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Abstract—An almost all-digital time-to-digital converter 

possessing sub-picosecond resolution, scalable dynamic range, 

calibratable linearity, high noise-immunity, and fast conversion-

rates can be achieved by a stochastic random sampling-and-

averaging approach with the proposed collaborative variance 

reduction (VR) technique for a wide range of time-correlated 

single-photon counting applications. This paper presents detailed 

theoretical analysis and behavior-model verifications of both self-

antithetic and control-variate VR techniques to enhance the 

conversion-rate of an asynchronous RSA-based TDC up to 1.5 

MHz with 12-ENOB accuracy, 0.36-pJ/step energy efficiency, and 

23% power overhead. Also, the conversions of the mathematical 

closed-form expressions into digital signal-processing 

implementations are derived and demonstrated for the 

forthcoming silicon-photonics integrated-circuit realization. 

 
Index Terms—antithetic variate, auto-correlation, control 

variate, cross-correlation, single-photon counting, stochastic 

random sampling, time-domain modulo operation, time-to-digital 

converter, variance reduction. 

 

I. INTRODUCTION 

IME-correlated single-photon counting (TCSPC) systems 

[1]–[3], which contain time-to-digital conversion (TDC) 

integrated circuits, have become the key functionality in a 

variety of emerging quantum technology. The state-of-the-art 

TDC designs all have pros and cons in certain performance 

aspects; therefore, depending on the emphasis on speed or 

resolution, the required TDC specifications can be roughly 

categorized into two major areas of the TCSPC applications. 

First, quantum imaging/sensing [4]–[6], time-resolved 

spectroscopy [7], [8], positron emission tomography (PET) [8], 

[9], fluorescence-lifetime imaging (FLIM) [10], [11], time-of-

flight (TOF) sensing [12], [13], and light detection-and-ranging 

(LiDAR) [13]–[15] primarily exploit high-speed and small-area 

TDC techniques with the downsides of lower resolution, lower 
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accuracy and higher clock-generation power [5], [6], [9], [10], 

[16]–[26]. Second, quantum-bit-state probability amplitude 

measurements [27]–[30], quantum cryptography [31]–[33], 

molecular imaging [2], [34], and live-cell/tissue microscopy 

[2], [35], [36] mainly employ high-resolution TDC techniques 

with the downsides of lower conversion-rates, higher 

calibration complexity, and high-order digital filtering [1], [2], 

[37]–[45]. In the long run of quantum-technology development, 

the demand for supporting both high-speed and high-resolution 

with low power/area consumption will be the common direction 

of all TCSPC applications. 

Therefore, this paper introduces a two-step TDC architecture 

[1], [2], [39] incorporating the concept of variance reduction 

(VR) [46], [47] into the random sampling-and-averaging (RSA) 

technique [48]–[53] to realize a unified RSA-based TDC 

architecture for both categories of high-speed and high-

resolution TCSPC applications. To achieve this goal, the slow 

conversion-rate issue of asynchronous RSA addressed in [53] 

can be firstly alleviated by self-antithetic variance reduction 

(SAVR) with negligible power overhead but relatively high 

sensitivity to circuit/signal variations. Then, a simple digital 

circuit implementation for the control-variate variance 

reduction (CVVR) technique is secondly exploited to improve 

the performance consistency of SAVR and to form the 

collaborative variance reduction (CoVR = SAVR + CVVR) for 

further quantization-noise power suppression or, equivalently, 

conversion-rate enhancement. To comprehend the feasibility of 

the proposed VR techniques, this paper derives the theoretical 

expectations, variances, and correlation coefficients, which are 

all experimentally verified by the Monte Carlo simulations [46]. 

Meanwhile, the conversions of the mathematical closed-form 

expressions/models into digital signal-processing 

implementations are elaborated in this paper as well. Compared 

to an ordinary RSA-based TDC in [53], enabling the CoVR 

technique can boost the conversion-rate (or detection-rate per 
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pixel) up to 1.5 MHz with 12-effecitve-number-of-bits (ENOB) 

accuracy, 0.36-pJ/step energy efficiency, and 23% power 

overhead based on the simulations. 

The remainder of the paper is organized as follows. The 

signal-and-circuit overview of an RSA-based TCSPC system 

with the SAVR and CVVR techniques is introduced in Section 

II. The fundamentals of RSA are summarized in Section III. 

The probability principles, theoretical analyses, and behavioral 

model simulations of the RSA with SAVR, CVVR, and CoVR 

techniques are presented in Section IV, V and VI, respectively. 

The conclusion and future work are summarized in Section VII.  

II. SYSTEM-LEVEL OVERVIEW 

The block diagram of the RSA-based TCSPC system with 

the SAVR and CVVR techniques is shown in Fig. 1(a). Each 

detection pixel contains a single-photon avalanche diode 

(SPAD), silicon-photonics analog front-end (AFE) [5]–[7], 

[16], [54], and high-bandwidth CMOS pulse generator to 

convert the received single photons to event-triggered electrical 

voltage pulses. For the high-accuracy time-interval 

measurement, the timing of TSTART is set by the START pulse 

from a specific single-photon detection pixel [2] while the 

multiplexer for the STOP pulse can select the timing of TSTOP 

from either the other specific single-photon detection pixel [2] 

or the system input clock, CKIN, [4]–[7], [16]. In any 

configuration, the time-interval, Δt, between TSTART and TSTOP 

is the primary quantity under the measurement as shown in Fig. 

1(a). The time-to-amplitude conversion (TAC) circuit, 

containing a tunable current source and capacitor banks for 

dynamic-range (DR) scalability, converts the one-time captured 

time-interval, Δt, into a constant DC voltage, VTAC [53], 

buffered by the variable-gain amplifier (VGA) for additional 

noise-rejection and driving capabilities. 

The TDC mechanism is primarily illustrated at the right-hand 

side of Fig. 1(a), where the building blocks and signals plotted 

in black perform ordinary asynchronous RSA processes [53]; 

those plotted by the green dashed-lines and blue solid-lines 

represent the additional circuits for enabling the SAVR and 

CVVR techniques, respectively. The three identical voltage-

controlled delay lines (VCDL) are all driven by CKIN, so the 

clock periods of CKR, CKF, and CKFREF are all equal to the 

period of CKIN, T, but the delays of CKR, CKF, and CKFREF 

are functions of the DC voltages, VDD, VVGA, and VREF, 

respectively, where VREF is the maximum-likelihood estimate 

[55] of VVGA and obtained by one-time analog-to-digital and 

digital-to-analog conversions, i.e., the ADC-DAC pair in Fig. 

1(a), after VTAC is settled for the RSA process. Therefore, the 

periodic delta, τ, between CKR and CKF represents the scaled 

version of t and is a function of (VDD − VVGA) through the 

calibratable conversion gains of the TAC, VGA, and VCDL 

(i.e., KTAC, KVGA, and KDL, respectively). After merging CKR 

and CKF by one of the rising edge-combiners, the resulting 

clock, CKτ, maintains the T periodicity while its duty-cycle, 

τ/T, carries the t information and becomes the primary 

quantity under the RSA process. By following the same 

mechanism, CKτREF also maintains the T periodicity while its 

duty-cycle, τREF/T, is a function of (VDD − VREF) and represents 

the maximum-likelihood estimate of τ/T under the 

circumstance of the pre-set resolution of the ADC-DAC pair. 

To perform the random sampling process, a free-running 

ring-based digitally-controlled oscillator (DCO) generates an 

asynchronous clock, CKDCO, to simultaneously sample the 

waveforms of CKτ and CKτREF through two individual 1-bit D 
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Fig. 1.  (a) The block diagram of the RSA-based TCSPC system with the self-antithetic (green dashed-lines) and control-variate (blue solid-lines) variance reduction 

techniques. (b) The relation among CKτ, CKtREF, and sampling PDFs of CKDCO of the asynchronous RSA process in the absolute time-domain associated with the 

nature of the DCO phase-noise accumulation property. 
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flip-flops (DFF) as shown in Fig. 1(a). In the meantime, the 

randomness of each CKDCO sampling-instant is mainly 

accomplished by a digital pseudo-random-binary-sequence 

generator (PRBS Gen.) to dynamically modulate the DCO 

period, TDCO, and to ensure that the sampling probability 

density function (PDF) can satisfy the RSA criteria for the DFF 

outcomes, Y and YREF, to be the 1-bit binary random variables 

described in Section III. A 1-bit multiplier, i.e., an AND-gate, 

is required to generate the bit-on-bit product of the two 

simultaneously sampled random variables, (Y·YREF), in the rate 

of CKDCO for CVVR. Finally, the averaging process is executed 

by the data and cycle accumulators (ACC.) to first count the 

numbers of Logic-1s, NY, NYREF
, NY∙YREF

, and NDCO, at the 

outputs of the DFFs, AND-gate and DCO, respectively; then, 

the final result per RSA process can be obtained by one-time 

arithmetic calculations based on these accumulator outputs. At 

this point, the process of an asynchronous RSA-based TDC has 

been completed regardless of the VR techniques being enabled 

or not. At first glance, the entire system and process seem 

simple, which indicates the superior power/area efficiency of 

the RSA with VR techniques; however, the theory and concept 

in behind are quite complicated and unintuitive. 

III. RANDOM SAMPLING-AND-AVERAGING OVERVIEW 

In the asynchronous RSA process shown in Fig. 1(a), Y and 

YREF are the random variables; E[Y] and E[YREF] are the 

expectations of Y and YREF, respectively; Yn and YREF,n are the 

n-th samples of Y and YREF, respectively; NDCO is the total 

number of the samples; Y̅ is the mean of Yn and represents the 

primary result per RSA process. In other words, Y̅ is the Monte 

Carlo estimate [46] of the “ideal” expectations, E[Y̅] = E[Y]; 

similarly, Y̅REF, YREF,n, and E[Y̅REF] = E[YREF] follow the same 

relations. Therefore, the variances, Var[Y̅] and Var[Y̅REF], 

represent the total noise powers within the Nyquist-frequency 

bandwidth of the RSA process, not Var[Y] and Var[YREF]. One 

example of the asynchronous RSA sampling processes is shown 

in Fig. 1(b). For the sake of simplicity, the asynchronous 

sampling clock, CKDCO, is assumed to have a coincident rising 

edge at t = 0 with those of the deterministic clocks, CKτ and 

CKτREF. Based on the phase-noise accumulation property of 

ring-oscillators [56], the n-th absolute sampling time, tSAMP,n, 

illustrated in Fig. 1(b), can be generalized as follows: 

 

      𝑡𝑆𝐴𝑀𝑃,𝑛 =∑𝑇𝐷𝐶𝑂,𝑘

𝑛

𝑘=1

= 𝑛 ∙ 𝑇𝐷𝐶𝑂,𝑀𝐼𝑁 +∑∆𝑇𝑃𝑅𝐵𝑆,𝑘

𝑛

𝑘=1

       (1) 

 

where TDCO,k is the k-th period of the DCO; ΔTPRBS,k is the k-th 

DCO period extension controlled by the PRBS generator; 

TDCO,MIN is the minimum DCO period when ΔTPRBS,k = 0; 

ΔTPRBS,MAX in Fig. 1(b) is the maximum DCO period extension 

which sets the span of the time-domain sampling PDF of a 

“single” CKDCO sampling edge, fDCO,1(t). Each tSAMP,n contains 

the deterministic term, n·TDCO,MIN, and stochastic term, which 

describes the uncertainty of each sampling instant and can only 

be represented by a PDF, fDCO,n(t). Therefore, the n-th CKDCO 

rising edge occurs randomly but is confined within the 

distribution span and density magnitude of its own PDF, i.e., 

the light-red areas in Fig. 1(b). More importantly, the stochastic 

term of tSAMP,n is the accumulation of “n” samples of an I.I.D. 

random variable (i.e., ΔTPRBS,k, k = 1 to n) created by the PRBS 

generator for “n” times as shown in the 2nd term of (1); 

equivalently, the PDF of the n-th DCO sampling instant, 

fDCO,n(t), is the convolution result of total “n” fundamental 

PDFs, fDCO,1(t), from the PRBS generator based on the 

Convolution Theorem [57]. Note that the fundamental PDF, 

fDCO,1(t), has a constant 1/∆TPRBS,MAX density magnitude and 

∆TPRBS,MAX distribution span as mentioned. However, when n 

>> 1, the Central Limit Theorem [57] guarantees that fDCO,n(t) 

converges to a Gaussian distribution with a wide distribution 

span, n·ΔTPRBS,MAX, as shown at the top of Fig. 2(a) regardless 

of the sampling PDF, fDCO,1(t), from the PRBS generator. 

 Because of the periodicity of CKτ, the entire distribution 

span of fDCO,n(t) is automatically segmented and compressed 

into a [0, T) duration and equivalently converted into a modulo-

T random sampling PDF, fn(t), which still follows the 

Convolution Theorem but shall be mathematically expressed by 

a circular convolution, CConv[·], due to the modulo-T 

operation [53], [58]: 

  

𝑓1(𝑡) = 𝐶𝐶𝑜𝑛𝑣[𝑓𝐷𝐶𝑂,1(𝑡), 𝛿(𝑡), 𝑇]              

                   𝑓𝑛(𝑡) = 𝐶𝐶𝑜𝑛𝑣[𝑓𝑛−1(𝑡), 𝑓1(𝑡), 𝑇], 𝑛 > 1      (2) 
 

where δ(t) is the unit impulse; the “t” of f1(t), fn−1(t), and fn(t) is 

the modulo-T time-domain variable within [0, T), but the “t” of 

fDCO,1(t) and δ(t) is the absolute time-domain variable 

referenced to t = 0. Based on (2), f1(t) plays as not only the PDF 

of the 1st sampling instant but also the fundamental PDF 

element to obtain any fn(t) from fn−1(t). According to [53], as 

fDCO,n(t) converges to a Gaussian PDF with increasing “n”, fn(t) 

converges to a uniformly distributed PDF with a constant 

density magnitude 1/T across the [0, T) distribution span. In 

other words, for all “n” >> 1, fn(t) becomes an “identically 

distributed” PDF and independent from the parameters of 

TDCO,MIN, ΔTPRBS,MAX, and even “n” as illustrated in Fig. 2(a). 

Therefore, the expectations of the RSA processes also converge 

and can be expressed by a continuous one-dimensional 

geometric probability [57] format shown below, and two 

examples are illustrated in Fig. 2(b). 

 

𝐸[𝑌̅] = lim
𝑁𝐷𝐶𝑂→∞

∑ 𝑌𝑛
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
= lim

𝑁𝐷𝐶𝑂→∞

𝑁𝑌
𝑁𝐷𝐶𝑂

              

= 𝐸[𝑌] = ∫ 𝑦𝑛(𝑡) ∙ 𝑓𝑛(𝑡) ∙ 𝑑𝑡
𝑇

0

               

                      = ∫
1

𝑇
∙ 𝑑𝑡

𝜏

0

+∫
0

𝑇
∙ 𝑑𝑡

𝑇

𝜏

=
𝜏

𝑇
= 𝑃1                       (3) 

𝐸[𝑌̅𝑅𝐸𝐹] = lim
𝑁𝐷𝐶𝑂→∞

∑ 𝑌𝑅𝐸𝐹,𝑛
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
= lim

𝑁𝐷𝐶𝑂→∞

𝑁𝑌𝑅𝐸𝐹
𝑁𝐷𝐶𝑂

           

= 𝐸[𝑌𝑅𝐸𝐹] = ∫ 𝑦𝑅𝐸𝐹,𝑛(𝑡) ∙ 𝑓𝑛(𝑡) ∙ 𝑑𝑡
𝑇

0
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                      = ∫
1

𝑇
∙ 𝑑𝑡

𝜏𝑅𝐸𝐹

0

+∫
0

𝑇
∙ 𝑑𝑡

𝑇

𝜏𝑅𝐸𝐹

=
𝜏𝑅𝐸𝐹
𝑇

= 𝑃1,𝑅𝐸𝐹  (4) 

𝐸[𝑌 ∙ 𝑌𝑅𝐸𝐹] = lim
𝑁𝐷𝐶𝑂→∞

∑ (𝑌𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛)
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
= lim

𝑁𝐷𝐶𝑂→∞

𝑁𝑌∙𝑌𝑅𝐸𝐹
𝑁𝐷𝐶𝑂

    

= ∫ 𝑦𝑛(𝑡) ∙ 𝑦𝑅𝐸𝐹,𝑛(𝑡) ∙ 𝑓𝑛(𝑡) ∙ 𝑑𝑡
𝑇

0

          

                     =

{
 
 

 
       ∫

1

𝑇
∙ 𝑑𝑡

𝜏

0

=
𝜏

𝑇
= 𝑃1,             𝑖𝑓 𝜏 ≤ 𝜏𝑅𝐸𝐹

∫
1

𝑇
∙ 𝑑𝑡

𝜏𝑅𝐸𝐹

0

=
𝜏𝑅𝐸𝐹
𝑇

= 𝑃1,𝑅𝐸𝐹 , 𝑖𝑓 𝜏 > 𝜏𝑅𝐸𝐹

(5) 

 

where yn(t) and yREF,n(t) are the modulo-T waveform of CKτ 

and CKτREF simultaneously sampled by the modulo-T sampling 

PDF, fn(t), of CKDCO; P1 (= 1 − P0) is the probability of obtaining 

a Yn as Logic-1, and P0 as Logic-0. P1,REF (= 1 − P0,REF) and 

YREF,n shown in (4) follow the same relation. Based on the 

approach of generating the waveforms of CKτ and CKτREF, yn(t) 

and yREF,n(t) have identical rising edges while the difference 

between them, which is highlighted in yellow and set by the 

timings of their falling edges (i.e., t and tREF) as shown in Fig. 

2(b), determines the degree of cross-correlation [55] between Y 

and YREF for CVVR. Without diving into the details of CVVR 

discussed in Section V, this section prepares the expectation of 

(Y·YREF) in (5), which is the key of extracting the cross-

correlation between Y and YREF in a power-efficient manner 

indicated in Fig. 2(b), i.e., E[Y·YREF] can be simply obtained 

by using fn(t) to sample yn(t)·yREF,n(t). 

The time-interval, Δt, under each TDC process can be 

obtained by the accumulator outputs, Y̅ = NY/NDCO  τ/T in (3), 

with pre-calibrated circuit parameters, KTAC, KVGA, and KDL: 

 

       ∆𝑡 =
𝜏

𝐾𝑇𝐴𝐶 ∙ 𝐾𝑉𝐺𝐴 ∙ 𝐾𝐷𝐿
≈

𝑇

𝐾𝑇𝐴𝐶 ∙ 𝐾𝑉𝐺𝐴 ∙ 𝐾𝐷𝐿
∙
𝑁𝑌
𝑁𝐷𝐶𝑂

       (6) 

 

Any RSA-based TDC result, Y̅, is a Monte Carlo estimate, so 

the theoretical variances can be verified by experimental data 

with the statistical process shown below [46], [59]: 

 

𝑉𝑎𝑟[𝑌̅] ≈
1

𝑁𝐸𝑋𝑃 − 1
∙ ∑ (𝑌̅𝑚 −

1

𝑁𝐸𝑋𝑃 − 1
∙ ∑ 𝑌̅𝑚

𝑁𝐸𝑋𝑃

𝑝=1

)

2𝑁𝐸𝑋𝑃

𝑚=1

    (7) 

 

This verification accuracy depends on the number of Y̅, NEXP, 

obtained from experiments or simulations. In a realistic RSA-

based TDC under a certain accuracy requirement with the 

settings of NDCO, TDCO,MIN, ΔTPRBS,MAX and T, only a single Y̅ is 

necessary and sufficient to represent one TDC result. 

IV. SELF-ANTITHETIC VARIANCE REDUCTION 

The purpose of utilizing VR in the RSA-based TDC is to 

trade the accuracy improvement (or the amount of variance 

reduction) for accelerating the conversion-rate of RSA, which 

heavily relies on the numbers of samples to achieve high 

accuracy measurements. The idea of SAVR can be described 

by formulating the general variance of an RSA process, Var[Y̅], 

which is the summation of all pairwise covariances (i.e., auto-

covariance sum [55]) among all NDCO samples of the random 

variable, Y, with the weak law of large numbers [57]:  

 

𝑉𝑎𝑟[𝑌̅] = 𝑉𝑎𝑟 [
∑ 𝑌𝑛
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
] =

∑ ∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]
𝑁𝐷𝐶𝑂
𝑘=1

𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
2               

   =
∑ 𝑉𝑎𝑟[𝑌𝑛]
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
2 +

2 ∙ ∑ ∑ 𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]
𝑛−1
𝑘=1

𝑁𝐷𝐶𝑂
𝑛=2

𝑁𝐷𝐶𝑂
2  

             =

{
 
 

 
 
     
𝑃1 ∙ 𝑃0
𝑁𝐷𝐶𝑂

=
𝑉𝑎𝑟[𝑌]

𝑁𝐷𝐶𝑂
, 𝑖𝑓 ∑ ∑𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]

𝑛−1

𝑘=1

𝑁𝐷𝐶𝑂

𝑛=2

= 0

𝑉𝑎𝑟[𝑌̅𝑆𝐴] <
𝑉𝑎𝑟[𝑌]

𝑁𝐷𝐶𝑂
, 𝑖𝑓 ∑ ∑𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑘]

𝑛−1

𝑘=1

𝑁𝐷𝐶𝑂

𝑛=2

< 0

 

                                                                                                           (8) 
 

where Cov[·] is the covariance operator. As shown in (8), if Y 

is an independent and identically distributed (I.I.D.) random 

variable, all pairwise covariance terms are zero when n ≠ k; then 
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                                                     (a)                                                             (b) 

Fig. 2.  (a) The concept of the modulo-T operation and density-magnitude convergence of a uniformly distributed sampling PDF, fn(t), in the asynchronous RSA 

process [53]. (b) The examples of the n-th random sampling process (time-domain one-dimensional geometric probability density functions) of the random variable 

Y, YREF, and (Y·YREF) with their corresponding binary-domain Bernoulli probability functions. 
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the variance equals P1·P0/NDCO [53], [57], which is only 

contributed by the power summation of each individual sample, 

i.e., the 1st term in the 2nd line of (8). On the other hand, if there 

are correlations among the NDCO samples of the random 

variable, Y, and the pairwise covariance sum of all n ≠ k is 

negative, i.e., the 2nd term in the 2nd line of (8), now the variance 

can be smaller than that of the I.I.D. situation, i.e., Var[Y̅SA] < 

P1·P0/NDCO, which is the main idea of SAVR.  
 To induce the non-zero pairwise covariance sum when n ≠ k, 

one of the important results in [53] of creating a non-I.I.D. 

random variable for an asynchronous RSA process can be 

exploited by scaling down the distribution span, ∆TPRBS,MAX, of 

the fundamental sampling PDF, f1(t) in (2), which can be 

implemented by the static PRBS-length control shown in Fig. 

1(a). Meanwhile, this non-zero pairwise covariance sum must 

be negative as well, otherwise the overall effect becomes 

unfavorable variance addition (VA). To ensure the effective 

VR, the deterministic term of f1(t), Mod[TDCO,MIN, T], has to be 

specified and can be implemented by the static DCO frequency 

control shown in Fig. 1(a) as well. The variances of the RSA 

with SAVR technique vs. normalized DR are plotted in Fig. 

3(a) where Mod[TDCO,MIN, T]  T/2, NDCO = 214, and NEXP = 211. 

A couple of important conclusions have been demonstrated. 

First, a stronger VR can be statically enabled by decreasing the 

PRBS time-domain noise power, i.e., ΔTPRBS,MAX, without extra 

hardware to enhance the resolution of the PRBS generator since 

the infinite phase resolution has been taken care of by the 

inherent circuit/system noise accumulations through the DCO 

[53], [56]. Second, the efficiency of SAVR degrades with the 

increase of |τ/T − 0.5|, but the quantization-noise power, 

Var[Y̅SA], stays relatively constant across the entire DR when 

ΔTPRBS,MAX < T/8. On the other hand, an example of 

unfavorable VA is demonstrated in Fig. 3(b) when the 

coincident interactions between Mod[TDCO,MIN, T] and 

ΔTPRBS,MAX always generates positive pairwise auto-

covariances during the RSA process. Overall, SAVR can offer 

favorable variance reduction and consistent quantization-noise 

power under the requirement of setting Mod[TDCO,MIN, T]  

[0.25·T, 0.75·T] with ΔTPRBS,MAX ≤ T/4 based on the simulation 

results of sweeping the value of TDCO,MIN with respect to T, 

which indicates the sensitivity of SAVR to the circuit/signal 

variations; this issue can be effectively mitigated by the CVVR 

technique discussed in Section VI. 

In Fig. 3(c), the variances of the RSA with SAVR technique 

are plotted as functions of NDCO on the dBW scale under 

different settings at the worst-case quantization-noise condition 

(τ/T = 0.5) with NEXP = 28. All cases follow the weak law of 

large numbers and perform variance degradations at −3 dBW 

per octave of NDCO or equivalently −6 dBW per octave of 

ENOB [53]. More importantly, the variances at τ/T = 0.5 exhibit 

−3 dBW per octave of the ΔTPRBS,MAX divisor for all NDCO in 

both Fig. 3(a) and 3(c). The key contribution of SAVR is the 

conversion-rate enhancement with a small amount of power 

overhead. For example, to achieve the same variance of −60 

dBW in Fig. 3(c), when ΔTPRBS,MAX  T (SAVR disabled), it 

requires NDCO = 218 and TDCO,AVG = (TDCO,MIN + ΔTPRBS,AVG)  

(T/2 + T/2) = T; On the other hand, when ΔTPRBS,MAX  T/32 

(SAVR enabled), it requires NDCO = 213 and TDCO,AVG = 

(TDCO,MIN + ΔTPRBS,AVG)  (T/2 + T/64) = 0.516·T, so the 

conversion-rate,  1/(NDCO·TDCO,AVG), is improved by 62. 

About the power consumption with vs. without SAVR, the 

DCO power includes three major factors in the comparison: 

first, the DCO average frequency (FDCO,AVG  1/TDCO,AVG) is 

almost doubled, i.e., 1/(0.516·T) vs. 1/T; second, the per-stage 

capacitance load (CL) controlled by the PRBS generator is much 

smaller since it is dominantly scaled with ΔTPRBS,MAX, i.e., T/32 

vs. T; third, additional DC power is required for DCO static 

reconfigurations plotted by the green dashed-lines in Fig. 1(a). 

According to the simulation result and power estimation above 

(CL·VDD
2 ·FDCO,AVG + DC power), the overall DCO power 

roughly stays the same with and without SAVR, i.e., 3.1 mW 

vs. 3 mW. Meanwhile, the power consumptions of the TAC, 

VGA, VCDL and edge-combiner are also independent from the 

SAVR technique, but the dynamic power of the DFF and clock 

buffers are scaled up with the DCO average frequency. Thus, 

the TDC power numbers (TAC + VGA + VCDL + edge-

combiner + DFF + clock buffer) with and without SAVR are 

1.5 mW and 1.3 mW, respectively. Overall, the total RSA-

based TDC power (i.e., DCO + TDC) is increased only by 7% 

after enabling SAVR for 62 conversion-rate enhancement. 
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Fig. 3.  The theoretical (blue) and simulated (red) variances of asynchronous RSA plotted as functions of t/T under four ∆TPRBS,MAX settings to enable SAVR with 

NDCO = 214 and NEXP = 211, when (a) Mod[TDCO,MIN, T]  T/2; (b) Mod[TDCO,MIN, T]  0.75·T. (c) The theoretical (blue) and simulated (red) variances of asynchronous 

RSA plotted as functions of NDCO with τ/T = 0.5 and NEXP = 28, including the I.I.D., VR, and VA scenarios based on the settings of TDCO,MIN, ΔTPRBS,MAX, and T. 
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V. CONTROL-VARIATE VARIANCE REDUCTION 

The method of CVVR [46] utilizes information about the 

errors in estimates of known quantities to reduce the variance 

in an estimate of an unknown quantity under asynchronous 

RSA processes. It is important to note that both SAVR and 

CVVR in this paper reduce the quantization-noise power by 

strategically creating correlations. However, the correlations of 

SAVR exist among the samples of a random variable, Y, i.e., 

[Y1, Y2, …, YNDCO
], so the correlations in SAVR are auto-

correlations [55], and its overall variance is quantified by an 

auto-covariance sum as mentioned in (8); meanwhile, the 

correlations of CVVR exist among the samples of at least two 

random variables, Y and YREF, i.e., [Y1, Y2, …, YNDCO
] and 

[YREF,1, YREF,2, …, YREF,NDCO
], so the correlations in CVVR are 

cross-correlations [55], and its overall variance is quantified by 

a cross-covariance sum as elaborated in this section. 

For the sake of simplicity, the theoretical analysis of CVVR 

starts with the assumption that Y and YREF are individual I.I.D. 

random variables, i.e., SAVR is disabled, and only CVVR is 

considered in this section. The first step is to examine the 

process of sampling CKτ and CKτREF by CKDCO simultaneously 

as illustrated in Fig. 2(b) to create a cross-correlation between 

Y and YREF only at the sampling instants of “n = k”: 

 

𝐶𝑜𝑣[𝑌𝑛 , 𝑌𝑅𝐸𝐹,𝑘] = 𝐸[𝑌𝑛 · 𝑌𝑅𝐸𝐹,𝑘] − 𝐸[𝑌𝑛] ∙ 𝐸[𝑌𝑅𝐸𝐹,𝑘]                    

                             = {
𝐶𝑜𝑣[𝑌, 𝑌𝑅𝐸𝐹] ≠ 0, 𝑖𝑓 𝑛 = 𝑘
0,                               𝑖𝑓 𝑛 ≠ 𝑘

                     (9) 

 

where “n” and “k” are both from 1 to NDCO. Meanwhile, the 

cross-covariance between the outcomes of the parallel RSA 

processes, Y̅ and Y̅REF, can be generalized as follows: 

 

𝐶𝑜𝑣[𝑌̅, 𝑌̅𝑅𝐸𝐹]                                                                                            

= 𝐸[𝑌̅ ∙ 𝑌̅𝑅𝐸𝐹] − 𝐸[𝑌̅] ∙ 𝐸[𝑌̅𝑅𝐸𝐹]                                              

=
∑ 𝐸[𝑌𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛]
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
2 +

2 ∙ ∑ ∑ 𝐸[𝑌𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑘]
𝑛−1
𝑘=1

𝑁𝐷𝐶𝑂
𝑛=2

𝑁𝐷𝐶𝑂
2    

          −𝐸[𝑌] · 𝐸[𝑌𝑅𝐸𝐹]                                                                 (10) 
 

Since Y and YREF are individual I.I.D. random variables, the 

cross-covariance can be simplified based on (9) as follows: 

 

𝐶𝑜𝑣[𝑌̅, 𝑌̅𝑅𝐸𝐹]                                                                                            

=
𝑁𝐷𝐶𝑂 ∙ 𝐸[𝑌 ∙ 𝑌𝑅𝐸𝐹]

𝑁𝐷𝐶𝑂
2 +

2 ∙ ∑ ∑ 𝐸[𝑌𝑛] ∙ 𝐸[𝑌𝑅𝐸𝐹,𝑘]
𝑛−1
𝑘=1

𝑁𝐷𝐶𝑂
𝑛=2

𝑁𝐷𝐶𝑂
2  

−𝐸[𝑌] · 𝐸[𝑌𝑅𝐸𝐹]                                                                

     =
𝐸[𝑌 ∙ 𝑌𝑅𝐸𝐹] − 𝐸[𝑌] ∙ 𝐸[𝑌𝑅𝐸𝐹]

𝑁𝐷𝐶𝑂
=
𝐶𝑜𝑣[𝑌, 𝑌𝑅𝐸𝐹]

𝑁𝐷𝐶𝑂
            (11) 

 

As shown in (11), sampling CKτ and CKτREF by CKDCO 

simultaneously as illustrated in Fig. 2(b) also creates the cross-

correlation between Y̅ and Y̅REF. Because of the same rising 

edges, clock period, and random sampling PDFs, fn(t), the only 

difference between yn(t) and yREF,n(t) is their duty-cycles, which 

is the factor causing the different outcomes between the data 

sequences of Y and YREF without considering any mismatch 

between the sampling DFFs. By plugging the expectations in 

(3), (4), and (5) into (11), the cross-covariance becomes: 

  
𝐶𝑜𝑣[𝑌̅, 𝑌̅𝑅𝐸𝐹]                                                                                            

   =
𝐶𝑜𝑣[𝑌, 𝑌𝑅𝐸𝐹]

𝑁𝐷𝐶𝑂
=
𝜎𝑌 ∙ 𝜎𝑌𝑅𝐸𝐹 ∙ 𝜌𝑌,𝑌𝑅𝐸𝐹

𝑁𝐷𝐶𝑂
= 𝜎𝑌̅ ∙ 𝜎𝑌̅𝑅𝐸𝐹 ∙ 𝜌𝑌̅,𝑌̅𝑅𝐸𝐹 

   =

{
 

        
𝑃1 − 𝑃1 ∙ 𝑃1,𝑅𝐸𝐹

𝑁𝐷𝐶𝑂
=
𝑃1 ∙ 𝑃0,𝑅𝐸𝐹
𝑁𝐷𝐶𝑂

, 𝑖𝑓 𝜏 ≤ 𝜏𝑅𝐸𝐹

𝑃1,𝑅𝐸𝐹 − 𝑃1 ∙ 𝑃1,𝑅𝐸𝐹
𝑁𝐷𝐶𝑂

=
𝑃0 ∙ 𝑃1,𝑅𝐸𝐹
𝑁𝐷𝐶𝑂

, 𝑖𝑓 𝜏 > 𝜏𝑅𝐸𝐹

          (12) 

 

where σY, σYREF
, σY̅, and σY̅REF

 are standard deviations of Y, 

YREF, Y̅, and Y̅REF, respectively; ρ
Y,YREF

 is the correlation 

coefficient [57] between Y and YREF, and ρ
Y̅,Y̅REF

 between Y̅ 

and Y̅REF. Since Y and YREF are individually I.I.D., their 

standard deviations are the square roots of their variances under 

the I.I.D. condition shown in (8). Therefore, the correlation 

coefficients can be found from (12) and (8): 

 

𝜌𝑌̅,𝑌̅𝑅𝐸𝐹 = 𝜌𝑌,𝑌𝑅𝐸𝐹 =

{
 
 

 
 
√
𝑃1 ∙ 𝑃0,𝑅𝐸𝐹
𝑃0 ∙ 𝑃1,𝑅𝐸𝐹

, 𝑖𝑓 𝜏 ≤ 𝜏𝑅𝐸𝐹

√
𝑃0 ∙ 𝑃1,𝑅𝐸𝐹
𝑃1 ∙ 𝑃0,𝑅𝐸𝐹

, 𝑖𝑓 𝜏 > 𝜏𝑅𝐸𝐹

                 (13) 

 

Based on (13), the correlation coefficients are functions of τ and 

τREF since P1 = 1 − P0 = t/T and P1,REF = 1 − P0,REF = tREF/T as 

shown in (3) and (4). Thus, the degree of correlation between Y 

and YREF is determined by the amount of overlap between the 

waveforms of the CKτ and CKτREF, which is proven by (13).  

Once confirming the cross-correlation between Y and YREF 

can be implemented by the random sampling process shown in 

Fig. 2(b), the next step is to prepare the “known” random 

variable, YREF, by using the asynchronous RSA process to 

measure the duty-cycle of CKτREF, τREF/T, so that the Monte 

Carlo estimate of YREF with a relatively high accuracy, i.e., 

Ê[Y̅REF] with Var[Y̅REF], becomes ready and “known” before 

measuring the “unknown” random variable, Y, with a targeted 

accuracy, i.e., Y̅ with Var[Y̅]. Since the pre-characterization of 

Ê[Y̅REF] with Var[Y̅REF] must be done before the regular 

operation can be executed, the time consumption due to this 

pre-characterization is under the cost of the calibration 

procedure or instrument initialization, which is not counted 

toward the cost of conversion-rate under the RSA-based TDC 

specification. Note that the Monte Carlo estimate of YREF is 

expressed by Ê[Y̅REF] instead of Y̅REF to represent its extremely 

high accuracy, obtained from the pre-characterization process. 

In addition, the non-idealities of the analog circuits, including 

TAC, VGA, and VCDL, due to process, voltage, and 

temperature (PVT) variations, can be also calibrated by this pre-

characterization process described in Appendix.  

With the “known” information, Ê[Y̅REF], ready and the cross-

correlation between Y and YREF shown in (13), the samples of 

a new random variable, YCV, possessing the same expectation 
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of Y but a lower variance due to CVVR, can be formulated 

based on the per sample relation between YREF,n and Yn [46]: 

 

         𝑌𝐶𝑉,𝑛 = 𝑌𝑛 − 𝜇𝐶𝑉 ∙ (𝑌𝑅𝐸𝐹,𝑛 − 𝐸̂[𝑌̅𝑅𝐸𝐹])                          (14) 

𝐸[𝑌𝐶𝑉] = 𝐸[𝑌] − 𝜇𝐶𝑉 ∙ 𝐸[𝑌𝑅𝐸𝐹] + 𝜇𝐶𝑉 ∙ 𝐸 [𝐸̂[𝑌̅𝑅𝐸𝐹]]          

                   = 𝐸[𝑌] =
𝜏

𝑇
= 𝑃1                                                      (15) 

𝑉𝑎𝑟[𝑌𝐶𝑉] = 𝑉𝑎𝑟[𝑌 − 𝜇𝐶𝑉 ∙ (𝑌𝑅𝐸𝐹 − 𝐸̂[𝑌̅𝑅𝐸𝐹])]                              

                ≈ 𝑉𝑎𝑟[𝑌 − 𝜇𝐶𝑉 ∙ 𝑌𝑅𝐸𝐹 + 𝜇𝐶𝑉 ∙ 𝐸[𝑌𝑅𝐸𝐹]]                      

                 = 𝑉𝑎𝑟[𝑌] + 𝜇𝐶𝑉
2 ∙ 𝑉𝑎𝑟[𝑌𝑅𝐸𝐹] − 2𝜇𝐶𝑉 ∙ 𝐶𝑜𝑣[𝑌, 𝑌𝑅𝐸𝐹] 

                                                                                                         (16) 
 

where YCV,n is the variance-reduced version of Yn per sample; 

the error term, (YREF,n − Ê[Y̅REF]), serves as a “control” per 

sample to produce YCV,n in estimating E[Y] = E[YCV] as shown 

in (15); μCV is the VR coefficient. To intuitively understand the 

reason for effective VR achieved by (14), the extreme case of 

the fully correlated condition can be quickly examined, i.e., Yn 

= YREF,n for all “n”. With μCV = 1, Equation (14) leads to the 

result of YCV,n = Ê[Y̅REF] for all “n”; this means that even a 

single sampled outcome, YCV,1, can achieve the accuracy of 

Ê[Y̅REF] without needing a large number of samples. The 

degree of correlation between Y and YREF can significantly 

affect the efficiency of CVVR and correspondingly reduce the 

required number of total samples, NDCO, to reach the target 

accuracy, which is dominated by the accuracy of Ê[Y̅REF], 

Var[Y̅REF], during the pre-characterization process. In other 

words, Var[YCV] is less than Var[Y] since the combination of 

the 2nd and 3rd terms in the 3rd line of (16) is negative and a 

function of Cov[Y, YREF]. Note that the approximation in the 

2nd line of (16) is due to ignoring the finite accuracy of Ê[Y̅REF] 

by replacing it with E[YREF] for the sake of simplicity. 

In short, the key idea of CVVR is established on taking 

advantage of the pre-characterization process in two aspects: 

first, the more time or accuracy contributed by the pre-

characterization, the more VR or conversion-rate can be gained; 

second, the higher correlation between “known” and 

“unknown” quantities, the more VR or conversion-rate can be 

enhanced as well. However, two major concerns can be raised 

in the circuit implementation: extra circuit power/area 

consumption and achievable degree of correlation, which are 

successively discussed in the following sub-sections. 

A. Practical Realization of Control-Variate VR 

The realization of YCV,n in (14) actually requires a high-

resolution and high-speed digital operation per sample, which 

can induce a certain amount of power/area overhead because of 

two facts: first, the pre-characterized, Ê[Y̅REF], and VR 

coefficient, μCV, possess high resolutions to meet the targeted 

accuracy per RSA process; second, although Ê[Y̅REF] and μCV 

are constant, the digital operation of (14) is executed as fast as 

the DCO frequency to generate the high-resolution YCV,n per 

sample. Fortunately, the primary outcome per RSA process is 

the mean value of the sampled random variable, Y̅CV, so the per 

sample format in (14) can incorporate the averaging process to 

perform the RSA with CVVR technique: 

𝑌̅𝐶𝑉 =
∑ [𝑌𝑛 − 𝜇𝐶𝑉 ∙ (𝑌𝑅𝐸𝐹,𝑛 − 𝐸̂[𝑌̅𝑅𝐸𝐹])]
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
          

= 𝑌̅ − 𝜇𝐶𝑉 ∙ (𝑌̅𝑅𝐸𝐹 − 𝐸̂[𝑌̅𝑅𝐸𝐹])                      

                  =
𝑁𝑌
𝑁𝐷𝐶𝑂

− 𝜇𝐶𝑉 ∙ (
𝑁𝑌𝑅𝐸𝐹
𝑁𝐷𝐶𝑂

− 𝐸̂[𝑌̅𝑅𝐸𝐹])                    (17) 

𝐸[𝑌̅𝐶𝑉] = 𝐸[𝑌̅] − 𝜇𝐶𝑉 ∙ 𝐸[𝑌̅𝑅𝐸𝐹] + 𝜇𝐶𝑉 ∙ 𝐸 [𝐸̂[𝑌̅𝑅𝐸𝐹]]          

                  = 𝐸[𝑌̅] = 𝐸[𝑌] =
𝜏

𝑇
= 𝑃1                                      (18) 

𝑉𝑎𝑟[𝑌̅𝐶𝑉] = 𝑉𝑎𝑟[𝑌̅ − 𝜇𝐶𝑉 ∙ (𝑌̅𝑅𝐸𝐹 − 𝐸̂[𝑌̅𝑅𝐸𝐹])]                              

                 ≈ 𝑉𝑎𝑟[𝑌̅] + 𝜇𝐶𝑉
2 ∙ 𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹] − 2𝜇𝐶𝑉 ∙ 𝐶𝑜𝑣[𝑌̅, 𝑌̅𝑅𝐸𝐹] 

                 =
𝑉𝑎𝑟[𝑌]

𝑁𝐷𝐶𝑂
+ 𝜇𝐶𝑉

2 ∙
𝑉𝑎𝑟[𝑌𝑅𝐸𝐹]

𝑁𝐷𝐶𝑂
− 2𝜇𝐶𝑉 ∙

𝐶𝑜𝑣[𝑌, 𝑌𝑅𝐸𝐹]

𝑁𝐷𝐶𝑂
 

                                                                                                         (19) 
 

Equation (17), (18), and (19) seem similar to (14), (15), and 

(16), respectively, but they actually represent a power/area 

efficient realization of the RSA with CVVR technique. First, 

instead of calculating every single high-resolution YCV,n in (14) 

and then taking the average over NDCO samples, the realization 

method in (17) shows that Y̅CV can be actually obtained by a 

one-time calculation in high-resolution after the parallel RSA 

processes of Y̅ (= NY/NDCO) and Y̅REF (= NYREF
/NDCO) are 

completed, so the high-speed random sampling-and-averaging 

circuits all stay as the 1-bit digital operations as shown in Fig. 

1(a). Second, the expectation shown in (18) proves that the 

convergency of Y̅CV is not affected by the simplified CVVR 

realization method from (14) to (17). Third, the theoretical 

variance of the RSA with CVVR technique in (19) still follows 

the weak law of large numbers. 

With the low power/area realization method in (17) and pre-

characterized Ê[Y̅REF], the last item for the RSA with CVVR 

technique is the optimal value of the VR coefficient, μCV, which 

can minimize the variance of Y̅CV shown in (19): 

 

𝜕(𝑉𝑎𝑟[𝑌̅𝐶𝑉])

𝜕𝜇𝐶𝑉
= 2 ∙ 𝜇𝐶𝑉 ∙ 𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹] − 2 ∙ 𝐶𝑜𝑣[𝑌̅, 𝑌̅𝑅𝐸𝐹] = 0       

                𝜇𝐶𝑉 =
𝐶𝑜𝑣[𝑌̅, 𝑌̅𝑅𝐸𝐹]

𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹]
=

𝜎𝑌̅
𝜎𝑌̅𝑅𝐸𝐹

∙ 𝜌𝑌̅,𝑌̅𝑅𝐸𝐹                   (20) 

 

By plugging (20) into (19), the minimum variance of the RSA 

with CVVR technique is shown as follows: 

 

                    𝑉𝑎𝑟[𝑌̅𝐶𝑉] ≈ 𝑉𝑎𝑟[𝑌̅] −
𝐶𝑜𝑣2[𝑌̅, 𝑌̅𝑅𝐸𝐹]

𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹]
                (21) 

 

Clearly, the amount of variance reduction (the 2nd term of (21)) 

from the variance of an I.I.D. case (the 1st term of (21)) is 

mainly determined by the cross-correlation between Y̅ and 

Y̅REF; this is the reason for finding VREF as the maximum 

likelihood estimate of VVGA under the available resolution of 

the ADC-DAC pair. Moreover, the conclusion shown in (21) 

can be further quantified by the gain of CVVR or conversion-

rate, GCV, of this technique, which is represented by the ratio 

between the RSA variances without and with CVVR: 
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𝐺𝐶𝑉 =
𝑉𝑎𝑟[𝑌̅]

𝑉𝑎𝑟[𝑌̅𝐶𝑉]
=

𝑉𝑎𝑟[𝑌̅] ∙ 𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹]

𝑉𝑎𝑟[𝑌̅] ∙ 𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹] − 𝐶𝑜𝑣
2[𝑌̅, 𝑌̅𝑅𝐸𝐹]

            

        =
𝜎𝑌̅
2 ∙ 𝜎𝑌̅𝑅𝐸𝐹

2

𝜎𝑌̅
2 ∙ 𝜎𝑌̅𝑅𝐸𝐹

2 − 𝜎𝑌̅
2 ∙ 𝜎𝑌̅𝑅𝐸𝐹

2 ∙ 𝜌𝑌̅,𝑌̅𝑅𝐸𝐹
2 =

1

1 − 𝜌𝑌̅,𝑌̅𝑅𝐸𝐹
2       (22) 

 

Based on (20), (21), and (22), multiple important attributes 

and implementation methodologies of CVVR are discussed as 

follows. First, the gain of CVVR, GCV, is purely determined by 

the degree of cross-correlation between the outcomes of the 

parallel RSA processes, Y̅ and Y̅REF. For example, when they 

are uncorrelated, ρ
Y̅,Y̅REF

 = 0 = μCV, GCV = 1, and then Var[Y̅CV] 

= Var[Y̅]; when they are fully correlated, ρ
Y̅,Y̅REF

 = 1 = μCV, GCV 

= ∞, and then Var[Y̅CV]  0 based on (21). Second, unlike the 

variance of SAVR in (8), which requires the auto-covariance 

sum of all Cov[Yn, Yk], n ≠ k to be negative, the cross-

covariance, Cov[Y̅, Y̅REF], of CVVR can be either positive or 

negative; both polarities can only create effective VR instead of 

VA because Var[Y̅CV] in (21) is always less than or equal to 

Var[Y̅] regardless of the polarity of Cov[Y̅, Y̅REF], which has 

been cancelled by the same cross-covariance embedded in μCV 

as shown in (20). This attribute reflects the superior stability of 

CVVR than that of SAVR. Third, CVVR scales the variance in 

a reciprocal manner of GCV based on (22). Therefore, if a certain 

amount of VR can be obtained by increasing NDCO, theoretically 

the same amount of VR can be achieved by CVVR without 

increasing NDCO. This is the reason for using GCV to represent 

the gain of conversion-rate enhancement or measurement-time 

( NDCO·TDCO,AVG) reduction offered by CVVR to reach a 

certain requirement of variance or ENOB. 

The three attributes discussed so far are all under the 

assumption of knowing the value of μCV, which indicates the 

significance of obtaining this optimal VR coefficient in this 

technique. However, based on μCV and Cov[Y̅, Y̅REF] in (20) 

and (11), respectively, if E[Y] is unknown, which is the ideal 

RSA-based TDC result, then it is unlikely to find this optimal 

VR coefficient. Fortunately, the concept of the Monte Carlo 

method is also applicable to finding an estimate of μCV by 

replacing the expectations with their estimates from the RSA 

processes under a finite sampling number, NDCO. Therefore, 

since Y and YREF are individual I.I.D. random variables, the 

estimate VR coefficient, μ̂
CV

, can be derived by: 

 

𝜇𝐶𝑉 =
𝐶𝑜𝑣[𝑌̅, 𝑌̅𝑅𝐸𝐹]

𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹]
=
𝐶𝑜𝑣[𝑌, 𝑌𝑅𝐸𝐹]

𝑉𝑎𝑟[𝑌𝑅𝐸𝐹]
                                     

=
𝐸[(𝑌 − 𝐸[𝑌]) ∙ (𝑌𝑅𝐸𝐹 − 𝐸[𝑌𝑅𝐸𝐹])]

𝐸[(𝑌𝑅𝐸𝐹 − 𝐸[𝑌𝑅𝐸𝐹])
2]

                    

              ≈
∑ [(𝑌𝑛 − 𝑌̅) ∙ (𝑌𝑅𝐸𝐹,𝑛 − 𝑌̅𝑅𝐸𝐹)]
𝑁𝐷𝐶𝑂
𝑛=1

∑ (𝑌𝑅𝐸𝐹,𝑛 − 𝑌̅𝑅𝐸𝐹)
2𝑁𝐷𝐶𝑂

𝑛=1

= 𝜇̂𝐶𝑉            (23) 

 

Though (23) eliminates the necessity of ideal expectations, it 

requires hardware to store the entire data sequences of Yn and 

YREF,n with NDCO samples until the parallel RSA process 

outcomes, Y̅ and Y̅REF, are ready for the calculations of μ̂
CV

 in 

(23) and then Y̅CV in (17). To avoid an explosion of circuit 

power/area overhead, μ̂
CV

 in (23) can be reformulated by (24) 

which demonstrates significant hardware simplification to 

obtain μ̂
CV

; it is basically a one-time multi-bit operation with 

NY, NYREF
, NY∙YREF

 and NDCO from the 1-bit accumulators after 

the completion of each RSA-based TDC process. 

B. Efficiency of Control-Variate VR 

Based on (22), the gain of CVVR, GCV, substantially 

increases as |ρ
Y̅,Y̅REF

| approaches “1” and decreases as |ρ
Y̅,Y̅REF

| 

moves away from “1”. To maintain the efficiency of CVVR, the 

cross-correlation between Y̅ and Y̅REF has to be confined up to 

a certain degree. According to (12) and (13) with the 

assumption that Y and YREF are individual I.I.D. random 

variables declared at the beginning of Section V, the cross-

correlation between Y and YREF can be simply set or controlled 

by the overlap between τ and τREF of the CKτ and CKτREF 

waveforms, respectively, as shown in Fig. 2(b). Therefore, to 

maintain a high correlation between τ and τREF across the entire 

DR of τ  [0, T), multiple pre-characterized Ê[Y̅REF] (i.e., 

Ê[Y̅REF1], Ê[Y̅REF2], Ê[Y̅REF3], …) generated by their 

corresponding τREF-options (i.e., τREF1, τREF2, τREF3, …) can be 

deployed. With a pre-set number of τREF-options, any τ under 

the RSA with CVVR technique needs to be coarsely quantized 

to find one of the τREF-options having the maximum overlap or 

correlation with τ. In other words, the chosen τREF-option is the 

maximum likelihood estimate of τ, so the most efficient CVVR 

can be performed under the available resource of the pre-

characterized τREF-options with their Ê[Y̅REF]. That is, if a finer 

step size between the adjacent τREF-options has been offered 

within [0, T), which corresponds to more pre-characterized 

Ê[Y̅REF], then a larger correlation coefficient, ρ
Y̅,Y̅REF

 can be 

obtained for a higher amount of CVVR. The implementation of 

finding the best τREF-option is a part of the CKτREF generation 

as described in Section II. When VVGA is converted from Δt to 

set the delay of CKF, it is also fed into a pair of coarse ADC 

and DAC to generate VREF and then to set the delay of CKFREF 

through the VCDL plotted by the blue solid-lines in Fig. 1(a). 

Therefore, the duty-cycle of CKτREF, τREF/T, can be the one 

closet to τ/T. The resolution of generating τREF-options is set by 

the resolutions of the ADC-DAC pair and pre-characterization 

process. A higher resolution or number of τREF-options (or 

VREF) can provide better CVVR, however, with higher ADC-

DAC circuit overhead and pre-characterization effort. 

𝜇̂𝐶𝑉 =
∑ (𝑌𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛 − 𝑌𝑛 ∙ 𝑌̅𝑅𝐸𝐹 − 𝑌̅ ∙ 𝑌𝑅𝐸𝐹,𝑛 + 𝑌̅ ∙ 𝑌̅𝑅𝐸𝐹)
𝑁𝐷𝐶𝑂
𝑛=1

∑ (𝑌𝑅𝐸𝐹,𝑛
2 − 2 ∙ 𝑌𝑅𝐸𝐹,𝑛 ∙ 𝑌̅𝑅𝐸𝐹 + 𝑌̅𝑅𝐸𝐹

2 )
𝑁𝐷𝐶𝑂
𝑛=1

=
∑ (𝑌𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛)
𝑁𝐷𝐶𝑂
𝑛=1 + 𝑁𝐷𝐶𝑂 ∙ 𝑌̅ ∙ 𝑌̅𝑅𝐸𝐹

∑ (𝑌𝑅𝐸𝐹,𝑛)
𝑁𝐷𝐶𝑂
𝑛=1 − 2 ∙ 𝑌̅𝑅𝐸𝐹 ∙ 𝑁𝐷𝐶𝑂 ∙ 𝑌̅𝑅𝐸𝐹 + 𝑁𝐷𝐶𝑂 ∙ 𝑌̅𝑅𝐸𝐹

2
 

                 =

∑ (𝑌𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛)
𝑁𝐷𝐶𝑂
𝑛=1

𝑁𝐷𝐶𝑂
− 𝑌̅ ∙ 𝑌̅𝑅𝐸𝐹

𝑌̅𝑅𝐸𝐹 − 𝑌̅𝑅𝐸𝐹
2 =

𝑁𝐷𝐶𝑂 ∙ 𝑁𝑌∙𝑌𝑅𝐸𝐹 −𝑁𝑌 ∙ 𝑁𝑌𝑅𝐸𝐹
(𝑁𝐷𝐶𝑂 − 𝑁𝑌𝑅𝐸𝐹) ∙ 𝑁𝑌𝑅𝐸𝐹

                                                                                       (24) 
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The variances of the RSA with CVVR technique vs. 

normalized DR are plotted in Fig. 4(a) under different numbers 

of τREF-options with NDCO = 214 and NEXP = 211, where 

Mod[TPRBS,MAX, T]  0 to ensure that Y and YREF are 

individual I.I.D. random variables, i.e., SAVR is disabled in 

these examples. The color coding is used to represent different 

numbers of τREF-options across the DR of τ. Multiple important 

conclusions have been demonstrated. First, the theoretical 

variances (solid curves) based on (21) match well with the 

experimental simulation results (solid dots) statistically 

processed by (7). Second, more τREF-options offered by the pre-

characterized Ê[Y̅REF] and ADC-DAC hardware lead to lower 

quantization-noise power from the coarse ADC, which is 

equivalent to higher correlations between τREF and τ, i.e., 

Cov[Y̅, Y̅REF] in (21), across the entire DR, more variance 

lobes, more variance notches due to fully coincident 

correlations, and eventually more VR can be performed in 

average. Third, the discontinuities at the peaks of the variance 

lobes are due to the linear quantization process of the coarse 

ADC which sets the thresholds at the middle of two τREF-

options, so two well-apart values of τREF/T (= Y̅REF) could be 

used in (21) for two close values of τ/T (= Y̅). For example, in 

the case of τREF-options = 3, τREF/T = 0.25 is chosen when τ/T 

is a little bit less than 0.375, otherwise τREF/T = 0.5 when τ/T is 

just barely larger than 0.375. In any case, these discontinuities 

only create negligible increases of the variance peaks and 

render no reason for extra hardware to perform a non-linear 

quantization in the coarse ADC. Fourth, the theoretical VR 

coefficients (solid curves) based on (20) and its approximation 

(solid dots) for hardware-friendly implementation based on (24) 

are shown in Fig. 4(b) according to all parameter settings for 

the results shown in Fig. 4(a). As expected, when the correlation 

between τ and τREF increases in average due to more τREF-

options, the values of μCV and μ̂
CV

 tend to concentrate on the 

highly correlated regions, which are close to “1”. In Fig. 4(c), 

the variances are plotted as functions of NDCO on the dBW scale 

with different CVVR settings at the worst-cases quantization-

noise condition in Fig. 4(a). Both theoretical (blue curves) and 

simulation (red dots) results are well aligned and follow the 

weak law of large numbers with variance degradations at −3 

dBW per octave of NDCO or equivalently −6 dBW per octave of 

ENOB [53]. More importantly, the worst-case variances exhibit 

roughly −3 dBW per octave of the number of τREF-options, i.e., 

3, 7, 15, and so forth, for all NDCO. About the power 

consumption with vs. without CVVR, the DCO power stays the 

same due to its zero configuration-changes while the CKτREF 

data path plotted by the blue solid-lines in Fig. 1(a) is enabled 

for CVVR and occupies the primary power overhead. Thus, the 

TDC power numbers (TAC + VGA + coarse ADC-DAC + 

VCDL + edge-combiner + DFF + AND + clock buffer) with 

and without CVVR are 1.9 mW and 1.3 mW, respectively. 

Overall, the total RSA-based TDC power (DCO + TDC) is 

roughly increased by 14%, but the payback is more than 8 

conversion-rate enhancement when τREF-options = 15.  

VI. COLLABORATIVE VARIANCE REDUCTION 

A. Practical Realization of Collaborative VR 

The RSA with CoVR technique can take the complementary 

benefits from SAVR and CVVR without further power/area 

overhead since the required hardware for CVVR, including the 

pre-characterization of Ê[Y̅REF] and the parallel RSA process of 

Y̅REF, is basically isolated from the hardware for SAVR. In 

other words, the RSA processes of Y̅ and Y̅REF can perform 

their own SAVR not only simultaneously due to their common 

sampling clock (CKDCO) but also individually due to their 

separate data paths as shown in Fig. 1(a); any VR in the RSA 

process of Y̅ is only contributed by SAVR regardless of 

enabling CVVR or not, i.e., Y̅ = Y̅SA and Var[Y̅] = Var[Y̅SA] 

when SAVR is enabled as shown in (8). To perform CoVR, the 

final one-time high-resolution calculation for incorporating 

CVVR into SAVR is still required as shown in (25) followed 

by the verification of convergence in (26).  
 

𝑌̅𝑆𝐴𝐶𝑉 = 𝑌̅𝑆𝐴 − 𝜇̂𝑆𝐴𝐶𝑉 ∙ (𝑌̅𝑅𝐸𝐹 − 𝐸̂[𝑌̅𝑅𝐸𝐹])                    

                     ≈
𝑁𝑌
𝑁𝐷𝐶𝑂

− 𝜇̂𝐶𝑉 ∙ (
𝑁𝑌𝑅𝐸𝐹
𝑁𝐷𝐶𝑂

− 𝐸̂[𝑌̅𝑅𝐸𝐹])                 (25) 

    𝐸[𝑌̅𝑆𝐴𝐶𝑉] = 𝐸[𝑌̅𝑆𝐴] − 𝜇̂𝑆𝐴𝐶𝑉 ∙ 𝐸[𝑌̅𝑅𝐸𝐹] + 𝜇̂𝑆𝐴𝐶𝑉 ∙ 𝐸 [𝐸̂[𝑌̅𝑅𝐸𝐹]] 
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Fig. 4.  (a) The theoretical (curves) and simulated (dots) variances of asynchronous RSA plotted as functions of t/T under five different numbers of τREF-options to 

enable CVVR with NDCO = 214 and NEXP = 211. (b) The theoretical (curves) and simulated (dots) VR coefficients plotted as functions of t/T according to the settings 

of CVVR in (a). (c) The worst-case theoretical (curves) and simulated (dots) variances of asynchronous RSA plotted as functions of NDCO under four different 
numbers of τREF-options to enable CVVR with NEXP = 28. Note that τREF/T step-size (LSB) = 1/2, 1/4, 1/8, and 1/16 for τREF-options = 1, 3, 7, and 15, respectively. 
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                      = 𝐸[𝑌̅𝑆𝐴] = 𝐸[𝑌̅] = 𝐸[𝑌] =
𝜏

𝑇
= 𝑃1                 (26) 

𝑉𝑎𝑟[𝑌̅𝑆𝐴𝐶𝑉] ≈ 𝑉𝑎𝑟[𝑌̅𝑆𝐴] + 𝜇̂𝑆𝐴𝐶𝑉
2 ∙ 𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹]                                 

                          −2 ∙ 𝜇̂𝑆𝐴𝐶𝑉 ∙ 𝐶𝑜𝑣[𝑌̅𝑆𝐴, 𝑌̅𝑅𝐸𝐹]                             (27) 
 

Y̅SACV and its variance, Var[Y̅SACV], represent the RSA-based 

TDC result and quantization-noise power, respectively, when 

SAVR and CVVR are both enabled, i.e., CoVR.   
However, the cross-correlation between Y̅SA and Y̅REF 

embedded in μ̂
SACV

 is different from that in (23) since Y and 

YREF are no longer I.I.D. random variables whenever SAVR 

creates the auto-correlations among the samples of Y (as well 

as YREF) as discussed in Section III. In other words, the optimal 

VR coefficient, μ̂
SACV

, for CoVR cannot be implemented by 

(24) because (12) and (13) are not valid anymore, i.e., Cov[Y̅, 

Y̅REF] ≠ Cov[Y, YREF]/NDCO. Under this situation, the optimal 

VR coefficient for CoVR shown in (28) has to be derived from 

the original definition in (20) with the cross-covariance in (10). 

Obviously, the complexity of (28) is mainly caused by the auto-

correlations within YSA and YREF due to SAVR, so all 

E[YSA,n·YREF,k] terms cannot be simplified as 

E[YSA,n]·E[YREF,k] like (11). Therefore, although the 

approximate CoVR coefficient, μ̂
SACV

, only needs a one-time 

high-resolution calculation as μ̂
CV

 does in (24), it requires 

2·(NDCO − 1) of 1-bit AND-gates and NDCO·(NDCO − 1) of 1-bit 

DFFs to obtain all products of (YSA,n·YREF,n−k) and 

(YREF,n·YREF,n−k) in the DCO sampling rate. More dramatically, 

all 1-bit products need to be individually accumulated across 

the maximum NDCO cycles through 2·(NDCO − 1) counters. 

These unreasonable hardware requirements are all reflected by 

the 2nd terms of the numerator and denominator in (28). 

To resolve this practical issue, the simulation results shown 

in Fig. 5 demonstrate the comparison between two different VR 

coefficient scenarios for the RSA with CoVR technique: the 

first scenario is to ignore the auto-correlation induced by SAVR 

and use the hardware-friendly but suboptimal coefficient, μ̂
CV

, 

in (24) anyway; the second is to use the practically impossible 

but optimal coefficient, μ̂
SACV

, in (28) for comparison purposes. 

In the upper-half of Fig. 5, SAVR is enabled to initially 

suppress the variance by around 9 dB (i.e., Var[Y̅SA] in blue 

dots with Mod[TDCO,MIN, T]  T/2, and ΔTPRBS,MAX  T/8) from 

the I.I.D. RSA process (i.e., Var[Y̅] in blue curve with 

ΔTPRBS,MAX  T) at τ/T = 0.5 and NDCO = 214. Then, CVVR 

further suppresses the variance with τREF-options = 1, 3, and 7 

in Fig. 5(a), 5(b), and 5(c), respectively. Each figure contains 

the two CoVR coefficient scenarios: the suboptimal coefficient, 

μ̂
CV

 (red dots), and the optimal coefficient, μ̂
SACV

 (black dots). 

The corresponding values of the VR coefficients shown in the 

lower-half of Fig. 5(a), 5(b), and 5(c) all have a certain amount 

of discrepancy between μ̂
CV

 and μ̂
SACV

 especially when τ 

moves away from τREF-options. All simulated variances in the 

upper-half of Fig. 5 show that the optimal VR coefficients 

(black dots) do not offer significant variance reductions 

compared to those offered by suboptimal VR coefficients (red 

dots). The reason is because CVVR is effective only when Y (= 

YSA) and YREF (or Y̅SA and Y̅REF) have high cross-correlations 

regardless of whether Y itself is an I.I.D. random variable or 

not. In other words, the CVVR technique provides pronounced 

VR only when τ is approaching any one of the τREF-options as 

shown in Fig. 4(a) and the upper-half of Fig. 5; meanwhile, both 

μ̂
CV

 and μ̂
SACV

 are almost identical and converging to “1” as 

shown in Fig. 4(b) and the lower-half of Fig. 5. On the other 

hand, when τ is at the middle of two τREF-options, the efficiency 

of CVVR is very low anyway due to low cross-correlations 

between Y and YREF, so the peaks of the variance lobes in Fig. 

5 offered by the optimal VR coefficients are very close (< 1 dB 

difference) to those offered by the suboptimal VR coefficients 

even though there are some deltas between μ̂
CV

 and μ̂
SACV

 when 

𝜇𝑆𝐴𝐶𝑉 =
𝐶𝑜𝑣[𝑌̅𝑆𝐴, 𝑌̅𝑅𝐸𝐹]

𝑉𝑎𝑟[𝑌̅𝑅𝐸𝐹]
=
∑ 𝐸[𝑌𝑆𝐴,𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛]
𝑁𝐷𝐶𝑂
𝑛=1 + 2 ∙ ∑ ∑ 𝐸[𝑌𝑆𝐴,𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑘]

𝑛−1
𝑘=1

𝑁𝐷𝐶𝑂
𝑛=2 − 𝑁𝐷𝐶𝑂

2 ∙ 𝐸[𝑌𝑆𝐴] ∙ 𝐸[𝑌𝑅𝐸𝐹]

∑ 𝐸[𝑌𝑅𝐸𝐹,𝑛
2 ]

𝑁𝐷𝐶𝑂
𝑛=1 + 2 ∙ ∑ ∑ 𝐸[𝑌𝑅𝐸𝐹,𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑘]

𝑛−1
𝑘=1

𝑁𝐷𝐶𝑂
𝑛=2 − 𝑁𝐷𝐶𝑂

2 ∙ 𝐸[𝑌𝑅𝐸𝐹] ∙ 𝐸[𝑌𝑅𝐸𝐹]
 

                           ≈
∑ 𝑌𝑆𝐴,𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛
𝑁𝐷𝐶𝑂
𝑛=1 + 2 ∙ ∑ ∑ 𝑌𝑆𝐴,𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛−𝑘

𝑁𝐷𝐶𝑂
𝑛=𝑘+1

𝑁𝐷𝐶𝑂−1
𝑘=1 −𝑁𝐷𝐶𝑂

2 ∙ 𝑌̅𝑆𝐴 ∙ 𝑌̅𝑅𝐸𝐹

∑ 𝑌𝑅𝐸𝐹,𝑛
2𝑁𝐷𝐶𝑂

𝑛=1 + 2 ∙ ∑ ∑ 𝑌𝑅𝐸𝐹,𝑛 ∙ 𝑌𝑅𝐸𝐹,𝑛−𝑘
𝑁𝐷𝐶𝑂
𝑛=𝑘+1

𝑁𝐷𝐶𝑂−1
𝑘=1 −𝑁𝐷𝐶𝑂

2 ∙ 𝑌̅𝑅𝐸𝐹
2

= 𝜇̂𝑆𝐴𝐶𝑉                                     (28) 
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Fig. 5.  Upper-half: the simulated variances of asynchronous RSA plotted as functions of t/T under four different VR technique settings with NDCO = 214 and NEXP 

= 211, including no VR (blue curves), SAVR (blue dots), CoVR with suboptimal VR coefficients (red dots), and CoVR with optimal VR coefficients (black dots). 

Lower-half: the simulated suboptimal (red dots) and optimal (black dots) VR coefficients plotted as functions of t/T for CoVR with NDCO = 214 and NEXP = 211. 

Note that (a), (b), and (c) have τREF-options = 1, 3, and 7, respectively, across the normalized DR of τ/T  [0, 1). 
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τ stays away from any of the τREF-options. 

In sum, to perform the RSA with CoVR technique, the 

suboptimal VR coefficient, μ̂
CV

 in (24), is sufficient and 

practical from both performance and implementation 

standpoints. Also, the numbers of τREF-options can be 

minimized in the CoVR mode because the majority of 

quantization-noise power is suppressed by SAVR across the 

DR of τ, and the peak of the variance lobes, i.e., the worst-case 

variances of the red and black dots, almost stay at the same level 

across all scenarios in Fig. 5. This means the coarse ADC-DAC 

hardware and pre-characterization costs for CVVR can be 

minimized by enabling SAVR. 

B. Efficiency of Collaborative VR 

Besides creating local variance notches at τ = τREF-options, 

there are at least three more benefits offered by CVVR. First, it 

allows the RSA-based TDC to maintain high measurement 

accuracy for a variety of time-interval DRs without heavily 

scaling the conversion gains of the analog circuits. For the 

examples in Fig. 6, if an RSA-based TDC is designed to 

maintain the same resolutions for different applications with the 

DR from ΔtMAX down to ΔtMAX/8, the total Δt-to-τ (or ΔtMAX-to-

T) conversion gain offered by the analog circuits, including 

KTAC, KVGA, and KDL, is required to be scalable from 1 to 8, 

so both ΔtMAX and ΔtMAX/8 can be mapped to the single period 

of CKτ, T, as shown in the lower-half and upper-left of Fig. 6, 

respectively. On the other hand, with the existing variance 

notches offered by CVVR around any one of the τREF-options, 

the total conversion gain of the analog circuit can stay the same 

as (KTAC·KVGA·KDL) and map ΔtMAX/8 to T/8 instead of T as 

shown in the upper-right of Fig. 6. This T/8 duration can be 

shifted to around one of the three variance notches for example, 

τREF1 = T/4, by simply providing a time-domain offset, τOS = 

3·T/16, when generating the falling edge of CKτ, so the DR of 

ΔtMAX/8 is converted into the duration between τOS and τMAX (= 

τOS + T/8 = 5·T/16). Though τOS causes an offset, which can be 

pre-calibrated easily, the result, Y̅SACV, has extremely low 

quantization-noise power, Var[Y̅SACV], because of the local 

variance notch offered by CVVR.  
Second, the primary downside of SAVR is the sensitivity to 

the circuit/signal variations, especially the values of 

Mod[TDCO,MIN, T] and ΔTPRBS,MAX as discussed in Section III. 

Though SAVR can maintain some tolerances of these values, 

adding CVVR can definitely offer further improvement in 

suppressing the sensitivity. For the example in Fig. 7(a), 

TDCO,MIN, ΔTPRBS,MAX, and T are intentionally set as 

Mod[TDCO,MIN, T]  7·T/16 and ΔTPRBS,MAX  T/4, where the 

SAVR technique can still perform VR but with inconsistent 

quantization-noise power, Var[Y̅SA] (blue dots), across the DR 

of τ because Mod[TDCO,MIN, T] is now about 6.25% (T/16) lower 

than the range requirement (0.5·T ≤ Mod[TDCO,MIN, T] ≤ 0.75·T) 

for achieving the maximum flattened variance distribution. By 

enabling CoVR with a simple 2-bit ADC-DAC circuit, the 

variance notches offered by CVVR at τREF1 (= 0.25·T) and τREF3 

(= 0.75·T) greatly bring down the overall variance, Var[Y̅SACV] 

(red dots), and suppresses the variance peaks due to the 

improper setup (Mod[TDCO,MIN, T]  7·T/16) or variation 

(6.25%) of TDCO,MIN. 

Third, in the case of maximizing the conversion-rate 

enhancement, ΔTPRBS,MAX in SAVR has to be pushed down to 

the limit of the capacitor-size in CMOS process technology, 

such as T/128 or even smaller, while the SAVR rate of being a 

function of |τ/T − 0.5| gets more pronounced. As shown Fig. 

7(b), when ΔTPRBS,MAX is decreasing, the variance across τ/T  

[0, 1) is reduced in different rates, and the maximum rate is at 

τ/T = 0.5. Also, the variance curve by default (i.e., no VR) has 

the peak at τ/T = 0.5, so the variance at τ/T = 0.5 stays larger 

than the rest at τ/T ≠ 0.5 when ΔTPRBS,MAX > T/8; then the 

variance at τ/T = 0.5 becomes the local minimum when 

ΔTPRBS,MAX < T/8 due to its fastest SAVR rate among all τ/T 

with the decrease of ΔTPRBS,MAX. Though the causes are 

different, the behavior of the variance lobes in Fig. 7(c) is 

similar to the case in Fig. 7(a), so this non-uniform 

quantization-noise power distribution can be again rectified by 

adding CVVR as shown in Fig. 7(c), where the average 

Var[Y̅SACV] across the entire DR of τ is about 3.5 lower than 

the average of Var[Y̅SA] when Mod[TDCO,MIN, T]  T/2, 

ΔTPRBS,MAX  T/128, and τREF-options = 7.   

VII. SUMMARY AND FUTURE WORK 

The performance metrics of various RSA-based TDC 

techniques in [53] and this paper are summarized in Table I 

based on the behavioral-model and circuit simulations. 

Conventionally, the RSA technique possesses multiple 

advantages in high accuracy, calibratable linearity, scalable 

DR, high noise-immunity through 1-bit accumulators, low 

power/area, and simple read-out circuits, however, with the 
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Fig. 6.  Lower-half: a regular conversion gain is designed to map ΔtMAX to T 

and to achieve an average variance requirement. Upper-left: an 8 amount of 

conversion gain is required to map ΔtMAX/8 to T and to maintain an average 

variance requirement. Upper-right: a regular conversion gain is sufficient to 
map ΔtMAX/8 to T/8, which can achieve even lower variance. 
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downside of slow conversion-rates, which can be significantly 

mitigated by the VR techniques analyzed in this paper. The 

SAVR technique induces negative auto-covariance sums 

among the samples to improve the conversion-rate but causes 

sensitivity to the circuit/signal variations and non-uniform 

quantization-noise power across the DR. The CVVR technique 

requires the coarse quantization process in advance and then 

accomplishes the fine quantization process in real-time by 

paying the pre-characterization cost. Finally, the CoVR 

technique takes the complementary benefits from SAVR and 

CVVR to enhance the conversion-rate up to the range of 1.5 

MHz with 12-ENOB accuracy and 0.36-pJ/step energy 

efficiency. Meanwhile, the total RSA-based TDC power (DCO 

+ TDC) is roughly increased by 23% (> 7% + 14%) due to the 

additive and isolated hardware implementations of SAVR and 

CVVR with extra clock distributions as shown in Fig. 1(a). In 

sum, the theoretical analyses, digitally implementable signal 

processing, and statistical verifications developed in [53] and 

this paper establish a concrete foundation for the forthcoming 

silicon-photonics RSA-based TDC realizations, which can 

open up a new path for both high-speed and high-resolution 

TCSCP applications in the emerging quantum technology.  

APPENDIX 

The calibration procedure of the RSA-based TDC contains 

two steps. In the pre-characterization process (1st step), the 

overall non-ideality is captured by injecting “known and 

individual” input signals (Δt) across the targeted DR from 

external pulse generators and collecting the corresponding 

digital outputs to form the input-output transfer curve of the 

 
TABLE I 

RSA-BASED TIME-INTERVAL DETECTION TECHNIQUE COMPARISON & SUMMARY 

Work TCAS-I’22 [53] This Work This Work This Work 

Technology for Simulations 22 nm 22 nm 22 nm 22 nm 

Technique Asyn. RSA Asyn. RSA w/ SAVR Asyn. RSA w/ CVVR Asyn. RSA w/ CoVR 

Sampling Clock Generator (DCO) Power 3 mW 3.1 mW 3 mW 3.1 mW 

Sampling Frequency = 1/TDCO,AVG 4 GS/s 7.8 GS/s 4 GS/s 7.9 GS/s 

Number of Sampling Phases = NPH [53] 8 8 8 8 

Dynamic Range (DR) scaled to T by TAC 10 ns < DR < 1 μs 10 ns < DR < 1 μs 10 ns < DR < 1 μs 10 ns < DR < 1 μs 

* ENOB = 10∙log
10
(

P1
2

Var
) /6.02 [53] 

12 ENOB @ NDCO  224 

14 ENOB @ NDCO  228 

12 ENOB @ NDCO  219 

14 ENOB @ NDCO  223 

12 ENOB @ NDCO  220.9 

14 ENOB @ NDCO  224.9 

12 ENOB @ NDCO  215.3 

14 ENOB @ NDCO  219.3 

Effective Resolution (ER) 

= DR/2ENOB [53] 

0.61 ps < ER < 61 ps 

@ 14 ENOB 

0.61 ps < ER < 61 ps 

@ 14 ENOB 

0.61 ps < ER < 61 ps 

@ 14 ENOB 

0.61 ps < ER < 61 ps 

@ 14 ENOB 

Conversion-Rate (CVR) 
= NPH/(NDCO·TDCO,AVG) [53] 

2 kHz 
@ 12 ENOB 

120 kHz 
@ 12-ENOB 

16 kHz 
@ 12-ENOB 

1.5 MHz 
@ 12-ENOB 

TDC Power 1.3 mW 1.5 mW 1.9 mW 2.2 mW 

TDC FoM = (TDC Power)/(2·BW·2ENOB) 
= (TDC Power)/(CVR·2ENOB) 

159 pJ/step 
@ 12 ENOB 

3.1 pJ/step 
@ 12 ENOB 

29.0 pJ/step 
@ 12 ENOB 

0.36 pJ/step 
@ 12 ENOB 

DCO + TDC Power Ratio 1 1.07 1.14 1.23 

CVR Ratio 1 60 8 750 

TDC Area 0.01 mm2 0.01 mm2 0.018 mm2 0.018 mm2 

Digital Filter (1-bit Acc.) Power 0.45 mW 0.90 mW 0.91 mW 1.81 mW 

Digital Filter (1-bit Acc.) Outputs 
per RSA-based TDC process 

NY, NDCO NY, NDCO NY, NYREF
, NY∙YREF

, NDCO NY, NYREF
, NY∙YREF

, NDCO 

 One-time Multi-bit Digital Operations 

per RSA-based TDC Process 
Eq. (6) in [53] Eq. (3) Eq. (17) & Eq. (24) Eq. (25) & Eq. (24) 

Theoretical Expectation Eq. (15) in [53] Eq. (3) Eq. (18) Eq. (26) 

Theoretical Variance Eq. (7) in [53] Eq. (8) Eq. (21) Eq. (27) 

 Circuit Parameters 

@ T = 250 ps, TDCO,MIN  T/2 

ΔTPRBS,MAX  T ΔTPRBS,MAX  T/32 ΔTPRBS,MAX  T, 

τREF LSB = T/16 

ΔTPRBS,MAX  T/128, 

τREF LSB = T/8 

* P1 = τ/T  0.5, Var = Var[Y̅] for ordinary RSA, Var = Var[Y̅SA] for RSA w/ SAVR, Var = Var[Y̅CV] for RSA w/ CVVR, Var = Var[Y̅SACV] for RSA w/ CoVR. 

When P1  0.5, Var reaches the worst case under the I.I.D. random sampling condition [53]. 
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Fig. 7.  The simulated variances of asynchronous RSA plotted as functions of t/T with NDCO = 214, and NEXP = 211 under the condition of (a) enabling SAVR (blue 

dots) and CoVR (red dots) with Mod[TDCO,MIN, T]  7·T/16, ΔTPRBS,MAX  T/4, and τREF-options = 3; (b) enabling SAVR (blue dots) with Mod[TDCO,MIN, T]  T/2, 

ΔTPRBS,MAX  T, T/2, T/4, T/8, T/16, T/64, and T/128; (c) enabling CoVR (red dots) with Mod[TDCO,MIN, T]  T/2, ΔTPRBS,MAX  T/128, and τREF-options = 7. 
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entire TDC signal path. In Fig. A1, the light-blue band contains 

1000 transfer curves obtained from the transistor-level Monte-

Carlo simulations across the process-corners and random 

variations in a 22-nm CMOS process technology with constant 

temperature and analog/digital supplies. These 1000 transfer 

curves can be used to represent 1000 input-output relations of 

1000 fabricated RSA-based TDC chips; i.e., each RSA-based 

TDC operating under a certain time-invariant PVT condition 

can possess a unique transfer curve within this light-blue band, 

e.g., the red curve in Fig. A1, which represents the time-

invariant relation or mapping between an input Δt and its digital 

output (Y̅ = NY/NDCO) of a specific RSA-based TDC. 

Meanwhile, the non-linearity (input-dependent gain error) of 

each transfer curve is mainly contributed by the analog circuits 

of TAC, VGA, and VCDL as shown in (6) and input-dependent 

slope equation in Fig. A1. More importantly, this non-linearity 

does not generate any harmonics and degrade the measured 

ENOB at all in the regular RSA-based TDC operation for 

TCSPC because the Δt detections from single photons are 

random events [1]. Thus, any input-output pair is independent 

from any other input-output pair even though they are on the 

same transfer curve. In sum, the 1st step is to obtain the transfer 

curve under a certain PVT condition, and then the non-linearity 

of this transfer curve can be corrected in the 2nd step.  

In the regular TDC operation (2nd step), each digital output 

of a specific RSA-based TDC can be calibrated by its own 

transfer curve obtained from the 1st step under the same PVT 

condition. For the example in Fig. A1(b), the delta, D(Δt), 

between the pre-characterized (red) and ideal (black) transfer 

curves at any certain Δt simply offers the information to 

simultaneously correct conversion offset and analog non-

linearity. As mentioned, because of the independency among 

all received Δt and the individual RSA-based TDC process for 

each received Δt, the calibration by subtracting the D(Δt) from 

the measured digital output is like the DC offset cancellation 

and can be done individually for each received Δt. Note that the 

accuracy requirement in the 1st step for generating the transfer 

curve or D(Δt) must be higher than that in the 2nd step, which 

can be done by changing the setting of NDCO in the RSA-based 

TDC for these two steps separately.  
Overall, this calibration procedure only works effectively for 

the TDCs using 1-bit quantization, like RSA-based TDCs and 

1-bit delta-sigma TDCs, because this approach can only correct 

the DC offset and analog non-linearity as described but not 

multi-level quantization mismatches, i.e., differential and 

integral non-linearities, which are avoided by the 1-bit 

quantizer in RSA-based TDCs. 
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