSION

In this paper, the dispatchability limit for PV generation in
the unbalanced distribution networks is quantified. It is shown
that EV clusters with no V2G will increase the lower bound of
dispatchability of PV generation. While V2G can reduce the
lower bound for dispatchability limits of PV generation,
integrating EVs into the distribution network will increase the
lower bound for the dispatchability limit of PV generation as
the EVs are being charged for departure. Furthermore, the
impact of arrival and departure times for EV clusters are shown
in the case study.
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