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Abstract— The increase in the installed capacity of small-scale 
photovoltaic generation and the growing demand for electric 
vehicles introduce operational challenges for the unbalanced 
distribution networks. This paper presents a two-stage 
optimization problem to determine the dispatchability limits of 
photovoltaic generation considering the electric vehicles’ 
interconnection to ensure the security of the distribution network. 
The uncertainty associated with a) the state of charge at arrival 
and departure times; b) the energy and power capacity of electric 
vehicles; c) the maximum forecasted solar radiation and demand 
were considered. The proposed optimization problem is solved 
using the column-and-constraint-generation approach. A 
modified IEEE 13-bus test system is used to evaluate the 
effectiveness of the proposed framework. 

Index Terms-- dispatchability limits, electrical vehicles, 
photovoltaic generation, unbalanced distribution operation, 
uncertainty. 

I. INTRODUCTION 
Electric vehicle (EV) is a promising solution to reduce the 

carbon footprint and to improve the economics of transportation 
networks. The increase in the penetration level of EVs 
introduces challenges to supply energy in the distribution 
networks including the increase in the real power loss, 
degradation of assets’ lifetime, and reduction in the voltage 
stability margin of the distribution network [1]-[3]. Distributed 
renewable energy resources (DERs) are considered as a 
solution to address some of these challenges. As local 
generation resources close to the demand, DERs contribute to 
the reduction in real power loss, and improvement in the voltage 
profile. Among these resources, solar photovoltaic (PV) 
generation is the prominent energy resource connected to the 
distribution networks. The variability and uncertainty in PV 
generation profile impose technical challenges including 
voltage rise, reverse power flow and protection malfunction 
[4]. Curtailing PV generation and coordinating PV generation 
with energy storage facilities (e.g. battery energy storage or 
EVs) could mitigate the adverse effects of this technology and 

improve the penetration level of solar PV in the distribution 
networks.  

Earlier research addressed the uncertainty in renewable 
DERs and EVs in the distribution network operation [5]-[8]. A 
two-level optimization problem is formulated in [5] to 
maximize the profit of EV parking lot operators and assess the 
impact of uncertainty of wind and PV generation on the payoff 
of EV parking lot operators. A two-stage robust optimization 
problem is formulated in [6] that leverages the conic relaxation 
of the distribution branch flow to determine the dispatch of PV 
generation considering the uncertainties in PV output in the 
distribution networks. A two-stage robust optimization model 
is proposed in [7] to regulate the real and reactive power in 
certain distribution branches, to mitigate the voltage violations 
and to reduce the network loss. 

The dispatchability limits for renewable energy resources 
were addressed in earlier research works [8]-[9]. In [8], the 
maximum dispatchability limits for wind generation in bulk 
power network is addressed by formulating a robust 
optimization problem solved using three approaches. In [9] a 
data-driven approach is proposed to maximize the utilization 
of variable wind generation resources by leveraging their 
dispatchability limits. While such research works addressed 
the dispatchability limits of renewable energy resources, 
limited studies were performed on the dispatchability limits of 
renewable energy resources in the unbalanced distribution 
networks. The contributions of this paper are as follows: 
- Determining the upper and lower bounds for PV 

generation in the unbalanced distribution network 
- Capturing the uncertainty associated with a) the EV 

interconnection including the state of charge at arrival 
and departure times as well as the maximum energy and 
power capacity of EVs connected to the distribution 
network; b) maximum PV generation and; c) electricity 
demand in the distribution networks 

- The proposed formulated problem is solved using the 
column-and-constraint-generation (C&CG) approach 
to determine the worst-case realization of PV 
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generation considering the determined upper and lower 
bounds. 

The rest of the paper is organized as follows; the problem 
formulation and solution methodology are presented in Section 
II. The numerical analysis and conclusion are presented in 
Sections III and IV respectively. 

II. PROBLEM FORMULATION AND SOLUTION 
METHODOLOGY 

A. Problem formulation 
The problem formulation is shown in (1)-(33). The 

objective function is shown in (1). Here, 𝑢!,#
$  and 𝑙!,#

$  are the 
upper and lower bounds of PV generation respectively; and 𝑉!,#

$  
is the auxiliary binary variable. The objective is to maximize 
the difference between the lower and upper bounds of PV 
generation while minimizing the violation in nodal real and 
reactive power represented by positive slack variables 𝑠%,#

(.),$. 
The constraints are shown in (2)-(33). The real and reactive 
power balance at each bus is shown in (2) and (3) respectively. 
Here, the variables are 𝑃𝐿),#

$  (the real power of the distribution 
line 𝑙 on phase 𝜑 at time 𝑡), 𝑃*,#

$ (the real power of DG 𝑖), 𝑃+,#
$  

(the real power of distribution feeder 𝑛), 𝑃!,#
$  (the real power of 

PV 𝑣), and 𝑃,,#
$  (the real power of EV cluster 𝑒). 𝑃-,#

$ is a 
parameter which the real power demand. The matrices 𝐴𝐿, 𝐴𝐼, 
𝐴𝑉, 𝐴𝐸, 𝐴𝑁, and 𝐴𝐷 are the line-bus, distributed generation-
bus, PV generation-bus, EV cluster-bus, distribution feeder-
bus, and demand-bus incidence matrices respectively. A 
similar constraint for reactive power 𝑄(.)

(.) is shown in (3). The 
apparent power flow 𝑺𝑳),# satisfies (4) and (5) in which, 𝑼.,# 
is the vector of squared voltage on phases 𝑎, 𝑏 and 𝑐 of bus 𝑘 
(𝑉.,#

(.)) as shown in (38); 𝑝)
$is the availability of phase 𝜑 of the 

line 𝑙;	𝒁) is the element-wise product of matrix 𝑨 and the 
branch impedance matrix 𝒛) shown in (34)-(36) [10]. Here, 𝒓) 
is the resistance and 𝒙)is the inductive reactance matrix of 
branch 𝑙. The vector of apparent power 𝑺𝑳),# is shown in (37). 
The real and reactive power flows of branch 𝑙 satisfy (6)-(9) 
where 𝑆𝐿)

$,/01is the maximum complex power transmitted 
through the branch [11]. Similar constraints could be written 
for the distribution feeder. The real and reactive powers of DG 
are limited by the minimum and maximum limits as shown in 
(10) and (11) respectively. The real and reactive powers of 
feeder satisfy (12) and (13) to maintain the power factor more 
than a certain value (𝑃𝐹+). The real and reactive powers of PV 
generation are within the limits as shown in (14) and (15). 
Here, 𝑃!

$,/01 is the maximum nominal capacity of the PV 
generation. The real power dispatch of PV generation is 
limited by the available solar radiation as shown in (16). Here, 
𝐴!
$is the area of PV generation unit for phase 𝜑 and 𝐼𝑅!,# is 
solar radiation. The lower and upper bounds for PV generation 
satisfy (17)-(20). In order to determine the worst-case 
realization of PV generation, the dispatched PV generation is 

equal to the lower or upper bound as enforced by (21). Here 
𝜎!,#
$ is an auxiliary binary variable. The hourly real power 
dispatch of EV cluster 𝑒 (𝑃,,#

$ ) is formulated as (22) where 
𝑃,,#
$,23 and 𝑃,,#

$,-2represent the charging and discharging powers 
of EV cluster 𝑒 respectively. The charging and discharging 
powers for EV fleet 𝑒 are limited by the charging and 
discharging power capacity (𝑃,/01,23,	𝑃,/01,-2) as shown in 
(23) and (24) respectively. Here 𝐼𝐶,,#is a binary parameter 
representing the connection of EV cluster 𝑒 to the distribution 
network. If the EV cluster 𝑒 is connected to the distribution 
network 𝐼𝐶,,# = 1 and otherwise, 𝐼𝐶,,# = 0. The relationship 
between the available energy in EV cluster 𝑒 and the hourly 
power dispatch is shown in (25)-(26) using big-M method. The 
energy in the EV cluster is limited by the minimum and 
maximum values as shown in (27)-(28). The available energy 
in EV cluster is enforced at arrival and departure times by (29)-
(32). Here, 𝐼,,#04 and 𝐼,,#

-,5are binary parameters that represent the 
arrival and departure at time 𝑡	respectively. The slack variables 
are positive as shown in (33). 
Min

6!,#
$ ,)!,#

$ ,7!,#
$
∑ ∑ ∑ N𝑉!,#

$ − (𝑢!,#
$ − 𝑙!,#

$ )/𝑃!
$,/01S#$! +

max
8!,#
$ min

9%,#
(.),$

𝑠%,#
:,$ + 𝑠%,#

;,$ + 𝑠%,#
<,$ + 𝑠%,#

=,$           (1) 

∑ 𝐴𝐿)% ∙ 𝑃𝐿),#
$

) +∑ 𝐴𝐼*% ∙ 𝑃*,#
$

* +∑ 𝐴𝑉!% ∙ 𝑃!,#
$

! −∑ 𝐴𝐸,% ∙,

𝑃,,#
$ +∑ 𝐴𝑁+% ∙ 𝑃+,#

$
+ + 𝑠%,#

:,$ − 𝑠%,#
;,$ = ∑ 𝐴𝐷-% ∙ 𝑃-,#

$
-          (2) 

∑ 𝐴𝐿)% ∙ 𝑄𝐿),#
$

) +∑ 𝐴𝐼*% ∙ 𝑄*,#
$

* +∑ 𝐴𝑉!% ∙ 𝑄!,#
$

! + ∑ 𝐴𝑁+% ∙+

𝑄+,#
$ + 𝑠%,#

<,$ − 𝑠%,#
=,$ = ∑ 𝐴𝐷-% ∙ 𝑄-,#

$
-            (3) 

𝑼.,# −𝑼%,# + 𝒁)Y ∙ Z𝑺𝑳),#	[
∗ + 𝒁)Y

∗ ∙ 𝑺𝑳),# ≤ 𝑀 ∙ 𝑝)
$         (4)  

−𝑀 ∙ 𝑝)
$ ≤ 𝑼.,# −𝑼%,# + 𝑍)_ ∙ Z𝑺𝑳),#[

∗ + 𝑍)_
∗ ∙ 𝑺𝑳),#         (5) 

−𝑝)
$ ∙ 𝑆𝐿)

$,/01 ≤ 𝑃𝐿),#
$ ≤ 𝑝)

$ ∙ 𝑆𝐿)
$,/01          (6) 

−𝑝)
$ ∙ 𝑆𝐿)

$,/01 ≤ 𝑄𝐿),#
$ ≤ 𝑝)

$ ∙ 𝑆𝐿)
$,/01          (7) 

−√2 ∙ 𝑝)
$ ∙ 𝑆𝐿)

$,/01 ≤ 𝑃𝐿),#
$ + 𝑄𝐿),#

$ ≤ √2 ∙ 𝑝)
$ ∙ 𝑆𝐿)

$,/01    (8) 
−√2 ∙ 𝑝)

$ ∙ 𝑆𝐿)
$,/01 ≤ 𝑃𝐿),#

$ − 𝑄𝐿),#
$ ≤ √2 ∙ 𝑝)

$ ∙ 𝑆𝐿)
$,/01    (9) 

0 ≤ 𝑃*,#
$ ≤ 𝑃*,$/01           (10) 

−𝑄*,$/01 ≤ 𝑄*,#
	$ ≤ 𝑄*,$/01          (11) 

𝑃+,#
$ ≤ 𝑡𝑎𝑛(cos@: 𝑃𝐹+) ∙ 𝑄+,#

$          (12) 
𝑃+,#
$ ≥ −𝑡𝑎𝑛(cos@: 𝑃𝐹+) ∙ 𝑄+,#

$          (13) 
0 ≤ 𝑃!,#

$ ≤ 𝑃!
$,/01          (14) 

−𝑄!
$,/01 ≤ 𝑄!,#

$ ≤ 𝑄!
$,/01         (15) 

𝑃!,#
$ ≤ 𝐴!

$. 𝐼𝑅!,#           (16) 
0 ≤ 𝑙!,#

$ ≤ 𝑢!,#
$            (17) 

𝑢!,#
$ ≤ 𝑃!

$,/01          (18) 
Z𝑃!

$,/01 − 𝐴!
$. 𝐼𝑅!,#[. 𝑉!,#

$ − 𝑙!,#
$ ≥ −𝐴!

$. 𝐼𝑅!,#       (19) 
𝐴!
$. 𝐼𝑅!,# . 𝑉!,#

$ + 𝑢!,#
$ ≤ 𝐴!

$. 𝐼𝑅!,#         (20) 
𝑃!,#
$ = 𝑙!,#

$ + Z𝑢!,#
$ − 𝑙!,#

$ [. 𝜎!,#
$          (21) 

𝑃,,#
$ = 𝑃,,#

$,23 − 𝑃,,#
$,-2          (22) 

0 ≤ 𝑃,,#
$,23 ≤ 𝐼𝐶,,#𝑃,/01,23          (23) 

0 ≤ 𝑃,,#
$,-2 ≤ 𝐼𝐶,,#𝑃,/01,-2          (24) 

𝐸,,#
$ − 𝐸,,#@:

$ − 𝑃,,#
$ ≤ 𝑀 ∙ Z1 − 𝐼𝐶,,#[        (25) 



𝐸,,#
$ − 𝐸,,#@:

$ − 𝑃,,#
$ ≥ −𝑀 ∙ Z1 − 𝐼𝐶,,#[        (26) 

𝐸,,#
$ ≤ 𝑀 ∙ Z1 − 𝐼𝐶,,#[ + 𝐸,/01         (27) 

𝐸,,#
$ ≥ −𝑀 ∙ Z1 − 𝐼𝐶,,#[ + 𝐸,/*+         (28) 

𝐸,,#
$ ≤ 𝑀 ∙ Z1 − 𝐼,,#04[ + 𝐸,04         (29) 

𝐸,,#
$ ≥ −𝑀 ∙ Z1 − 𝐼,,#04[ + 𝐸,04         (30) 

𝐸,,#
$ ≤ 𝑀 ∙ Z1 − 𝐼,,#

-,5[ + 𝐸,
-,5         (31) 

𝐸,,#
$ ≥ −𝑀 ∙ Z1 − 𝐼,,#

-,5[ + 𝐸,
-,5         (32) 

𝑠%,#: , 𝑠%,#; , 𝑠%,#< , 𝑠%,#= ≥ 0          (33) 
𝒛) = 𝒓) + 𝑗𝒙)          (34) 
𝒁_) = 𝑨⊙ 𝒛)          (35) 

𝑨 = i
1 𝑒@A;B/< 𝑒A;B/<

𝑒A;B/< 1 𝑒@A;B/<
𝑒@A;B/< 𝑒A;B/< 1

j         (36) 

𝑺𝑳!,# = $𝑃𝐿!,#$ + 𝑗𝑄𝐿!,#$ , 	𝑃𝐿!,#% + 𝑗𝑄𝐿!,#% , 	𝑃𝐿!,#& + 𝑗𝑄𝐿!,#& ,           (37) 

𝑼%,# = kZ𝑉%,#0 [
;		Z𝑉%,#% [

;		Z𝑉%,#2 [
;l
D
         (38) 

B. Solution Methodology 
The proposed two-stage optimization problem is solved 

using the C&CG approach [12]. The problem is decomposed 
into a master problem (39)-(44) with decision variable 𝑥 and 
subproblem (45)-(48) with decision variables 𝑦, 𝑠 and 𝜎. 
min
1
𝑐D𝑥 + 𝜂          (39) 

s.t. 
 𝐴𝑥 ≤ 𝑑           (40) 
	𝜂 ≥ 𝑏D𝑠)          (41) 
𝐷𝑦) ≤ 𝑔,																																			∀𝑙 ≤ 𝑘        (42) 
𝐶𝑦) + 𝑠) = 𝑓,																										∀𝑙 ≤ 𝑘        (43) 
(𝐸 +𝑀𝜎)∗)𝑥 + 𝐺𝑦) = ℎ,						∀𝑙 ≤ 𝑘        (44) 
Here 𝑥 represents the vector of first-stage decision variables 
i.e. N𝑙!,#

$ , 𝑢!,#
$ , 𝑉!,#

$ S. 
max
8∈[G,:]

min
I,9JG

𝑏D𝑠          (45) 

s.t. 
𝐷𝑦 ≤ 𝑔           (46) 
𝐶𝑦 + 𝑠 = 𝑓          (47) 
𝐺𝑦 = ℎ − (𝐸 +𝑀𝜎)𝑥∗         (48) 
Here 𝑦 represents the second-stage recourse decision 

variables i.e. 𝑃!,#
$ , 𝑃,,#

$ , 𝑃+,#
$  ,𝑃*,#

$ 𝑄!,#
$ , 𝑄+,#

$ , 𝑄*,#
$  , 𝑃𝐿),#

$  and 𝑄𝐿),#
$  

as well as the voltage magnitude on the buses (𝑼%,#). The dual 
form of the sub-problem is shown as follows: 
𝑄 = max

8,K
𝑔D𝜇: + 𝑓D𝜇; + [ℎ − (𝐸 +𝑀𝜎)𝑥∗]𝜇<      (49) 

𝐷𝜇: + 𝐶𝜇; + 𝐺𝜇< ≤ 0         (50) 
𝜇; ≤ 𝑏           (51) 
The 𝜇:, 𝜇; and 𝜇< are dual variables for constraints (46), 

(47) and (48) respectively. The C&CG algorithm is described 
as follows: 
Step 1: Set iteration index 𝑘 = 0, 𝐿𝐵 = −∞, 𝑈𝐵 = ∞ and 

convergence index 𝜀 = 10@<. 
Step 2: Solve the master problem and obtain the optimal 

solution, 𝑥.L:∗  and 𝜂.L:∗  and update the 𝐿𝐵 = 𝑐D𝑥.L:∗ +	𝜂.L:∗  
Step 3: Solve the sub-problem and update the 𝑈𝐵 =

𝑚𝑖𝑛{𝑈𝐵, 𝑐D𝑥.L:∗ + 𝑄.L:∗ } 

Step 4: Check the convergence if 𝑈𝐵 − 𝐿𝐵 < 𝜀 terminate 
otherwise 𝑘 = 𝑘 + 1, add constraints (41)-(44) and go to step 
2. 

III. NUMERICAL ANALYSIS 
In this paper, a modified IEEE-13 bus system for which the 

peak demand is shown in Table I. Four PV units and four 
dispatchable distributed generation units (DGs) are installed in 
the system. Tables II and III show the characteristics of the DG 
and PV units respectively. The PV units and DG1-DG3 are 
three-phase generation units and DG4 is a single-phase 
distributed generation unit connected to phase C. 30 single-
phase EVs are connected to the system. Table IV shows the 
characteristics of EVs. Fig. 1 shows the demand and total PV 
generation profiles in the operation horizon. The following 
cases are considered: 

Case 1 – Deterministic maximum PV generation and demand 
without EV 
Case 2 – Deterministic maximum PV generation and demand 
with EV 
Case 3 – Uncertainty in maximum PV generation, demand, 
state of charge (SoC) of EVs at arrival and departure times, 
capacity and maximum real power dispatch of EVs 

TABLE I 
DEMAND CHARACTERISTICS 

Node Phase a 
(kW) 

Phase a 
(kVAr) 

Phase b 
(kW) 

Phase b 
(kVAr) 

Phase c 
(kW) 

Phase c 
(kVAr) 

1 0 0 0 0 0 0 
2 0 0 218.5 125.4 0 0 
3 0 0 161.5 118.75 0 0 
4 16.15 9.5 62.7 36.1 111.15 17.1 
5 0 0 0 0 0 0 
6 152 104.5 114 85.5 114 85.5 
7 0 0 0 0 161.5 76 
8 0 0 0 0 0 0 
9 365.75 209 365.75 209 365.75 209 
10 0 0 0 0 161.5 143.45 
11 460.75 180.5 64.6 57 275.5 201.4 
12 121.6 81.7 0 0 0 0 
13 0 0 0 0 0 0 
Total 1116.25 585.2 987.05 631.75 1189.4 732.45 

TABLE II 
DISPATCHABLE DG UNITS’ CHARACTERISTICS 

DG Bus 𝑃!"# 𝑃!$% 𝑄!"# 𝑄!$% 
1 4 0 200 -145 145 
2 6 0 200 -145 145 
3 13 0 250 -180 180 
4 7 0 40 -20 20 

TABLE III 
PV GENERATION UNITS’ CHARACTERISTICS 

PV Bus 𝑃!"# 𝑃!$% 𝑄!"# 𝑄!$% 
1 13 0 200 -100 100 
2 10 0 200 -100 100 
3 9 0 200 -100 100 
4 4 0 100 -50 50 

TABLE IV 
CHARACTERISTICS OF EV UNITS 

EV 
cluster 

# of 
vehicles Bus 𝑃!$% 𝐸!"# 𝐸!$% 

1 15 4 45 0 450 
2 15 10 45 0 450 



 
Fig. 1. Load and PV profile 

1) Case 1 – Deterministic maximum PV generation and 
demand without EV 
In this case, the maximum PV generation and demand are 

considered as forecasted values. The dispatchability limits of 
PV generation for each phase are shown in Fig. 3. The 
dispatchability limits for the PV generation units on phase A 
are shown in Fig. 3(a). In this case, the lower bound of 
dispatchability limit is increasing from 0 at hour 9 to 32.917 
kW and 10.592 kW at hours 10 and 11 respectively. Here, the 
total real power demand at hour 10 is 1116.25 kW and the total 
dispatch of DG and main feeder, at hour 10, cannot increase 
beyond 1083.33 kW as the DGs reach their maximum capacity 
and feeder also reach the maximum apparent power capacity 
on this phase. Consequently, the lower dispatchability limit for 
the PV generation at hour 10 on phase A reaches 32.917 kW. 
 
2) Case 2 – Deterministic maximum PV generation and 

demand with EV. 
In this case, the dispatchability limits for PV generation 

units are evaluated considering the EVs and forecasted 
maximum PV generation and demand. Five EVs are connected 
to each phase on buses 4 and 10. All EVs in each cluster, are 
considered as the same type. The maximum charging and 
discharging power for each EV is 3kW and maximum energy 
capacity is 30kWh. The arrival and departure times for EVs are 
10:00 and 19:00 respectively. It is assumed that the EVs 
remain connected to the network within the arrival and 
departure times and EVs have bi-directional power capability 
(V2G enabled). The EVs are assumed to have 20% SoC at 
arrival time. The state of charge (in percent) is defined as the 
ratio between the available energy in EV clusters and the 
maximum capacity of the EV clusters. Fig. 3 shows the upper 
and lower bounds for dispatchability limits of PV generation 
when the SoC of EV clusters at the departure time is 100%. In 
this case, the lower bound for dispatchability limit on phase C, 
at hour 10 is reduced by 30 kW compared to that in Case 1 and 
reached 116.383 kW. At hour 10, 30 kW is injected by the EV 
clusters to reduce the lower bound for PV dispatchability limit. 
At hour 11, the lower bound for dispatchability limit in Case 1 
was 107.946 kW and it increases to 137.946kW in this case as 
the batteries of EV clusters on phase C are being charged by 
30kW. Fig. 3 also shows the impact of vehicle-to-grid (V2G). 
When EV clusters are unable to inject power back to the grid 
(no V2G), the lower bound for PV generation is higher or equal 
to the lower bound in Case 1. 
  

 
(a) 

 
(b) 

 
(c) 

Fig. 3. The total dispatchability limits for (a) phase A, (b) phase B and 
(c) phase C with deterministic demand and maximum PV generation 
with and without EV clusters 

 
(a) 

 
(b) 

Fig. 4. The effects of arrival and departure time on the total 
dispatchability limits for (a) phase A, (b) phase C 



Fig. 4 shows the lower bound for the dispatchability limit of 
PV generation on phase A and phase C for Case 2 with two 
hours shifting in arrival and departure times. The SoC of EVs 
at the departure time is 100 percent. As shown in Fig 4(a), on 
phase A, the lower bound at hours 10 and 11, are increased 
from 2.917 kW and 10.592kW to 62.917 kW and 40.592 kW 
when the arrival and departure times are shifted by two hours. 
In phase C as it is shown in Fig. 4(b), the lower bound at hour 
8 is decreased from 50.291kW to 20.291kW when the arrival 
and departure times are shifted by two hours. 

3) Case 3 – Uncertainty in maximum PV generation, 
demand, state of charge (SoC) of EVs at arrival and departure 
times, capacity and  maximum real power dispatch of EVs 
In this case, the forecast error for maximum PV generation, 

load, SoC of EVs at arrival and departure times, capacity and 
maximum real power dispatch of EV clusters are represented 
by a normal distribution function with a mean equal to those in 
Case 2. The standard deviation for maximum PV generation 
and demand is 0.0167 of the mean value and the standard 
deviation for the SoC of EV clusters at the departure and 
arrival times, capacity and maximum real power dispatch of 
EV clusters are 0.06 of the mean values. In this case, 200 
scenarios are considered. The expected upper bound and lower 
bounds for dispatchability limits of PV generation units and 
those for Case 2 are shown for phases A and C in Fig. 5(a) and 
Fig. 5(b) respectively.  

 
       (a) 

 
  (b) 

Fig. 5. The expected dispatchability limits of PV generation 
considering the uncertainty in maximum PV generation, SoC of 
EV clusters at the arrival and departure times and demand, (a) 
phase A (b) phase C  

IV. CONCLUSION 
In this paper, the dispatchability limit for PV generation in 

the unbalanced distribution networks is quantified. It is shown 
that EV clusters with no V2G will increase the lower bound of 
dispatchability of PV generation. While V2G can reduce the 
lower bound for dispatchability limits of PV generation, 
integrating EVs into the distribution network will increase the 
lower bound for the dispatchability limit of PV generation as 
the EVs are being charged for departure. Furthermore, the 
impact of arrival and departure times for EV clusters are shown 
in the case study. 
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