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Abstract
Given two finite covers p : X → S and q : Y → S of a connected, oriented, closed surface
S of genus at least 2, we attempt to characterize the equivalence of p and q in terms of which
curves lift to simple curves. Using Teichmüller theory and the complex of curves, we show
that two regular covers p and q are equivalent if for any closed curve γ ⊂ S, γ lifts to a
simple closed curve on X if and only if it does to Y . When the covers are abelian, we also
give a characterization of equivalence in terms of which powers of simple closed curves lift
to closed curves.

Keywords Curve complex · Teichmuller theory · Topology of surfaces

Mathematics Subject Classification 57M07 · 57M10 · 57M50

1 Introduction

It is a corollary of a renowned theorem of Scott [16] that every closed curve on a hyperbolic
surface S lifts to a simple closed curve on some finite cover of S. This result was made
effective by Patel [13], and more work has been done since then to improve the bound on the
degree of the required cover, as well as to study the connection between this degree and the
self intersection number of the curve (see Gupta–Kapovich [6], Gaster [5], Aougab–Gaster–
Patel–Sapir [1], and Arenas–Neumann-Coto [2]). In the spirit of this work, it is natural to
ask the following question, which motivates the main result of this paper.

Question 1 What information about p : X → S and q : Y → S can be derived from
understanding how curves on S lift simply to X and Y?
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Our first result addresses this question in the setting of regular finite covers of a closed
surface S with genus at least 2. In particular, we characterize when two regular finite covers
are equivalent in terms of which closed curves have simple elevations, where an elevation of
a closed curve α ⊂ S along a covering map f : # → S is a closed curve on # that projects
to α under f .

Theorem 1.1 If p : X → S and q : Y → S are two regular covers so that given any
closed curve γ ⊂ S, there exists simple elevations of γ to X if and only if there exists simple
elevations of γ to Y , then p and q are equivalent covers.

We prove a generalization of Theorem 1.1 to non-simple curves, which is stated precisely
at the end of Sect. 1.1 (see Theorem1.5). Another variation ofQuestion 1would be to consider
lifts of simple curves rather than curves that lift simply. This leads us to ask the following.

Question 2 What information about p : X → S and q : Y → S can be derived from
understanding how simple curves on S lift to X and Y?

Our second result answers this question in the setting of abelian covers. Given a cover
f : # → S and a simple closed curve γ ⊂ S, we let n f (γ ) denote the minimum positive
integer k such that γ admits an elevation of degree k along f .

Theorem 1.2 Let p : X → S and q : Y → S be finite-degree abelian covers of S. If
n p(γ ) = nq(γ ) for all simple closed curves γ ⊂ S, then p and q are equivalent covers.

1.1 Motivation, Sunada’s construction, and non-simple curves

The authors arrived at Theorems 1.1 and 1.2 while studying isospectral hyperbolic surfaces:
hyperbolic surfaces that have the same unmarked length spectra but which are not necessarily
isometric. Almost all known examples of isospectral pairs come from a construction (or some
variant thereof) due to Sunada [17] which we briefly summarize here. See [4] for a more in
depth introduction.

Let G be a finite group containing a pair of almost conjugate subgroups H , K , meaning
that the cardinality of the intersection of H with any conjugacy class [g] in G agrees with
that of K :

|H ∩ [g]| = |K ∩ [g]|.
Let S be an orientable surface of finite type so that π1(S) admits a surjective homomorphism
ρ : π1(S) → G. Then if one equips S with a hyperbolic metric, the pullbacks of that metric
to the covers corresponding to the subgroups ρ−1(K ), ρ−1(H) < π1(S) will be isospectral.
So long as H , K are not conjugate in G, for a generic choice of the initial metric, these
hyperbolic surfaces will not be isometric.

An interesting open question is whether or not there exist non-isometric surfaces which
are simple length isospectral, meaning that the multi-set of lengths corresponding only to
simple closed geodesics coincide. Sunada’s construction provides a natural way to test this
question. Indeed, letting SH and SK denote the isospectral covers associated to ρ−1(H) and
ρ−1(K ) as above, Sunada’s construction yields a length-preserving bijection φ between the
sets of closed geodesics on SH and SK . If for any such SH and SK where H and K are not
conjugate, φ happens to send the lengths corresponding to simple closed geodesics on one
surface to the simple closed geodesics on the other, one immediately obtains an answer to
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the question: such an example would imply that simple length isospectrality need not imply
an isometry.

Along these lines, Maungchang [12] explored the example G = (Z/8Z)× !Z/8Z, where
the semi-direct product is with respect to the standard action of the group of multiplicative
units, and where

H = {(1, 0), (3, 0), (5, 0), (7, 0)}, K = {(1, 0), (3, 4), (5, 4), (7, 0)}
Letting S be the closed surface of genus 2 and π1(S) = 〈a, b, c, d | [a, b][c, d] = 1〉 be the
standard presentation of its fundamental group, one obtains the homomorphism ρ : π1(S) →
G defined by

ρ(a) = (3, 0) ρ(b) = (5, 0) ρ(c) = (1, 0) ρ(d) = (1, 1)

ThenMaungchangdirectly demonstrates that for a generic choice of initialmetric on the genus
2 surface, the hyperbolic surfaces SH , SK are not simple length isospectral. His strategy is
as follows:

(1) Exhibit a closed curve γ on S that admits a different number of simple elevations to SH
than it does to SK . The length-preserving bijection φ coming from Sunada’s construction
has the property that for any closed curve on S,φ relates its set of elevations on SH to those
on SK . Thus, the existence of γ implies that if SH and SK are simple length isospectral,
then any length-preserving bijection between the sets of simple closed geodesics is not
induced by φ.

(2) A bound on the degree of the covering spaces precludes all but finitely many curves
on S from having simple elevations that could possibly make up for the discrepancy
coming from simple elevations of γ established by (1). By checking these finitely many
possibilities and verifying for a fixed hyperbolic metric that the lengths do not make
up for this discrepancy, Maungchang obtains the desired result by appealing to real-
analyticity of length functions over Teichmüller space (if lengths disagree on one metric,
they disagree for almost all metrics).

The authors conjecture that simple length isospectrality implies isometry for hyperbolic
surfaces:

Conjecture 1.3 Hyperbolic surfaces with the same multi-set of simple lengths are isometric.

Areasonable approach toConjecture 1.3would be tofirst establish it for pairs of isospectral
surfaces arising from Sunada’s construction, since these pairs are natural candidates for
counterexamples.One could hope thatMaungchang’s strategy outlined above is generalizable
to any pair of isospectral surfaces arising from Sunada’s construction.

A first step towards achieving such a generalization would be to address step (1) above,
and to show that if two covers of a surface are not equivalent, there is some closed curve γ on
the base surface admitting a different number of simple elevations to the two covers. In the
setting where the covers are regular, if one elevation is simple, all must be. This motivates
Theorem 1.1, since “admitting a different number of simple elevations to the two covers"
reduces to “admitting a simple elevation to one cover but not the other".

Unfortunately, the covering spaces that arise in Sunada’s construction are necessarily
never regular, as almost conjugate subgroups must be conjugate (and in fact, equal) when
one is normal. The authors conjecture that the assumption of regularity can be dropped in
Theorem 1.1.

Conjecture 1.4 Theorem 1.1 holds without the assumption that the covers are regular.
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While it is not yet clear how our arguments can be promoted to prove Conjecture 1.4, we
note that they can be used to show the following generalization of Theorem 1.1:

Theorem 1.5 Let N ,M ∈ N and let p : X → S, q : Y → S be regular finite covers of a
closed orientable surface S with genus at least 2. Suppose that for any essential closed curve
γ ⊂ S, γ admits an elevation to X with at most N self intersections if and only if it admits
an elevation to Y with at most M self intersections. Then p and q are equivalent covers.

2 Preliminaries

We devote this section to recalling concepts and results that are used in the proof of Theo-
rem 1.1.

2.1 Hyperbolic spaces and Gromov boundaries

A (not necessarily proper) geodesic metric space (X , d) is calledGromov hyperbolic if there
is a positive real number δ > 0 such that for every geodesic triangle in X , the δ-neighborhood
of the union of any two sides contains the third side.

AnyGromov hyperbolic space admits aGromov boundary, ∂X , generalizing the boundary
sphere at infinity of hyperbolic space. To define ∂X , one first fixes a basepoint p ∈ X ; then
given two points x, y ∈ X , their Gromov product with respect to p is

(x, y)p = d(x, p)+ d(y, p) − d(x, y)
2

.

A sequence (xi )∞i=0 of points in X is said to be admissible if limi, j→∞ (xi , x j )p = ∞, and
two admissible sequences xi , yi are said to be equivalent if limi→∞(xi , yi )p = ∞. Then as a
set, ∂X is the set of equivalence classes of admissible sequences. Given K > 0 and b ∈ ∂X ,
define

UK (b) =
{
[(xi )] ∈ ∂X

∣∣∣∣ lim inf
i, j→∞

(
xi , y j

)
p ≥ K for some

(
y j

)
∈ b

}
.

These subsets form a basis for a topology on ∂X with respect to which isometries of X
induce homeomorphisms. Moreover, a quasi-isometric embedding ϕ : X → Y between two
Gromov hyperbolic metric spaces induces a map from the set of admissible sequences in X
to the set of admissible sequences in Y , and this map descends to a continuous embedding
∂ϕ : ∂X → ∂Y .

2.2 Teichmüller space and geodesic laminations

Let S be a connected surface with negative Euler characteristic. The Teichmüller space of
S, denoted T (S), can be defined as the space of equivalence classes of marked complete
hyperbolic structures on S, where two hyperbolic structures f : S → X and g : S → Y are
said to be equivalent if f ◦ g−1 is isotopic to an isometry. An equivalent characterization of
T (S) is as the space of PGL(2,R) conjugacy classes of discrete faithful representations of
π1(S) into PSL(2,R). We will make use of both of these perspectives throughout Sect. 3.

Abusing notation slightly, let S now be a complete hyperbolic surface of finite type and
without boundary. A geodesic lamination of S is a compact subset of S consisting of a disjoint
union of simple geodesics, each of which is called a leaf. A geodesic lamination λ is said to
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beminimal if every leaf is dense in λ, and filling if it intersects every simple closed geodesic.
Laminations with both of these properties are called ending laminations.

Ameasured geodesic lamination is a geodesic lamination λ equippedwith a positive Borel
measure µ on the set of arcs transverse to λ, which is invariant under transverse homotopy.
The set of all measured geodesic laminations, denoted ML(S), admits a natural topology
for which two points are close together if they induce approximately the same measure on
sets of finitely many transverse arcs. This topology does not depend on the initial choice of
hyperbolic metric and thus we can associate ML(S) to the underlying topological surface.

Two measured geodesic laminations are projectively equivalent if they have the same
underlying geodesic lamination and the transversemeasures differ only by a scaling. Thurston
showed that, equipped with the quotient topology, the space PML(S) of projectively mea-
sured laminations is homeomorphic to a sphere of dimension dim(T (S)) − 1, and that this
construction yields a compactification T (S) = T (S) ∪ PML(S) of the Teichmüller space
called the Thurston compactification.

By PMEL(S), we will mean the subset of PML(S) consisting of points whose under-
lying lamination is ending, and we will denote by EL(S) the image of PMEL(S) under the
quotientmap sending a projectivemeasured lamination to its underlying geodesic lamination.
A geodesic lamination λ is called uniquely ergodic if there is only one projective equivalence
class of transverse measures it supports.

We conclude this subsection with several useful results about T (S),ML(S), and their
behaviors under covering maps between surfaces. The first such result can be applied to
show that the set of uniquely ergodic ending laminations are dense in the space of measured
laminations. Let Mod(S) denote the group of homotopy classes of orientation preserving
homeomorphisms of S. Note that there is a natural action of Mod(S) on ML(S).

Theorem 2.1 (Lindenstrauss-Mirzakhani, Theorem 1.2 in [8]) The orbit of a measured
lamination λ on S under the action of the mapping class groupMod(S) is dense in ML(S)
if and only if its support does not contain any simple closed curves.

The next result states that covering maps induce isometric embeddings between Teich-
müller spaces. A proof of Theorem 2.2 can be found on page 2153 of [15].

Theorem 2.2 (Folklore) A finite covering map p : X → S induces an isometric embedding
p̃ : T (S) → T (X).

Building on Theorem 2.2, the following result of Biswas–Mj–Nag allows for the exten-
sion of any map between Teichmüller spaces induced by a finite cover to a map between
spaces of projective measured laminations, interpreted as boundaries at infinity ∂T (S) of the
corresponding Teichmüller spaces. In particular, given a finite covering map p : X → S
there is a natural map ∂T (S) → ∂T (X).

Theorem 2.3 (Biswas–Mj–Nag, [3]) A finite covering map p : X → S between closed,
oriented hyperbolic surfaces induces a natural continuous injection p̃ : T (S) → T (X)
between the corresponding Thurston compactified Teichmüller spaces. Furthermore, this
map is the continuous extension of the holomorphic embedding from T (S) → T (X) induced
by p.

A consequence of Theorem 2.3 is that p̃ is defined on ∂T (S) as follows: given a measured
geodesic lamination λ on S its image under p̃ is the measured geodesic lamination p−1(λ)

on X obtained as the inverse image of λ under p.

123



26 Page 6 of 14 Geometriae Dedicata (2023) 217 :26

There is a Finsler metric on T (S), called the Teichmüller metric, in which the distance
between two points is the logarithm of the infimal dilatation of quasiconformal homeomor-
phisms from one marked surface to the other, taken over all such homeomorphisms isotopic
to the identity. A result of Masur demonstrates the abundance of geodesic rays in the Teich-
müller metric with endpoints on ∂T (S).

Theorem 2.4 (Masur, [10]) At every point x ∈ T (S) and in almost every direction, a
Teichmüller geodesic ray based at x has a limit on the Thurston boundary of T (S).

2.3 The complex of curves

Given an orientable surface S with negative Euler characteristic, the curve complex, C(S), is
a flag simplicial complex whose vertices correspond to isotopy classes of essential simple
closed curves and whose edges represent pairs of such classes that can be realized disjointly
on S. By identifying each simplex with a standard simplex with unit length edges in the
appropriate Euclidean space, C(S) becomes a metric space.

A germinal result of Masur–Minsky [11] states that the curve complex is δ-hyperbolic.
It follows that C(S) admits a Gromov boundary, which was characterized by Klarreich as
follows: Define sys : T (S) → C(S) by sending X ∈ T (S) to its systole, a simple closed
curve admitting the shortest geodesic representative on X .

Remark 2.5 Note that sys is technically not well-defined since the systole need not be unique.
However, if two simple closed geodesics are simultaneously shortest, they can intersect at
most once. It follows that the set of systoles for any X ∈ T (S) represents a subset of C(S)
with diameter at most 2. Thus, sys is said to be coarsely well-defined.

Klarreich shows that sys induces a map between PMEL(S) and ∂C(S) which allows for
a characterization of the latter in terms of the former:

Theorem 2.6 (Klarreich, [7]) The map sys extends to a continuous map

sys∗ : PMEL(S) → ∂C(S),

factoring through the quotient map between PMEL(S) and EL(S), and inducing a homeo-
morphism between EL(S) and ∂C(S).

We will need the following two important results regarding the coarse geometry of the
curve complex. The first result gives a relation between the curve complex of a surface S and
the curve complex of a cover # of S. Note that + is not well-defined since the pre-image of
a simple closed curve may very well be a multi-curve, but it is coarsely well-defined.

Theorem 2.7 (Rafi–Schleimer, [15]) Let P : # → S be a covering map and + : C(S) →
C(#) be the covering relation where b ∈ C(S) is related to β ∈ C(#) if P(β) = b. The
map + : C(S) → C(#) is a Q-quasi-isometric embedding, with Q depending only on the
topology of S and the degree of P.

A closed curve γ on S is formally a map γ : S1 → S, but we will sometimes blur the
distinction between a closed curve and its image on the surface. Given n ∈ N, by γ n , we
will mean the curve obtained by iterating γ n-times: γ n traces over the image of γ n-times
as fast as γ in the interval [0, 1/n], and repeats this another n − 1 times.
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Definition 2.8 For p : X → S a cover and γ ⊂ S a homotopically non-trivial closed curve,
an elevation of γ is a closed curve γ̃ ⊂ X so that p(γ̃ ) = γ , and so that for some natural
number n ≥ 1 and any b ∈ S, the conjugacy classes of π1(S, b) determined by p ◦ γ̃ and by
γ n coincide.

Example 2.9 Suppose that γ , ρ, δ are closed curves on S with the same image and so that
γ , δ5, and ρ10 define the same conjugacy class of π1(S). If p : X → S is a cover and γ̃ ⊂ X
satisfies p(γ̃ ) = γ = ρ = δ (as sets on S), and γ̃ covers ρ with degree 2, then γ̃ is an
elevation of both δ and ρ, but is not an elevation of γ .

The second result establishes the relationship between the topology of two surfaces based
on the coarse geometry of their respective curve complexes.

Theorem 2.10 (Rafi-Schleimer, [14]) Let S and # be closed, orientable surfaces of genus at
least 2. A quasi-isometry - : C(S) → C(#) is uniformly bounded distance from an isometry
induced by a homeomorphism ψ : S → #.

3 Regular covers and simple curves

Throughout this section, fix finite regular covers p : X → S and q : Y → S of S. The
only place in the proof of Theorem 1.1 where we will invoke the regularity of p and q is in
establishing the following lemma.

Lemma 3.1 Suppose that for any closed curve γ ⊂ S, there exists a simple elevation of
γ to X if and only if there exists a simple elevation of γ to Y . Then C(X) and C(Y ) are
quasi-isometric, and hence X and Y are homeomorphic.

Proof LetW be the regular cover of X , Y , and S that corresponds toπ1(X)∩π1(Y ) ⊂ π1(S).
This gives a diamond of regular covers of S, which is shown on the left of Fig. 2. In particular,
we have π = p ◦ p′ = q ◦ q ′. We will use W to define a quasi-isometry from C(X) to C(Y ).

Let αX ⊂ X be an essential simple closed curve and let AW be the multi-curve consisting
of all elevations of αX to W . Now consider the image AY := q ′(AW ) of AW on Y under the
regular cover q ′ : W → Y shown in Fig. 2.

We claim that AY is a union of simple closed curves on Y . To see this, let αY = q ′(αW )

for some simple closed curve αW ⊂ AW . Let αS ⊂ S denote the projection of αW to S under
the regular cover π : W → S. By the assumptions,

p(αX ) = p
(
p′(αW )

)
= π(αW ) = αS = π(αW ) = q

(
q ′(αW )

)
= q(αY ).

Hence αX and αY are elevations of αS . Since αX is simple, our assumptions imply that αS
has some simple elevation to Y . Since q : Y → S is regular, this implies that all elevations
of αS to Y are simple, and so αY is simple.1 It follows that AY is a union of simple closed
curves, though not necessarily pairwise disjoint ones.

We next claim that the curves in AY constitute a bounded diameter subset of C(Y ), with
the bound depending only on the covering maps p, q and not on αX . Let / denote the set of
elevations of the curves in AY to W , and note that AW ⊂ /. Note also that / is the union of
all multicurves γ̃ that arise as the set of elevations of some γ ∈ AY , of the components of
those multi-curves. Moreover, γ̃ ∩ AW /= ∅ for any γ ∈ AY . Using this fact we argue that /

1 Notice our use of the regularity of q.
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has diameter at most 3 in C(W ): given any two distinct simple closed curves β1,β2 ∈ /, they
each belong to some multicurve γ̃i coming from the elevations of γi ∈ AY , where i = 1, 2.
If γ̃1 = γ̃2, then β1 and β2 are distance 1 apart. Otherwise, there exists αi ∈ γ̃i ∩ AW for
i = 1, 2 such that {β1,α1,α2,β2} is a path of length at most 3 in C(W ).

By Theorem 2.7, + : C(Y ) → C(W ) is a quasi-isometric embedding. Since +(AY ) = /,
the curves in AY give a bounded diameter subset of C(Y ). Thus the assignment αX 1→ AY
gives a coarsely well-defined map - : C(X) → C(Y ). In fact, - is coarsely Lipschitz by the
same argument: given two disjoint simple closed curves on X , the union of their pre-images
will be a multi-curve on W .

By symmetry, there exists a coarsely well-defined Lipschitz map 0 : C(Y ) → C(X). We
now show that 0 is a coarse inverse to -. It is clear that 0(-(αX )) = 0(AY ). Letting AYW
denote the full pre-image of AY under q ′, we have that 0(-(αX )) = p′(AYW ).

Since -(αX ) = AY has bounded diameter in C(Y ) (bounded independently of αX ) and 0

is coarsely Lipschitz, then p′(AYW ) has bounded diameter (also independent of αX ) in C(X),
and it contains αX . It follows that 0 ◦ - is uniformly bounded distance from the identity on
C(X), and a completely analogous argument proves the same for - ◦0 on C(Y ). Thus, C(X)
and C(Y ) are quasi-isometric and by Theorem 2.10, X and Y are homeomorphic. 23

We can now consider two covering maps from Y to S: one is the regular covering map q :
Y → S; the other one comes from the composition of p : X → S with the homeomorphism
between X and Y coming from Lemma 3.1 and Theorem 2.10, which we name as g.

Note that Theorem 2.7 gives us quasi-isometric embeddings of C(S) into both C(X) and
C(Y ). In fact, we have two different quasi-isometric embeddings of C(S) into C(Y ), one
coming from q : Y → S and the other from g : Y → S.

Remark 3.2 We briefly remark on the necessity of the regularity assumption. If we do not
assume that p, q are regular covers, a curve γ with one simple elevation may have many
other elevations to either X or Y which are not simple. In this case, the map - defined in
Lemma 3.1 may associate a simple closed curve on X with a collection of non-simple closed
curves on Y– see Fig. 1 for an illustration of this possibility.

Onemight hope to circumvent this issue by simply defining-(γX ) to be the full projection
of π−1

S (γ ) to Y under πY , which is guaranteed to contain a simple closed curve. However, it
is easy to see that this collection of simple closed curves can have arbitrarily large diameter
in C(Y ). Indeed, choose a simple closed curve α on Y whose orbit under the group of deck
transformations for the cover Y → S is very large; the projection of this curve to S will have
the property that its full pre-image on Y contains a sub-collection of simple closed curves
that are very far apart in C(Y ).

Lemma 3.3 The quasi-isometric embeddings q∗, g∗ : C(S) → C(Y ) induce the same map
on ∂C(S) → ∂C(Y ).

Proof It suffices to show that q∗ and g∗ are within bounded distance of each other; the lemma
will then follow by the basic properties of hyperbolicity and Gromov boundaries outlined in
Sect. 2.1.

Let α ∈ C(S) and let AX , AY , and AW be the collections of elevations of α to X , Y , and
W , respectively (note that AY is defined slightly differently here than in Lemma 3.1). We will
show that q∗(α) and g∗(α) are contained in AY . Recall fromTheorem2.7 that q∗(α) ⊂ AY by
definition. Let p∗ : C(S) → C(X) be the map induced by p : X → S given by Theorem 2.7.
Then g∗ : C(S) → C(Y ) is the composition of p∗ with the map - : C(X) → C(Y ) from the
proof of Lemma 3.1.
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Fig. 1 A non-simple curve γ is pictured on S, and γ admits a simple elevation, γX , to the cover, X . Without
the regularity assumption, many of the elevations to either X or Y can be non-simple. It is then possible that
-(γX ), the collection of curves obtained by first taking the full pre-image of γX to W and then projecting to
Y , does not in fact contain a simple closed curve. That is, there is no guarantee that γY , the simple elevation
of γ to Y , is contained in πY (π

−1
X (γX ))

Fig. 2 A diamond of regular covers along with its corresponding diamond of curve complexes and quasi-
isometric embeddings

Note that the elevations of AX (resp. AY ) to W under the cover W → X (resp. W → Y )
is exactly AW . Since - : C(X) → C(Y ) factors through C(W ) in its definition, we have
-(AX ) = AY . It follows that g∗(α) = -(p∗(α)) ⊂ -(AX ) = AY . Since AY is a diameter
one subset of C(Y ), the claim follows immediately. 23

With Lemmas 3.1 and 3.3 in hand, we are now ready to prove Theorem 1.1, which we
restate here for convenience.

Theorem 1.1 If p : X → S and q : Y → S are two regular covers so that given any closed
curve γ ⊂ S, there exists simple elevations of γ to X if and only if there exists simple
elevations of γ to Y , then p and q are equivalent covers.

Before beginning the proof, we will give a brief overview of our strategy. First we show
that the map on ∂C(S) induced by the quasi-isometric embeddings q∗, g∗ commutes with the
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Fig. 3 The induced maps on boundaries are compatible with the projection from Teichmuller space to the
curve complex

maps on ∂T (S) induced by the isometric embeddings q̃, g̃ coming from Theorem 2.2, with
respect to the natural projection from PMEL(S) to ∂C(S). We then show that q̃ and g̃ agree
on ∂T (S), which allows us to argue that q̃, g̃ agree on T (S) setwise. Finally, we leverage
the description of T (S) as the space of conjugacy classes of discrete, faithful representations
[ρ] : π1(S) → PSL2(R) to conclude that p and q are equivalent covers.

Proof By Lemma 3.3, the quasi-isometric embeddings q∗, g∗ : C(S) → C(Y ) defined above
induce the same map from ∂C(S) → ∂C(Y ). Thus, by Theorem 2.6, q∗ and g∗ induce the
same map from the space of ending laminations of S to those of Y .

By Theorem 2.2, the covering maps q : Y → S and g : Y → S induce two isometric
embeddings q̃, g̃ : T (S) → T (Y ) which by Theorem 2.3 admit natural extensions to the
Thurston boundary.

Consider the diagram in Fig. 3, where πS is the natural projection (given by forgetting the
measure) from PMEL(S) to EL(S); πY is defined similarly. 23
Proposition 3.4 The diagram in Fig.3 commutes.

Proof Let [λ] ∈ PMEL(S) be a projective measured ending lamination with λ as a rep-
resentative. Consider the pullback q−1(λ) of λ to Y under the covering map q : Y → S.
Note that the projective measured lamination [q−1(λ)] is precisely the image of [λ] under
q̃ by Theorem 2.3. Subsequently, πY (q̃([λ])) = πY ([q−1(λ)]) is the underlying geodesic
lamination q−1(λ)top of [q−1(λ)] obtained by forgetting the measure.

On the other hand, πS([λ]) = λtop is the underlying geodesic lamination of [λ]. Fix an
arbitrary hyperbolic metric on S. Since λtop ∈ EL(S) = ∂C(S), we may choose a quasi-
geodesic ray {αi }i∈N of simple closed geodesics on S such that {αi } converge to λtop as
laminations. Consider the sequence of simple closed multigeodesics {q∗(αi )} in Y equipped
with the hyperbolic metric induced by q : Y → S. Since q∗ is a quasi-isometry that extends
continuously to the boundary of C(S), {q∗(αi )} is a quasi-geodesic ray in C(Y ) and therefore
converges to some (minimal) geodesic lamination q∗(λtop) = z ∈ ∂C(Y ). We claim that this
limit is exactly q−1(λtop).

To see this, note that the image of q∗(αi ) under (q∗)−1 is q(q∗(αi )) = αi . Since {αi }
converges to λtop , by continuity, q(q∗(λtop)) = q(z) must be λtop . Hence z is contained in
the pre-image q−1(λtop). Since z and q−1(λtop) are both minimal geodesic laminations on
Y , they must be equal. Therefore q∗(πS([λ])) = q−1(λtop).

Finally, observe that q−1(λtop) = q−1(λ)top since the lifting map q−1 commutes with the
measure-forgetting map. A similar argument holds for g̃ and g∗. This concludes the proof of
the proposition. 23

It follows from Theorem 2.1 that the set of uniquely ergodic ending measured laminations
ELue are dense in the space of measured laminations ML. By unique ergodicity, each λ ∈

123



Geometriae Dedicata (2023) 217 :26 Page 11 of 14 26

ELue has a unique lift to PML under the natural projection π : ∂T → ∂C. So the preimage
π−1
S (ELue(S)) is dense in PML(S). Since q∗ and g∗ induce the same map from EL(S) →

EL(Y ) and the diagram in Fig. 3 commutes, q̃ and g̃ agree on π−1
S (ELue(S)) pointwise and

hence on PML(S) pointwise by continuity. Therefore q̃|∂T (S) = g̃|∂T (S).
Next we will show that q̃ and g̃ have the same image in T (Y ). Let y ∈ q̃(T (S)) ⊂ T (Y ),

and consider its preimage x = q̃−1(y) ∈ T (S). Then x lies on a bi-infinite Teichmüller
geodesic γx which has endpoints in ∂T (S), by Theorem 2.4. By Theorems 2.2 and 2.3,
the images q̃(γx ) and g̃(γx ) are also bi-infinite Teichmüller geodesics with well-defined
endpoints in ∂T (Y ). Since q̃ and g̃ agree pointwise on ∂T (S) and any two distinct points
in the boundary of Teichmüller space determine a unique Teichmüller geodesic, we have
q̃(γx ) = g̃(γx ). Therefore y ∈ g̃(γx ) ⊂ g̃(T (S)), which completes the proof that g̃ and q̃
have the same image.

It follows that g̃−1 ◦ q̃ is an isometry of T (S), fixing ∂T (S). This implies that g̃−1 ◦ q̃ is
the identity on T (S) and thus that q̃ and g̃ agree pointwise on T (S).

Recall that x ∈ T (S) can be interpreted as a conjugacy class of a discrete, faithful
representation ρ : π1(S) → PSL2(R). Consider q̃([ρ]), g̃([ρ]) ∈ T (Y ), which (up to
conjugacy) are the following:

q̃([ρ]) : π1(Y )
q∗−→ π1(S)

ρ−→ PSL(2,R),

g̃([ρ]) : π1(Y )
ϕ∗−→ π1(X)

p∗−→ π1(S)
ρ−→ PSL(2,R).

Here ϕ∗ is the isomorphism between π1(X) and π1(Y ) induced by the homeomorphism
between X and Y given by Lemma 3.1. Since q̃ and g̃ agree on T (S), q̃([ρ]) = g̃([ρ]).
This combined with the injectivity of ρ imply that q∗(π1(Y )) = p∗(π1(X)). So p and q are
equivalent covers. 23

4 Regular covers and non-simple curves

We now prove Theorem 1.5, which is restated below for the reader’s convenience.

Theorem 1.5 Let N ,M ∈ N and let p : X → S, q : Y → S be regular finite covers of a
closed orientable surface S with genus at least 2. Suppose that for any essential closed curve
γ ⊂ S, γ admits an elevation to X with at most N self intersections if and only if it admits
an elevation to Y with at most M self intersections. Then p and q are equivalent covers.

Let k = max(N ,M), and given j ∈ N, define /k, j (S) to be the graph whose vertices
correspond to isotopy classes of closed curves γ on S with self intersection number at most k,
and so that two such vertices are connected by an edge exactly when the corresponding curves
have geometric intersection at most j . Given a fixed k, there exists r ∈ N so that for all j ≥ r ,
every vertex of /k, j (S) is adjacent to a simple closed curve and thus in particular, the graph
is connected since C(S) is connected. Indeed, there are only finitely many extended mapping
class group orbits of isotopy classes of closed curves with at most k self-intersections; one
can then choose r to be the maximum, over all such orbits, of the minimum intersection
number between a representative of that orbit and a simple closed curve.

We will then choose j so that

j ≥ r · [π1(S) : π1(X)] · [π1(S) : π1(Y )].
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Proposition 4.1 /0, j (S) is totally geodesic inside /k, j (S), and /k, j (S) lies in its 1-
neighborhood (and hence also in the 1-neighborhood of C(S) = /0,0(S)).

Proof The fact that /k, j (S) lies in the one-neighborhood of C(S) follows immediately from
the choice of j . To see that /0, j (S) is totally geodesic, consider the map

τ : /k, j (S) → /0, j (S),

defined as follows. For each vertex v ∈ /k, j (S), choose a preferred minimal position rep-
resentative in that isotopy class (which by abuse of notation we refer to as v), a choice of
orientation, and a choice of starting point which we will denote by i(v). Starting at i(v),
traverse v in the forward direction until first reaching a point that has already been visited.
This defines a sub-curve vs (which may not necessarily contain i(v)) which is necessarily
simple and which is essential since v was in minimal position. Note that we are using the
fact that S is closed here. Then define τ by τ (v) = vs .

Note that v1, v2 ∈ /k, j (S) are adjacent if and only if they intersect at most j times. If this
occurs, we obviously also have that (v1)s, (v2)s intersect at most j times and so it follows
that τ is a 1-Lipschitz retraction of /k, j (S) on to /0, j (S). 23

Corollary 4.2 The inclusion of C(S) into /k, j (S) is a quasi-isometry.

Proof It suffices to show thatC(S) ↪→ /0, j (S) is a quasi-isometry. This follows fromstandard
arguments; in particular, if α,β are simple closed curves intersecting at most j times, their
distance in C(S) can be at most 2 log2( j)+ 2. 23

Proof of Theorem 1.5 Wewill begin by establishing aquasi-isometry3 : /k, j (X) → /k, j (Y )
which is defined in precisely the same way as - in the proof of Theorem 1.1: given α ∈
/k, j (X) a closed curve, first take its pre-image under the cover from W to obtain the curve
collection AW and then project to Y under q ′ : W → Y .

This yields a collection of curves α1, ...,αn on Y satisfying i(αl ,αl) ≤ M ≤ k, 1 ≤ l ≤ n.
Thevalue of j was chosen to ensure that AW has diameter 1 in/k, j (W ), and so it followsby the
same argument used in the proof of Theorem1.1 that {α1, ...,αn} has diameter bounded above
independent of α in /k, j (Y ). Just as in Theorem 1.1, this establishes the well-definedness
of 3 and that it is coarsely Lipschitz; interchanging the roles of Y and X give that 3 is a
quasi-isometry.

Pre- and post-composing 3 with the quasi-isometries C(X) ↪→ /k, j (X) and /k, j (Y ) →
C(Y ) fromCorollary 4.2 yields a quasi-isometry0 : C(X) → C(Y ). Once- : C(X) → C(Y )
is replaced with 0 : C(X) → C(Y ) (just defined) in the proof of Lemma 3.3, then the
remainder of the argument is identical to the proof of Theorem 1.1. 23

5 Abelian covers and simple curves

Let p : X → S be a finite cover. A curve α̃ ⊂ X is an elevation of a curve α ⊂ S of degree k
if α̃ covers α with degree k. We will consider the (integral) simple curve homology Hsc

1 (X) =
Hsc
1 (X;Z), which is the subgroup of H1(X;Z) generated by the (integral homology classes

of) elevations of simple closed curves on S. Fixing basepoints (X , x0) and (S, s0) such that
p(x0) = s0, we can find a generating set Gp for Hsc

1 (X) in terms of the fundamental groups
of X and S.

Specifically, call an element of π1(S, s0) simple if it is represented by a curve which is
freely homotopic to a simple closed curve on S. We will denote the collection of all powers
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of simple elements by P ⊂ π1(S, s0). Observe that

Gp:={[α] ∈ H1(X;Z) | α ∈ π1(X , x0) and p∗α ∈ P}
is a generating set for Hsc

1 (X).

Proposition 5.1 [Looijenga, [9]] Hsc
1 (X) = H1(X) for a finite-degree abelian cover p :

X → S.

Given two finite-degree abelian covers p : X → S and q : Y → S and a curve γ ⊂ S,
we will let n p(γ ) (resp. nq(γ )) denote the minimum positive integer k such that γ admits an
elevation of degree k along p to X (resp. along q to Y ).

Theorem 1.2 Let p : X → S and q : Y → S be finite-degree abelian covers of S. If
n p(γ ) = nq(γ ) for all simple closed curves γ ⊂ S, then p and q are equivalent covers.

Proof Fix basepoints x0 ∈ X , y0 ∈ Y , and s0 ∈ S such that p(x0) = q(y0) = s0. By
Proposition 5.1, Gp and Gq are generating sets for Hsc

1 (X) = H1(X) and Hsc
1 (Y ) = H1(Y ),

respectively, and so p∗Gp and q∗Gq are generating sets for p∗H1(X) and q∗H1(Y ), respec-
tively.

Note that for an element γ ∈ π1(S, s0), n p(γ ) is the minimum positive integer k such
that γ k ∈ p∗π1(X , x0), and likewise nq(γ ) is the minimum positive integer k such that
γ k ∈ q∗π1(Y , y0). Therefore, our assumptions on n p and nq imply that P ∩ p∗π1(X , x0) =
P ∩ q∗π1(Y , y0). Therefore,

p∗Gp = {p∗[α] ∈ H1(S) | α ∈ π1(X , x0) and p∗α ∈ P}
= {[γ ] ∈ H1(S) | γ ∈ P ∩ p∗π1(X , x0)}
= {[γ ] ∈ H1(S) | γ ∈ P ∩ q∗π1(Y , y0)}
= {q∗[β] ∈ H1(S) | β ∈ π1(Y , y0) and q∗β ∈ P} = q∗Gp,

and so p∗H1(X) = q∗H1(Y ). Since p : X → S and q : Y → S are abelian covers, this
implies that they are equivalent. 23
Acknowledgements Aougab is supported by NSF grant DMS 1807319. Loving is supported by an NSF
Postdoctoral Research Fellowship under Grant No. DMS 1902729. Thanks to Caglar Uyanik and Macarena
Arenas for helpful comments on a draft of this paper.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

References

1. Aougab, T., Gaster, J., Patel, P., Sapir, J.: Building hyperbolic metrics suited to closed curves and appli-
cations to lifting simply. Math. Res. Lett. 24, 03 (2016)

2. Arenas, M., Neumann-Coto, M.: Measuring complexity of curves on surfaces. Geom. Dedicata. 204,
25–41 (2020)

3. Biswas, I., Mahan, M., Nag, S.: Thurston boundary of Teichmüller spaces and the commensurability
modular group. Conform. Geom. Dyn. Am. Math. Soc. 3, 50–66 (1999)

4. Buser, P.: Geometry and spectra of compact riemann surfaces. Birkhäuser, Basel (1992)
5. Gaster, J.: Lifting curves simply. Int. Math. Res. Not. 2016(18), 5559–5568 (2016)
6. Gupta, N., Kapovich, I.: The primitivity index function for a free group, and untangling closed curves

on hyperbolic surfaces. with the appendix by Khalid Bou-Rabee. Math. Proc. Camb. Philos. Soc. 166(1),
83–121 (2019)

123



26 Page 14 of 14 Geometriae Dedicata (2023) 217 :26

7. Klarreich, E.: The boundary at infinity of the curve complex and the relative Teichmüller space.
arXiv:1803.10339, 03 (2018)

8. Lindenstrauss, E., Mirzakhani, M.: Ergodic theory of the space of measured laminations. Int. Math. Res.
Not. 2008, 01 (2008)

9. Looijenga, E.: Prym representations of mapping class groups. Geom. Dedicata. 64(1), 69–83 (1997)
10. Masur, H.: Two boundaries of Teichmüller space. Duke Math. J. 49(1), 183–190 (1982)
11. Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves I: hyperbolicity. Invent. Math. 138,

103–149 (1999)
12. Maungchang, R.: The Sunada construction and the simple length spectrum. Geom. Dedicata. 163(1),

349–360 (2013)
13. Patel, P.: On a theorem of Peter Scott. Proc. Am. Math. Soc. 142(8), 2891–2906 (2014)
14. Rafi, K., Schleimer, S.: Curve complexes are rigid. Duke Math. J. 158, 10 (2007)
15. Rafi, K., Schleimer, S.: Covers and the curve complex. Geom. Topol. 13(4), 2141–2162 (2009)
16. Scott, P.: Subgroups of surface groups are almost geometric. J. Lond. Math. Soc. s2–17(3), 555–565

(1978)
17. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. 121(1), 169–186 (1985)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1803.10339

	Characterizing covers via simple closed curves
	Abstract
	1 Introduction
	1.1 Motivation, Sunada's construction, and non-simple curves

	2 Preliminaries
	2.1 Hyperbolic spaces and Gromov boundaries
	2.2 Teichmüller space and geodesic laminations
	2.3 The complex of curves

	3 Regular covers and simple curves
	4 Regular covers and non-simple curves
	5 Abelian covers and simple curves
	Acknowledgements
	References


