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Abstract—Homomorphic encryption (HE) is the ultimate tool
for performing secure computations even in untrusted environ-
ments. Application of HE for deep learning (DL) inference is an
active area of research, given the fact that DL. models are often
deployed in untrusted environments (e.g., third-party servers)
yet inferring on private data. However, existing HE libraries
[somewhat (SWHE), leveled (LHE) or fully homomorphic (FHE)]
suffer from extensive computational and memory overhead. Few
performance optimized high-speed homomorphic libraries are
either suffering from certain approximation issues leading to
decryption errors or proven to be insecure according to recent
published attacks. In this article, we propose architectural tricks
to achieve performance speedup for encrypted DL inference
developed with exact HE schemes without any approximation
or decryption error in homomorphic computations. The main
idea is to apply quantization and suitable data packing in the
form of bitslicing to reduce the costly noise handling opera-
tion, Bootstrapping while achieving a functionally correct and
highly parallel DL pipeline with a moderate memory footprint.
Experimental evaluation on the MNIST dataset shows a signif-
icant (37x) speedup over the nonbitsliced versions of the same
architecture. Low memory bandwidths (700 MB) of our design
pipelines further highlight their promise toward scaling over
larger gamut of Edge-Al analytics use cases.

Index Terms—Accelerators, bitslicing, encrypted analytics,
homomorphic encryption (HE).
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I. INTRODUCTION

DVANCED analytics workloads, involving machine learn-
ing (ML) or deep learning (DL), are often deployed in
public cloud servers, such as AWS, Azure, GCP so that the
vast compute infrastructures could be exploited to attain better
performance and scalability. Considering the recent vulnerabil-
ities reported in these public servers as published in reports due
to [1], [2], and [3], enforcing the security of mission-critical ML
workloads deployed in cloud servers is of utmost importance.
Encrypted analytics is a viable solution in this direction with the
support of a family of homomorphic encryption (HE) scheme.
Most of the existing approaches for encrypted DL are con-
structed over leveled HE (LHE) or Somewhat HE (SWHE)
schemes, both of which support homomorphic operations
only for limited circuit depth [4], [5], [6], [7]. Beyond
this depth, the ciphertext noise grows to an extent where
a successful decryption becomes impossible. While SWHE
or LHE schemes are still preferred because of performance
benefits, their support for limited circuit depth becomes an
issue for complex inference tasks where deeper networks
(therefore, deeper circuit depths) are required. Fully HE
(FHE) addresses this issue with bootstrapping which can
reduce the ciphertext noise during homomorphic computa-
tion, and, therefore, enables computation for arbitrary circuit
depths [8]. Bootstrapping “refreshes™ a ciphertext by running
the decryption function on it homomorphically, thus reducing
the ciphertext noise. However, such power comes at a cost
of Bootstrapping, which is both computationally intensive and
memory hungry. Ducas and Micciancio [9] proposed an FHE
bootstrapping mechanism which takes less than 1 s. Later,
works due to Chilotti ef al. [10] further improved this timing
in their work, which proposes a Torus polynomial-based FHE
bootstrapping procedure within 13 ms and also compresses the
bootstrapping key size from 1 GB to 16 MB thus hugely opti-
mizing the memory overhead. We shall revisit this scheme
in later sections of this article to explain its significance in
connection to our proposed encrypted ML architecture.
While the choice between LHE/SWHE and FHE can still
be debated over based on the performance issue, recent
research has shown that FHE is indeed a safer choice
from the perspective of security. It has been found that the
secret key of certain LHE schemes (such as CKKS [11])
can be extracted with the knowledge of a few decrypted
ciphertexts [12], [13]. Such attack can fully compromise the
privacy, which is the sole purpose of choosing encrypted
analytics. Further, many efficient FHE-assisted ML approaches
use approximations in the underlying homomorphic scheme
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to avoid costly bootstrapping. These encrypted ML models
only support approximations of nonlinear activations which
incorporates approximation errors or support only specific
activation functions, like square activations [4], [14]. In this
situation, FHE schemes with efficient bootstrapping support
seem to be a judicious choice for realizing DL inferences.

Noteworthy here is the fact that contrary to traditional algo-
rithm implementations, FHE domain implementations require
circuit-based realization of algorithms on our traditional unen-
crypted processors, which is a nontrivial task. This is due to
the fact that existing FHE libraries support basic computational
gates and homomorphy can only be achieved by realizing
algorithms on top of them [10]. Again to support arbitrary
noise-free FHE computations, usage of costly Bootstrapping
operation is mandatory, but that leads to serious performance
bottleneck and huge ciphertext size blow-up. Moreover, FHE
gates can only support integer domain computations, which is
a major drawback to realize any ML model directly in FHE
domain. All these limitations motivate us to make an effort in
developing a robust FHE encrypted ML inference framework
with performance acceleration and without any inference accu-
racy loss with respect to unencrypted domain. It is to note that
in this era of ML as a service (MLaaS), both model parame-
ters and data in ML scenarios can be considered as intellectual
property (IP). However, following existing literature and con-
sidering the overhead of HE schemes, the threat model of
our proposed framework takes data privacy into account and
it is developed based on public model private data assump-
tion. Lately, FHE-based ML architectures with reduced timing
overheads have been proposed by state-of-the-art libraries
like Concrete [15]. However, our investigations in this work
highlight how Concrete FHE library may lead to erroneous
decryption. That is why we build up the proposed encrypted
ML inference on mathematically accurate NuFHE [16], which
is the extension of FHE library over Torus (supports fastest bit-
wise homomorphy in literature within few milliseconds) [17].
Our proposed end-to-end encrypted inference pipeline never
tweaks the library or does not require any approximation in
activation implementation due to the support of basic gate-
level homomorphy. However, straightforward realization of
ML models only with FHE gates incurs huge timing as well
as memory overhead. As an example, our baseline implemen-
tation with only MNIST dataset requires around 80 h for FHE
inference and 6.7-GB memory on average.

To reduce this huge timing and memory overhead, we
propose a new FHE ML architecture where we primarily
design a wrapper to optimize the overall design with two
main architectural tricks: 1) quantization and 2) bitslicing.
Quantization is an approach widely adopted for reducing the
memory footprint of DL model so that they can be easily
deployed at resource-constrained embedded devices. Reducing
the memory footprint is also essential in the context of FHE.
Bitslicing, on the other hand, is a parallelization technique
primarily used in cryptography [18], where bitwise logical
operations are quite prevalent. The main idea is to pack the
operands of several bitwise operations in the same register
so that they can be processed in parallel with one processor
instruction. In FHE context, bitslicing is mainly adapted as

4005

tensor packing technique to reduce the number of bootstrap-
ping operation. This in turn can boost the performance of both
Conv2D layers and dense operators. Further, the prerequisite
of FHE-based implementation setting is discretized tensors as
opposed to real valued ones and we achieve this using quan-
tization supported inference. Our design ensures that bitsliced
accelerator with FHE operations work on integer ciphertext
operands. With all these modifications, following are the major
contributions of this article.

1) First, we try to highlight some limitations of state-of-
the-art Concrete library which incorporates decryption
errors for real-valued tensors.

2) Further, FHE computations are only possible on integer
values and Bootstrapping operations on 32-bit tensors
could worsen the overall performance. To mitigate these
issues, we adopt quantized inference on INT8 or 8-bit
Integer tensors. Without accuracy degradation, INTS8
quantization empowers us in performance boosting.

3) Next, we revisit the building blocks of convolutional
neural network (CNN) or deep neural network (DNN)
architectures and optimize them in the FHE context.
Finally, we design a memory-efficient ML accelerator
with architectural tricks like packing and software bit-
slicing. We evaluate our techniques on both CNNs as
well as DNNs and demonstrate the speedup potential of
around 37 times.

4) We perform an in-depth memory profiling and try to
benchmark our inference accelerator with other state-
of-the-art approaches reported in [4], [5], [7], and [19].
These reported works not only incorporate approxima-
tions, most of them also incur huge memory requirement
of around 2-3 GB for evaluating the inferences. Works
like [5] and [7] are low latency pipelines but they
are certainly memory intensive (consuming at least
few GB’s for inference on moderate architectures).
Our bitslicing-based design paradigm, however, opti-
mizes significantly on memory footprint and is capable
of CNN inference within tight memory budgets of
around 700 MB.

With this motivation, our paper is organized as follows.
Introduction section (Section I) highlights the security vulner-
abilities of public cloud servers and explains the motivations
to adopt HE for encrypted ML architecture design. Section II
highlights the background and limitations of existing works.
Section III explains few preliminary concepts with impor-
tant terminologies. Section IV describes the design details of
proposed ML architecture for encrypted Inference accelerated
by architectural optimizations like quantization, bitslicing, etc.
This section also includes the optimized design details for FHE
counterparts of CNN building blocks. Finally, Section V men-
tions the experimental details and results comparing with state-
of-the-art encrypted ML frameworks followed by conclusion
in Section VL

II. BACKGROUND AND LIMITATIONS OF RELATED WORKS

In this section, we highlight few important encrypted ML
architectures reported in recent literature based on the existing
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TABLE I
HE SCHEMES TAXONOMY

HE Scheme Examples Open-source
Libraries
Partial(PHE) RSA,EL-Gamal OpenSSL
[20], [21]
Somewhat(SHE)/Leveled(LHE) BGV [11], [22] HELib, SEAL Pal-
isade
Fully/FHE Chilotti’s TFHE NuFHE, Concrete
[10]

HE libraries as enlisted in Table I. Among these homomor-
phic ML frameworks, the encrypted networks mentioned in [4]
and [23] suffer from liberty of selecting the activation func-
tions. These encrypted networks can only incorporate square
activations due to the choice of limited homomorphic schemes.
Further, efforts like [24] can only work with approximated
layers with low-degree polynomials. The work in [7] reports
only estimated results for deeper networks and only pro-
vides implementation results for moderate sized networks
that can be evaluated with predefined multiplicative depth
of an LHE scheme. Again, the reported FHE ML inference
in [14] approximates the existing FHE scheme on Torus [17]
to improve the performance. However, the scheme suffers
from the limitations of the signed activation functions, which
sometimes leads to erroneous predictions.

All these aforementioned efforts are based on either some
leveled or arithmetically approximated encryption libraries,
which incorporate some inherent limitations. Next, we will try
to vividly highlight the major bottlenecks of different classes
of encrypted ML frameworks which dominate the literature.

1) Binarized or Discretized Inference-Based Encrypted ML

Approaches: The promise of neural network inference
with binarized or discretized tensors has lately caught
attention of researchers due to its performance effi-
ciency. Most relevant approaches report the acceleration
potential of quantized inference with bitwise logical
operations. As described in [25], this set of models
works with Binarized tensors (all tensors represented
as Power-of-2) and hence, all multiplications on those
tensors could be achieved with logical bit shift opera-
tors. This property makes this technique very effective
with inference workloads in FHE domain, as in binarized
inference the costly FHE multiplications can be replaced
with bit shifts thereby saving huge bootstrapping com-
plexity as reported in [7]. Borrowing from the concept
of binarized neural networks, the effect of discretized
neural networks has further been explored in Bourse’s
work [14]. While the former methods largely resort to
multiplication less inference networks, this method per-
forms some thresholding of activation tensors a priori so
that the approximation function computation will come
down to a matter of just changing sign bits. Noteworthy
here, that all these quantized weights or even predefined
thresholds of activation units are applicable to super-
vised learning paradigms only where they are trained
before inference during training phase. As a caveat,
this logarithmic quantization trick might not work in
such a straightforward manner for other ML use cases
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which employs linear or ridge regression or some other
unsupervised learning algorithm.

2) Approximation Schemes for CNN Inference: To avoid
costly bootstrapping in terms of memory blowup and
performance, many HE-assisted ML approaches avoid
FHE and opt for approximated LHE as underlying
scheme. Due to the absence of bootstrapping opera-
tion, nonlinear activation functions need to be replaced
with low-degree polynomial functions to be evalu-
ated by LHE libraries. For example, [6] is such an
approach which approximates nonlinear activations with
arithmetic polynomials. Inference frameworks proposed
in [4] and [24] build up on same ideas and also produce
good accuracy. However, scheme proposed in [11] is
one of the important approximated library which is get-
ting used to develop the basic building blocks of recent
encrypted CNN architectures. Recent attack [12] high-
lights the vulnerabilities of this underlying HE scheme
and thus encrypted ML models designed based on this
scheme cannot be considered fully secure anymore.

3) LHE or SWHE-Based Encrypted ML Inference: LHE
or SWHE only allow limited number of homomor-
phic computations (limited multiplications or additions).
Simpler neural net architecture might run smoothly with
underlying LHE libraries as reported in [4] and [24].
However, with the growth of multiplicative depth of
neural networks, ciphertext noise amplifies to an extent
when successful decryption is no longer possible. For
complex real-life use cases, inference on deeper nets
may become erroneous (and training is infeasible). That
makes the acceptance of LHE and SWHE schemes very
limited for DNNs. To resolve this limitation of SWHE
or LHE schemes, usage of FHE has been proposed.
Recently, Chillotti et al. [26], Lee et al [19], and
Bourse ef al. [14] demonstrated efforts in building neural
net inference frameworks which runs on FHE encrypted
ciphertexts with bootstrapping.

4) Concrete-Based Torus FHE (TFHE) Encrypted ML
Inference: Zama’s Concrete library is an optimized
library for FHE ML inference [15]. However, our exper-
imental observations point out that homomorphic oper-
ations supported by this library incur decryption errors
computed on integer plaintexts. To elucidate on this, we
perform some cubic functions on ciphertexts and evalu-
ate few leveled computations. Tables II and III highlight
errors that Concrete [15] encounters during plaintext
decryptions during Bootstrappable FHE or LHE com-
putations (Level i Error in the table indicates error
occurred after ith addition). These errors can amplify
as the level grows and the approximations performed by
Concrete can lead to misleading inference in ML pro-
cessing. Concern of significant accuracy drop (around
80%) is already reported in [26] for deeper networks
and that questions the consistency of Concrete library
for encrypted ML architecture design.

In this context, our objective is to keep the underly-

ing FHE encryption library intact and provide architectural
optimizations to achieve overall performance improvement.
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TABLE I
CONCRETE FHE AND LHE ERRORS

Plaintext Target Function=x® FHE Error LHE Error
-2.0 -8 3.14 004809
-4.0 -64 5.3174 00236
7.0 343 3.154 00772
5 125 7.94 004809

TABLE III

CONCRETE LEVELED COMPUTATION ERRORS
Plaintext Level_1 Level_.2 Level .3 Level_4
Error Error Error Error

8.2+45.6+1.242.245.0 0.032 0.028 0.026 0.0321
4.2+45.6+1.242.245.0 0.00031 0.01022 0.02004 0.0503
10+1.14042.245.0 0.022 0.0292 0.0264 0.0329
042.243.344.445.5 0.0133 0.0239 0.0264 0.0329
1.O4+2.043.0+4.045.0 0.0097 0.0154 0.0225 0.036

To summarize, in this work, we try to address few major
challenges ahead.

1) Floating point inputs or weights vectors cannot be pro-
cessed by FHE schemes, which will be handled by
suitable quantization without any accuracy loss.

2) Design of scalable building blocks for FHE inference
pipeline for example Conv2D, Dense, MaxPool, and
Average Pool (AvgPool) will be while ensuring low
bootstrapping complexity of FHE operations in the
process.

3) DNNs involve computation of activation functions (like
tanh, sigmoid, [rectified linear unit (ReLU)]. It is a
generic challenge for any limited HE scheme to real-
ize these functions. Our proposed architecture will be
capable enough to support all kind of activation without
any approximation error.

III. PRELIMINARIES

In this section, we elaborate some HE primitives impor-
tant for further discussion of this article. HE is an elegant
mathematical tool which allows computations on the cipher-
text without any explicit decryption. Most HE schemes support
at least one of the two fundamental computations either
homomorphic addition (HADD) and homomorphic multipli-
cation (HMUL). For example, the classical RSA cipher is
a multiplicative HE, which supports multiplication operation
in encrypted domain. According to the power of encrypted
computation, HE schemes can be classified broadly into three
categories: 1) partial HE (PHE) allows only one homomorphic
operation either HADD or HMUL; 2) SWHE allows limited
number of one operation, generally HMUL; and 3) LHE allows
limited number of homomorphic operations and finally FHE
allows arbitrary number of computations. FHE schemes, in
general contain elementary homomorphic gate operations like
AND, OR, NAND, efc., followed by Bootstrapping which is
a crucial operation for denoising in FHE circuits. To under-
stand the concept of noise in homomorphic circuits, consider
the following example [27].

Considering an HE scheme with odd number p as shared
secret key.

1) To encrypt a bit m, a random large ¢, and small r are

chosen and output ciphertext is computed as ¢ = pq +
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Fig. 1. Overview of the proposed framework.

2r + m. Ciphertext is close to a multiple of p and m =
LSB of distance to nearest multiple of p.
2) The decryption is performed as: m = (¢ modp) mod2.
Now, we explain why the above-mentioned scheme is
considered to be homomorphic. Considering two ciphertexts
c1 = q1p + 2r1 +my and ¢2 = g2p + 2r2 + my, the addition
and multiplication operations are defined with the following
equations. Addition of the ciphertexts can be defined as

c1+c2=(q1+q2)p +2(r1 +r2) + (m1 +my)

Distance to nearest multiple of p
c1 + ¢ mod p = 2(ry + r2) +(my + my).

error-term

Multiplication of the ciphertexts can be defined as

c1-c = (€192 +q1€2 — Q1q2)p
+ 2(2ryry + rimp +mry) +mymy
ci-camod p=2Q2rira+...)+my - ma.
— —

error-term

Homomorphic property retains till the error-term is within
a certain limit. However, the error-term (or noise) grows faster
for multiplication compared to addition. Hence, the scheme is
somewhat homomorphic. Gentry’s work [27] has shown the
first noise handling technique termed as Bootstrapping and
explained the first plausible construction of the FHE scheme.

Bootstrapping a ciphertext indicates homomorphically
decrypting it, using an HE of its own secret key. In the end, we
get an encryption of the same plaintext, but with reduced noise
level. In practice, this operation is the main support to retain
homomorphy for arbitrary computations but it is again the
main reason for serious performance bottleneck and memory
hungry nature of FHE. Hence, FHE literature is still evolving
to improve the Bootstrapping technique. Among other exist-
ing schemes, the Torus-based FHE scheme proposed on the
concept of learning with errors (LWE) paradigms [28], [29]
offers fastest gate bootstrapping within few milliseconds.

Our proposed HE ML architecture as illustrated in Fig. 1 is
implemented as based on python library NuFHE [16], which
is an extension of that TFHE scheme [10]. Hence, we restrict
our HE related discussion in context of TFHE. More formally,
any FHE scheme can be defined as a tuple of four algorithms:
(Gen, Enc, Dec, and Eval). Considering security parameter A
and two public parameters N and k, the algorithms related to
TFHE can be defined as follows.
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1) Gen (1*, N, k): This keygeneration algorithm generates
secret key Sk and evaluation key Ek, which will be used
in subsequent algorithms.

2) Enc(m, Sk): This encryption algorithm encrypts message
m € M, where message space M = T[X]/(XN +1) (N
sized Torus polynomial defined over Torus T). Since,
the secret key Sk consists of k number of N-sized poly-
nomials, the ciphertext Ct is computed as (A, B), where
A is a random public parameter and B = ZLI Ali] -
Sk[i] + m + e. Parameter e is Ring-LWE (RLWE) noise
polynomial, where each e¢; is chosen from Gaussian
distribution.

3) Eval (Ct, F, Ek): This homomorphic evaluation step
evaluates arbitrary function ' on RLWE ciphertext Ct by
intermediate LWE ciphertext generation. In FHE mode,
homomorphic evaluation incorporates circuit bootstrap-
ping procedure, that takes an LWE ciphertext as input,
reduces its noise, and converts it back to a GSW cipher-
text suitable for subsequent packed operations. Later, on
the final LWE output from the evaluation technique is
converted to final RLWE ciphertext.

4) Dec (Ct, Sk): Final decryption step involves computation
of g =B — ZL] Ali] - Sk[i] to get m + e. Finally, each
of the N coefficients of ¢ are rounded up to return the
coefficients of m.

Consequently, a couple of Torus-based libraries has been
publicly released by Chilotti et al. of which TFHE [17],
Zama’s Concrete [30], and NuFHE [16] are widely being used
to this date.

A. Convolutional Neural Networks

CNNs proposed by [31] have evolved into widely popular
classification algorithms for advanced analytics tasks, credited
to their phenomenal success in the image or video classifica-
tion domain. A CNN is a multilayered neural network with
three following layers.

1) Convolution: The convolution operation extract features

from an image through the dot product of image pixels
and a custom image kernel or image filter. An H x W
image is typically convoluted with M x M kernel to get
(H—M+1) x (W—M+-1) output. In convolution, oper-
ations like stride and pooling are integrated to preserve
the dimensions of the image. Feature maps are gener-
ated in convolution operation, which provides insights
into the features extracted from the convolution. For
2-D convolution operation, each feature map is a 2-D
matrix that contains features as data vectors that can be
visualized on the image space.

2) Activation Function: Activation functions are used to
transform the weighted sum of the inputs with bias into
an output. It is used to provide nonlinearity to the out-
put. ReLU, softmax, and sigmoid are a few most used
activation functions in CNN.

3) Pooling: Pooling is a downsampling mechanism for
the image and is usually applied after the convolution
operation. It reduces the computation load. MaxPool
and AvgPool are the most commonly used pooling
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TABLE IV
NOTATIONS AND TERMINOLOGIES

Symbol  Description

Pij 5" pixel of image matrix

wyj i7" weight value

H Height of the Image Matrix

w Width of the Image Matrix

M Dimension of (M x M) Convolution Filter
N Packing width for bitslicing

c Number of channels

mechanism where maximum and average values are
taken from the matrix produced by convolution layer.

B. Bitslicing in Software

Originally proposed by Biham [18], for accelerating the
computation of DES [32] in software, bitslicing is a paral-
lelization technique widely utilized for cryptographic imple-
mentations. The main idea is to utilize the (bitwise) logical
instructions (AND, x0oR, NOT, OR) present in modern pro-
cessors in an SIMD fashion. The entire computation is first
represented as a circuit consisting bitwise logical operations.
Next, a number of parallelizable bit operations is packed
together in registers and processed with logical instructions.
For example, if a processor architecture contains n-bit regis-
ters, and there are n bitwise logical-AND operations in the
computation that can happen in parallel, then, the operands
are packed in two registers and processed with a single bit-
wise AND instruction. This trick computes AND for all n-bits
in parallel, which results in significant speedup. For state-of-
the-art block ciphers, which can always be represented as a
sequence of bitwise operations, such bitslicing can enable par-
allel processing of n plaintexts, where n is the width of the
registers in the processor.

IV. QUANTIZED INFERENCE WITH BITSLICING

The goal of this research is to address the challenges of real-
izing large and complex neural networks in FHE domain with
reasonable timing and memory footprints. This is achieved
through two basic steps: 1) quantization and 2) bitslicing.
We note that quantization is a well-known model compres-
sion technique in DL research. However, we found that it is
also an essential step for implementing FHE-encrypted DL.
The impact of quantization is explained in the next section.
We also present some basic notations in Table IV, which we
shall use throughout the following sections.

A. Quantized Inference of CNNs

In simple words, model quantization aims to reduce the
precision of the trained weights (and inputs) in a model, so
that they can fit within a reduced bit width. Mathematically,
quantization maps all elements in the range [R;, R2] to the
range [—(2(3_1)), (2(3_]) — 1)], where B is the bit-precision
after quantization. For example, if 32-bit floating point weights
can be compressed to 8-bit weights it leads to a significant
reduction in the memory footprint of a model.

In the context of FHE, however, model compression has sev-
eral other benefits. The memory blowup for FHE is primarily
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TABLE V
ARCHITECTURES (MENDELEY AND MNIST)

Layer Output- Trainable Output-  Trainable
shape Parameters shape Param-
(Mendeley)  (Mendeley) (MNIST) eters

(MNIST)

input_layer (224,2243) 3 (28,28) 3

reshape (224,224.3) 1 (28,28,1) 1

Conv2d (222,222,3) 27 (26,26,1) 15

Max_pooling2d  (111,111,3) 1 (13,13,1) 1

Flatten (36963) 1 (169) 1

Dense (2) 73926 (10) 1705

attributed to the ciphertext size. For Boolean FHE operations,
each plaintext bit is mapped to a multibit ciphertext. High
precision (i.e., larger bit width) operands can therefore result
in excessive memory overhead. Moreover, larger bit-width
also results in higher number of ciphertexts which eventually
increases the timing overhead. For example, the bootstrapping
time increases significantly while processing on 32-bit float-
ing point (FP32) representations, which is a common weight
representation in many DL libraries. Significant improvement
due to quantization is therefore evident.

However, an obvious impact of quantization is the degrada-
tion in inference accuracy. Fortunately, such accuracy loss can
be bounded to a reasonable limit, thanks to the efficient quan-
tization routines implemented in modern DL pipelines such
as TFLite [33]. In general, at most 2% of accuracy loss is
observed due to a quantization from FP32 to 8-bit integers
(INT8). Even without FHE, this provides a speedup of 2 times
over the FP32 counterparts [34].

Throughout this article, we utilize two representative
datasets (MNIST [35] and Mendeley [36]) for validating our
ideas. The MNIST dataset comprises 60 000 (28 x 28) images,
all representing digits between (0. ..9). The Mendeley dataset
is dedicated to the task of developing a binary classifier for
concrete building images labeled as cracks and no-cracks.
Each label class has 20K images each having dimensions of
224 x 224 x 3.

We first observe the performance of the models correspond-
ing to these datasets after quantization. It is evident that not
every model is supposed to give the same accuracy after quan-
tization. We figured out CNN architectures for both datasets
which retain the accuracy even after quantization. In fact,
for the Mendeley dataset, we observed slightly higher accu-
racy for the INT8 quantized version than the baseline FP32.
While such increase in accuracy is rare, we note that it is not
impossible. For example, such increase in accuracy has also
been observed in [33], which also depends on the range of
the quantization. Our reference architecture (see Fig. 2 and
Table V) remains the same for both datasets except changes
in few hyperparameters. More precisely, for MNIST we utilize
(W=28 H=28M=23,c=1), where W x H is the dimen-
sion of the input image, and M x M is the dimension of the
CNN filters. ¢ denotes the number of channels in the image.
The model also uses AvgPool as well as flattening layers. For
the Mendeley dataset, the parameters are (W = 224, H = 224
M=3c=3).
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Fig. 2. CNN architecture block diagram—this model architecture has been
adopted for MNIST (W = 28, H = 28, M = 3, ¢ = 1) as well as Mendeley
bridge (W = 224, H = 224, M = 3, ¢ = 3) datasets which are then mapped
to bitsliced simulations of FHE circuits.
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TABLE VI
ACCURACY WITH/WITHOUT QUANTIZATION

Test/Train Accuracy  Accuracy
Dataset oy (FP32) (INTS)
MNIST ~ 48000/12000 9643 % 9633 %
Mendeley  30488/7622 9682 %  97.24 %

The inference accuracy of the models after quantization is
presented in Table VI. It can be observed that the degradation
in accuracy for MNIST is quite reasonable. On the contrary,
for Mendeley, we observe a slight increase in accuracy. While
we believe that such observation is specific to this model
instance, this has been observed previously for multiple use
cases [37], [38]. Overall, we achieve reasonable accuracy,
while compressing the model significantly making it amenable
to FHE conversion.

B. Bitslicing

Quantization is indeed beneficial in terms of timing and
memory. However, it is not sufficient to accelerate the FHE
versions of a DL model. A straightforward FHE implemen-
tation of this model (for MNIST) with NuFHE library takes
almost 80 h and 6.7 GB (on average) of memory to make a
single inference. NuFHE generates a 780-bit ciphertext corre-
sponding to each bit of computation and leverages the FHE
gates to process them. The blowup in ciphertext size is illus-
trated in Fig. 3. The memory and computational overhead is
evident from this blowup. A crucial question is can these
performance figures be improved?

While one might have several attractive results for LHE
and SWHE libraries (or for FHE libraries like Concrete with
some output errors), none of these is an ultimate solution
as pointed out in the introduction. Therefore, we focus on
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improving the timing and memory overhead for NuFHE library
which contains bootstrapped Boolean gates. In this work,
Conv2D, MaxPool, AvgPool, and Dense layers are imple-
mented using gates from NuFHE. As we explain throughout
this section, there are several points of performance opti-
mizations while implementing these operations which result
in significant performance boost. The core component behind
these performance boost is a bitsliced adder module, which
we describe in the next section. At this point it is important to
note that none of our implementations including the bitsliced
adder need any augmentation to be made in the NuFHE library.
Rather, we build a software wrapper over the library to imple-
ment the layer operations, which are later utilized to construct
the DL models.

1) Bitsliced Full Adder: The main idea behind our bitsliced
full Adder (BFA) module is presented in Fig. 4. It performs
addition between two arrays of integers in a bitsliced man-
ner. Referring to Fig. 4, the two lists to be added are denoted
as Ay = [Ag, A1, ...,Ay_1] and Biy = [Bo, By, ..., Bn_1].
The output is Sum = [(Ap + Bop), (A1 + B1), ..., (Ax + By)l.
Without loss of generality let us assume that each A; (resp. B;)
is represented as A; = (A¥"1 ... Al A®) with k bits. A
straightforward addition of Aj; and By, therefore, requires
N invocations of a k-bit full adder. Each of these k-bit adder
invocation requires 4k-XORs, 2k AND operations (assuming
a ripple carry adder). Since each gate operation in NuFHE
is bootstrapped, total N x 6k bootstrapping operations are
performed. Even assuming some parallelization (especially
for the kK XORs computing the sum of two k-bit numbers),
the number of bootstapping remain high, as the carry chain
cannot be parallelized easily. One of the main optimization
challenges in this regard is to reduce the number of boot-
strapping. In NuFHE context, it implies a reduction in the
number of gates which is difficult for a small circuit like an
adder. Instead, we exploit the fact that NuFHE gates can pro-
cess multiple ciphertexts (corresponding to different bits) when
they are packed together. We exploit this feature in an SIMD
fashion.

In order to improve the efficiency, we introduce the concept
of bitsliced packing PACK(j) of ciphertexts. More precisely,
we utilize k arrays (REGp, REGy, ..., REG¢_1), each of size
N. The REG; stores the jth least significant (LSB) bit of
the integers {A,-}‘:i Bl. The PACK(j) function is illustrated in
Algorithm 1 and Fig. 4.

Algorithm 1 PACK())

Input: A; --- Ay, REG;

Output: REG;

I: fort<OtoN—1
REGj[f] < A}

2:  end for

3: return REG;

We further demonstrate the workflow of packing algorithm
with a short example, where we pack four integer operands
into four copies of four bit arrays. Suppose, the integers
are Ay = [1, 3,5, 6] whose binary representations are given
by 0001, 0011, 0111, and 0110. The packing registers are
REGq, REG1, REG;, and REGs3. In this example, N = 4,
so as per our notation, the operands are Ag,Ap,...,A3
where Ay = [A},A2,A},AQ] = [0001]. Similarly, A; =
[A3,A2,A],AY] = [0011], A> = [A}, A2, AL AD] = [o111],
Az [A3, A2, AL, AY] [0110]. After the execution of
PACK(j) for 0 < j < 4, REGp, REGj, REG», and REG3
contains [1110], [0111], [0011], and [0000], respectively.

Next, we show how to utilize this bitsliced packing to
implement a full-adder module for adding two arrays.

The Adder Circuit: Let us consider two lists A and Bjg
packed in two sets of arrays REGEI and REG}, where 0 <j <k
and |RE(3;’| = N (h = {0, 1}). Referring to Fig. 4, an N-bit
bitwise XOR can be deployed for each (REG?, REG}) pair
to calculate the sum component of addition. Similarly, the
carry logic can be implemented between these two registers.
It is worth noting that for REG;"S after the LSB position,
there is a carry propagation to enable the ripple carry (see
Fig. 4) which further needs N-bit XORs. After the carry prop-
agation completes, the final sum is also stored within one of
the REG;‘s.

Let us now analyze the timing and memory overhead of
this bitsliced adder compared to the naive approach of invok-
ing N, k-bit adders. The number of gate operations essentially
remains the same. However, due to the bitsliced packing, each
bootstrapped gate works on N bits in BFA. In contrast, the
carry chain of naive k-bit adders work on single bit at a
time. Consequently, number of required bootstrapping increase
N-fold for the naive case, compared to the BFA case. This is
the sole reason behind the timing improvement that we observe
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Fig. 5. Data packing with Bitslicing for FHE-Conv2D workflow.

in our implementations. Reduction of bootstrapping also sig-
nificantly improves the memory overhead (reduces it from
5.2 GB to 280 MB). As already pointed out in the preliminar-
ies, bootstrapping involves several complex operations, such
as key switching and blind rotate which are highly memory
intensive. While multithreading may improve the timing over-
head of bootstrapping to some extent, it is not so effective
in the context of memory as each thread consumes around
200 MB, which can quickly blow up with N. Overall, the
BFA adder is more efficient for adding two arrays compared
to naive addition. It only requires a software wrapper over
the NuFHE library without incurring any significant coding
complexity.

2) Bitslicing in DL: We next implement different layer
operations of DL using the BFA as a core component.
Referring to the generic architecture in Fig. 2, here, we imple-
ment three major operations, namely, Conv2D, MaxPool2d,
and Dense layer. These operations are also representative to
most of the existing DL layer operations.

Encrypted Conv2D/Dense Operators: The core component
of Conv2D or Dense operations can be represented as vector-
matrix products. Most of the cases it takes the form y =
ZLI w;x;, where w;s are the weights, and x;s is the inputs or
intermediate values. We note that for encrypted inference, the
weights are in plaintext and the x;s are encrypted. Therefore,
in FHE, such multiplications can be implemented as scalar
products followed by an addition. The scalar products, on the
other hand, can be implemented using repeated additions. A
natural way of implementing these repeated additions is to use
a loop with the w; in loop counter.

We begin our discussion in the regard with the Conv2D
operation. Let us assume that a convolution filter of dimension
M x M works on an image with dimension W x H. For
the sake of illustration, here, we take M = 3. In Conv2D,
the filter moves over an image in steps called strides (as

shown in Fig. 5), calculating the convolution. Referring to
Fig. 5, each convolution operation can be represented as
Zf;'jl' 2) ZJ(E;; 2 W(i mod 3)(j mod 3)Pij>» Where w;;s represent the
weights, p;s represent the inputs, and (t, f) represents the
row, column index of a stride. Now, considering two consecu-
tive row-wise strides, one may observe that the convolution
operations contains several product terms having the same
multiplicand wj;. For example, in Fig. 5, one may observe
that Py, = (p11, P12, - - - » P(W—2)H—2) gets multiplied with the
same weight wy;. Since the scalar product is nothing but con-
secutive addition, therefore, the scalar product (w1, Py} can
be represented as repeated addition of the integer array/vector
Py, . This repeated addition is implemented by invoking the
BFA unit (wy; — 1) times.

Once the product terms of convolution are computed, the
next step is to perform the addition of these product terms. In
order to perform this step, one needs to unpack the bitsliced
products. This is a straightforward step and an inverse of the
PACK(j) operation. Interestingly, the unpacking also results
in several arrays of integers to be added together. The BFA
unit is invoked once again to perform this operation, which
eventually returns the convolution output.

Let us now explain the computational complexities due to
this bitsliced Conv2D operation. One should note that Conv2D
is one of the most costly operations for FHE as it involves sev-
eral scalar multiplications and additions. The packing width
(|Pw,-f|) here determines how much parallelization can be
obtained. Considering row-wise movement of the convolution
filter, there can be total (W — M + 1) strides which can be
parallelized. Therefore, we have |Pw,-f| = (W—-M+1). On the
other hand, for a convolution filter of dimension M x M, there
can be total M2 weight values. As a result, during the addition
phase of the product terms, the width of each array/vector will
be of M2, and there will be (W —M + 1) such arrays/vectors.
For MNIST images, we have (W—-M+1) = (28—341) =26
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and M> = 9. For Mendeley images, however, we face an
implementation obstacle. The NuFHE allows packing of at
most 32 ciphertexts, which limits the maximum size of P,
to 32. For 224 x 224 images in Mendeley, we therefore
need 224/32 = 7 independent packings to be implemented
for a complete row-wise convolution. The overheads for the
convolution can be calculated in a similar manner.

The implementation of the encrypted dense layer is similar
to the Conv2D layer, in principle. In this case, we figure out
(encrypted) inputs having a common weight multiplier. This
is a straightforward preprocessing as the weights are in plain-
text. Once a set of ciphertexts with a common multiplier is
identified, we apply the same bitsliced processing approach as
explained for Conv2D to process them in parallel. One crit-
ical point here is that unlike the Conv2D case, the width of
Py,;s for Dense layer will not be equal. Also, the unpack step
will require some extra effort to properly arrange the product
terms for addition. However, handling the first issue is easy,
as our approach does not depend upon the length of Py,s.
To rearrange the product terms we maintain a dictionary stor-
ing the actual location of product terms in the computation.
The rearranging after unpack can be performed in constant
time only by referring to this dictionary. Therefore, we can
obtain similar parallelization as for Conv2D even in the case
of Dense.

AvgPool2D and MaxPool2D: The objective of AvgPool2D
is to calculate the average of Conv2D outputs. Averaging
requires addition followed by division operations. It is worth
mentioning that the addition here is not bitsliced. This is
because the addition step in AvgPool2D only adds a few inte-
gers for which the overall overhead is not very significant.
However, the divisions are costly in FHE. The straightforward
way of performing division as repeated subtraction has to be
ruled out here because results can be in floating points which
is not inherently supported by FHE schemes. Moreover, the
loop terminating criterion for this repeated subtraction is in
the encrypted domain, which makes it even more complex to
process in FHE.

The first step toward avoiding the costly divisions is to
limit ourselves to divisions by 2!, which (for integers) can
be performed by bit shifts on the ciphertext vectors. As
(2 x 2) AvgPools are very popular, computing AvgPool2D
is just division by 4 (i.e., 2 right shift (RS) operations. Thus,
we get our simplified FHE circuit mappings for AvgPool2D
calls. As demonstrated, in Fig. 6, (Cy, C2, C3, C4) are four
ciphertexts which will be fed into a 2 x 2 AvgPool2D mod-
ule. Our circuit first adds these four ciphertexts and then
obtains the AvgPool2D result by performing two logical right-
bit shift (2RS) operations. Likewise, MaxPool2D FHE-circuit
mappings could be realized by an encrypted multiplexer (FHE-
MUX). The circuit selects the number based on the MSB
difference of two input numbers. Our circuit, in this regard,
is a cascade of FHE MUXs. For example, if we apply
MaxPool2D from 3 x 3 kernel, then, our circuit is a cascade
of (3 x3)—1=8 MUXs. Each MUX selects the maximum
of two numbers based on sign of difference of the numbers.
An illustration for the MaxPool is shown in Fig. 7. At this
point, we note that the AvgPool2D is significantly lightweight
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compared to the MaxPool. Therefore, in both of our models,
we utilize the AvgPool2D circuit.

Encrypted Activation Functions: An Activation Function
decides whether a neuron should be activated or not, to be spe-
cific, whether the neuron’s input to the network is important
or not in the process of prediction using simpler mathematical
operations. Since linear activations are not much effective in
DNN or CNN scenario, we have mostly focused on efficient
FHE counterpart design for nonlinear activations.

Among nonlinear activations, ReLU is one of the most used
functions in DL applications. As discussed in Section II, exist-
ing encrypted ML architectures are either based on LHE or
some approximations of FHE schemes with some inherent lim-
itations that does not allow to incorporate ReLU in encrypted
domain. That is the reason why the existing schemes mostly
use either square activations or sign activations. To elabo-
rate the reason of this limitation further, we revisit the basic
operations required to implement ReLU activation.

ReLU (f(x)) as an activation that selects the positive part
of its argument as f(x) = max(0, x), where x is the input to
a neuron. Realization of maximum function in homomorphic
domain requires encrypted decision making, that is not fea-
sible with LHE computations [39], [40]. In our FHE-based
implementation, we realize the encrypted decision making
with encrypted multiplexer considering the FHE subtraction
result as selection input to choose between encrypted 0 and
encrypted x.

However, other nonlinear activations like Softmax or tanh
include the standard exponential function computation on
encrypted input vectors. As explained in [41], exponent com-
putation becomes infeasible with the encrypted power term
considering our underlying unencrypted processors. However,
this limitation can be outdone in ML processing with prior
domain knowledge, where the maximum value of such input
vectors is known [41].

V. EXPERIMENTS AND RESULTS

In this section, we present the timing and memory over-
head of our proposed encrypted inference architecture. We
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SPEEDUP FOR BITSLICING DNN ARCHITECTURE W.R.T. NONBITSLICING
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TABLE X
SHE/BITSLICING MEMORY PROFILE BASELINE COMPARISONS

Experiment Setup NN-Inference Time (Hours)

PyFHE 120

NuFHE(without Bitslicing) 80

NuFHE(Bitsliced) 2.15
TABLE VIII

BITSLICED CNN TIMING PROFILES (MNIST)

(28 x 28) MNIST Data Time in Minutes (=Hours)

Com2D 139.78(= 2.32)
AvgPool2D 11.53(= 0.2)
Conv2D+AvgPool2D 151.31(= 2.52)

Conv2D+AvgPool2D+Dense  268.21(= 4.47)

TABLE IX
BITSLICED CNN TIMING PROFILES (MENDELEY)

(224 x 224 x 3) Mendeley Data  Time (Estimated Hours)

Conv2D 108
AvgPool2D 30

Conv2D+AvgPool2D 138
Conv2D+AvgPool2D+Dense 140

evaluate all our experimental studies on an Ubuntu 18.04 LTS
64— bit platform with 256-GB RAM and 24-GB GPU memory
support. All underlying FHE blocks are supported by exist-
ing FHE encryption library NuFHE [16] and PyFHE [42],
which is another version of TFHE for performance compari-
son. NuFHE [16], which is a GPU powered TFHE encryption
library implemented in Python, where PyFHE does not have
any GPU support.

We start with a simple DNN architecture which includes
three layers: two layers of 50 neurons and a final fully con-
nected layer of 10 neurons. Table VII compares the bitsliced
implementation of a simple DNN architecture with nonbit-
sliced versions of the same architecture. In bitsliced implemen-
tation, we first break down our target architecture to proposed
FHE counterparts of Conv2D, AvgPool2D, and Dense. These
basic blocks are accelerated by underlying bitsliced adder
functions developed on top of NuFHE homomorphic blocks.
As shown in Table VII, compared to nonbitsliced inference
with timing overhead of 80 h, our bitslicing-based software
wrappers can accelerate the same task to 2.15 h in case of
DNN implementation.

Tables VIII and IX show the timing profiles of the bitsliced
implementation of the CNN architecture for both MNIST Digit
Classification [35] and Mendeley use-case [36]. The refer-
ence architectures for both the use-cases have been elaborated
in Table V and in Fig. 2. We provide an estimated timing
requirement for execution of this same CNN architecture on
the Mendeley Bridge dataset [36] as shown in Table IX. The
dimensions of this dataset is 224 x 224 x 3. We note that this
dataset is more complex than other representative datasets,
such as CIFARI10 [43] (dimension 32 x 32 x 3), in terms
of input dimension which is a critical factor in FHE as it
drastically increases the computation. As per Table VIII, the
bitsliced Conv2D takes about 2.3 h while complete evaluation
of an MNIST image takes about 4.5 h and it may take around
140 h for Mendeley (Table IX).

Number of Conv2ZD  Memory Overhead Memory  Overhead(NuFHE-
Operations (SHE with TFHE) Bitslicing)

30 6GB < 200MB

50 9GB <200MB

100 18GB <400MB

676 (MNIST) 100G B~ 570MB

Memory Profiling of Bitsliced Inference: Recent concerns
about security and privacy guarantees in IoT systems have
drawn interests about secure computation in the IoT domain.
However, huge memory consumption and computation over-
head are two prime bottlenecks to implement HE schemes on
resource-constrained embedded platforms and this is an impor-
tant recent research direction [44]. With this motivation, we
have performed layer-by-layer memory profiling of both our
DNN and CNN architectures as shown in Fig. 8(a) and (b).
As depicted in Fig. 8(a), bitslicing supported CNN framework
is quite memory efficient (about 700 MB). The DNN frame-
work, which takes about 1.9 GB also fits into the modest
memory bounds of edge devices, i.e., 2—4 GB as highlighted
in Fig. 8(b).

Furthermore, we have compared our memory profiles to
the state-of-the-art encrypted inference approaches. We bench-
mark our bitsliced design pipeline with an open source
implementation! due to [7]. This approach provides an imple-
mentation of scalar products with small examples, e.g.,
eight ciphertexts. We use this codebase to estimate their
memory growth and we highlight the same in Table X. To
do this, we approximate their implementation, i.e., eight
scalar products as equivalent to a single Conv2D opera-
tion (the reason being with a 3 x 3 kernel, Conv2D is just
nine scalar products which the concerned framework replaces
with logical bit-shifts). We check experimentally that a sin-
gle Conv2D operator amounts to around 180-MB memory
overhead. Then, we run multithreaded implementation of this
Conv2D block and observe the memory explodes proportion-
ally as highlighted for several thread values (16, 20, 24) in
Fig. 9. Therefore, as Table X depicts, an evaluation of 50 con-
volutions amounts to about 9 GBs. We also evaluate memory
footprints of Cryptonets [4], another pioneering approach by
Microsoft for secure CNN inference. This approach exhausts
2-3 GB memory for running a simple MNIST pipeline with a
Conv2D stacked with couple of Dense layers. Research report
in [5] also points out that most encrypted CNN approaches
amount to at least few GB of RAM usage. Table XI shows the
merits and demerits of our proposed architecture with some
state-of-the-art encrypted inference models [4], [5], [7], [14].
Comparisons are done on the basis of power of homomor-
phic computations (leveled or fully homomorphic), activations
supported, associated memory overheads, and possibility of
decryption errors. It is to note that existing inference mod-
els may outperform in terms of timing requirement, but our
proposed decryption error-free model has its own significance
in terms of better accuracy without any approximation and
hugely reduced memory overhead. After memory profiling all

1 https://github.com/qianlou/SHE
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the Dense Layer of Conv2D+AvgPool+Dense inference pipeline (with bitslicing).

TABLE XI
COMPARISON WITH EXISTING APPROACHES
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Memory profiling statistics of bitsliced inference (our method). (a) Conv2D design-memory profiles (with bitslicing). (b) Memory profiles of only

Framework Library Activations Activations Memory Erroneous
(Exact/ApproximateSupported Overhead Decryption

Cryptonets LHE Exact Square > 100GB (CIFAR-10) No

Lola-Cryptonets LHE Exact Square 2 — 3GB (MNIST) No

FHE-DiNN FHE Approximated Signed - Yes

SHE (estimated for deeper nets) LHE Approximated RelLU 100 GB (MNIST estimated) No

Our Approach FHE Exact All < T00M B (MNIST) No

-
@

=
tn

—&— 24 Conv2d Cores
—&— 20 Conv2d Cores
—=— 16 Conv2d Cores
=~ Cryptonet{MNIST)

System Memory Usage-(GBs)

-
[x]

2‘ 4 a a
Iteration # of $top cmd outputs

Fig. 9. Memory profiles of SHE and Cryptonet baselines.

these baselines, we would like to conclude that the proposed
scheme hugely optimizes the memory footprint and this aspect
perhaps cements our model’s potential for low resource edge
platforms.

VI. CONCLUSION AND FUTURE RESEARCH

In this work, we realize encrypted CNN suitable for real-
world DL-based applications. In this article, we provide
several key insights. Performance and blowup in ciphertext
size are two major bottlenecks, which we address with archi-
tectural tricks, such as quantization and bitslicing. A potential
future work in this regard is to further optimize the infer-
ence timing for a larger spectrum of real-world applications.
Another direction of future research is to adopt the proposed
optimizations beyond Boolean FHE.
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