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Automorphisms of the k-Curve Graph
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ABSTRACT. Given a natural number k£ and an orientable surface S of
finite type, define the k-curve graph to be the graph with vertices cor-
responding to isotopy classes of essential simple closed curves on S
and with edges corresponding to pairs of such curves admitting rep-
resentatives that intersect at most k times. We prove that the automor-
phism group of the k-curve graph of a surface S is isomorphic to the
extended mapping class group for all k satisfying k < |x(S)| — 512.
We prove the same result for the so-called systolic complex, a variant
of the curve graph with many complete subgraphs coming from inter-
esting collections of systoles with respect to a hyperbolic metric. This
resolves a conjecture of Schmutz Schaller.

1. Introduction

Let S be a connected orientable surface of genus g, possibly with finitely many
punctures p, and let Mod™(S) denote the extended mapping class group. The
curve complex C(S) is a flag simplicial complex whose vertices correspond to iso-
topy classes of essential simple closed curves and whose edges represent pairs of
such classes that can be realized disjointly on S. A celebrated theorem of Ivanov
[18] identifies Aut(C(S)) with Mod™ (S) in all but finitely many cases. This result
inspired a flurry of results in related contexts, where Mod(S) acts by simplicial au-
tomorphisms on some graph whose vertices represent homotopy classes of curves
and/or arcs [0; 8; 15; 16; 19; 22; 29], or finite collections of curves and arcs [20;
], or subsurfaces [6; 25].

In many of these papers the result is that the full automorphism group of the
complex being considered is Mod™*(S), or at least virtually so in a finite number
of sporadic cases, and the proofs all factor through Ivanov’s original theorem by
showing that any automorphism of a particular complex induces one of C(S). This
led to Ivanov’s metaconjecture, which we discuss further in Chapter 4: Fifteen
problems about the mapping class group of [9, p. 77].
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IVANOV’S METACONJECTURE. Any “sufficiently rich” complex naturally associ-
ated with a surface should have Mod™ (S) as its group of automorphisms, and
furthermore, there exists a proof of this, which factors through Ivanov’s original
theorem.

The focus of this paper is to verify the metaconjecture for an infinite family of
curve graphs whose edges represent bounded intersection. In particular, we will
consider the following natural generalization of C(S). For any k € N, the k-curve
graph is defined to be the graph whose vertices are those of C(S) and whose
edges represent homotopy classes of curves with geometric intersection number
at most k. Our main result characterizes Aut(Cr(S)) when |x (S)| is sufficiently
large relative to k.

THEOREM 1.1. Suppose |x (S)| > k 4 512. Then the natural map
Mod*(S) — Aut(Ck(S))

is an isomorphism.

When k = 1, Theorem holds without the restriction on the Euler characteristic

of S. We omit the proof for clarity since it is nearly identical to that of Theo-

rem |.3. Furthermore, the lower bound of k + 512 on |x(§)| is not sharp. See
for details on how this bound is derived.

Theorem 1.1 addresses Part (3) of Question 7.4 of Margalit’s collection of open
problems [7]. It represents a first step toward resolving Ivanov’s metaconjecture
in the cases where edges do not represent disjointness. In addition, to the authors’
knowledge, it is only the third result in the literature that resolves Ivanov’s con-
jecture for an infinite family of simplicial complexes. The first such result was
the work of Brendle and Margalit [0] for complexes of regions, and the second is
McLeay’s extension [26] of their work from closed surfaces to punctured surfaces
(including those of genus 0).

In addition to results concerning simplicial automorphisms mentioned above,
there are a number of theorems characterizing simplicial injections [3; 5; 4; 14;

], quasi-isometries [27], and other types of structure-preserving maps of C(S)
and related complexes. For example, Raf and Schleimer [27] identify the group
of quasi-isometries of C(S) with Modi(S). We remark that even though Ci (S)
is quasi-isometric to C(S), this result does not imply Theorem 1.1. Indeed, a pri-
ori it is possible that an automorphism of Ci(S) moves every vertex a uniformly
bounded distance and would therefore be equivalent to the identity as a quasi-
isometry.

We also consider the following variant of the curve graph, which we de-
note SC(S). The vertices of this graph correspond to isotopy classes of essential
curves, which are either nonseparating curves or separating curves that bound a
twice punctured disk on one side. The edges represent pairs of such curves that
intersect minimally, that is, at most once in the case that both vertices correspond
to nonseparating curves, and at most twice when at least one of those vertices is a
separating curve. The notation SC(S) is due to Schmutz Schaller [29] and stands
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for the systolic complex, as interesting sets of systoles on a hyperbolic surface cor-
respond to complete subgraphs of SC(S). However, Anderson, Parlier, and Pettet
[1] give examples of complete subgraphs of SC(S) that are not realizable as the
set of systoles for any hyperbolic metric on S.

THEOREM 1.2. If S is a closed surface with genus g > 3, then the natural map
Mod*(S) — Aut(SC(S))

is an isomorphism. If g = 2, then this map is surjective with kernel Z,/27. cor-
responding to the hyperelliptic involution. If S is a surface of genus g with
p > 0 punctures and x (S) < 0, then this map is an isomorphism for (g, p) #
(1,2), (1, 3), (0, 5).

Theorem represents an almost complete resolution to the conjecture of [29];
we remark that our techniques do not cover the cases (g, p) = (1, 1), (1,2), (1, 3),
(0,4), (0, 5). Following the outline of Ivanov’s metaconjecture, our proof strategy
relies on showing that any automorphism of SC(S) induces one of C(S). This fails
when (g, p) = (1, 2), since Luo proved in [22] that the curve complex of the twice
punctured torus admits automorphisms that are not induced by homeomorphisms.
In the cases (g, p) = (1, 1) and (0, 4) the systolic complex is isomorphic to the
1-skeleton of the Farey tessellation of the hyperbolic plane, whose automorphism
group is PGL(2, Z), and so the theorem is known. Thus the only remaining cases
are (g, p) =(1,2),(1,3), and (0, 5).

When g # 0, we can also consider the subgraph of SC(S) consisting only of
nonseparating curves. Note that in the event that S is closed, this is the entirety of
SC(S). We denote this graph by A/ (S) and give the following characterization of
its automorphisms.

THEOREM 1.3. Suppose that g > 1 and that (g, p) # (1, 2). Then the natural map
Mod*(S) — Aut(N(S))

is an isomorphism for (g, p) # (2,0) and a surjection with kernel Z /27 other-
wise.

1.1. Idea of Proofs

In both Theorems and 1.1, we need to show that an automorphism of either
SC(S) or of Ci (S) preserves edges that represent disjointness. In what follows, we
let link(-) denote the link of a vertex, the subgraph induced by the set of vertices
adjacent to a given vertex. Given a pair of curves «, 8 connected by an edge, we
study the subgraph L(w, ) = link(«) N link(B); we refer to such a subgraph as
the link of an edge or edge link.

In particular, we prove that the diameter of an edge link distinguishes between
edges corresponding to disjoint curves and edges corresponding to curves inter-
secting once. For larger values of k, the diameters may not be sufficient to pick
out the edges representing disjoint pairs, so we need a more careful analysis of the
types of geodesics that exist in each edge link. We show that, under the additional
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hypothesis that the surface is sufficiently large, an edge link representing a pair
of nondisjoint curves always has finite diameter. Furthermore, there must always
exist a finite number of vertices, which we call shortcut curves, such that for any
two vertices u, v in the link whose edge link distance is maximal, there is a geo-
desic from u to v that passes through a shortcut curve. This additional geometric
property distinguishes edges representing disjoint curves from all other types of
edges.

Throughout this paper, we employ both combinatorial and coarse-geometric
techniques; for example, we use the technology of subsurface projections to com-
pute exact diameters of the edge links. Given a pair of curves & and § intersecting
k times, a standard surgery argument going back to Lickorish [21] yields a curve
4 that intersects o at most once and 8 at most k/2 times. In the proof of Theo-
rem 1.1, as opposed to such §, we have need of a curve §' that is disjoint from
« and that intersects 8 at most k/4 times. For this, we use a variant of a propo-
sition due to the second author, used to prove that curve graphs are uniformly
hyperbolic [2].

1.2. Outline of Paper

Section 2 contains a brief introduction to curves on surfaces, several relevant
graphs of curves associated with surfaces, the notion of subsurface projections,
and some relevant coarse geometry. In Sections 3 and 4, we compute diameters of
edge links in A/ (S) and use these to prove Theorem at the end of Section
Section 5 provides a proof of Theorem 1.2, resolving the conjecture from [29].
Lastly, in Section 6, we prove our main result, Theorem |.1. We also include an
appendix, which contains a sketch of several known results needed in the proof of
Theorem |.1. Appendix A also provides an‘explanation of the restriction on the
Euler characteristic of the surfaces required by Theorem

2. Preliminaries

Throughout the paper, unless otherwise noted, S is an orientable surface of finite
type, possibly with punctures and/or boundary components.

2.1. Curves and Arcs

A simple closed curve on S is a homotopy class of maps S — § admitting a
representative that is an embedding. We will often abuse notation and identify a
simple closed curve with an embedded representative, and further identify this
embedded representative with its image in S. A simple closed curve is essential
if it is not homotopically trivial and if it is not homotopic to a map whose image
bounds a once-punctured disk on one side.

Let f,g:(0,1) = S be two embeddings such that lim;_,o | f(¢) are either
punctures or points on boundary components, and similarly for g. Then f and g
are boundary-slide homotopic if there is a homotopy H : [0, 1] x (0, 1) — S from
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Figure 1 The boundary slide homotopy class of § is an essential
arc, whereas « is not since it cobounds a disk with an arc of 9S. The
homotopy class of each y; is essential, and that of 7 is not since n
bounds a disk on the surface. The collection {y1, 32} is a multicurve.

Figure 2 The green arc « and the blue arc 8 are boundary-slide ho-
motopic. Neither is boundary-slide homotopic to y. The boundary-
slide homotopy class of & and 8, denoted [«r], is an essential arc, as is
the class of [y]. Since y N B =@ and B € [«], {[], [¥]} is a multiarc.

f to g such that lims_,g H (, s) is either a puncture or on a fixed boundary com-
ponent for all ¢, and similarly as s — 1 (see Figures | and 2). Then an essential
arc will be a nontrivial boundary-slide homotopy class of such maps.

Given a pair of essential simple closed curves or arcs «, 8, their geometric in-
tersection number i («, 8) is the minimum of |o’ N 8’| taken over all representative
images @’ C S of o and B’ C S of B. Note that here « can be a curve, and 8 can
be an arc. If «’, B’ realize the geometric intersection number for their respective
homotopy classes, then they are said to be in minimal position.

A multicurve (resp., multiarc) is a collection of pairwise distinct essential sim-
ple closed curves (resp., arcs) whose pairwise geometric intersection numbers are
all 0. A collection of pairwise disjoint curves and arcs will, by convention, be re-
ferred to as a multicurve. As is well known, for (g, p) # (1, 0), any multicurve on
S consisting of curves contains at most 3g + p — 3 connected components, and
this bound is realizable.

Lastly, we introduce the notion of a weighted multiarc, which will be used
in the proof of Proposition and in Appendix A. A weighted multiarc is a
multiarc with positive integer weights assigned to each arc. We use |«| to denote
the number of arcs in a multiarc @ = {ay,as, ..., a,}, and w(a) = Z?:l w; to
denote the total weight, where w; is the weight assigned to arc a; € «.
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2.2. Relevant Graphs and Their Automorphisms

In this section, we introduce various graphs whose vertices will represent curves
or arcs in S and with edges corresponding to various constraints on the geometric
intersection number. We call an edge connecting vertices v and w an n-edge if
the curves corresponding to v and w minimally intersect n times. An edge is a
nonzero edge if n # 0.

Let AC(S), the arc and curve graph, be the graph whose vertices correspond
to essential simple closed curves and arcs on S, and whose edges correspond to
disjoint pairs, so all edges are 0-edges. When S is an annulus, AC(S) consists
only of arcs connecting the two boundary components. We note that AC(S) is
connected when 3g+n+b > 5: Theorem 4.3 in [ 10] states that C(S) is connected,
and any arc is disjoint from at least one curve.

Define N'(S), the nonseparating curve graph, to be the graph whose vertices
are nonseparating simple closed curves with edges between classes that admit
disjoint representatives. All edges in A'(S) are 0-edges. It is known that N'(S)
is connected for genus g > 2 (see Theorem 4.4 in [10]). In addition, N'(S) is of
infinite diameter. The argument of Masur and Minsky [23] for the infinite diameter
of C(S) apply fairly directly to N (S). Irmak [15] showed that for surfaces with
g > 1, Aut(NV(S)) = Mod*(S).

The systolic complex, denoted SC(S), is defined differently for closed and
punctured surfaces. When S is closed, SC(S) has vertices corresponding to iso-
topy classes of nonseparating curves and whose edges represent pairs of such
curves with geometric intersection number at most 1. In this case, SC(S) contains
both 0-edges and 1-edges. If S is not closed, then SC(S) has an additional vertex
for each separating curve that bounds a twice punctured disk on one side; such
vertices are connected to others by an edge when there are at most two intersec-
tions. We observe that for closed surfaces, SC(S) is equal to N1(S).

We define Ni(S), the nonseparating 1-curve graph, as the subgraph of SC(S)
consisting only of nonseparating curves. To the best of the authors’ knowledge,
this graph has not been otherwise named or studied extensively in the literature.
Note that N'(S) is a subgraph of N1(S) with the same vertex set, and there-
fore NV1(S) is connected when g > 2 because A (S) is connected. When g > 2,
N1(S) is quasi-isometric to A (S), and therefore it is of infinite diameter. See
Remark

Along with SC(S), Schmutz Schaller defined the graph G(S). When g > 1,
G(S) has as its vertex set the collection of all nonseparating curves and has edges
corresponding to pairs of curves intersecting exactly once. This means that for
closed surfaces of positive genus, G(S) is a subgraph of SC(S). When g =0, G(S)
has as its vertex set the collection of all curves bounding a twice punctured disk
on one side and whose edges correspond to pairs of curves intersecting exactly
twice. Again, this is a subgraph of SC(S). See Figure 3 for an illustration of how
thse graphs differ. It is a result of Schaller [29] that Aut(G(S)) = Mod*(S). In the
same paper, Schaller conjectured the following, which we resolve in Theorem
for all but (g, p) = (1, 3), (0, 5).
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Figure3 The black curves o, B, &, 17, and y are all vertices of N (S).
The black edges in the graph record adjacencies in NV (S). The curve p
is not in AV (), but it is in SC(S). The red edges represent adjacencies
in SC(S). Note that the black edges are also in SC(S). The green edge
represents adjacency in G(S). The curve w is not a vertex in N7 (S),
SC(S), or G(S). Note that not all the edges in this subgraph are shown
to avoid cluttering the diagram.

CONJECTURE 2.1 (Schmutz Schaller, [29]). The automorphism group of SC(S) is
isomorphic to Mod™ (S).

For any one of the above-mentioned graphs and for the curve complex C(S), we
obtain a metric on the vertex set by identifying each edge with the unit interval
and defining the distance between two vertices to be the minimum number of
edges contained in any edge path between them. Given one of these graphs G, the
distance function will be denoted by dg (-, -). All graphs mentioned above are of
infinite diameter; for all but finitely many surfaces, this follows directly from the
work of Masur and Minsky [23] on the infinite diameter of C(S).

The following lemma establishes a quasi-isometry between AC;(S) and
AC(S), where AC1(S) has the same vertex set as the standard arc and curve graph
but with edges when there is at most one intersection.

PrOPOSITION 2.2. If S is a surface with punctures or with nonempty boundary
and so that (g, p) # (0, 3), then

AC1(8) =q1 AC(S),

where AC1(S) is the arc and curve graph of S with both 0-edges and 1-edges.
Moreover, both are of infinite diameter.

Proof. Let ¢ : AC1(S) —> AC(S) be the identity map on the vertices.

For any vertices u, v in AC{(S)), suppose d ¢, (u,v) = [ for some [ > 0. If
I =1 and i(u, v) = 1, then either the genus g is nonzero, or at least one of u, v
is an arc. If g > 1 or if the number of punctures p > 1, then there is an essential
curve in S\ (# U v), and thus d 4¢c (¢ (1), ¢ (v)) =2.

If (g, p) = (1, 1) and u, v are curves, then without loss of generality one is the
1/0 and the other is the 0/1 curve, and then there are disjoint arcs A, A, such that
iy, u) =i(Ay,v) =0, and so d gc(p (), $(v)) <3.

If one of u, v is a curve and the other is an arc, then there is an arc disjoint
from both. These are shown in Figure
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Figure 4 Two possible configurations when (g, p) = (1, 1): on the
left when u and v are curves, and on the right when u is a curve and v
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Figure 5 Two possible configurations when (g, p) = (0,4). On the
left when u and v are both arcs and u is separating. On the right when
u is an arc and v is a curve.

If both are arcs, then Hatcher’s original surgery argument for the contractibility
of the arc complex (see the Main Theorem of [12] or Theorem 5.5 of [10]) implies
that the distance from u to v in the arc complex of S is at most 2.

Finally, if g = 0, then we will argue in such a way that the proof for p =n
implies a proof for p > n, and thus we can assume that p = 4.

If both u and v are arcs, then at most one can be separating. In this case, it
is easy to find an arc in the complement of u and v: without loss of generality,
u separates two punctures from another, and v only witnesses one of the two
punctures on one side of u. Thus there is an arc A connecting the two punctures
on one side of u, disjoint from v. If neither u nor v separate, then cutting along
one produces a 3-holed sphere, in which the other arc becomes two arcs. Given
any two disjoint arcs in a 3-holed sphere, there is always a third essential arc
disjoint from both, as shown in Figure

Lastly, if u is an arc and v is a curve, then u cannot be separating, and so up to
homeomorphism there is a unique configuration: v separates two punctures from
the other two, and u connects one puncture on one side of v to one on the other.
It is then straightforward to find an arc disjoint from both.

If [ > 1 and if the shortest path between u and v contains no 1-edges, then
dac(p (), ¢(v)) =1 as well. If the shortest path contains a 1-edge (p, 1), then
as above, we choose a path of length at most 3 through 0-edges from p to 7.
Therefore d g4¢ (¢ (u), ¢ (v)) < 3l.



Automorphisms of the k-Curve Graph 313

When (g, p) # (1, 1), that AC(S) has infinite diameter follows from the fact
that C(S) has infinite diameter [23] and from Theorem 1.3 of [19], which states
that AC(S) =q1 C(S). When (g, p) = (1, 1), the graph AC(S) is quasi-isometric
to the Farey graph, which is of infinite diameter. O

REMARK 2.3. Masur and Minsky [23] not only show that C(S) is infinite diameter,
but that the orbit of any pseudo-Anosov mapping class is as well. Since the quasi-
isometries between AC(S), C(S), and AC(S) are all Mod(S)-equivariant, the
same is true for AC(S) and AC(S).

REMARK 2.4. When g > 2, a simplified version of the above argument demon-
strates that A(S) and N7 (S) are quasi-isometric, via the identity map on the ver-
tices.

We conclude this subsection with an argument due originally to Hempel [13] (see
also [28]), which implies the connectedness of the curve complex. We reference
the argument explicitly since it will be called upon in Section 6. Hempel’s ar-
gument proves that given simple closed curves «, B on a surface S representing
vertices of C(S),

des) (@, ) < 2logy(i(a, B)) + 2.

Hempel considers a simple surgery that replaces o with a curve o intersecting
B at most half the number of times that « intersects 8. The curve o’ is obtained
by following along « until the arrival at a chosen intersection with 8, and then
following along 8 until the arrival at a subsequent intersection, at which point o’
follows along o again until closing up.

2.3. Subsurface Projections

An essential subsurface of S is a pair (Y, iy) where Y is a surface (potentially with
boundary), and iy : Y < S is a 7y -injective map and an embedding on the interior
of Y, so that each component of Y maps to either an essential simple closed curve
on S or a component of dS. We will often identify an essential subsurface with
its image in S. When Y is an annulus, we say that it is an annular subsurface, and
otherwise that Y is nonannular. An essential simple closed curve or arc is said
to be in minimal position with an essential subsurface ¥ when it is in minimal
position with all components of Y (see Figure 6).
Given a nonannular essential subsurface Y C S, the subsurface projection

my : C(S) —> P(AC(Y))

takes a vertex o € C(S) to the multicurve in Y obtained by taking all distinct
homotopy classes occurring in the intersection of o with Y, after Y and « are put
in minimal position (see [24] for more detail).

When Y is an annulus, we first consider the cover Sy of S corresponding to
m1Y. This cover compactifies to an annulus, and we let 7y (o) be any lift of « to
this annulus that connects its two boundary components (see Figure 7).
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Figure 6 The pairs (Y,iy) and (W,iy) are examples of essential
nonannular subsurfaces, and (Z, iz) is an essential annular subsurface.
The arc « is in minimal position with Z and W but not with Y.

Figure 7 The subsurface projection of y to Y consists of three pair-
wise disjoint essential arcs. The projection of y to Z is obtained first
by lifting y, via the covering map pz, to the annular cover associated
with Z, and then compactifying to obtain an essential arc.
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We define the Y-subsurface distance as dy(a, B) := diam g¢(y)(mwy (o) U
my (B))-

3. Curves That Intersect Exactly Once

Let G be a graph, and let v be a vertex of G. From now on, we will use V(G)
to refer to the vertex set of G. We define the link of a vertex v, link(v), to be the
induced subgraph of G containing the set of all vertices adjacent to v. Note that
v ¢ link(v).

Let u, v be adjacent vertices in a graph. We will denote the edge between u
and v by (u, v). Define the link of an edge (u, v) to be

L(u,v) := link(x) Nlink(v).

In this section, we focus on the graph N1 (S), which, when S is closed, agrees
with SC(S). There are two types of edges in N1 (S): we call edges that connect
vertices admitting disjoint representatives 0-edges and those that minimally in-
tersect once /-edges. To prove that an automorphism of N7 (S) induces an auto-
morphism of C(S), we will give a graph-theoretic criterion to distinguish between
0-edges and 1-edges.

The arguments in this section will be used to prove Theorem and will also
be useful for the proof of Theorem 1.3. In particular, the first step of the proof of
Theorem 1.3 is showing the following:

PRrOPOSITION 3.1. The diameter of a link of an edge in N1(S) equals 4 if and only
ifeisal-edge.

This section is devoted to proving one direction of this statement, which we record
as Lemma 3.2. We will prove the other direction in Section

LEMMA 3.2. The diameter of the link of a 1-edge in N1(S) is 4.

The proof of Lemma will break into two pieces, Lemmas and 3.4, which
we will prove in Subsections and 3.2, respectively. We begin by establishing
some helpful language and notation.

Let u, v € V(N1(S)) be such that (u, v) is a 1-edge. Let S; = N (u U v) be the
regular neighborhood of ¥ U v C S, which is homeomorphic to a torus with one
boundary component.

Recall that the set of isotopy classes of essential simple closed curves on a
torus with one boundary component is in bijection with the set Q U {%}, which we
will call slopes. In particular, the meridian curve is associated with 0/1, and the
longitude is associated with 1/0. Moreover, the boundary-slide isotopy classes
of essential simple arcs on a torus with one boundary component are in one-to-
one correspondence with the isotopy classes of essential simple closed curves on
the torus. We thus may refer to curves or arcs on S; by their associated slopes,
which are of the form p /g, where p, g are coprime integers. Note that an essential
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Figure 8 On the left: a 1-curve « in S;. On the right: a 2-curve « in Sj.

simple closed curve or simple arc with slope p/g intersects the meridian | p| times
and the longitude |g| times in minimal position.

Up to a change of coordinates if necessary, we may assume that ¥ and v are
the 0/1 and 1/0 curves, respectively, as shown by the green curves in Figure
We will also denote the 1/1 and —1/1 curves in S; by ¥y and y~. Observe that
if o C S is a simple closed curve with i (¢, u), i (o, v) < 1, then « N S has at most
two nontrivial components: each component of @ N S is an essential arc in Sy,
and any essential arc in S1 must intersect the 0/1 curve or the 1/0 curve at least
once.

By a I-curve we will mean any curve « such that i (o, u) =i(x,v) =1 and
such that « N S has a single component. If « is a 1-curve, then i (o, u) = i (o, v) =
1,and @ NS; mustbe a 1/1 arc or —1/1 arc. One of these two possible configura-
tions is shown on the left of Figure 8. Similarly, a 2-curve is any curve intersecting
each of u and v exactly once, and so that its intersection with Sy has two compo-
nents. An illustration of a 2-curve is shown on the right of Figure 8.

3.1. The Link of a 1-Edge Has Diameter at Most 4

We are now prepared to show that the link of a 1-edge has diameter at most 4.
LEmMMA 3.3. If (u, v) is a 1-edge in N1(S), then diam(L(u, v)) < 4.

Proof. By assumption, i(u,v) = 1. Let S, = S\ S;1. Up to a change of coordi-
nates, we assume that « and v are the 0/1 and 1/0 curves in Sy, respectively.

Let @ € L(u, v). Up to a homeomorphism of S| exchanging u and v, the pos-
sible configurations of « relative to « and v are as follows:
1) i(uw,0)=i(v,a) =1,
2) i(u,)=i(v,a) =0,
3) i(u,x)=0andi(v,a) =1.

We will refer to a curve o € L(u, v) as being of either type (1), (2), or (3)
depending on which of the above three holds. Recall that y ™ and y ~ are the 1/1
and —1/1 curves on Sj, respectively.

Case 1. If @ € L(u, v) is of type (1), then dy (o, {y T, y™}) < 2.

Proof. If a C S1, then it must be either ¥+ or y ~, and we are done.

If o ¢ S1, then « intersects S in either one or two connected components, that
is, o is either a 1- or 2-curve. If o« ¢ S is a 1-curve, then o N S1 must be either a
1/1 or —1/1 arc, and therefore we have either dy (o, y ) =1 ordy(a, y ™) = 1.
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Figure 9 The constructed curve 8 is shown in red.

Otherwise, o ¢ S is a 2-curve, and hence « has two connected components in
S1 and they can be arranged as in Figure 8. Note that this implies « N S also has
two disjoint connected components.

Observe that the endpoints of the two components of & N S are unlinked on
05>, that is, if we read off the cyclic order of these endpoints on 9.5, clockwise or
counterclockwise, then the two endpoints of each component are adjacent to each
other (see the two blue arcs in S, in Figure 9).

We can now construct a curve f as follows: starting at a point of intersection
a N 38, follow along one component of & N S;. Upon arriving back at 97, con-
tinue following along « through one component of @ N S,. When arriving back at
05>, the combinatorics of the points & N 85> described in the previous paragraph
implies that there is a choice of arc along 95, that ends where we began and so
that the resulting closed curve is simple and intersects « exactly once. In partic-
ular, 8 is nonseparating; it also intersects each of y and y~ exactly once, and
thus dy (o, y 1), dp (@, y 7) < 2 (see Figure 9). O

CASE 2. If @ € L(u, v) is of type (2), then d(at, y ") =d(a, y ) = 1.
Proof. Inthis case, o C S>. Thusd (e, yT) =d(a, y~) =1, and we are done. [
Case 3. If a € L(u, v) is of type (3), thendy (o, y ") =dy(a, y ™) = 1.

Proof. In this case, « intersects both ¥y and y~ exactly once. Hence we have
that dy (o, y ) =dy (o, y ) = 1, as desired. O

Now, let o, B € L(u, v). Suppose both & and g are two type (1) curves. If both
o and B are 2-curves, then by Case 1 they are distance at most 2 from both
y* and y~, and thus dy (o, B) < 4. If @ is a 1- curve and B is a 2-curve, then
again we have that dy (a, 8) < 4 because dy (8, y1),d.(8,y ™) <2, and thus
dy (o, {y™,y~}) =1.If both  and B are 1-curves, then both are at a distance at
most 1 from either y+ or y ~ and therefore are at a distance of at most 4 from one
another, since dy (y+, y ™) =2.

If « is a 1-curve and B8 C Sy, then d (o, B) <3, since B € {y™, y~} and ei-
ther dy (o, y ) =1 or dy (o, y ) = 1. Finally, if o is a 2-curve and 8 C Sy, then
dp(a,B) <2,sincewe {yt,y Yanddy (o, y "), dr(a,y™) <2.

It remains to consider curves of types (2) and (3). A type (2) curve intersects
neither u nor v and therefore is disjoint from S;. Thus it is at distance 1 from both
yT and y~, and therefore at distance at most 3 from any type (1) curve and at a
distance of at most 2 from any other type (2) curve. A type (3) curve must also
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be at distance 1 from both ¥ and y ~ and so is also distance at most 3 from any
type (1) curve and at distance at most 2 from any type (2) or (3) curve. O

3.2. The Link of a 1-Edge Has Diameter at Least 4

We end this section by showing that the diameter of the link of a 1-edge is at
least 4.

LEMMA 3.4. Suppose (g,p) # (1,2). If (u,v) is a 1-edge in Ni(S), then
diam(L (u, v)) > 4.

Proof. Let u, v, S1, and S, be as in Lemma 3.3. Again, let yT be the 1/1 curve,
and let y~ be the —1/1 curve in S;. It suffices to show that there exist two 2-
curves a and 8 whose shortest connecting path passes through y* or y .

Since S is not a 3-holed sphere, the diameter of AC(S;) is infinite. Hence
there exist arcs &, n € AC(S2) such that d g¢s,)(8,n) > 23. There also exists
arcs &', n' € AC(S2) such that dacs,)(8,8") =1 =dac(sy(n, 1), and so that
the endpoints of § and 8’ (respectively, n and 1) do not link along 9S,. Note that
dac(sy (8, n') = 21.

Now construct a 2-curve « from § and &’ as follows: choose an endpoint from
each of § and &' that are not consecutive on 3.5;. Connect these through S; via the
1/0 arc and connect the remaining two endpoints with the 0/1 arc. Construct 8 in
a similar manner from 5 and . Note that s, () = {8, 8’} and s, (B) = {n, n'}.

Let p = {o, v, ..., vy, B} be any shortest path in L(u, v) connecting « to S.
If each v; has a nontrivial projection to S», by choosing one vertex from each of
s, (v;) we obtain a path of length m <n + 2 in AC;(S>) from & to n’. Note that
m may be strictly less than n + 2 if there exist v; and v; with the same projection
to Sy. This, in turn, yields a path of length at most 3m in AC(S;) between 8’ and
1. The factor of 3 comes from the quasi-isometry established in Proposition
Since d A¢(s,)(8', n') = 21, 3(n +2) > 3m > 21, and so the length of p is greater
than or equal to 5, a contradiction to Lemma

This implies there exists some v; that projects trivially to S», and therefore
v; € {y T, y~}. Therefore we have that the length of p is at least 4. O

4. Disjoint Curves

In this section, we will complete the proof of Proposition and use it to prove
Theorem 1.3 by proving the following lemma.

LEMMA 4.1. If (u, v) is a 0-edge in N1(S), then diam L(u, v) # 4.

This lemma is proved by considering two cases: when the two vertices u, v of the
edge (u, v) are jointly separating, as considered in Lemma 4.2, and when they are
jointly nonseparating, as considered in Lemma
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4.1. The Jointly Separating Case

In this section, we will prove Lemma for a 0-edge (u#,v) when u and v are
jointly separating.

LEMMA 4.2. Suppose u, v € N1(S) are disjoint curves that are jointly separating.
If both components of S \ u U v contain nonseparating curves of S, then L(u, v)
has diameter at most 3. Otherwise, L(u, v) has infinite diameter.

Proof. Denote the two connected components of S\ (u U v) by S1 and S>. Then
any curve in L(u, v) is contained in either S; or Sy or has nontrivial intersec-
tion with both subsurfaces. Let «, 8 € L(u, v). Assume first that both S7 and S
contain nonseparating curves of S.

If ¢ and B are contained in the same component of S \ (u# U v), say Si, then
dr (o, B) < 2 since by assumption there is a nonseparating curve contained en-
tirely in S>. On the other hand, if & and B are contained in different components
of '\ (¥ Uv), then they are disjoint, and thus dr («, B) = 1.

Without loss of generality, suppose « is contained in S; and B has nontrivial
intersection with both Sy and S;. Then 8 N S, is a nonseparating arc on S> with
endpoints on distinct boundary components. Letting @ denote a nonseparating
curve of S contained in S, (which exists by assumption), by the classification of
surfaces there is a homeomorphism f of S, fixing # and v that sends S N S, to
an arc crossing o at most once. If w does not separate u from v, then we can
choose f so that f(B8 N S,) is disjoint from w. Otherwise, we can choose f so
that f(B N S,) crosses w exactly once. Then f~!(w) is a nonseparating curve on
S that is at an L (u, v)-distance of 1 from both « and g.

Finally, if both « and B have nontrivial intersections with both components of
S\ (uNv), then each of them intersects S1 and S, in a nonseparating arc. Then by
the same argument used in the previous paragraph there are nonseparating curves
w1 C 81, wy C Sy such that dy (o, w1) =dr (B, wy) = 1. Thus dy (o, B) < 3, since
(w1, w) =0.

It remains to consider the case where either S; or S, contains no nonseparating
curve of S. Since S is not a twice punctured torus, at least one component of S\
(u Uv), say S, is not a 3-holed sphere. Now for n € N, n > 2, by Proposition
choose arcs w1, w, with the same endpoints, each with one endpoint on u and the
other on v so that

dac, (s, (@1, o) = n.

Then choose an arc A C S with the same endpoints as w;, w, so that the
concatenation of A with w; and with w,, yields nonseparating curves 11, n, (these
will be nonseparating because they both cross each of u and v exactly once). As S
contains no nonseparating curves, any curve in L (u#, v) must project nontrivially
to S1, and so a path in L(u, v) from n; to n, gives rise to a path in AC;(S7) of
length on the order of n. It follows that dy (11, n,,) is at least on the order of n. As
n was arbitrary, the diameter of L(u, v) must be infinite. O

We record the following remark as it will be useful in the proof of Conjecture
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REMARK 4.3. If u is a separating curve on S that bounds a 3-holed sphere on one
side and v is another curve representing a vertex of SC(S) so that i(u, v) =0,
then the proof of Lemma implies that the diameter of L(u, v) in SC(S) is
infinite. Indeed, in this case, S; consists of either a single 3-holed sphere or a
disjoint union of two 3-holed spheres. Thus there is no curve in L(u, v) that does
not project to S\ S1, which is the only assumption used in the last two paragraphs
of the above proof.

REMARK 4.4. If the genus of S is 1, then if u, v are disjoint nonseparating curves,
then they must be jointly separating. Indeed, cutting along u (or v) produces a
planar surface. Therefore, in the next subsection, it will suffice to assume that the
genus of S is at least 2.

4.2. The Jointly Non-separating Case

Let u, v be disjoint curves in S such that # and v are jointly nonseparating. In this
case, we show that the diameter of L(u, v) in N1 (S) is infinite. This concludes
the proof of Lemma 4.1, which in turn completes the proof of Proposition

LEMMA 4.5. Let g > 2. If u, v € N1(S) are disjoint curves that are jointly non-
separating, then L(u, v) has infinite diameter.

Proof. Consider 8’ = S\ (u U v). Since the genus of S is at least 2, S’ is not a
3-holed sphere, and so by Proposition 2.2, AC(S’) has infinite diameter. Let A,,,
Ay denote simple closed curves on S so that A, (resp., Ay) crosses u (resp., v)
exactly once.

Choose a pseudo-Anosov mapping class ¢ € Mod(S’). By Remark 2.3, given
n € N, there exists N > 1 such that

dac, s (T A, ¢V (Tsrhy)) > 1.

N
Let Af denote the simple closed curve on S obtained by turning ¢ (7g1,)
into a simple closed curve by including its intersection point with u. Then, since
any essential simple closed curve on S projects nontrivially to S’, an L (u, v)-path

N
from A, to Af gives rise to a path in AC(S’) of comparable length, between
their projections. Thus we have produced vertices in L(u, v) that are arbitrarily
far apart in L(u, v), and so L(u, v) has infinite diameter, as desired. O

4.3. Proof of Theorem

We are now in a position to prove Theorem

THEOREM |.3. Suppose that g > 1 and that (g, p) # (1, 2). Then the natural map
Mod®(S) — Aut(NV;(S))

is an isomorphism for g # (2,0) and a surjection with kernel Z/27 otherwise.



Automorphisms of the k-Curve Graph 321

Proof. Let f € Aut(Vi(S)). By Proposition we can conclude that graph au-
tomorphisms of N;(S) preserve edge types. Thus f induces a graph automor-
phism of N (S) and of G(S) by restriction. Since the vertex sets of N (S), N1(S),
and G(S) are the same, Aut(N7(S)) injects into Aut(G(S)). Hence Aut(N7(S)) <
Aut(G(9)).

Then by Theorem A of [29] f is induced by a mapping class of S. Con-
versely, when (g, p) # (2,0), every mapping class gives rise to a distinct auto-
morphism of A(S). When (g, p) = (2,0), mapping classes give rise to distinct
graph automorphisms exactly when they reside in distinct cosets of the centralizer

of Mod*(S). 0
REMARK 4.6. When g > 2, Theorem 1.3 can also be proved by appealing to The-
orems 1.1 and 1.2 of [15] together with Lemmas 3.3, 3.4, and and Proposi-
tion

5. Automorphisms of the Systolic Complex

The purpose of this section is to prove Theorem 1.2, which we do in the final
subsection. Recall that when a surface S has multiple punctures, the graph SC(S)
includes vertices representing separating curves that bound a 3-holed sphere on
one side. Such a vertex is connected to another vertex v by an edge whenever the
corresponding curves are disjoint or intersect exactly twice.

Two main tools in the proof of Theorem are the following propositions.
The first proposition characterizes the diameter of the link of a 2-edge (u#, v) when
both u# and v are separating.

PrOPOSITION 5.1. Suppose g > 1 and (g, p) # (0,5), (1, 3). If (u, v) is a 2-edge
in SC(S) with u and v both separating, then diam(L (u, v)) = 4.

The second proposition characterizes the diameter of the link of a 2-edges (u, v)
when exactly one of # and v is separating.

PROPOSITION 5.2. Suppose g > 1 and (g, p) # (0,5), (1,3). If (u,v) is a 2-edge
in SC(S) with u nonseparating and v separating, then diam(L(u, v)) = 3. Fur-
thermore, whenever dy (o, B) = 3, there exists a path of length 3 in L(u, v) from
o to B that passes through {b1, b>}.

The proof of Proposition will break into two pieces, Lemmas and
Likewise, the proof of Proposition 5.2 will break into Lemmas 5.4 and

5.1. Upper Bounds on the Diameter of the Link of a 2-Edge in SC(S)

Let (4, v) be an edge in SC(S) with i(u, v) = 2; we refer to such an edge as a
2-edge. In this case, at least one of u, v is separating, and the subsurface obtained
by thickening the union of u# and v is necessarily a 4-holed sphere. As in the
case of the punctured torus, the simple closed curves on a 4-holed sphere are also
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naturally parameterized by slopes in Q U oo, and without loss of generality, we
identify u, v with the 1/0 and 0/1 curves.

LEMMA 5.3. Suppose (g, p) # (0,5). If (u,v) is a 2-edge in SC(S) with both u
and v separating, then diam(L(u, v)) < 4.

Proof. Let S; be the 4-holed sphere that forms the regular neighborhood of u U v.
Denote the 1/1 and —1/1 curves in 1 by ¥+ and y ~, respectively. Note that y*
both intersect u and v twice.

Since both u and v are separating, three of the four boundary components of S
necessarily correspond to punctures of S, which implies that both y T and y ~ are
separating and bound a 3-holed sphere on one side. Therefore both are elements
of L(u,v).

Now consider « € L(u, v). Note that @ N S1| < 2. This is because every com-
ponent of « N S; has its endpoints on a single boundary component (the one that
is not a puncture of §) and « intersects both u# and v either O or 2 times, since u
and v are both separating.

If | N S;| = 1, then & will be at an L (u, v)-distance of 1 from y*.

If |« N S1| =2, then @ N S| must be (up to homeomorphism) as pictured in
Figure

First, suppose that « is separating. Take one of the arcs of @ contained in S.
This can be concatenated with the blue arc shown in Figure 10 to obtain a simple
closed curve 7, which is disjoint from u and intersects each of v, «, and (without
loss of generality) y* twice. Based on the topology of S, and the arcs of « N Sy,
n can be chosen to be either nonseparating or a separating curve that bounds a
3-holed sphere on one side.

Thus n € L(u,v), dr(e,n) =1, and dr.(n, yT) = 1. The possible configura-
tions for n are shown in Figure

Now suppose « is nonseparating. Then we we claim that it is possible to build
a simple closed curve n contained entirely in S», which intersects « exactly once
and is thus nonseparating (and therefore in L(u, v)). Indeed, take an essential arc
A in S disjoint from o with endpoints on by (the existence of A is guaranteed
because « is nonseparating). We can then concatenate A with a subarc of by that
intersects « exactly once. This concatenation gives us our desired curve 7, illus-
trated in Figure 12. It follows that « is at an L(u, v)-distance of at most 2 from
both y* and y ™. O

e

Figure 10 The intersection pattern of o € L(u,v) with S| when
| N S7| =2 and both u and v are separating.
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Figure 11 The curve n (drawn in orange) is either nonseparating
(shown on the left) or separating (shown on the right) depending on
the configuration of @ N S5.

Figure 12 Constructing n when « is nonseparating.

P1 P2

IS

Figure 13 The regular neighborhood S of u and v when u is non-
separating and v is separating.

LEMMA 5.4. Suppose (g, p) # (0,5). If (u,v) is a 2-edge in SC(S) with u non-
separating and v separating, then diam(L (u, v)) < 3.

Proof. Let a, B € L(u,v) with u nonseparating and v separating as shown in
Figure 13. The boundary curves b1 and b, of S; will play a crucial role in each
case of this proof. Note that b and b are necessarily nonseparating. If they were
both separating, then u would also be separating and if only one of them was
separating, then the other would be a boundary component, and again # would be
separating.
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Pl | Dl
(i (i) (i)

Figure 14 Possible intersection patterns of a curve in L(u, v) with Sy
when exactly one of «# and v is separating. Note that it is also possible
for « to intersect S in a submultiarc of one of the multiarcs pictured
above. The arguments outlined below will apply to this situation.

We will make use of the following possible intersection patterns shown in Fig-
ure 14. In each case, we will show that o has an L(u, v)-distance of 1 from at
least one of {b1, by}. It is also possible for « to intersect S in a submultiarc of
one of the multiarcs pictured below, but this possibility is subsumed by the three
arguments outlined below.

Case 1: Suppose « and B are both separating. Since they are separating, they
are both in either configuration (i) or (ii). This implies that there exists i € {1, 2}
such that ¢ intersects b; twice. The same is true for 8, although not necessarily
with the same value of i.

Assume first that dy (o, b1) =dp(B,b1) = 1. Then dp (o, B) < 2.

Otherwise, dr (o, b1) = 1 and dr (B8, b2) = 1. Since b and b; are disjoint,
dp(b1,by)=1.Sod(a, B) <3.

Case 2: Suppose « is separating and B is nonseparating. Since B is non-
separating, it must be in configuration (iii). So there exists i € {1, 2} such that
dp (B, bi) = 1. Since « is separating, it must be either in configuration (i) or (ii).
By the same reasoning as in Case 1, dy (o, b;) = 1 for some i € {1, 2}. The argu-
ment then resolves in the same way as in Case 1.

Case 3: Suppose o and B are both nonseparating. Then o and 8 must be in
configuration (iii). So there exists i € {1, 2} such that d; (8, b;) = 1. The same
is true for B, although not necessarily with the same value of i. Once again, the
argument resolves as in Case 1. (]

5.2. Lower Bounds on the Diameter of the Link of a 2-Edge in SC(S)

In this section, we finish the proofs of Propositions and by proving the
following two lemmas.

LEMMA 5.5. Suppose g > 1 and (g, p) # (1,3). If (u,v) is a 2-edge in SC(S)
with both u and v separating, then diam(L (u, v)) > 4.

Proof. Let S1 denote the regular neighborhood of # Uv. As mentioned in the proof
of Lemma 5.3, S7 must be a sphere with four boundary components, exactly three
of which are boundary components of S.
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Figure 15 A diagram of S| and the construction of « in the event
that S has positive genus.

Since (g, p) # (0,5) or (1, 3), the complementary subsurface S, = S\ S is
not a 3-holed sphere, and thus the diameter of AC1 (S,) is infinite. As in the proof
of Lemma 3.4, we will construct a pair of 2-curves o and  whose shortest path
in L(u, v) passes through {y T, y 7}, both of which are in L (, v). Using the same
notation as before, we will first specify the construction for @ NS, = {n, n'}.

The assumptions in the statement of the proposition guarantee that S> contains
a nonseparating curve c of S, and let b be the essential boundary component of Sy
(i.e., the boundary component of S; not corresponding to a boundary component
of S). Let A be an embedded arc connecting b to c. We consider an arc n C S»
with both endpoints on b, obtained by traveling along A, then around ¢, and then
back to b along the inverse of A.

Note that S, has positive genus since we assumed that S has genus at least 1.
This situation is illustrated in Figure 15. So on S there must exist a second es-
sential arc n’ disjoint from n and whose endpoints link with those of 7 along b.
Furthermore, we can choose 1’ so that it intersects ¢ exactly once. As shown in
Figure 16, the existence of " is guaranteed so long as S, is not planar.

Now we specify the construction of « N S1 = {rq, 2} as shown in Figure
(71 is the blue arc, and r; is the red arc). Choose 71, r so that the endpoints of rq
coincide with one endpoint of 1 and with one of n’, and similarly for ;. Then the
concatenation 1 - ry - ' - r yields a simple closed curve «, which is necessarily
nonseparating; indeed, by construction it intersects ¢ exactly once. Moreover, o
intersects both y ™ and y ~ more than twice.

By applying to o a high power of a mapping class fixing S| and acting as a
pseudo-Anosov on >, we obtain a second nonseparating curve 8 whose projec-
tion to S is arbitrarily far away from the projection of & to S, in AC;(S). The
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Figure 16 In any surface with at least one boundary component and
genus g > 1, given an arc n constructed from a nonseparating curve
as described above, there exists an arc 1’ disjoint from n and whose
endpoints link with those of 7.

Figure 17 The possible configurations for u, v, and S; with u and
v shown in dotted lines. On the left, Sy is a sphere with 4 boundary
components. On the right, S is a torus with 3 boundary components,
which can be ruled out by Euler characteristic considerations.

lemma now follows because both « and g are at least distance 2 from {y+, y 7},
the only two curves in L(u, v) that project trivially to S>. (]

LEMMA 5.6. Suppose g > 1 and (g, p) # (1,3). If (u,v) is a 2-edge in SC(S)
with u nonseparating and v separating, then diam(L(u, v)) > 3. Furthermore,
whenever dy (o, B) = 3, there exists a path of length 3 in L(u, v) from «a to B that
passes through {b1, b>}.

Proof. We note that the last sentence is implied by the proof of Lemma 5.4: in
each of the cases outlined there, there exists a path of length 3 connecting « to
that passes through b; or b;.

Without loss of generality, we may assume that v is a separating curve bound-
ing two punctures of S. Let S; denote the regular neighborhood of u# U v. See Fig-
ure | 7. We claim that S} is topologically a sphere with four boundary components.
Indeed, S; has at least three boundary components, two of which correspond to
the pair of punctures on one side of v. There are three boundary components
if and only if S; has positive genus, but in that case, its Euler characteristic is
2 — 2 — 3 = —3. Each complementary region of u U v on S| is either a disk or a
punctured disk and as a graph on S; with vertices corresponding to intersection
points, # U v is 4-valent and therefore has twice as many edges as vertices. It
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follows that
x(S1) =-3=i(u,v) —2i(u,v)+ D,

where D > 0 is unknown. Hence 3 < i(u, v), a contradiction. So S is a 4-holed
sphere with two boundary components corresponding to boundary components
of § and two boundary components b; and b, corresponding to boundaries of
S> =S\ S1. The curves by and b, are necessarily nonseparating as shown in the
proof of Lemma

We will construct a pair of curves o and S so that any path from one to the
other such that each vertex projects nontrivially to S> must be longer than 3. On
the other hand, b; and Eb; are the only two curves in L(u, v) that do not project
to S>. Note that yi are not in L(u, v) since both intersect u# twice and if either
one of them is separating, it can not bound a 3-holed sphere on either of its sides
by the topological assumptions made on S in the statement of the lemma.

Let o be a 2-curve in configuration (iii) and let « N Sy = {n, n’}. Letting p
denote a homeomorphism $; taking b; to by, let 8 = p(«). Therefore both 8 and
« are nonseparating; « (resp., B) intersects b (resp., b») three times; and « (resp.,
B) intersects b, (resp., by) exactly once.

We claim that there is K > 0 such that if

d ac(sy) (s, (@), w5, (B)) > K,

then if I' = {«, vy, ..., vy, B} is any path in L(u, v) so that v; projects to S> non-
trivially, then n > 2. Indeed, i(v;, v;j4+1) < 2, and thus I' may not be a path in
AC(S>), but it constitutes a sequence that makes uniformly bounded jumps. The
existence of I' therefore implies an upper bound on the distance in AC(S,) be-
tween the projections of « and $ that depends only on 7.

Now assume that the projections of «, 8 to S, are at an AC(S,) distance of at
least K, where K is as above. It follows that a shortest path from « to 8 must pass
through at least one of b1, b; since the L (u, v) distance between them is no more
than 3. Since df (¢, by) and dr (8, by) are both at least 2, a shortest path from o
to B cannot have length 2 and therefore must be of length 3. O

In the context of the previous lemma, the curves {b1, b, } play the role of a shortcut
set, a notion we will introduce formally in Section 6. Furthermore, the proof of
Lemma 6.7 applies in our setting here exactly as written, and shows the following:

LEMMA 5.7. If (u, v) is a 0-edge such that both u and v are non-separating, then
the diameter of L(u, v) is either infinite, or it is 3. In the latter case, there can
not exist a pair of curves by, by in L(u, v) so that any shortest path of length 3 in
L(u, v) passes through either by or b;.

5.3. Proof of Schaller’s Conjecture

We are now ready prove Conjecture

THEOREM |.2. The automorphism group of SC(S) is isomorphic to Mod® (S).
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Proof. We begin by showing that automorphisms of SC(S) preserve 0-edges. Let
(u, v) be a 0-edge, and assume first that S has genus at least 1.

If u and v are both nonseparating, then either diam(L(u,v)) = oo or
diam(L(u, v)) = 3, and in this case, L(u, v) does not possess a shortcut set—
curves for which any shortest path of length 3 must pass through at least one of
them. So (u, v) cannot be sent to a 1-edge, since links of 1-edges have diameter
4, nor can it be sent to a 2-edge (since links of 2-edges either have diameter 4 or
diameter 3 and possess the curves by, by).

If one or both of u# and v are separating, then diam(L (u, v)) = co. So again,
(u, v) cannot be sent to a 1- or 2-edge.

If S has genus 0, then all curves are separating, and we only need to distinguish
between 0-edges and 2-edges. Note that links of 0-edges have infinite diameter
and links of 2-edges (with both curves separating) have diameter at most 4. Thus
automorphisms of SC(S) preserve 0-edges, as desired.

To complete the proof, it remains to show that any automorphism i of the
subgraph of SC(S) consisting of all vertices but only 0-edges is induced by a
mapping class. If g =0, then this amounts to saying that the graph with vertices
corresponding to separating curves that bound a 3-holed sphere on one side and
with edges corresponding to disjointness, has automorphism group isomorphic to
the extended mapping class group. This follows readily from McLeay’s extension
[26] of Brendle—-Margalit’s work [6] on complexes of regions, and we outline the
idea as follows. A complex of regions is a simplicial complex whose vertices are
essential subsurfaces chosen from some specific subset of mapping class group
orbits of all subsurfaces, and edges are determined by disjointness. When g = 0,
we can interpret the subgraph of SC(S) corresponding only to 0-edges as a com-
plex of regions, where each vertex represents a 3-holed sphere. Theorem 2 of [26]
states that the automorphism group of a complex of regions is isomorphic to the
extended mapping class group when every minimal vertex (roughly speaking, a
subsurface that does not properly contain another subsurface representing a ver-
tex of that complex of regions) is small, a technical assumption that amounts to
saying that the topology of the entire surface is sufficiently complicated relative
to the topology of the subsurface. In our context, every vertex will be minimal,
and every vertex will be small so long as p > 7. The only remaining genus 0 case
is p = 6; since the argument involves ideas from [26] that are not relevant to the
rest of the remaining cases of Theorem 1.2, we cover this in Appendix

If g # 0, then v induces an automorphism of N'(S). Indeed, any nonseparating
curve is involved in a 0-edge of diameter 3, but a 0-edge involving a separating
curve has infinite diameter. Thus there is a mapping class f such that v coincides
with f when restricted to the nonseparating vertices. Consider ¢ o f~!. This is
an automorphism of SC(S) that pointwise fixes each vertex corresponding to a
nonseparating curve.

Let u be a vertex of SC(S) corresponding to a separating curve, let v = ¢ o
£~ (u), and suppose v # u.
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CLaM. There exists a nonseparating curve y that is disjoint from u and intersects
v at least three times.

Proof. Suppose that u and v are disjoint. Note that since S has genus at least 1, the
complement of u containing v has genus at least 1. So there exists a nonseparating
curve y disjoint from u that intersects v arbitrarily many times.

Suppose u and v intersect. Once again, the component of the complement of
u which is not a 3-holed sphere, call it S’, has genus at least 1. Note that v N S’ is
an essential multiarc, call it v. We can then pick any component of v and find a
nonseparating curve y in S’ that intersects it arbitrarily many times. O

By the claim there exists a nonseparating curve y that is at distance 1 from u
but at distance > 1 from v. This is a contradiction since ¢ o f~!(y) = y. Thus
u = v, and therefore ¢ o f —1is the identity on the full vertex set of SC(S), as
desired. O

6. The k-Curve Graph

We are now ready to show that the automorphism group of the k-curve graph is
the extended mapping class group for |x (S)| sufficiently large with respect to k.
Throughout this section, we will assume that S is a connected oriented surface
with negative Euler characteristic. As before, we call edges in Ci (S) that connect
vertices admitting disjoint representatives 0-edges. We call all other edges nonzero
edges. Distinguishing between 0-edges and nonzero edges in Cy(S) is a more
delicate process than distinguishing between 0 and 1-edges in N1(S) and SC(S).
In addition to the diameter, we will also record two other properties of the edge
links. First, we will consider the cardinality of the edge links, namely whether
the edge link contains a finite or infinite number of vertices. Second, we will
define a finite collection of curves associated with an edge link called a shortcut
set, whose existence (or nonexistence) will be our final tool for distinguishing
between edge links (see Figure 18). Throughout this section, we assume that S
satisfies | x (S)| > k + 512 unless specified otherwise. See (particularly,
Remark A.3) for an explanation of the relevance of this inequality.

J@

<

\

Figure 18 A shortcut set is a generalization of y*inthe case k = 1.
Indeed, when i(u, v) = 1, diam(L(u, v)) = 4, and as demonstrated in
Lemma 3.3, there is a path of length at most 4 between them that passes
through {y+,y~}.
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Table 1 Strategy for distinguishing between 0-edges and nonzero
edges. N/A indicates that the existence of a shortcut set was not
checked for these edge links. Note that we do not include the case
of a nonzero edge with u, v filling since if i (u, v) <k and |x(S)| >
k + 512, then they necessarily do not fill.

Edge-type of (u, v) |L(u,v)| diam(L(u,v)) Shortcut Set
0-edge with u, v jointly nonseparating 00 00 N/A
0-edge with u, v jointly separating
i) Neither component of S\ (# U v) (%) 3 Does not exist
is a 3-holed sphere
ii) At least one component of 00 00 N/A
S\ (u Uv) is a 3-holed sphere
nonzero edge with u, v not filling 00 1,2,0or4 N/A
nonzero edge with u, v not filling 00 3 Exists

The goal of this section is to prove the partition of edge types shown in Table
based on the three characteristics that we have just outlined.

6.1. Diameter and Cardinality of Links

We will now compute the diameters of various types of edges.
Let (1, v) be an edge in Cr(S). We will begin by considering the case where u
and v are a filling pair.

LEMMA 6.1. If (u, v) is an edge in Cy(S) such that u U v fills S, then there are
Sfinitely many vertices in L(u, v).

Proof. Since u and v fill, their union gives rise to the 1-skeleton of a polygonal
decomposition of S where some polygons may be once-punctured. Any other
essential curve y can be isotoped to be in minimal position with respect to u U v,
and so it defines an equivalence class of cyclically ordered sequences each of
length i (y, u U v); we simply read off the edges of the polygonal decomposition
in accordance with the order in which y meets them. However, this does not yield
a uniquely defined cyclic sequence because y can be homotoped over a vertex of
one polygon and into another. We will consider any two sequences related in this
way to be equivalent.

There are at most finitely many sequences of edges in the polygonal decompo-
sition of length at most k, and therefore there are at most finitely many (equiva-
lence classes of) cyclic sequences of length at most k. This implies that there are
at most finitely many curves that intersect both # and v at most k times. O

We will next consider the links of nonzero edges (1, v) when u and v are not a
filling pair.
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LEMMA 6.2. If (u,v) is a nonzero edge in Cx(S) such that u and v do not fill S,
then

diam(L (u, v)) <4.

Proof. Let o € L(u,v), and let F(u, v) be the subsurface of S filled by u and
v (potentially with some complementary disks glued back in so as to make F
essential). Note that u U v can be thought of as a 4-valent graph I with vertices
in # N v and edges given by arcs of either # or v running between intersection
points. Note that I has exactly twice as many edges as vertices. Since F(u, v) is
a thickening of I", we get

X (F(u,v)) =—i(u,v).
It follows that | x (F (u, v))| < k, and hence
IX(S\ Fu,v))| > 512. (D

There exists y € L(u, v) such that y C F(u, v). This can be seen, for example,
by surgering along intersections of u and v as in Hempel’s argument (see [
Lemma 2.1]). If « C S\ F(u, v), then dy («, y) = 1. Otherwise, if « C F(u, v),
there exists a simple closed curve 8 C S\ F(u, v) so that 8 € L(u, v), since u and
v do not fill S. This yields a path between « and y in L(u, v) of length 2. Hence
dp(a,y) =2

Lastly, if o nontrivially intersects both F(u, v) and its complement, then we
consider the multiarc formed by o N (S \ F (u, v)). Abusing notation slightly, we
will denote this multiarc by o. Lemma implies that there exists some essential
simple closed curve n C S\ F(u, v) such that i (o, n) < k. Thus dz (o, ) =1, and
sodp(a,y) <2,sincedp(n,y)=1.

It follows from the above cases that the diameter of L(u, v) is at most4. [

Next we consider the diameter of a 0-edge (u, v) when u and v are jointly non-
separating.

LEMMA 6.3. Let u,v € Ck(S). If (u,v) is a 0-edge such that u and v are jointly
nonseparating, then L(u, v) has infinite diameter.

To prove Lemma we first need to establish the following quasi-isometry be-
tween AC(S) and AC(S).

PROPOSITION 6.4. Let S be a surface of genus at least 2. Consider ACy(S), the
graph with the same vertex set as AC(S) and with edges connecting arcs and
curves that intersect essentially at most k times. Then AC(S) =q1 ACk(S).

Proof. Leta and g be two vertices in ACk (S). We use d 4¢, (-, -) to denote the dis-
tance in ACy(S) and d 4¢ (-, -) the distance in AC(S). Let ¢ : ACi(S) — AC(S)
be the identity map on the vertices. Since every edge in .AC(S) is also present in
AC(S), we have that

dac,(a, B) <dac(P(@), 9(B)).
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On the other hand, for any «, 8 connected by a nonzero edge in ACk(S), by
surgering along the intersections of « and B as in Hempel’s argument (see [13]
Lemma 2.1), there is a path between « and § consisting of only 0-edges of length
at most 21og, (k) +2 in ACg (S). This path is mapped bijectively into AC(S) by ¢.
Thus

dac(@(a), ¢(B)) = (2logy (k) +2) - d ac, (a, B). U
We can now prove Lemma

Proof of Lemma 6.3. Let u and v be jointly nonseparating disjoint curves on
S, and consider ' = S\ (¢ U v). By Propositions and , we know that
ACi(8") Zq1 AC(S) Zq1 C(S”). So we can consider a coarsely well-defined pro-
jection
7:L(u,v) = ACi(S)

defined as follows. If « € L(u,v) and i(o,u) =i(a,v) =0, then 7(a) =« €
ACi(S"). Otherwise, send « to the multiarc representing its intersection with S,
which is a simplex in ACk(S). It follows from the definition of 7 that

dp(a, B) = dac,s)(T(a), T(B)). (2)

Consider a nonseparating curve y € C(S’), and let ¢ : S — S be a map fixing
u and v pointwise and which restricts to a pseudo-Anosov on §’. Then for any
N e N, there exists n such that

deesy (v, 9" (y)) = N.

Since AC(S) is quasi-isometric to C(S’), we can choose appropriate n to make
dacisy(y, 9" () in ACr(S’) arbitrarily large. By inequality (2) the diameter of
L(u,v) is infinite. O

6.2. Shortcut Sets

We will now make precise the definition of a shortcut set. We then use it to dis-
tinguish between the remaining cases.

DEFINITION 6.5. Given L(u, v) with diam(L(u, v)) = R < 00, a shortcut set for

L(u,v) is a finite set of curves {yyp, ..., ¥, } with the following properties:

(1) yi € L(u,v) forall i, and,

(2) given any «, B € L(u,v) with dr (a, B) = R, there exists a path of length R
between o and B that passes through at least one of the y;.

We can now prove the statement given in the fifth row of Table .

PROPOSITION 6.6. Given u, v € Ci(S) such that u, v do not fill S, if (u,v) is a
nonzero edge with diam(L (u, v)) = 3, then there exists a shortcut set for L(u, v).

Proof. Let ' = {yp, ..., yu} be the set of curves in L(u, v) entirely contained in
F(u, v), which is finite by Lemma 6. 1. We claim that they form a shortcut set.
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Let o, B € L(u, v) with dp (a, 8) = 3. We will construct a path of length 3
between « and B that contains at least one y; € I'. This is trivially true if either «
or B is contained in the subsurface F'(u, v).

CLAIM. Either o or B has distance 1 from T.

Proof. The claim is clear if « or § is contained in S \ F(u, v). Consider when
o and B intersect both F(u, v) and its complement nontrivially. Assume by con-
tradiction that both « and 8 are at L(u, v)-distance at least 2 from every curve
in I". We can then replace o with its image o’ under a high power of a mapping
class ¢ that restricts to the identity on F'(u, v) and acts as a pseudo-Anosov on
S\ F(u, v). By choosing a sufficiently large power we can assume that

dacs\Fu,vy @', B) > 4.
Observe that o’ is still at least distance 2 from I" because a N F(u,v) =o' N
F(u,v).

Let {&’, vo, v1, B} be a path in L(u,v) from &’ to 8, where vy and v are
not necessarily distinct (such a path always exists since diam(L (u, v)) = 3). By
assumption, B is at least L (u, v)-distance 2 from every curve in I', so vg, vy ¢ I'.
Then both vy and v; project nontrivially to S \ F(u, v), which yields a path of
length at most 3 in AC(S \ F(u, v)) between the projections of &’ and B. This is
a contradiction, which finishes the proof of the claim. O

Now, without loss of generality, assume that « is adjacent to some y;. Then 8 N
F(u, v) # (. Otherwise, § is disjoint from y;, and dr (¢, ) < 2, a contradiction.
By Lemma there exists a simple closed curve n € S\ F(u, v) that intersects
B no more than & times. Thus 7 is adjacent to both y; and g in the link, and we
have a desired path of length 3 from « to 8 passing through the shortcut set. [

The following two propositions, together with Lemma 6.3, establish the state-
ments in the first, third, and fourth rows of Table

PROPOSITION 6.7. Let u,v € Ci(S) be nonseparating. If (u, v) is a 0-edge such

that u and v jointly separate S, then:

(1) If neither component of S \ (u U v) is a 3-holed sphere, then L(u,v) has
diameter 3 and does not have a shortcut set.

(ii) Otherwise, L(u, v) has infinite diameter.

Proof. Denote the two components of S\ (u Uv) by S1 and S,. Let o, 8 € L(u, v)
be distinct.

We begin by considering (i). By assumption we know that neither S; nor S is a
three-holed sphere. Note that if o and 8 are both contained in the same component
of S\ (©Uv), say S, then dy (o, B) < 2, since there is an essential curve contained
in S and thus disjoint from both « and $. If « and B are contained in different
components of S\ (u U v), then dr («, B) = 1 since they are disjoint.

Next, suppose that @ C §7 and that § intersects both S; and S> nontrivially.
Then by Lemma there is an essential curve n contained entirely in either S;
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or Sy such thati(n, B) <k.If n C S, then it follows that dy (o, ) <2.1If n C S,
then let p C > be any essential curve, which exists because S, is not a 3-holed
sphere. Then {«, p, n, B} is a length 3 path in L(u, v) from « to S.

Finally, suppose « and 8 intersect both S; and S nontrivially.

We now construct a path {«, p, 1, 8} of length 3 between « and g in L(u, v).
There are three possibilities:

(1) the projection g, () consists of a single weighted arc. In this case, we let
p be a curve on §; disjoint from «. This is always possible since S is not a
3-holed sphere. See Figure

(2) ms, () consists of multiple nonhomotopic essential arcs, but every arc in
ws, (o) begins and ends at two different boundary components (i.e., each arc
intersects u and v only once). In this case, we construct p in the following
manner: take two nonhomotopic arcs ¢ and ¢; in 7, (o) whose endpoints on
u are adjacent to each other among all arcs in g, (o). Concatenate ¢; and ¢,
first with the subarc of u that contains no endpoints of other arcs, and then
with a subarc of v that connects the two other endpoints of c¢; and c¢;. The
concatenation p is an essential simple closed curve since we assume that ¢y
and ¢, are nonhomotopic. See Figure

(3) ms, (o) consists of multiple nonisotopic essential arcs, but some arc in 7, (o)
begins and ends at the same component. Without loss of generality, we as-
sume that there exists an arc ¢ € g, (@) intersecting u twice. In this case,

N

Figure 19 Since S is not a 3-holed sphere, it either has genus or at
least 4 punctures. In either case, given any arc, there always exists an
essential curve disjoint from it.

Figure 20 Construction of p in the case that each arc of 7g, (o) has
endpoints on distinct boundary components and there exist at least 2
arcs in the projection that are not parallel.
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Figure 21 In the event that at least one arc in g, (@) has both end-
points on u, we concatenate it with the red subarc of u to form the
desired p.

we construct p by concatenating ¢ with the subarc of u that makes p es-
sential. This is always possible since S is not a three-holed sphere as in
Figure 19. Since p is disjoint from both u and v, p € L(u, v). Meanwhile,
dpw,v)(p, o) =1since i(a, p) <i(o,u) < k. See Figure

Note that the curve p will not be peripheral except in the case that Sy is
a punctured annulus bounded by u and v. In this case, we choose p so that
it differs from u by a single puncture on the interior of S;. Since S; is not a
three-holed sphere, u and v are not homotopic.

We therefore have constructed a curve p that is completely contained in S; and
adjacent to  in L(u, v). A similar curve n C $> adjacent to 8 may be constructed.
This gives a path of length 3 between « and 8 in L(u, v) as desired.

Now consider partial pseudo-Anosov ¢; that act as pseudo-Anosov on S; and
as the identity on S\ S; fori =1, 2. Leta’ = g5 (¢} (a)) where ny, n are chosen
sufficiently large so as to guarantee d 4c, (s;)(«’, B) > 3. We can do this since the
diameter of ACy (S;) is infinite for i = 1, 2 by Proposition

Note that we can construct a path {o’, p, n, B} between o’ and B in the same
way as above. We will now show that such a path is minimal in L (u, v). Suppose
to the contrary that there exists a path of length 2 between o’ and 8, say {’, ¥, 8}.
Without loss of generality, 7, () is nontrivial, so dﬂs1 (L) (', B) =2, a contra-
diction. A path of length 1 is ruled out for the same reason. Thus the shortest path
between o’ and B has length 3, and diam(L (u, v)) = 3.

It remains to show that there does not exist a shortcut set in L(u, v). Let I’ =
{v1,v2, ..., ¥n} be any finite set of curves in L(u, v). Since I" is a finite set, its
image in ACy (S;) has finite diameter.

Let p; be an essential arc in S; that has one end point on u and the other on v.
Fix g = gof‘(,o,-) with n € N large enough so that d 4¢, (s;) (B, 7; (I')) > 3, where
@; are defined as above. Now let a; = ¢!" (p;) where m € N is chosen sufficiently
large so that d 4¢, (s;) (i, B;) > 6. Note that this implies d 4¢, (s;) (@i, i (I')) > 3.

Let o and B be the curves obtained by concatenating «; with oy and g1 with
Ba, respectively. Note that o and S intersect each of u and v exactly once and are
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therefore contained in L(u, v) and dp () (@, B) = 3, by construction. Addition-
ally, if @ or B were adjacent to some y; € I' in L(u, v), then one of the o; or B;
would be adjacent to ;(y;) in ACk(S;), a contradiction. Therefore & and g are
at least distance 2 from I", and therefore there is no path of length 3 from « to
that goes through I'. We conclude that there does not exist a shortcut set on S in
L(u,v).

We now finish the proof by considering (ii). Suppose exactly one of the
connected components of S\ (u U v) is a three-holed sphere, say S;j. Then
we can choose essential simple closed curves o, B contained in Sy such that
d Ac, (s, (o, B) is arbitrarily large. Let P = {«, vy, ..., v,, B} be any path of short-
est length between « and f in L(u,v). Then each v; for 1 <i < n projects
nontrivially to S>. Therefore g, (P) = {rs, (@), ws, (v1), ..., 7ws, (Vy), s, (B)} is
a path in ACk(S). Observe that 7s, (o) = o and 7s,(B) = B, which implies
|P| > dac, (s, (e, B). So there exists curves a, 8 € L(u,v) that are arbitrarily
far apart in L(u, v), and so L(u, v) has infinite diameter. O

It remains to consider the possibility that (u, v) is a 0-edge with at least one of u,
v separating:

PROPOSITION 6.8. Let u, v € Cr(S) such that at least one of them is separating. If

(u, v) is a 0-edge, then:

(1) If at least two components of S\ (u Uv) are not 3-holed spheres, then L(u, v)
has diameter 3 and does not have a shortcut set.

(i) Otherwise, L(u, v) has infinite diameter.

Proof. This argument follows the logic of the proof of Proposition very
closely; we include it in full for the ease of the reader.

Suppose that at least two components of S \ (# U v) are not 3-holed spheres.
Note that there can be at most three components of S \ (¢ U v); if there are exactly
two components that are not 3-holed spheres, then denote them by S7, S>. In this
scenario the exact argument used in (i) of Proposition 6.7 applies here.

We also note that if we are in scenario (ii), then the argument used in Proposi-
tion 6.7 applies here verbatim.

It remains to consider the possibility that there are three components of
S\ (u Uv) all of which are not 3-holed spheres. Denote these components by
S1, 82, 3. Let o, B be curves in L(u, v). Suppose that « is disjoint from some S;.
Using Lemma , there exists some 7 intersecting 8 at most k times and con-
tained entirely in some S;. If j =i, then dy («, B) < 2. Otherwise, choose p C S;
arbitrarily and note that {«, p, n, 8} is a length 3 path.

Assume next that o, 8 both intersect each S;. This is analogous to the case in
the previous proof corresponding to «, B intersecting both §; and S,. The argu-
ment used in this setting in the previous proposition yielded a curve p contained
entirely inside S; and disjoint from «. The exact same argument can be used here
to produce a curve contained entirely inside either S, S2, S3 and disjoint from «.
By symmetry we can also produce a curve disjoint from 8 and contained entirely
in one of the other components.
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For the lower bound on diameter, choose partial pseudo-Anosovs ¢; on S; and
choose some o € L(u, v) intersecting each S;. Then, as in the previous proof,
choose n;,i = 1,2, 3, sufficiently large so as to guarantee that

dac, (s (e, &y (957 (957 (@) > 3.

Then as in the previous argument, no length 2 path can exist between « and 8 :=
¢>’l“ (d); 2 ((1)'31 3(@))) since any curve y realizing this path has to project nontrivially
to at least one S; and this would yield a path of length 2 between the projections
of « and g in that subsurface.

Finally, we will show that there does not exist a shortcut set in L(u, v). Con-
sider any finite set of curves I' = {y1, 2, ... v»} with each y; € L(u, v). Note that
I' has finite diameter in AC(S;). The idea is to construct curves «, 8 € L(u, v)
that are at distance exactly 3 from each other, but are also at distance at least 2
from I'. This rules out any curve in I' from appearing in any length of path 3
between « and 8, and we can conclude that there is no shortcut set for L(u, v). In
fact, the proof can be carried out in the exact same way as in the previous propo-
sition, since we are assuming that all components of S\ (x U v) are not 3-holed
spheres. U

We are now in a position to prove our main result.

THEOREM |.1. Suppose |x(S)| > k + 512. Then the natural map
Mod*(8) — Aut(Ci(S))

is an isomorphism.

Proof. For any edge (u, v) in C¢(S), note that any automorphism of Cy(S) pre-
serves the cardinality of L(u, v), the diameter of L(u, v), and the existence of a
shortcut set for L(u, v). Therefore by Lemmas and and Propositions

and 6.7 we obtain all the statements in Table |. This implies that every automor-
phism of Cx(S) sends 0-edges to 0-edges and nonzero edges to nonzero edges.
Hence any automorphism of Ci(S) induces an automorphism of the curve graph
C(S) and therefore corresponds to a mapping class. The other direction of the
isomorphism is clear, and hence the theorem follows. O

A. Where Does 512 Come from?

The following result is necessary for the proofs of Propositions and and
introduces the restriction | x (S)| > k + 512, which appears in Theorem (see
Remark ).

LEMMA A.l. There exists some constant D > 0 satisfying the following. If Y C
S is an essential subsurface (i.e., all boundary components are essential in S)
satisfying |x (S\ Y)| > D and « is a simple closed curve on S in minimal position
with 0Y and with i(«, dY) < 4k for some k € N, then there exists an essential
simple closed curve g on S \'Y such that i (o, B) <k.
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Lemma appears (in a different context and stated in a different way) as Propo-
sition 3.1 of [2]. For completeness, we include a sketch of the proof here, which
requires the following fact.

LEmMA A.2 (Lemma 3.2, [1 1]). Let ¢ > 0. There exists a decreasing function f :
0,1) — R such that if G = (V, E) is any graph with average degree greater
than 2 4 ¢, then G has girth no larger than g(e) - log,(|V]).

REMARK A.3. The proof of Lemma 3.2 of [ 1] gives the bound of 18 for f(1/2).
This implies that any choice of D > 296 is sufficient for the statement of Theo-
rem 1.1 to hold. However, we choose D = 512 to simplify our computation.

We are now ready to sketch the proof of Lemma

Proof of Lemma A.]. If there exists an essential simple curve in S \ Y disjoint
from «, then we are done. If no such curve exists, then ¢ N (S \ Y) is a filling
weighted multiarc on S \ Y, and therefore the complement of  in S\ Y is a col-
lection of polygons. Abusing notation slightly, we refer to this weighted multiarc
aN(S\Y) as «a. Note that

X (S\ V)] < Jee] =3[x(S\T)I. 3

Let o’ be the collection of all arcs in a of weight > , which we will

2k
VIX(S\D)]
call large mass arcs. Since i (a, 0Y) < 4k, there are at most /| x (S \ Y)| such arcs
ina.

Let S be the complement of & in S\ Y. Cutting along any arc can decrease
the absolute value of the Euler characteristic by at most 2, and therefore

XSO = XS\ V)| =2VIx(S\ DI, “

which is positive so long as |x (S \ Y)| > 4.

Let G denote the dual graph to & on S\ Y: one vertex for each complementary
polygon, two of which are connected by an edge when the corresponding poly-
gons share a boundary edge. The average degree d(G) of G is at least 3, since
otherwise two arcs in & would be homotopic. Hence

_2AEG)
IV(G)I
We now define G’ to be the dual graph on S’ to the collection of arcs in « that do

not have large mass. Using (3) and (4), calculating the average degree of a vertex
yields

d(G)

2E(G) _ 2(e] — ')

= >2.5,
V(G V(G
where the last inequality holds so long as |x (S \ Y)| > 36.
By Lemma there exists a cycle 8 on G’ of edge-length at most

1 1
f<§> log; (IV(G)]) < f(§> logy (2| x (S\ V).
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Without loss of generality, 8 is simple (otherwise, there exists a shorter cycle).
To prove that 8 is essential, we show that inessential intersections between 8 and
arcs of o imply the existence of inessential intersections between « and 9Y (see
[2] for details).

Therefore 1
5) - log, 2Ix (S\ V)] - 2k
i(ﬁ,a)gf(z) 2CIx(S\Y)]) _
VI2x(S\Y)]
Hence it suffices to choose D > 36 sufficiently large so that
1 1 D
> 08 ( ). (]
2-f(3) D

We note that the conclusion of Lemma is not implied by the argument of

Hempel [13]. Indeed, the more standard surgery argument will only reduce the
intersection number by a factor of 2, as opposed to 4.

B. The Case p = 6 of Schaller’s Conjecture

To resolve Schaller’s conjecture when (g, p) = (0, 6), we use an argumentation
motivated by the tools in Section 5 of [26]. In particular, we will prove the fol-
lowing:

ProPOSITION B.1. An automorphism of the 0-edge subgroup of SC(So.6) can be
uniquely extended to an automorphism of the full curve graph.

Thus by Proposition we obtain an injection of the automorphism group of
SC(S) into the extended mapping class group, as desired. To this end, recall that
a join is a graph formed by two collections V, U of vertices such that a pair of
vertices x, y € YV UU spans an edge if an only if either x € V, y e or x e U,
yeV.

Using the language of [26], a join is 2-sided whenever }V and U are both infinite
sets, and a join is maximal when (i) neither V nor U can be replaced with proper
supersets while maintaining the join property and (ii) there does not exist a vertex
x simultaneously disjoint from every vertex in VV U{/. It is immediate that a graph
automorphism must preserve the collection of maximal 2-sided joins.

Let 7 = {V, U} be a maximal 2-sided join in the 0-edge subgraph of SC(Sp.6).
Given a vertex v, let b1 (v), ba(v) denote the two boundary components of Sy ¢
cut off by v. It follows that if v € V and u € U, then

{b1(v), b2 ()} N {b1(u), b2(u)} =¥,

since otherwise the curves corresponding to # and v would intersect. Therefore
J determines two disjoint subsets 77, 7> of the six boundary components of §
such that each vertex v € V (resp., u € U) has the property the b; (v) € Ty (resp.,
bi(u) € T7).

We claim that |T| = |T>| = 3, for suppose that | 71| = 2. Then maximality of
J implies that there must be a boundary component b that is neither in 7 nor
in 7». Indeed, consider a pair of separating curves that jointly encircle the same
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two boundary components but which are arranged on opposite sides of a third
boundary component that they jointly block from the rest of the surface, as in
Figure 22. If no such pair is present in V), then either 2-sidedness or maximality
is contradicted, and as soon as such a pair exists, the boundary component they
jointly block cannot be in 7>. However, this also contradicts maximality, because
we can then consider a curve that encircles the blocked boundary component and
one of the two boundary components in 77, and such a curve can be added to V.

It follows that a maximal 2-sided join 7 corresponds to two infinite collections
V, U and a partitioning of the six boundary components of Sy ¢ into two subsets
T1, T> of three boundary components such that each vertex in V' encircles two
boundary components of 77 (and, respectively, for u € U and T>). It follows that
exactly one component of S\ {V U J} is an essential annulus separating 77 and
1>, and thus there is a unique (up to isotopy) simple closed curve § 7 determined
by J. See Figure

4

Figure 22 The orange and blue curves both encircle boundary com-
ponents 2 and 6 while jointly blocking boundary component 1 from
the rest of the surface.

4

Figure 23  The simple closed curve § 7 separating T7 = {1, 2, 3} and
T, ={4,5, 6} is the core curve of the annulus shown in light blue.
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Now let @ be an automorphism of the 0-edge subgraph of SC(Sp.6), and let o
be a vertex of the curve graph that is not a vertex of SC(Sp,6). It follows that «
separates S into two subsurfaces each possessing three of the original boundary
components. Then to « there corresponds a 2-sided maximal join Jy = {Vy, Uy}
of the 0-edge subgraph of SC(S): for instance, V, consists of all vertices of SC(S)
disjoint from « and to the left of «. The automorphism @ then sends 7, to a max-
imal 2-sided join ®(7), which, by the above paragraphs, uniquely determines a
separating curve, which we define to be ¢ («).

This extends @ to the entire curve graph, and it remains only to check
that @ is an automorphism. If v € SC(S), o ¢ SC(S), and i(v,®) = 0, then
i(®(v), P(x)) = 0since O («) will be the curve corresponding to a join for which
v lives in one of the two vertex sets. If o, 8 are both not in SC(S), then they
must intersect. This implies that the corresponding 2-sided maximal joins Jy,
Jpg are distinct and therefore that ®(J,) # ®(Jp), which in turn implies that
® () # ©(B), and so these curves must also intersect.
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