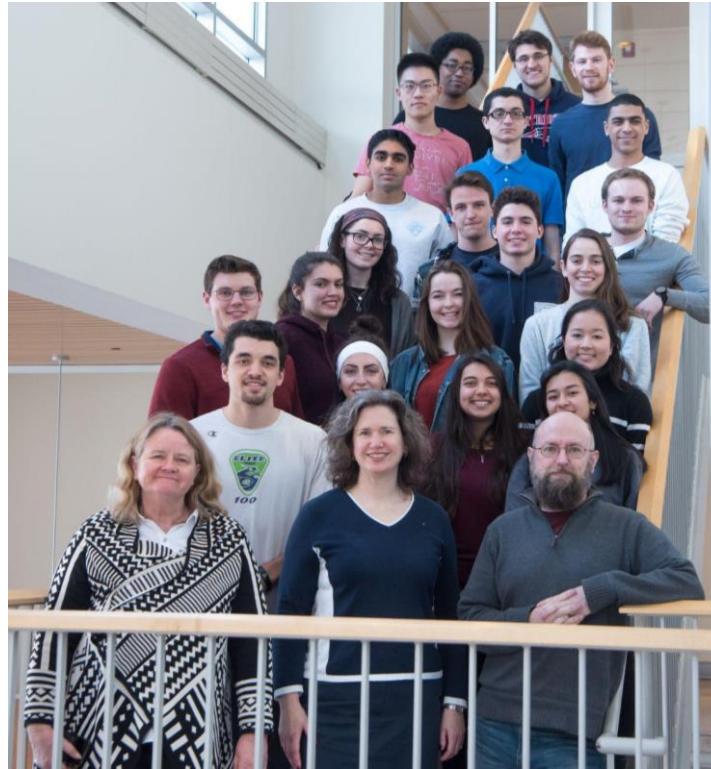


Journal of Sol-Gel Science and Technology
Twenty Years of Aerogel Research at an Undergraduate Institution
 --Manuscript Draft--

Manuscript Number:	JSST-D-22-00732
Full Title:	Twenty Years of Aerogel Research at an Undergraduate Institution
Article Type:	Invited Paper
Keywords:	Aerogels; Undergraduate research; Catalytic aerogels; Aerogel windows; Hydrophobic aerogels
Corresponding Author:	Mary K. Carroll, Ph. D. Union College Schenectady, NY UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Union College
Corresponding Author's Secondary Institution:	
First Author:	Mary K. Carroll, Ph. D.
First Author Secondary Information:	
Order of Authors:	Mary K. Carroll, Ph. D. Ann M. Anderson, Ph.D.
Order of Authors Secondary Information:	
Funding Information:	
Abstract:	This paper celebrating the 30th Anniversary of the Journal of Sol-Gel Science and Technology, presents a retrospective of twenty years of aerogel research at Union College, a baccalaureate-granting institution. Development of a rapid supercritical extraction method for aerogel fabrication and subsequent contributions to the sol-gel literature in the areas of aerogel windows for sustainable buildings, hydrophobic aerogels for a variety of applications including drag reduction, and catalytic aerogels for automotive pollution mitigation are highlighted. Engaging in multidisciplinary research on remarkable materials that can contribute to addressing global challenges is inherently motivating for students early in their academic careers as well as for faculty members. Opportunities and challenges associated with establishing and maintaining a productive academic research program when most students are available to participate only in shorter-term projects are discussed.
Section/Category:	Educational aspects of sol-gel and hybrid materials
Additional Information:	
Question	Response


Twenty Years of Aerogel Research at an Undergraduate Institution

Mary K. Carroll*, Department of Chemistry
Ann M. Anderson*, Department of Mechanical Engineering
Union College
Schenectady, NY 12308 USA

*Co-corresponding authors:

carrollm@union.edu, ORCID 0000-0002-4217-6915
andersoa@union.edu, ORCID 0000-0002-4055-2518

Graphical abstract

Caption: Photograph of Union College Aerogel Team: faculty (bottom row) and students, February 2020.

[Click here to view linked References](#)

1
2
3
4
5
6
7
8
9

Twenty Years of Aerogel Research at an Undergraduate Institution

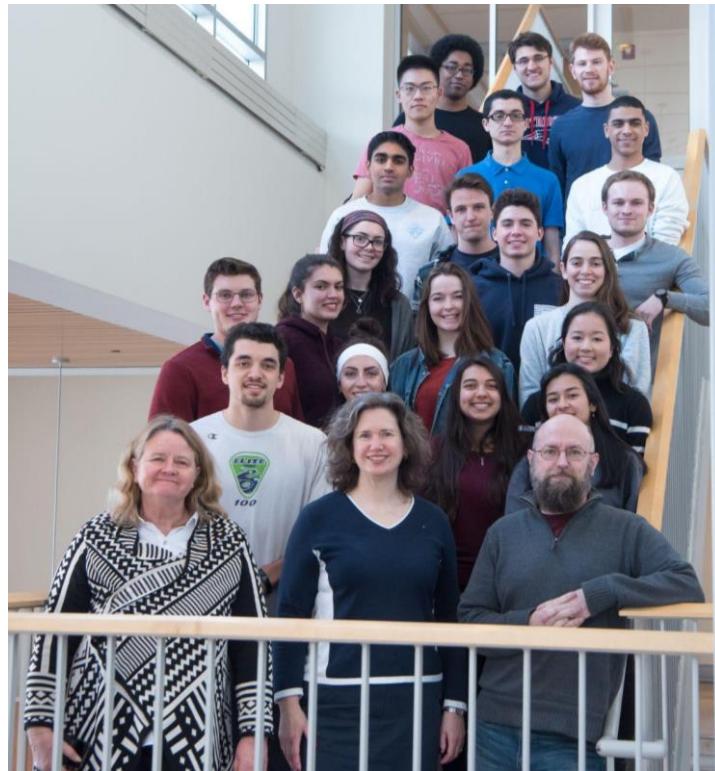
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Mary K. Carroll*, Department of Chemistry
Ann M. Anderson*, Department of Mechanical Engineering
Union College
Schenectady, NY 12308 USA

*Co-corresponding authors:

carrollm@union.edu, ORCID 0000-0002-4217-6915
andersoa@union.edu, ORCID 0000-0002-4055-2518

Abstract


This paper celebrating the 30th Anniversary of the *Journal of Sol-Gel Science and Technology*, presents a retrospective of twenty years of aerogel research at Union College, a baccalaureate-granting institution. Development of a rapid supercritical extraction method for aerogel fabrication and subsequent contributions to the sol-gel literature in the areas of aerogel windows for sustainable buildings, hydrophobic aerogels for a variety of applications including drag reduction, and catalytic aerogels for automotive pollution mitigation are highlighted. Engaging in multidisciplinary research on remarkable materials that can contribute to addressing global challenges is inherently motivating for students early in their academic careers as well as for faculty members. Opportunities and challenges associated with establishing and maintaining a productive academic research program when most students are available to participate only in shorter-term projects are discussed.

Keywords

Aerogels, Undergraduate research, Catalytic aerogels, Aerogel windows, Hydrophobic aerogels

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Graphical abstract

Caption: Photograph of Union College Aerogel Team: faculty (bottom row) and students, February 2020.

Highlights

- A retrospective of 20 years of research in aerogel materials is presented.
- An overview of the Union College rapid supercritical extraction method is provided.
- Contributions in the areas of aerogel windows, hydrophobic materials and catalysis are described.
- Opportunities and challenges of research at an undergraduate institution are emphasized.

1 Introduction

The US higher-education landscape differs significantly from that of many other countries. A relatively high percentage of the population attends university (61.8% of US high-school graduates in 2021 [1]), and there are a variety of types of higher-education institutions, including (but not limited to) colleges that grant associates degrees, bachelors-degree-granting institutions,

masters-degree- and doctoral-degree-granting universities [2]. Associate degree programs typically require two years of study, bachelor degrees require four years of study while the length of a masters degree will vary by discipline (typically 1-3 years). Moreover, there are private and public (state) schools in each of those categories. The various types of institutions have different expectations for faculty scholarship, and therefore different levels of resources dedicated to research.

Union College is a private undergraduate institution of approximately 2200 students offering majors in the humanities, social sciences, natural sciences, and engineering. It falls in the Carnegie classification 'Baccalaureate Colleges: Arts & Sciences Focus' [2]. Founded in 1795, Union was the first US college to be chartered in New York State, to create a bachelor's degree in science and mathematics (1822), and to establish an engineering degree program within the context of the liberal arts (1845). Union College has a strong history of achievement in undergraduate research and commitment to science and engineering education. Tenure-track faculty are expected to engage in high-quality scholarly activity. In the sciences and engineering, this typically takes the form of research activities leading to peer-reviewed journal publications (albeit fewer publications than would be expected at a doctoral university). Although it is not a requirement to involve undergraduate students in one's research, the chemistry and mechanical engineering departments have a strong tradition of doing so. Prior to starting our collaboration, each of us had established an independent research program (AMA in heat transfer, MKC in analytical spectroscopy) in which we involved undergraduate students and each had earned tenure at the college.

1.1 Initiation of aerogel research at Union College

In the fall of 2001, Ben Gauthier, an undergraduate mechanical engineering student, brought a well-known aerogel photo (see Figure 1) to AMA and indicated interest in making one for his senior project. AMA sent him to speak with MKC, who had begun working with sol-gel-based chemical sensors in the late 1990s and was, therefore, familiar with the literature. MKC was particularly interested in the potential of aerogel materials for gas sensor applications [4] and agreed to collaborate on the project. Because Union did not have the standard equipment – a critical point dryer – employed for supercritical CO₂ extraction, and available funds for student-initiated projects were not sufficient to procure

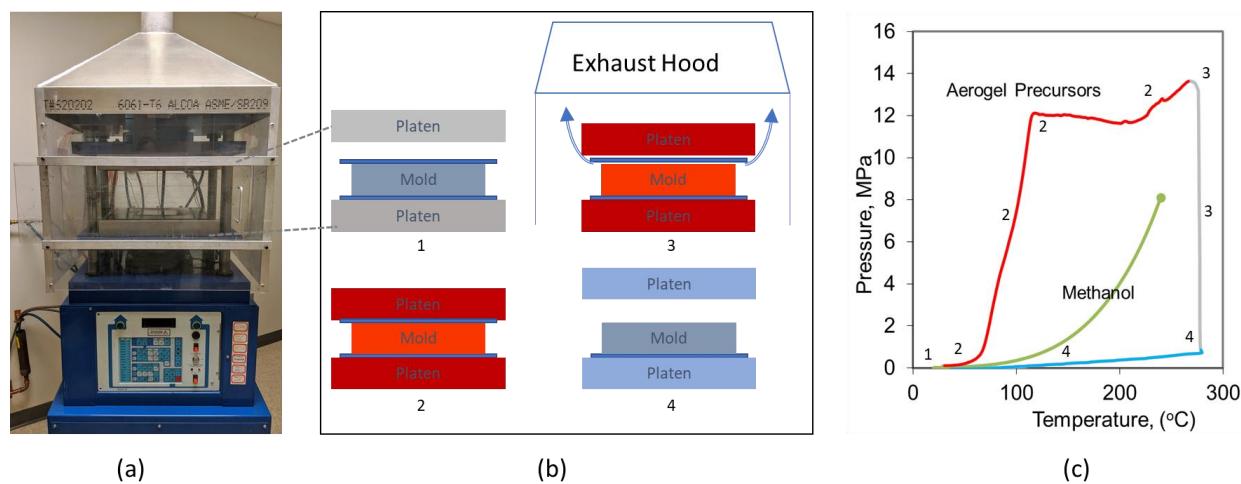


Figure 1. Classic Aerogel photo from NASA Jet Propulsion Lab. [3]

one, we looked into alternative methods for aerogel fabrication.

Over the course of the next year, using engineering equipment available in a colleague's laboratory at Union College and building off work on rapid supercritical extraction (RSCE) methods developed at Lawrence Livermore National Laboratory [5-7], we succeeded in developing a novel RSCE method capable of fabricating monolithic silica aerogel using a hydraulic hot press as shown in Figure 2a [8-11].

In the Union RSCE process (Figure 2b), a metal mold is filled with liquid precursor mixture or wet alcogel and placed between the platens of a hydraulic hot press. A restraining force is applied to seal the mold, which is then heated via the platens. As the temperature increases, the pressure within the mold also rises. The pressure-temperature conditions within the mold are brought above the critical point of the solvent (or solvent mixture) in the pores of the gel. The restraining force can then be lowered so that the solvent escapes from the matrix as a supercritical fluid, leaving behind an aerogel-filled mold. The mold is then cooled and the aerogel removed from the mold. Figure 2c plots actual pressure and temperature conditions during processing of a silica aerogel and clearly demonstrates achievement of supercritical conditions. The process can be used to make monolithic silica aerogels with essentially no shrinkage in as little as three hours [12]. (Some reviewers of our early papers were skeptical about the lack of shrinkage. We have received fewer questions about that since publishing a video protocol article on the process in which the lack of shrinkage is apparent [11].)

Figure 2. The Union College RSCE Process. (a) 30-ton hydraulic hot press. (b) Steps for making an aerogel: (1) Place mold/gasket assembly filled with aerogel precursors in the hot press. (2) Seal and heat mold using hot press. (3) Reduce hot press force and allow supercritical fluid to escape to the exhaust hood. (4) Cool the system and remove aerogel. (c) Process variables recorded during aerogel fabrication. The numbers on the plot refer to the step numbers in view (b).

What started as a 'side project' from our individual research agendas turned into a now two-decade-long productive, multidisciplinary research program. A timeline with highlights and milestones is shown in Figure 3.

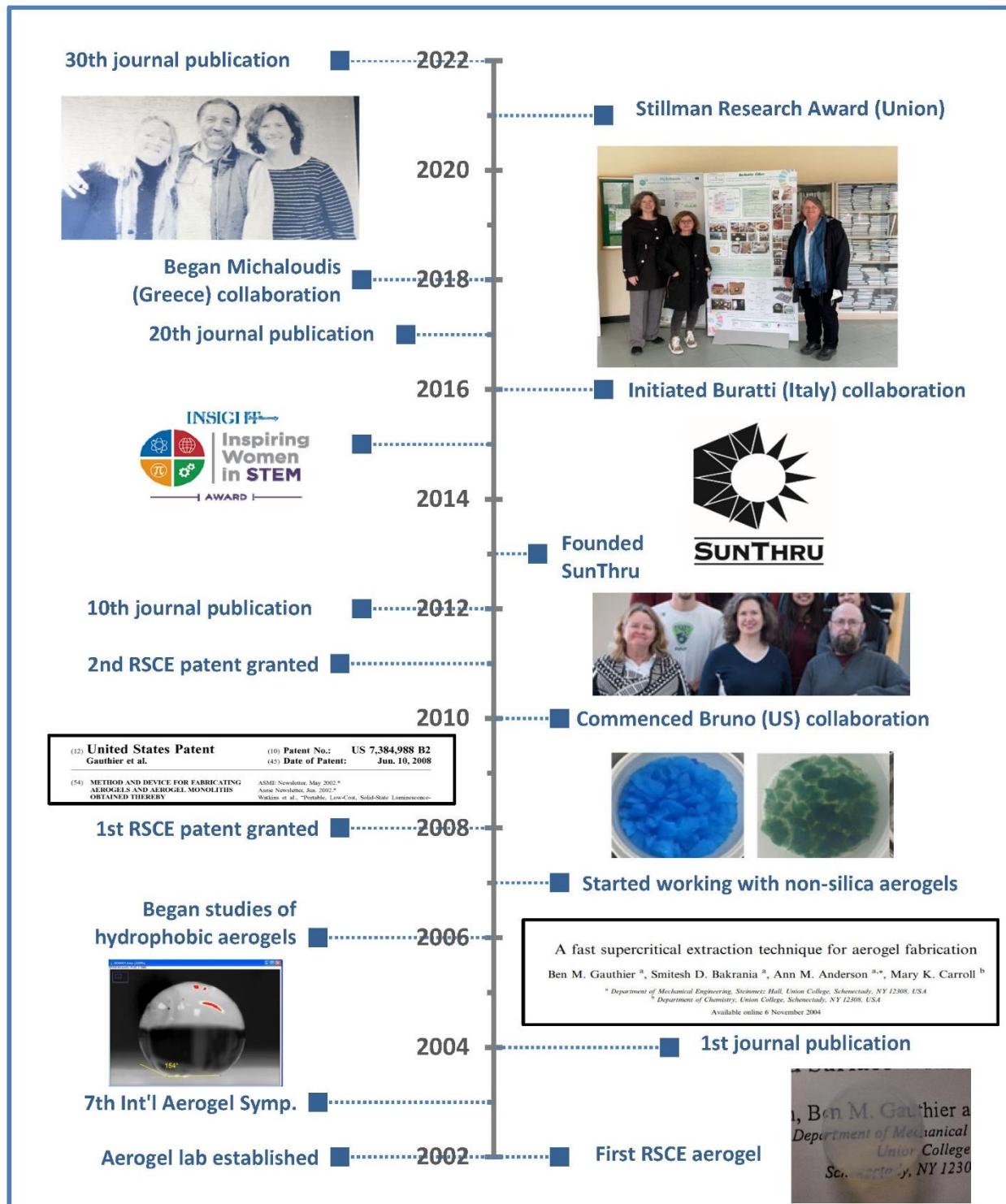


Figure 3. Timeline highlighting achievements in aerogel research at Union College.

1
2
3
4
5
2 Establishing an Aerogel Laboratory

6 In 2002, we secured funding from the US National Science Foundation (NSF)'s Major Research
7 Instrumentation (MRI) program and Union College to establish an Aerogel Laboratory, with
8 equipment for fabricating and characterizing aerogel materials. An ACS-PRF grant in 2003 to
9 MKC for sensor work enabled us to collect preliminary data that led to our first NSF research
10 grant (2005). We have subsequently had several additional NSF grants of various types (research,
11 equipment and technology commercialization, as noted in the acknowledgments section).
12
13

14 Having invented a new RSCE method, we set out to develop a fundamental understanding of the
15 process [13, 14], including investigating the effect of RSCE process variables on the physical
16 properties of the resulting aerogels, which demonstrated the robustness of the method [12].
17
18

19 Although our initial work employed tetramethyl orthosilicate (TMOS) as the silica precursor, it
20 was apparent that the RSCE method we developed would be suitable for processing gels
21 prepared from a wide variety of sol-gel chemistries. (There are limitations: the high temperatures
22 required for supercritical alcohol or alcohol/water mixtures preclude use of this method for
23 thermally unstable gels.) We resisted the temptation to make many different types of aerogels to
24 simply demonstrate that it is possible to do so and, instead, focused our efforts on preparing
25 RSCE aerogels suitable for particular applications of interest.
26
27

28 The first application-focused paper from our lab, on the facile incorporation of luminescent
29 complexes into TMOS-based silica RSCE aerogels for gas sensors [15], was related to MKC's
30 ongoing interest in chemical sensing, and demonstrated one of the major advantages of our RSCE
31 process: due to the lack of solvent exchanges, thermally stable dopants added to a precursor
32 mixture remain trapped within the aerogel matrix. We have subsequently extended this
33 approach, entrapping copper nanoparticles in silica aerogel [16] and platinum group metal
34 nanoparticles in alumina aerogel [17] as part of our work with catalytic aerogels for pollution
35 mitigation (described in more detail below).
36
37

38
39
40
41
42
2 Areas of ongoing research focus

43 Over time, we have gravitated to research projects that fall in three main areas: silica aerogel
44 windows for sustainable building applications, hydrophobic aerogels for a variety of applications
45 including drag reduction, and catalytic aerogels for automotive pollution mitigation. These topics
46 are compelling to undergraduate students, who tend to be idealistic and motivated by projects
47 that address sustainability and other global challenges. These areas of research are intellectually
48 interesting for faculty, as well, and have led to productive collaborations with colleagues at our
49 institution and others. Our contributions in these areas are described in more detail in the
50 following sections.
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6 **2.1 Silica aerogel windows for sustainable building applications**

7
8 The low density and thermal, electrical and acoustic insulating properties of silica aerogel
9 monoliths render them attractive for building materials. There has been long standing interest in
10 their use for highly insulating windows [18-26]. The Union College RSCE process shows
11 particular promise for this application, because of the speed of the process (3-8 hours from mixing
12 chemicals to obtaining a monolithic silica aerogel [12]) and the potential for scaling up the process
13 [27] if industrial-sized hydraulic hot presses are employed (see Figs. 4a, 4e).

14
15
16
17 There are potential advantages to using the silica precursor tetraethyl orthosilicate (TEOS), which
18 has ethanol (rather than methanol) as the byproduct of the hydrolysis and condensation reactions.
19 We have demonstrated that high-quality monolithic aerogels can be fabricated from TEOS [28];
20 however, these are not as transparent as our TMOS-based aerogels [29].

21
22
23
24 In collaboration with Prof. Cinzia Buratti and her group at the University of Perugia, we have
25 investigated the acoustic [30], optical and visual [31] properties of prototype aerogel glazing
26 systems. We are currently undertaking a long-term study: evaluating the performance of aerogel
27 monoliths under accelerated aging, employing a range of characterization methods including
28 color rendering. The methodology of this study and preliminary results are the subject of a recent
29 paper [32]. Through an Erasmus agreement between our institutions, we have hosted three of
30 Buratti's graduate students in our laboratory, each for one to three months. Working alongside
31 graduate students has benefitted the undergraduates at Union College and we believe the
32 experience of engaging in research in the US at a very different type of institution has been
33 positive for the Italian graduate students, as well. In spring 2022, AMA spent a month in Perugia
34 through the Fulbright Specialists Program, giving lectures on aerogels in graduate and bachelors
35 courses and working directly with research students.

36
37
38
39
40
41 In 2013, we co-founded a company, SunThru LLC [33], that is working to commercialize the
42 aerogel technology developed at Union for fenestration applications. SunThru has been funded
43 through NSF technology transfer grants and the New York Energy Research and Development
44 Authority, among others. Some of these grants have included subawards to the Union College
45 Aerogel Lab, and we have therefore been able to engage students in technology transfer and
46 entrepreneurship activities at a formative stage in their academic careers.

47
48
49
50
51 Recently, building on our experiences of incorporating luminescent species into silica aerogel for
52 sensor applications [15, 34] and etching designs on aerogel monoliths using a laser engraver in
53 collaboration with the aerogel artist Prof. Ioannis Michaloudis [35], we have explored the
54 preparation of aesthetically enhanced silica aerogel windows that include dyes and/or etching
55 [36, 29]. In this approach, small imperfections can be considered features that make each window
56 pane unique, rather than flaws. Figure 4 shows examples of these aerogels.

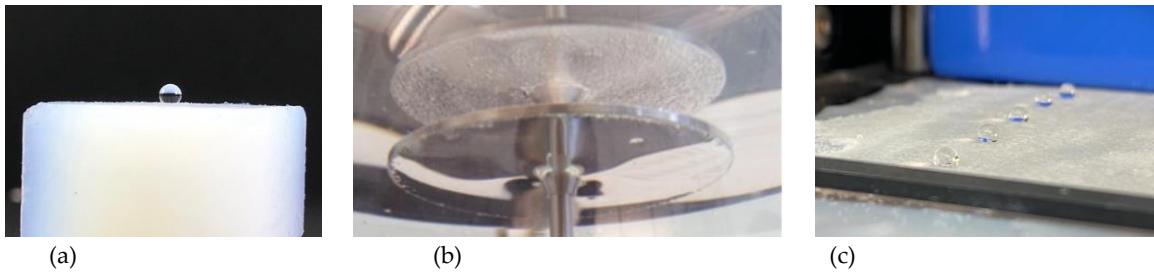


Figure 4. Photo montage of various aerogel window projects: (a) view through an $8.9 \times 8.9 \times 1.3$ cm aerogel; (b) $10 \times 10 \times 1.5$ cm Rhodamine-B-doped aerogel with pattern cut through width of aerogel; (c) $10 \times 10 \times 1.5$ cm fluorescein-doped aerogel with etched pattern on surface of aerogel; (d) view of a 2×2 style window prototype on black flocked paper with a variety of transparent plain and dye-containing aerogel monolith tiles, each of size $50 \times 50 \times 0.5$ cm; (e) view through a 17.8×17.8 cm window prototype made from four $8.9 \times 8.9 \times 1.3$ cm aerogel monoliths; (f), (g) and (h) various aerogel samples with patterns etched on front and back surfaces; and (i) transparent $13 \times 12.5 \times 0.5$ cm aerogel monolith.

2.2 Hydrophobic silica aerogels

Silica aerogels' low density, high surface area and chemical stability are appealing for a wide variety of applications; however, unmodified silica aerogel is hydrophilic and upon exposure to water pore collapse occurs. Since many applications require water resistance, there has been considerable research effort expended on methods for making silica aerogel hydrophobic, which we have reviewed in [37].

Our own work with hydrophobic aerogels began with demonstration that the RSCE method could be employed to prepare monolithic, hydrophobic (in some cases, superhydrophobic) silica aerogels using co-precursor mixtures that include organically modified TMOS derivatives as well as TMOS (see Figure 5) [38]. We have employed a rotational viscometer to measure drag reduction from hydrophobic films, observing differences in drag reduction for simple films prepared with crushed hydrophobic silica aerogel and xerogel prepared from the same chemical precursor mixture, which implies that the differences are morphological rather than chemical (see Figure 5b) [39]. Recently we have begun work on the preparation of more robust superhydrophobic aerogel films (see Figure 5c).

Figure 5. Examples of hydrophobic aerogels made via RSCE. (a) 3- μ L water drop on a hydrophobic silica aerogel monolith; (b) a spindle coated with hydrophobic aerogel powder captures an air bubble and reduces rotational drag; and (c) water droplets on a polyvinyl-butylal/aerogel-powder film.

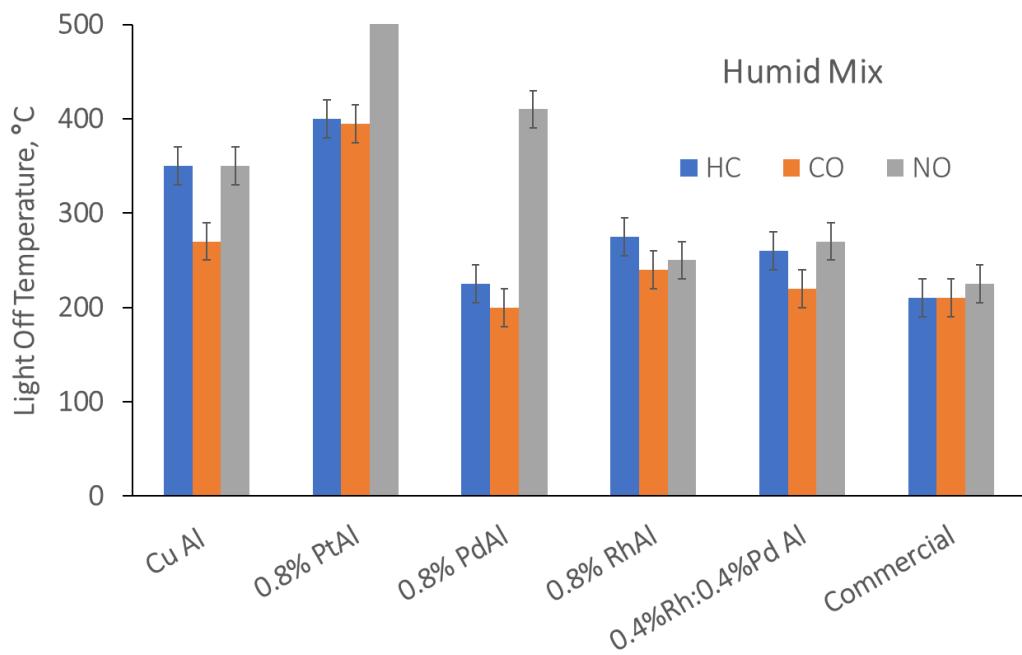
The wide range of potential applications of hydrophobic and superhydrophobic aerogels are particularly motivating for students. We have worked with several students on projects related to use of hydrophobic aerogels for applications including oil spill clean-up, drug delivery and clothing insulation (see Fig. 5) but have not published in these areas.

We collaborated with the group of Prof. Desiree Plata (an alumna of our lab) on a life-cycle assessment (LCA) of aerogel manufacture for oil-spill remediation applications [40]. The LCA demonstrated that use of our RSCE method resulted in significant cumulative energy savings compared to two more conventional aerogel fabrication methods (alcohol and carbon dioxide supercritical extraction in autoclaves).

Over time, water vapor can enter and condense in window units, so commercially available granular aerogel products for use windows are typically hydrophobic (for example, Cabot's Lumira® aerogel particles for daylighting [41]). Monolithic aerogel inserts for windows would have enhanced visual and acoustic properties compared to the granular products available on the market [21-23, 30]. Our ongoing collaborative study of the performance of aerogel monoliths under accelerated aging with Buratti's group at the University of Perugia involves a comparison of hydrophilic and hydrophobic silica aerogels [32].

1
2
3
4 **2.3 Catalytic aerogel materials for pollution mitigation**
5

6 Solids with high surface area are particularly attractive for heterogeneous catalysis applications.
7 Having met with considerable success using RSCE to prepare silica aerogels from a variety of
8 silica alkoxide precursors, we extended this work to fabricating alumina- [42] and titania-based
9 [43] aerogels, again using alkoxide precursors, with an eye to employing the alumina materials
10 in automotive pollution mitigation and the titania aerogels for photocatalysis. Our subsequent
11 work has focused on the use of catalytic aerogel materials for the automotive application, with
12 the goal of either replacing or using substantially less of the platinum group metals (PGMs)
13 currently employed in commercial “three-way” catalytic converters (TWC) to convert carbon
14 monoxide (CO), unburned hydrocarbons (HC) and nitrogen oxides (NO_x) to less harmful gases.
15
16


17 The first synthetic approach we employed to preparing alumina aerogels via the Union RSCE
18 method, which was adapted from Armor and Carlson’s aluminum isopropoxide recipe [44],
19 resulted in high-quality aerogels but was relatively complicated and time-consuming [42]. We
20 have subsequently employed the epoxide-assisted approach with metal salt precursors described
21 by Baumann et al. [45] to prepare RSCE alumina aerogels [46, 47] and for much of our catalytic
22 aerogel work.
23
24

25 In order to demonstrate the catalytic performance of these aerogels, it is necessary to expose them
26 to simulated exhaust under conditions comparable to those experienced in a commercial catalytic
27 converter, including temperature, oxygen level and humidity level, and monitor the conversion
28 of the pollutants. To accomplish this, we began a long-term and ongoing collaboration with a
29 Union College colleague who has expertise in internal combustion engines, Prof. Bradford Bruno
30 of the Mechanical Engineering Department. The first experimental testbed was constructed by an
31 undergraduate student in-house, in Bruno’s laboratory, with funding from the college. After
32 demonstrating that the materials and the testing approach had promise, we sought and were
33 awarded an NSF MRI instrument development grant to construct a more sophisticated testbed:
34 the Union Catalytic Aerogel Testbed, or UCAT [46, 48]. Over 15 undergraduate engineering
35 students have been active participants in the design, construction and operation of the various
36 components of UCAT.
37
38

39 To date, we have used the epoxide-assisted synthetic approach to fabricate alumina [46] and
40 mixed-metal-oxide aerogel materials [50-52]. We have also explored vanadia-containing aerogels
41 using VO(acac)₂ as the vanadia precursor [53] and using TMOS-based silica aerogel as a platform
42 for catalytic metals, introducing metal salts [50, 52] or nanoparticles [16]. In each of these papers,
43 the synthesis, fundamental physical characterization and catalytic characterization is presented.
44 Table I presents a summary of our published work in this area. We also hold a US patent on the
45 use of aerogels as three-way catalysts [54].
46
47

We extended the work with copper-alumina aerogels to include a study of copper loading on TWC activity [55] and to demonstrate the potential of these aerogels to survive a slurry process comparable to that used to wash-coat PGMs onto supports for commercial catalytic converters [56].

In our most recent work, we have shown that alumina aerogels doped with relatively low amounts of PGM nanoparticles have comparable catalytic activity to a commercial catalyst [17]. Figure 6 presents the temperatures at which 50% conversion ('light-off') occurs for HC, CO and NO for copper-alumina aerogel and three PGM-nanoparticle-containing catalytic aerogels with comparison to the performance of a commercial catalyst under the same conditions.

Figure 6. Light-off performance for a variety of alumina-based catalytic aerogels compared to a commercial catalytic converter (NAPA universal converter, part # 15037). Refer to Anderson et al. [17] for more information about the testing conditions.

1
2
3
4
5
Table I. Catalytic Aerogels fabricated using RSCE.

Aerogel Type	Surf. Area (m ² /g)	Bulk Density (g/mL)	Reference(s)	Images of as-prepared materials
Alumina	400-600	0.04-0.23	[46, 47]	
Nickel-Alumina	300-600	0.05-0.14	[47]	
Titania Ti-Si	120-190 530-650	---	[43]	
Vanadia-Si	670-770	0.12	[53]	
Vanadia-Ti-Si Vanadia-Al Vanadia-Co-Al	560 500 640	0.04 0.07 0.06	[53]	
Cobalt-Al	680-705	0.07	[48, 51]	
Copper-Al Copper-Si Copper-Si-NP* Copper-Al (Slurry)	350-500 750-800 100-450 340	0.09-0.11 0.11 0.08-0.10 0.12	[16, 48, 50, 55, 56]	
Ceria-Si Ceria-Al	400-500 112	0.09 0.06	[52]	
Pt-Al Pd-Al Rh-Al	510-630 420-660 650	0.06 0.05-0.06 0.05	[17]	

1
2
3
4 **3 Engaging in productive research at a baccalaureate-granting college**

5 **3.1 Moving long-term projects forward with short-term student involvement**

6 Colleagues in the sol-gel community frequently ask how we have been able to contribute in such
7 substantive ways to the aerogel literature when our group is primarily composed of
8 inexperienced students who are available to participate for only relatively short-term student
9 projects.

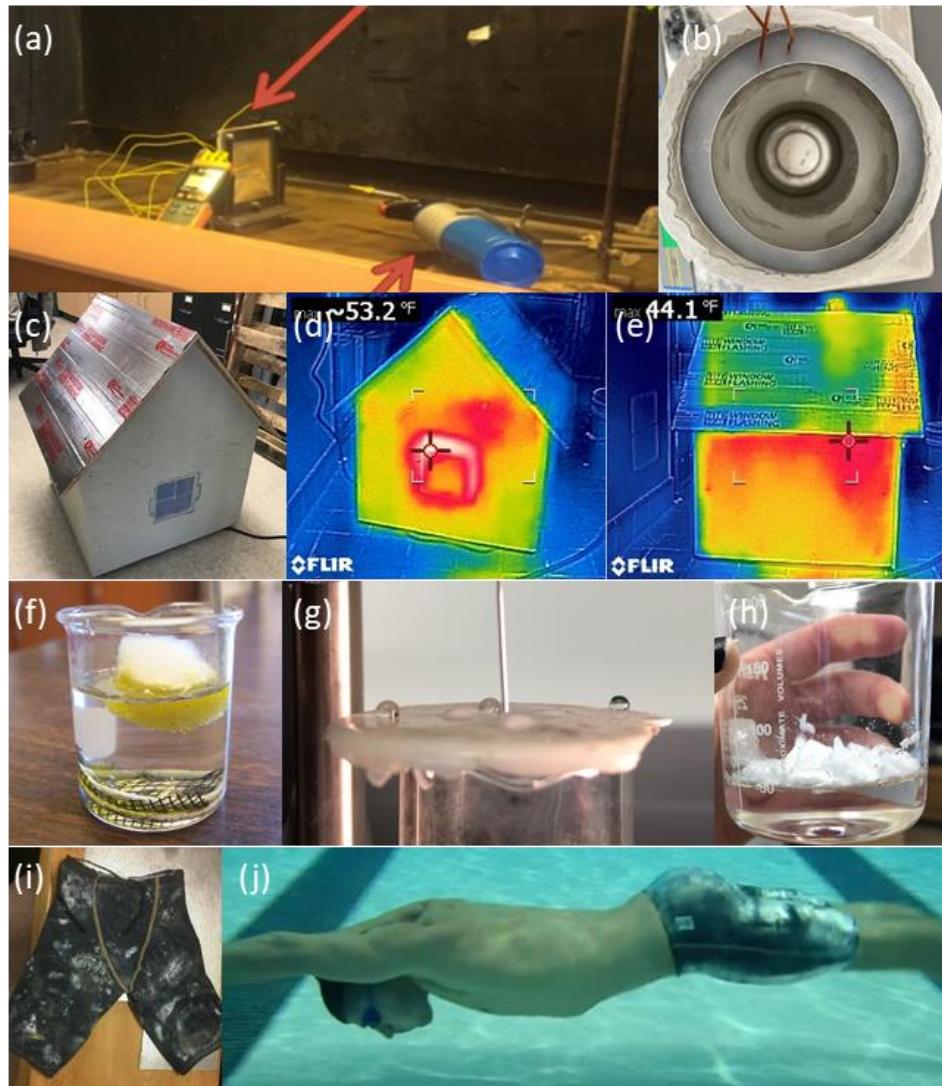
10 For our major ongoing research efforts, our strategy is to break down the work into manageable
11 segments and set goals for each student that are ambitious but potentially achievable in the time
12 available (for example, a summer or two academic terms), in order to move our overall research
13 agenda forward. A student with no prior research experience can be trained on one or more
14 experimental methods (for example, fabrication of silica-based aerogels, or design of metal molds
15 for RSCE) and either apply those to a particular project or become the 'go-to' person for a
16 particular type of analysis (SEM imaging, surface area measurements) during their time in the
17 lab. Working in a group with students and faculty members from different disciplines is engaging
18 and rewarding.

19 Most of our research students are pursuing bachelors degrees in chemistry or mechanical
20 engineering. We tailor projects to student interest and experience. For example, our approach to
21 developing a new type of RSCE aerogel begins with modifying synthetic procedures from the
22 literature. Engaging in this type of project is better suited to the students who have more
23 chemistry laboratory course experience. Once we have an established recipe and protocol for a
24 particular type of aerogel, other members of the group are trained to make them. Similarly, we
25 recruit students who have taken engineering courses for projects involving a considerable
26 amount of graphical design, computational modeling, or device construction (including the work
27 with the UCAT system). Other aspects of the research, including use of the various physical
28 characterization methods we employ, are well-suited to either science or engineering students.

29 It is important to note that without the ability to prepare aerogels quickly that is afforded us by
30 the RSCE process, it would be substantially more difficult for undergraduates working in our
31 laboratory for a limited number of weeks (as described in the next section) to make significant
32 progress.

33 When grant funding permits, we hire a full-time 'post-baccalaureate researcher' (technician) to
34 assist with day-to-day research activities. This aids in continuity of research effort; however, we
35 note that these employees have typically been recent BS-level graduates of Union or other
36 institutions so require a considerable amount of mentoring.

37 **3.2 How research with undergraduate students is structured at our institution**


1
2
3
4 Students at Union College can participate in research via several mechanisms (Table II), three of
5 which are part-time and involve academic credit. Senior research courses for fourth-year students
6 can be taken through either the chemistry or mechanical engineering departments, and are the
7 option for fulfilling the college's senior writing requirement that is most often chosen by students
8 in these disciplines. The culmination of the two- or three-term project is a detailed report (a
9 thesis). Second-year students in the college's Scholars (honors) program are introduced to
10 research through engaging in a two-term project of interest to them. Those projects are often, but
11 not always, related to the students' major area of study. Research practicum, which is open to
12 students in any class year, is a low-time-commitment opportunity used in some cases to introduce
13 students to research and in other cases to continue work begun in the summer. The fourth main
14 approach is paid, full-time research for four, six or eight weeks of the summer, with funding
15 provided by Union College or external grants. Frequently, students participate in more than one
16 of these over the course of their studies and, therefore, can spend up to three years engaged part-
17 time in aerogel research. All of these experiences, whether credit-bearing or not, are included on
18 the students' academic transcripts.
19
20
21
22
23
24
25
26

27 **Table II:** Mechanisms for structured undergraduate student research at Union College
28

Category	Credit or Compensation	Duration (weeks) ^a	Hours/week
Senior Thesis Project	Credit for 2 or 3 courses	20 or 30	12-15
Scholars (Honors) Project	Credit for 1 course ^b	20	6
Research Practicum	Credit for 1 course ^c	10, 20 or 30	4
Summer	Pay	4, 6, or 8	35

40 ^a Union has three ten-week terms per academic year (fall, winter, and spring trimesters)
41 ^b Credit awarded after successful completion of a two-term project
42 ^c Credit awarded after three terms; some students participate for one or two terms only
43

44 Students can apply for small amounts of funding through the college in support of research
45 projects. We have supervised students on short-term, academic-year projects that come about
46 when a student approaches one of us with an application-focused idea ("Can I use aerogels to
47 ...?") that is unrelated to (and, therefore, can't be supported by) our grant-funded research.
48 Generally, those projects lead to presentations by the student but not publication. Examples
49 include a hydrophobic-aerogel-coated high-performance swimsuit, and a small demonstration
50 model of a house with an aerogel window and aerogel blanket insulation on the walls and roof
51 (see Figure 7). The enthusiasm and optimism that students bring to their first research experiences
52 spurs creative discussions and, occasionally, a student-initiated project leads to a new and
53 productive research focus for the lab.
54
55
56
57
58

Figure 7. Photo montage summary of aerogel projects proposed by undergraduate students in which they used aerogels to: (a) insulate firefighting protective wear; (b) reduce hydrogen tank boil-off; (c) (d) (e) insulate a model house with an aerogel window and aerogel-blanket-covered wall studs; (f) soak up oil; (g) coat fabric; (h) deliver ibuprofen; (i) make a hydrophobic swimsuit. View (h) shows a student swimming with the aerogel coated swimsuit demonstrating the development of an air layer.

4. Concluding remarks regarding the impact of research at an undergraduate institution

We readily acknowledge that ours is not the only laboratory that engages undergraduate students in aerogel research. Many doctoral-granting universities and national laboratories offer research opportunities or internships for undergraduates; however, at those institutions students are typically working as part of a team that includes graduate students, postdoctoral researchers and full-time professional researchers. We know of two other faculty members at baccalaureate institutions who engage students in aerogel research: Colonel F. John Burpo at the US Military

1
2
3
4 Academy (West Point) [57-60] and Professor Amanda Harper-Leatherman at Fairfield University
5 [61, 62].
6
7

8 We have the benefit of being at a liberal-arts college that has a history of strength in bscience and
9 engineering, and both high expectations and strong support for faculty and student scholarship.
10 The RSCE method we invented and developed facilitates short-term student involvement in
11 projects with long-term goals. We have been successful in attracting to our group students from
12 a wide variety of backgrounds, engaging them in rigorous experiments in a supportive,
13 collaborative environment, and in motivating students to consider graduate studies and careers
14 in industry.
15
16

17 To date, we have involved 170 undergraduate students and 13 high-school students in aerogel
18 research projects at Union College. 43 of the undergraduates and two high-school students, have
19 co-authored peer-reviewed journal articles and six undergraduates are co-inventors on patents.
20 Of the 160 students who have graduated from Union, >40% have subsequently earned doctorates
21 (30 alumni) or masters degrees (at least 38 alumni) in STEM-related fields, and another 6% have
22 earned doctoral degrees in medicine or law. Several are currently enrolled in graduate programs
23 in science or engineering. Most of the other graduates went directly to jobs in STEM-related
24 industries. We have launched a company, SunThru LLC, whose leadership includes alumni from
25 our group, that is working to commercialize products based on aerogel technology developed at
26 and patented by Union College.
27
28

29 So it is apparent that, in addition to the contributions made by our research group to the aerogel
30 literature, we have had a disproportionate impact (for an academic institution of our size) on both
31 STEM workforce development and technology development. We are grateful to have received
32 recognition for this both externally (100 Inspiring Women in STEM Award [63]) and internally
33 (Stillman Prize for Faculty Excellence in Research) and we look forward to continuing to
34 contribute to research in the sol-gel community.
35
36

37 **Acknowledgments**

38
39

40 The Union College Aerogel Lab has received external funding from the US National Science
41 Foundation (Grant Nos. CTS-0216153, CHE-0514527, CMMI-0722842, CHE-0847901, DMR-
42 1206631, CBET-1228851, IIP-1332456, DMR-1828144 and IIP-1918217) and the ACS Petroleum
43 Research Fund (Grant No. 39796-B10), as well as subawards from grants to SunThru LLC from
44 the NSF (Grant Nos. IIP-1415359 and IIP-2025800) and the New York State Energy Research &
45 Development Authority (Grant No. NYSERDA-87381). We are grateful for the contributions of
46 our students, postbaccalaureate researchers, and colleagues to the work reviewed herein. We
47 acknowledge support of that work from Union College through the Faculty Research Fund,
48 Student Research Grants, Student Summer Research Fellowships and the Chemistry
49 Department's Kane Fund.
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

References

1. US Bureau of Labor Statistics <https://www.bls.gov/opub/ted/2022/61-8-percent-of-recent-high-school-graduates-enrolled-in-college-in-october-2021.htm> Accessed 6 Nov. 2022
2. Carnegie Commission on Higher Education
https://carnegieclassifications.acenet.edu/classification_descriptions/basic.php
Accessed 6 Nov. 2022
3. NASA/JPL, Public domain, via Wikimedia Commons, Accessed 12 Nov. 2022
4. Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties Sensing oxygen near the speed of open-air diffusion. *Chem Mater* 11 10:2837-2845
5. Poco JF, Coronado PR, Pekala RW, Hrubesh LW (1996) A rapid supercritical extraction process for the production of silica aerogels. *MRS Online Proceedings Library (OPL)*, 431
6. Gross J, Coronado PR, Hrubesh LW (1998) Elastic properties of silica aerogels from a new rapid supercritical extraction process. *Journal of non-crystalline solids* 225:282-286
7. Scherer GW, Gross J, Hrubesh LW, Coronado PR (2002) Optimization of the rapid supercritical extraction process for aerogels. *Journal of Non-crystalline solids*, 311(3):259-272
8. Gauthier BM, Bakrana SD, Anderson AM, Carroll MK (2004) A fast supercritical extraction technique for aerogel fabrication. *Journal of non-crystalline solids*, 350:238-243
9. Gauthier BM, Anderson AM, Bakrana S, Mahony MK, Bucinell RB (2008) US Patent No 7,384,988 Washington, DC, US Patent and Trademark Office
10. Gauthier BM, Anderson AM, Bakrana S, Mahony MK, Bucinell RB (2011) US Patent No 8,080,591 Washington, DC, US Patent and Trademark Office
11. Carroll MK, Anderson AM, Gorka, CA (2014) Preparing silica aerogel monoliths via a rapid supercritical extraction method. *JoVE (Journal of Visualized Experiments)* 84:e51421
12. Anderson AM, Wattley CW, Carroll MK (2009) Silica aerogels prepared via rapid supercritical extraction: effect of process variables on aerogel properties. *Journal of Non-Crystalline Solids*, 355(2):101-108
13. Anderson AM, Bakrana SD, Konecny J, Gauthier BM, Carroll MK (2004) Detecting sol-gel transition using light transmission. *Journal of non-crystalline solids*, 350:259-265
14. Roth TB, Anderson AM, Carroll MK (2008) Analysis of a rapid supercritical extraction aerogel fabrication process: Prediction of thermodynamic conditions during processing. *Journal of non-crystalline solids*, 354(31):3685-3693
15. Plata DL, Briones YJ, Wolfe RL, Carroll MK, Bakrana SD, Mandel SG, Anderson AM (2004) Aerogel-platform optical sensors for oxygen gas. *Journal of Non-crystalline solids*, 350:326-335
16. Anderson AM, Donlon EA, Forti AA, Silva VP, Bruno BA, Carroll MK (2017) Synthesis and characterization of copper-nanoparticle-containing silica aerogel prepared via rapid supercritical extraction for applications in three-way catalysis. *MRS Advances*, 2(57):3485-3490

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17. Anderson AM, Bruno BA, Santos J, Barry PJ, Carroll MK (2022) PGM nanoparticle-based alumina aerogels for three-way catalyst applications. *Catalysis Communications*, 106547
18. Rubin M, Lampert CM (1983) Transparent silica aerogels for window insulation. *Solar Energy Materials* 7(4):393-400
19. Jensen KI, Schultz JM, Kristiansen FH (2004) Development of Windows Based on Highly Insulating Aerogel Glazings. *Journal of Non-Crystalline Solids* 350:351-357
20. Schultz JM, Jensen KI (2008) Evacuated aerogel glazings. *Vacuum* 82(7):723-729
21. Buratti C, Moretti E (2012) Experimental Performance Evaluation of Aerogel Glazing Systems. *Applied Energy* 97:430-437
22. Buratti C, Moretti E (2012) Glazing Systems with Silica Aerogel for Energy Savings in Buildings. *Applied Energy* 98:396-403
23. Cotana F, Pisello AL, Moretti E, Buratti C (2014) Multipurpose Characterization of Glazing Systems with Silica Aerogel: In-Field Experimental Analysis of Thermal-Energy, Lighting and Acoustic Performance. *Building and Environment* 81:92-102
24. Gao T, Jelle BP, Ihara T, Gustavsen A (2014) Insulating Glazing Units with Silica Aerogel Granules: The Impact of Particle Size. *Applied Energy* 128:27-34
25. Berardi U, (2015) The Development of a Monolithic Aerogel Glazed Window for an Energy Retrofitting Project. *Applied Energy* 154:603-615
26. Ihara T, Gao T, Grynning S, Jelle BJ, Gustavsen A (2015) Aerogel Granulate Glazing Facades and their Application Potential from an Energy Saving Perspective. *Applied Energy* 142:179-191
27. Bhuiya MMH, Anderson AM, Carroll MK, Bruno BA, Ventrella JL, Silberman B, Keramati B (2016) Preparation of monolithic silica aerogel for fenestration applications: scaling up, reducing cycle time, and improving performance. *Industrial & Engineering Chemistry Research*, 55(25):6971-6981
28. Estok SK, Hughes TA, Carroll MK, Anderson AM (2014) Fabrication and characterization of TEOS-based silica aerogels prepared using rapid supercritical extraction. *Journal of sol-gel science and technology* 70(3):371-7
29. Carroll MK, Anderson AM, Mangu ST, Hajjaj Z, Capron M (2022) Aesthetic Aerogel Window Design for Sustainable Buildings. *Sustainability*, 14(5):2887
30. Merli F, Anderson AM, Carroll MK, Buratti C (2018) Acoustic measurements on monolithic aerogel samples and application of the selected solutions to standard window systems. *Applied Acoustics*, 142:123-131
31. Zinzi M, Rossi G, Anderson AM, Carroll MK, Moretti E, Buratti C (2019) Optical and visual experimental characterization of a glazing system with monolithic silica aerogel. *Solar Energy*, 183:30-39
32. Fiorini CV, Merli F, Belloni E, Anderson AM, Carroll MK, Buratti C Optical and color rendering long-term performance of monolithic aerogel after laboratory accelerated aging: development of a method and preliminary experimental results. *Solar Energy, under review*
33. SunThru LLC <https://www.sunthru.biz/> Last accessed 13 Nov. 2022

1
2
3
4 34. Carroll MK, & Anderson AM (2011) Aerogels as platforms for chemical sensors. In Aerogels
5 Handbook Springer, New York, NY
6
7 35. Michaloudis I, Carroll MK, Kupiec S, Cook K, & Anderson AM (2018) Facile method for
8 surface etching of silica aerogel monoliths. *Journal of Sol-Gel Science and*
9 *Technology*, 87(1):22-26
10
11 36. Stanec AM, Hajjaj Z, Carroll MK, & Anderson AM (2021) Aesthetically Enhanced Silica
12 Aerogel Via Incorporation of Laser Etching and Dyes. *JoVE (Journal of Visualized*
13 *Experiments*) 169:e61986
14
15 37. Anderson AM, & Carroll MK (2011) Hydrophobic silica aerogels: review of synthesis,
16 properties and applications. *Aerogels handbook*, 47-77, Springer, New York, NY
17
18 38. Anderson AM, Carroll MK, Green EC, Melville, JT, Bono MS (2010) Hydrophobic silica
19 aerogels prepared via rapid supercritical extraction. *Journal of sol-gel science and*
20 *technology*, 53(2):199-207
21
22 39. Rodriguez JE, Anderson AM, Carroll MK (2014) Hydrophobicity and drag reduction
23 properties of surfaces coated with silica aerogels and xerogels. *Journal of sol-gel science and*
24 *technology*, 71(3):490-500
25
26 40. Karatum O, Bhuiya MMH, Carroll MK, Anderson AM, Plata DL (2018) Life cycle assessment
27 of aerogel manufacture on small and large scales: weighing the use of advanced materials in
28 oil spill remediation. *Journal of Industrial Ecology*, 22(6):1365-1377
29
30 41. Aerogel Particles. <https://wwwcabotcorpcom/solutions/products-plus/aerogel/particles>
31 Accessed 10 Nov 2022
32
33 42. Bono MS, Anderson AM, Carroll MK (2010) Alumina aerogels prepared via rapid
34 supercritical extraction. *Journal of sol-gel science and technology*, 53(2):216-226
35
36 43. Brown LB, Anderson AM, Carroll MK (2012) Fabrication of titania and titania-silica aerogels
37 using rapid supercritical extraction. *Journal of sol-gel science and technology*, 62 (3):404-413
38
39 44. Armor JN, Carlson EJ (1987) Variables in the synthesis of unusually high pore volume
40 aluminas *Journal of materials science* 22(7):2549-56
41
42 45. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher Jr JH (2005) ChemMater
43 17:395-401
44
45 46. Juhl SJ, Dunn NJ, Carroll MK, Anderson AM, Bruno BA, Madero JE, Bono Jr MS (2015)
47 Epoxide-assisted alumina aerogels by rapid supercritical extraction. *Journal of Non-*
48 *Crystalline Solids* 426:141-9
49
50 47. Dunn NJ, Carroll MK, Anderson AM (2011) Characterization of alumina and nickel-alumina
51 aerogels prepared via rapid supercritical extraction. *Polymer Preprints*. 52(1):250-1.
52
53 48. Bruno, BA, Anderson, AM, Carroll, M, Swanton, T, Brockmann, P, Palace, T, & Ramphal, IA
54 (2016) Benchtop scale testing of aerogel catalysts: preliminary results. (No. 2016-01-0920)
55 SAE Technical Paper
56
57 49. Anderson, AM, Bruno, BA, Donlon, EA, Posada, LF, & Carroll, MK (2018) Fabrication and
58 testing of catalytic aerogels prepared via rapid supercritical extraction. *JoVE (Journal of*
59 *Visualized Experiments*) 138:e57075
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

50. Tobin ZM, Posada LF, Bechu AM, Carroll MK, Bouck RM, Anderson AM, Bruno BA (2017) Preparation and characterization of copper-containing alumina and silica aerogels for catalytic applications. *Journal of Sol-Gel Science and Technology* 84(3):432-45
51. Bouck, RM, Anderson, AM, Prasad, C, Hagerman, ME, & Carroll, MK (2016) Cobalt-alumina sol gels: Effects of heat treatment on structure and catalytic ability. *Journal of Non-Crystalline Solids* 453:94-102
52. Posada LF, Carroll MK, Anderson AM, Bruno BA (2019) Inclusion of ceria in alumina-and silica-based aerogels for catalytic applications. *The Journal of Supercritical Fluids*. 152:104536
53. Smith LC, Anderson AM, Carroll MK (2016) Preparation of vanadia-containing aerogels by rapid supercritical extraction for applications in catalysis. *Journal of Sol-Gel Science and Technology* 77(1):160-71
54. Dunn, NJ, Brown, LB, Juhl, SJ, Anderson, AM, Bruno, BA, & Mahony, MK (2016) Catalyst, catalytic converter, and method for the production thereof. US Patent No 9,358,534 Washington, DC US Patent and Trademark Office
55. Anderson AM, Bruno BA, Dilone F, LaRosa MT, Andre TF, Avanessian C, Carroll MK (2020) Effect of Copper Loading in Copper-Alumina Aerogels on Three-Way Catalytic Performance. *Emission Control Science and Technology* 6(3):324-35
56. Anderson AM, Bruno BA, Santos J, Avanessian C, Carroll MK (2022) Effect of slurry processing on the properties of catalytically active copper-alumina aerogel material for applications in three-way catalysis. *Journal of Sol-Gel Science and Technology* 102(2):422-36
57. Burpo FJ, Nagelli EA, Morris LA, McClure JP, Ryu MY, Palmer JL (2017) Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. *Journal of Materials Research* 32(22):4153-4165
58. Mitropoulos AN, Burpo FJ, Nguyen CK, Nagelli EA, Ryu MY, Wang J, Wickiser JK (2019) Noble metal composite porous silk fibroin aerogel fibers. *Materials* 12(6):894
59. Burpo FJ, Mitropoulos AN, Nagelli EA, Palmer JL, Morris LA, Ryu MY, Wickiser JK (2018) Cellulose Nanofiber Biotemplated Palladium Composite Aerogels. *Molecules* 23(6):1405
60. Burpo FJ, Mitropoulos AN, Nagelli EA, Ryu MY, Palmer JL (2018) Gelatin biotemplated platinum aerogels. *MRS Advances* 3, 47:2875-2880
61. Harper-Leatherman AS, Iftikhar M, Ndoi A, Scappaticci SJ, Lisi GP, Buzard KL, Garvey EM (2012) Simplified procedure for encapsulating cytochrome c in silica aerogel nanoarchitectures while retaining gas-phase bioactivity. *Langmuir*, 28 (41):14756-14765
62. Harper-Leatherman AS, Wallace JM, Rolison DR (2017) Cytochrome c Stabilization and Immobilization in Aerogels. In *Enzyme Stabilization and Immobilization* pp149-163 Humana Press, New York, NY
63. 100 Inspiring Women in STEM Awards <https://www.insightintodiversity.com/100-inspiring-women-in-stem-awards/> Accessed 13 Nov. 2022

1
2
3
4 **Statements and Declarations**
5
6

7 ***Funding***
8
9

10 The authors declare that no funds, grants, or other support were received during the
11 preparation of this manuscript.
12
13

14
15 ***Competing Interests***
16
17

18 The authors have no relevant financial or non-financial interests to disclose.
19
20

21 ***Author Contributions***
22
23

24 Both authors contributed to writing and editing the manuscript. Both authors read and
25 approved the final manuscript.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65