Evading Watermark based Detection of Al-Generated Content

Zhengyuan Jiang” Jinghuai Zhang* Neil Zhenqiang Gong
Duke University Duke University Duke University
zhengyuan.jiang@duke.edu jinghuai.zhang@duke.edu neil.gong@duke.edu

ABSTRACT

A generative Al model can generate extremely realistic-looking
content, posing growing challenges to the authenticity of informa-
tion. To address the challenges, watermark has been leveraged to
detect Al-generated content. Specifically, a watermark is embedded
into an Al-generated content before it is released. A content is de-
tected as Al-generated if a similar watermark can be decoded from
it. In this work, we perform a systematic study on the robustness of
such watermark-based Al-generated content detection. Our work
shows that an attacker can post-process a watermarked image via
adding a small, human-imperceptible perturbation to it, such that
the post-processed image evades detection while maintaining its
visual quality. We show the effectiveness of our attack both theoret-
ically and empirically. Moreover, to evade detection, our adversarial
post-processing method adds much smaller perturbations to Al-
generated images and thus better maintain their visual quality than
existing popular post-processing methods such as JPEG compres-
sion, Gaussian blur, and Brightness/Contrast. Our work shows the
insufficiency of existing watermark-based detection of Al-generated
content, highlighting the urgent needs of new methods. Our code
is publicly available: https://github.com/zhengyuan-jiang/WEvade.

CCS CONCEPTS

« Security and privacy — Security services; « Social and
professional topics — Intellectual property.

KEYWORDS
Al-generated content detection; Watermarking; Robustness.

ACM Reference Format:

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong. 2023. Evad-
ing Watermark based Detection of AI-Generated Content. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS’23). ACM, New York, NY, USA, 19 pages. https://doi.org/10.475/
XXXXXXXX

1 INTRODUCTION

Given a prompt, generative Al-such as DALL-E, Stable Diffusion,
and ChatGPT-can generate extremely realistic looking content in-
cluding image and text. Like any advanced technology, generative
Al is also a double-edged sword. On one hand, generative Al can

*Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Association for Computing Machinery.

ACM ISBN 123-4567-24-567/08/09...$15.00

https://doi.org/10.475/XXXXXXXX

assist human to enhance effectiveness and efficiency in various do-
mains such as searching, art image creation, and character design
in online games. The market for generative Al was predicted to
increase to 50 billion by 2028 [19]. On the other hand, generative Al
also raises many ethical concerns. For instance, their generated re-
alistic looking content can be used to aid disinformation campaigns
on social media; they are disruptive for learning and education
as students can use them to complete/aid homework and exams;
and people can use them to generate content and claim its owner-
ship/copyright, though not allowed by US Copyright Office [2].

Watermark-based detection [1, 9, 14, 39, 41] of Al-generated con-
tent is a key technology to address these ethical concerns. Multiple
AT companies—such as OpenAl, Google, and Meta-have made vol-
untary commitments to watermark Al-generated content [18]. In
particular, a watermark is embedded into an Al-generated content
when it is generated. The watermark enables proactive detection
of Al-generated content in the future: a content is Al-generated
if a similar watermark can be extracted from it. In this work, we
focus on Al-generated images. For instance, DALL-E embeds a visi-
ble watermark at the bottom right corner of its generated images
(Figure 29 in Appendix shows an example); Stable Diffusion uses a
non-learning-based watermarking method [24] to embed an invis-
ible watermark into generated images; and Meta [9] proposed to
use learning-based watermarking methods.

A watermarking method [3, 16, 23, 24, 34, 37, 42, 44, 46] con-
sists of three key components, i.e., watermark (we represent it as a
bitstring), encoder, and decoder. Given an image and a watermark,
an encoder embeds the watermark into the image to produce a
watermarked image; and a decoder decodes a watermark from an
image (a watermarked image or an original image without wa-
termark). We note that some watermarking methods [9, 38, 41]
embed the encoder into a generative Al model, so the watermark
is already embedded into its generated images at generation. An
image is predicted as Al-generated if the bitwise accuracy of the
decoded watermark is larger than a threshold 7, where bitwise ac-
curacy is the fraction of matched bits in the decoded watermark
and the ground-truth one. The threshold 7 should be larger than
0.5 since the bitwise accuracy of original images without water-
marks would be around 0.5. In a non-learning-based watermarking
method [3, 23, 24], which has been studied for decades, both en-
coder and decoder are designed based on heuristics, while they are
neural networks and automatically learnt using a set of images in
learning-based watermarking methods [16, 34, 37, 42, 44, 46], an
emerging category of watermarking methods.

Robustness against post-processing, which post-processes an Al-
generated image, is crucial for a watermark-based detector. Unfor-
tunately, the visible watermark adopted by DALL-E can be easily
removed without sacrificing the image quality at all [20]. Non-
learning-based watermarks (e.g., the one used by Stable Diffusion)
can be removed by popular image post-processing methods (e.g.,

https://github.com/zhengyuan-jiang/WEvade
https://doi.org/10.475/XXXXXXXX
https://doi.org/10.475/XXXXXXXX
https://doi.org/10.475/XXXXXXXX

CCS’23, November 26-30, 2023, Copenhagen, Denmark

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

:_3

(a) Original (b) Watermarked (c) JPEG (d) GN (e) GB (f) B/C (g) WEvade-W-II (h) WEvade-B-Q
Figure 1: Illustration of original image, watermarked image, and watermarked images post-processed by existing and our
methods (last two columns) to evade detection. The watermarking method is HiDDeN. GN: Gaussian noise. GB: Gaussian blur.
B/C: Brightness/Contrast. The encoder/decoder are trained via standard training (first row) or adversarial training (second row).

JPEG compression) [9, 46], which we also confirm in our experi-
ments in Section 7.5. Learning-based watermarking methods were
believed to be robust against post-processing [9, 16, 42, 46]. In
particular, the encoder and decoder can be trained using adver-
sarial training [12] to enhance robustness against post-processing.
In adversarial training, a post-processing layer is added between
the encoder and decoder; it post-processes a watermarked image
outputted by the encoder before feeding it into the decoder; and
the encoder and decoder are adversarially trained such that the
watermark decoded from a post-processed watermarked image is
still similar to the ground-truth one. However, existing studies only
evaluated the robustness of learning-based watermarking meth-
ods against popular image post-processing methods such as JPEG
compression, Gaussian blur, and Brightness/Contrast, leaving their
robustness against adversarial post-processing unexplored.

Our work: We aim to bridge this gap in this work. We propose WE-
vade, an adversarial post-processing method to evade watermark-
based detection of Al-generated images. WEvade adds a small,
human-imperceptible perturbation to a watermarked image such
that the perturbed image is falsely detected as non-Al-generated.
WEvade can be viewed as adversarial examples [33] to watermark-
ing methods. However, as we discuss below, simply extending stan-
dard adversarial examples to watermarking is insufficient. WE-
vade considers the unique characteristics of watermarking to con-
struct adversarial examples.

White-box setting. In this threat model, we assume the attacker
has access to the decoder used by detectors, but no access to the
ground-truth watermark and encoder. Given a watermarked im-
age generated by an Al model, an attacker aims to post-process
it via adding a small perturbation to it, such that detectors with
any threshold 7 > 0.5 would falsely detect the post-processed
watermarked image as non-Al-generated. One way (denoted as
WEvade-W-]) to achieve the goal is to simply extend the standard
adversarial examples to the decoder. In particular, an attacker finds
the perturbation such that each bit of the decoded watermark flips,
leading to a very small bitwise accuracy and thus evasion. However,
we show that such attack can be mitigated by a double-tail detector,
which we propose to detect an image as Al-generated if the decoded
watermark has either too small or too large bitwise accuracy.

To address the challenge, we propose WEvade-W-II, which adds
perturbation to a watermarked image such that the decoded water-
mark has a bitwise accuracy close to 0.5, making the post-processed
image indistinguishable with original images without watermarks.
However, since the attacker does not know the ground-truth wa-
termark, it is challenging to measure the bitwise accuracy of the
decoded watermark. Our key observation to address the challenge
is that a watermark selected uniformly at random would have a
bitwise accuracy close to 0.5, no matter what the ground-truth wa-
termark is. Based on this observation, we find the perturbation with
which the decoded watermark is close to a random watermark. We
formulate finding such perturbation as an optimization problem
and propose a solution to solve it.

Black-box setting. In this threat model, we assume the attacker
can only query the detector API, which returns a binary result
("Al-generated" or "non-Al-generated") for any image. One way
(called WEvade-B-S) to evade detection is that the attacker trains a
surrogate encoder and decoder using a watermarking algorithm.
Then, given a watermarked image, the attacker finds the pertur-
bation based on the surrogate decoder using the white-box attack
WEvade-W-II. However, such attack achieves limited evasion rates
because the surrogate decoder and target decoder output dissimilar
watermarks for an image.

To address the challenge, we propose WEvade-B-Q, which ex-
tends state-of-the-art hard-label based adversarial example tech-
nique called HopSkipJump [6] to watermark-based detector. Given
a watermarked image, HopSkipJump can iteratively find a post-
processed version to evade detection via just querying the detec-
tor APL Specifically, starting from a random initial image that is
predicted as non-Al-generated by the detector, HopSkipJump itera-
tively moves the image closer to the given watermarked image to
reduce the added perturbation while always guaranteeing that the
image evades detection. Essentially, in each iteration, HopSkipJump
returns 1) a perturbation to update the image and 2) the number of
queries to the detector API used to find such perturbation. The iter-
ative process stops when HopSkipJump uses a given query budget.
However, simply applying HopSkipJump to watermarking may end
up with a large perturbation. The reasons include 1) the random
initial image may be far away from the given watermarked image,

Evading Watermark based Detection of Al-Generated Content

and 2) the iterative process does not always reduce the perturba-
tion, and thus an improper setting of query budget may actually
enlarge the perturbation. To address the challenges, our WEvade-
B-Q constructs the initial image using the watermarked image
post-processed by popular methods such as JPEG compression,
which results in an initial image closer to the watermarked image.
Moreover, WEvade-B-Q stops the iterative process when the added
perturbation starts to increase, which reduces both perturbation
and number of queries to the detector API.

Theoretical and empirical evaluation. Theoretically, we de-
rive the evasion rates of different variants of WEvade. For instance,
WEvade-W-I achieves evasion rate of 1 against the standard single-
tail detector, but its evasion rate reduces to 0 when our proposed
double-tail detector is used. We also derive a lower bound of the eva-
sion rate of WEvade-W-II using triangle inequality. Moreover, we
derive the evasion rate of WEvade-B-S based on a formal similarity
quantification between the watermarks outputted by the surro-
gate decoder and target decoder. We also show that WEvade-B-Q
achieves evasion rate of 1.

Empirically, we evaluate our attacks using multiple datasets
and multiple watermarking methods, including two learning-based
ones (HiDDeN [46] and UDH [42]) and the non-learning-based one
adopted by Stable Diffusion [24]. Our results show that our method
is effective and outperforms existing post-processing methods. In
particular, existing post-processing methods need to add much
larger perturbations in order to achieve evasion rates comparable
to our method. We find that adversarial training can enhance ro-
bustness of watermarking, i.e., a post-processing method needs to
add larger perturbation to evade detection. However, the perturba-
tion added by our method is still small and maintains image quality,
indicating the insufficiency of adversarial training. Figure 1 shows
an original image, its watermarked version, and the watermarked
versions post-processed by different methods such that the decoded
watermarks achieve bitwise accuracy close to 0.55 (indistinguish-
able with original images without watermarks). The results show
that existing post-processing methods substantially sacrifice image
quality to evade a watermark-based detector based on adversarial
training, while our methods still maintain image quality.

To summarize, our key contributions are as follows:

o We propose WEvade , which adds small, human-imperceptible
perturbations to Al-generated images to evade watermark-
based detectors.

o We theoretically analyze the evasion rates of WEvade in both
white-box and black-box settings.

o We empirically evaluate WEvade on multiple watermarking
methods and datasets in various scenarios.

2 RELATED WORK

2.1 Detecting Al-generated Content

Generative Al models could be GANs [11], diffusion models (e.g.,
DALL-E [25], Stable Diffusion [27]), or language models (e.g., Chat-
GPT [22]). Al-generated content could be image (our focus in this
work) or text. Al-generated content detection include passive detec-
tion [10, 21, 29, 35, 40, 45] and proactive detection [3, 16, 23, 24, 34,
37, 42, 44, 46]. Passive detection aims to leverage statistical artifacts
in Al-generated content to distinguish them with non-Al-generated

CCS’23, November 26-30, 2023, Copenhagen, Denmark

R L PP PEEE PP PP > Loss.

0110101 ——>

Random watermark " .
. Post-process

—> Decoder —> 0110101
layer

Encoder —>

Decoded watermark

sl sl
e Watermarked Post-processed

image watermarked image
Original image

Figure 2: Illustration of training encoder and decoder in
learning-based watermarking methods.

content, while proactive detection aims to proactively embed a
watermark into Al-generated content when it is generated, which
enables detection in the future. Several studies [4, 7, 28] showed
that passive detectors are not robust to evasion attacks, i.e., an
attacker can slightly perturb an Al-generated content to remove
the statistical artifacts exploited by a passive detector and thus
evade detection. However, the robustness of proactive detectors
against evasion attacks is much less explored. For instance, recent
studies [9] suggested that proactive detectors are more robust than
passive ones. Our work focuses on proactive detectors and shows
that they are not as robust as previously thought.

2.2 Watermarking Methods

Since we focus on Al-generated images, we review image water-
marking methods. A watermarking method has three key compo-
nents: watermark, encoder, and decoder. We consider a watermark
w as a n-bit bitstring, e.g., w = 0110101. An encoder takes an image
I and a watermark w as input and produces a watermarked image
I,. Formally, we have I, = E(I, w), where E stands for encoder. A
decoder takes an image as input and outputs a watermark. Formally,
we have wy = D(I). Note that, given any image (e.g., an original
image without watermark or a watermarked image) as input, the
decoder can output a watermark. Watermarking methods can be
categorized into two groups depending on how the encoder and
decoder are designed, i.e., non-learning-based and learning-based.

Non-learning-based methods: In these methods [3, 23, 24], the
encoder and decoder are hand-crafted based on heuristics. Non-
learning-based methods have been studied for around three decades.
Invisible-watermark [24] is a representative non-learning-based
method, which is adopted by Stable Diffusion. Roughly speaking,
this method uses Discrete Wavelet Transform (DWT) to decompose
an image into several frequency sub-bands, applies Discrete Cosine
Transform (DCT) to each block of some carefully selected sub-bands,
and alters certain frequency coefficients of each block via adding
a bit of the watermark. The watermark is embedded in selected
frequency sub-bands of the image, and the watermarked image is
obtained via inverse transform.

Learning-based methods: In these methods [16, 34, 37, 42, 44, 46],
the encoder and decoder are neural networks and automatically
learnt via deep learning techniques. Roughly speaking, the second-
to-last layer of the decoder outputs a vector of real-value numbers,
each entry of which indicates the likelihood that the corresponding
bit of the watermark is 1. Formally, we denote by F(I) such vector
for an image I, where F(I); is the likelihood that the ith bit of
the decoded watermark is 1; and the decoded watermark wy is
obtained by thresholding F(I), i.e., the ith bit of wy is 1 if and only
if F(I); > 0.5. HiDDeN [46] and UDH [42] are two representative
learning-based methods. In HiDDeN, the encoder concatenates a

CCS’23, November 26-30, 2023, Copenhagen, Denmark

watermark and an image to produce a watermarked image. In UDH,
the encoder transforms the watermark into a QR code, maps the
OR code to a secret image which has the same size as an original
image, and pixel-wisely adds the secret image to an original image
as a watermarked image. Figure 2 illustrates how the encoder and
decoder are trained, which we discuss next.

Standard training. The encoder and decoder are iteratively
trained using a set of images and the standard Stochastic Gradi-
ent Descent (SGD) algorithm. In each iteration, a mini-batch of
images are used to update the encoder and decoder. Specifically,
for each image I in the mini-batch, a random watermark wy is sam-
pled. The encoder E produces a watermarked image E(I, wy) for
each image I and the corresponding random watermark wy. The
decoder D takes each watermarked image E(I, wy) as input and
outputs a watermark D(E(I,wy)). The encoder and decoder are
learnt such that the decoded watermark D(E(I, wy)) is close to wy.
In particular, they are updated via SGD to minimize a loss function
2p loss(D(E(I, wr)), wr).-

Adversarial training. A key advantage of learning-based meth-
ods is that they can leverage adversarial training [12, 17] to enhance
their robustness against post-processing [16, 37]. Specifically, as
illustrated in Figure 2, a post-processing layer is added between
the encoder and decoder, which post-processes each watermarked
image before feeding it to the decoder during training. For each
image in a mini-batch during training, a post-processing method is
randomly selected from a given set of ones, e.g., JPEG compression,
Gaussian noise, Gaussian blur, Brightness/Contrast, and our WE-
vade. The encoder and decoder are updated via SGD to minimize a
loss function Y loss(D(E(I, wr) +9J1), wr), where dy is the perturba-
tion introduced by the post-processing method to the watermarked
image E(I, wr). As shown by previous works [16, 37] and confirmed
by our experiments, adversarial training makes learning-based wa-
termarking robust against popular post-processing methods. How-
ever, it is still vulnerable to our adversarial post-processing method.

We note that some watermarking methods [9, 38, 41] embed
the encoder into a generative Al model, so its generated images
are already embedded with the watermark, but they still rely on
the decoder for detection. For instance, Fernandez et al. [9] trains
encoder/decoder using HiDDeN, embeds the encoder into image
generator via fine-tuning it, and uses the decoder for detection.
Our attacks are also applicable to such watermarking methods
since they are agnostic to how a watermark is embedded into an
Al-generated image.

3 WATERMARK-BASED DETECTORS

We formally define the detection setup and the standard single-tail
detector. Moreover, we propose a double-tail detector, which can
defend against the evasion attack (discussed in Section 5.1) that
simply extends standard adversarial examples to watermarking.

Detection setup: We use I to denote an image, I, to denote an orig-
inal image without watermark, I,, to denote a watermarked image,
and I, to denote a post-processed watermarked image. Note that,
in our notations, I could be an Iy, Iy, or Ip,,. We use BA(wy, w2)
to denote the bitwise accuracy of watermark wq compared to wa-
termark wo, i.e., BA(w1, wy) is the fraction of bits that match in
wy and wy. Suppose a service provider (e.g., OpenAl) deploys a

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

05 1 Bitwise accuracy 1-7 05 7 Bitwise accuracy

(a) Single-tail detector (b) Double-tail detector
Figure 3: Illustration of (a) single-tail detector and (b) double-
tail detector with threshold 7. The bitwise accuracy of an
original image I, follows a binomial distribution divided
by n, i.e., BA(D(I;),w) ~ B(n,0.5)/n. The area of the shaded
region(s) is the false positive rate (FPR) of a detector.

generative Al model (e.g., a text-to-image generative model) as a
cloud service and has a ground-truth watermark w. Given a user
query (known as prompt), the cloud service uses the Al model to
generate an image, embeds its watermark w into it using the en-
coder (or the generated image already has watermark w [9, 38, 41]),
and returns the watermarked image to the user. In such cloud
service, detecting Al-generated images reduces to detecting wa-
termarked images. Specifically, given an image I, we can decode a
watermark D(I) using the decoder. Then, we calculate the bitwise
accuracy BA(D(I), w) of the watermark D(I) with respect to the
ground-truth watermark w. A watermark-based detector (shown
in Figure 3) leverages the bitwise accuracy to detect watermarked
images, which we discuss below.

Single-tail detector: In the standard single-tail detector [9, 41], an
image I is predicted as Al-generated if the bitwise accuracy of its
decoded watermark is larger than a threshold 7, i.e., BA(D(I), w) >
7, where w is the ground-truth watermark. A key challenge is how
to set the threshold 7 such that the false positive rate (FPR), i.e., the
probability that an original image is falsely detected as Al-generated,
is bounded by a small value 7, e.g., 7 = 10™%. This challenge can
be addressed by formally analyzing the relationship between the
threshold r and the FPR of the single-tail detector [9, 41].

Suppose BA(D(I,), w) = 2 for an original image I,, where n
is the length (i.e., number of bits) of the watermark and m is the
number of matched bits between D(I,) and w. The key idea is that
the service provider should pick the ground-truth watermark w
uniformly at random. Thus, the decoded watermark D(I,) is not
related to the randomly picked w, and each bit of D(I,) matches
with the corresponding bit of w with probability 0.5. As a result, m
is a random variable and follows a binomial distribution B(n,0.5).
Therefore, the FPR (denoted as FPR;(7)) of the single-tail detector
with threshold 7 can be calculated as follows [9, 41]:

FPRs(7) = Pr(BA(D(I,), w) > 1)

=Pr(m > nr) = Z (Z) zin, (1

k=[nt]

where FPR,(7) is defined for any original image and the random-
ness in calculating the probability stems from picking the ground-
truth watermark w uniformly at random. Thus, to make FPRs(7) <

1, T should be at least 7* = argmin, ZZ:[nT] (Z)Zln < n. For in-

stance, when n = 256 and n = 10~%, we have 7 > 7" ~ 0.613.

Evading Watermark based Detection of Al-Generated Content

Double-tail detector: The single-tail detector can be easily evaded
by simply extending standard adversarial examples to watermark-
ing. In particular, a standard adversarial example based evasion
attack adds perturbation to a watermarked image such that the
decoded watermark has a very small bitwise accuracy, e.g., close to
0. However, we propose a double-tail detector to detect such per-
turbed images. Our key observation is that the watermarks decoded
from original images have bitwise accuracy close to 0.5, while those
decoded from watermarked images have large bitwise accuracy, e.g.,
close to 1. Thus, if the bitwise accuracy of the watermark decoded
from an image is significantly smaller than 0.5, it is likely to be an
adversarially perturbed image. Based on this observation, we pro-
pose a double-tail detector that detects an image I as Al-generated
if its decoded watermark has a bitwise accuracy larger than 7 or
smaller than 1 — 7, i.e., BA(D(I),w) > 7 or BA(D(I),w) < 1-—1.
We can calculate the FPR (denoted as FPR;(7)) of the double-tail
detector with threshold 7 as follows:

FPR; () = Pr(BA(D(Iy),w) > 7 or BA(D(Ip),w) < 1—1)

z n\ 1
=Pr(m>nrorm<n-nr) = ZkZ%:ﬂ (k)Z_"’ (2)

where FPR;(7) is defined for any original image and the random-
ness stems from picking the ground-truth watermark w uniformly
at random. Therefore, to make FPR;(7) < n, 7 should be at least
7" = argmin, ZZZ:MT] (Z)zl,, < 1. For instance, when n = 256
and 7 = 1074, we have 7 > 7* ~ 0.621.

Deployment scenarios: Watermark-based detection of Al-generated
content is an emerging topic, and how watermark-based detectors
will be deployed in the real-world is still an open question. Never-
theless, we envision the following four deployment scenarios:

Detection-as-a-service. In this scenario, the service provider,
who provides the cloud service to generate images, also provides
detection-as-a-service to detect its generated images. A user can
upload an image to the detection-as-a-service, which returns a bi-
nary answer "Al-generated” or "non-Al-generated". In this scenario,
the service provider is a computation/communication bottleneck.

End-user detection. In this scenario, the detector is deployed
as an end-user application (e.g., a mobile app, a browser plugin),
which runs on end-user devices (e.g., smartphone, laptop).

Public detection. In this scenario, the service provider makes
its decoder and ground-truth watermark w public so everyone can
locally detect images generated by the service provider’s AI model.
Note that individuals may select their own personalized detection
thresholds 7 in public detection.

Third-party detection. In this scenario, the service provider
shares its decoder and watermark w with selected third parties, so
they can locally detect images generated by the service provider’s Al
model. For instance, OpenAl may share its decoder and watermark
with Twitter, so the latter can detect images generated by OpenAI’s
models that are propagated on Twitter. Note that third parties may
select their preferred thresholds 7 in third-party detection.

4 THREAT MODEL

Attacker’s goal: Suppose an attacker uses the aforementioned
cloud service to generate a watermarked image I,,. The attacker

CCS’23, November 26-30, 2023, Copenhagen, Denmark

aims to post-process the watermarked image to evade watermark-
based detection while maintaining its visual quality. The attacker
may desire to achieve such goals in various scenarios. For instance,
the attacker may use the generated image to spread disinforma-
tion on the Internet; and the attacker may claim ownership of the
Al-generated image. Formally, the attacker aims to turn the water-
marked image I, into a post-processed one I, via adding a small,
human-imperceptible perturbation to it such that a detector falsely
predicts I, as non-Al-generated.

Attacker’s background knowledge: Recall that a watermarking
method has a ground-truth watermark w, an encoder, and a de-
coder. A watermark-based detector requires w, the decoder, and a
detection threshold 7. Since detection does not involve the encoder,
whether it is available to the attacker is not relevant. Nevertheless,
we assume the attacker does not have access to the encoder. Since
our attack is encoder-agnostic, it is applicable to watermarking
methods [9, 38, 41] that embed watermarks to images at genera-
tion. Moreover, we assume the attacker does not have access to w.
Depending on what information (decoder and/or 7) of the detectors
the attacker has access to, we consider the following two scenarios:

White-box. In this threat model, we assume the attacker has
white-box access to the decoder of the detectors. This scenario
arises in various circumstances: 1) an attacker can directly access
the decoder when the service provider makes it public in public
detection, e.g., the decoder used by Stable Diffusion is public [26]; 2)
an attacker can reverse engineer the end-user application to obtain
the decoder when the detector is deployed as an end-user applica-
tion in end-user detection; 3) a third-party may leak the decoder in
third-party detection; and 4) an insider may leak the decoder or an
attacker can exploit the computer system vulnerabilities to perform
a data leakage attack in detection-as-a-service. A recent example of
third-party leakage (not watermarking model, though) is that Meta
shared its LLaMA model with verified third parties, one of which
leaked it to the public [13].

Note that, given a decoder, different detectors may use different 7.
For instance, in public detection (or third-party detection), different
individuals (or third-parties) can choose their own 7. Therefore,
instead of evading a particular detector with a specific 7, an attacker
aims to post-process a watermarked image that can evade detectors
with any detection threshold 7 > 0.5 in the white-box setting.

Black-box. In this threat model, we assume the attacker has
black-box access to a particular detector with a decoder and a ¢
(called target detector), and the attacker aims to evade this target
detector. Specifically, the attacker only has access to the binary
detection result ("Al-generated" or "non-Al-generated") for any
image. This threat model may arise in detection-as-a-service, end-
user detection, or third-party detection. For instance, in detection-
as-a-service or end-user detection, the attacker can query the target
detector to obtain the detection result for any image. In third-party
detection, the attacker can also obtain the detection result for any
image from a particular third party, e.g., the attacker can upload
an image to Twitter and obtain the detection result depending on
whether the image is blocked by Twitter or not.

Attacker’s capability: In the white-box setting, an attacker can
post-process a watermarked image via analyzing the decoder. In
the black-box setting, the attacker can query the target detector to

CCS’23, November 26-30, 2023, Copenhagen, Denmark

obtain the detection result for any image. Moreover, we assume the
attacker can query the target detector multiple times. For instance,
the attacker can easily send multiple query images to detection-as-
a-service or end-user detection and obtain detection results. We
acknowledge that it may take a longer time for the attacker to
query a target detector in third-party detection. For instance, when
the third-party is Twitter, the attacker uploads a query image to
Twitter and may have to wait for some time before obtaining the
detection result, i.e., Twitter blocks or does not block the query
image. However, as our experiments will show, an attacker only
needs dozens of queries to evade a target detector while adding a
small perturbation to a watermarked image.

5 OUR WEVADE
5.1 White-box Setting

Suppose we are given a watermarked image I,, and a decoder D. An
attacker’s goal is to add a small, human-imperceptible perturbation
d to I, such that the post-processed watermarked image Iy, =
I, + & evades detectors with any 7 > 0.5. We first extend standard
adversarial examples to watermarking to find the perturbation &,
which, however, can be defended by the double-tail detector. Then,
to address the limitation, we propose a new optimization problem to
formulate finding the perturbation § to evade detection and design
an algorithm to solve the optimization problem.

5.1.1 Extending Standard Adversarial Examples to Watermarking
(WEvade-W-1). We denote this variant as WEvade-W-1, where W
indicates the white-box threat model. The decoder D outputs a
watermark, each bit of which can be viewed as a binary class. There-
fore, given a watermarked image I, one way is to add perturbation
0 to it such that D outputs a different binary value for each bit
of the watermark. Formally, inspired by the standard adversarial
examples [33], we formulate the following optimization problem:

min ||8]|co
5
s.t. D(Iyy +8) = ~D(I), ®)

where ||9]|w is the foo-norm of the perturbation § and — means flip-
ping each bit of the watermark D(I,,). This optimization problem
is hard to solve due to the highly nonlinear constraint. To address
the challenge, we reformulate the optimization problem as follows:

min I(D(Iy +6), =D(I)) 4)

st ||8lleo <1,
D(Iy +6) = =D (1), Q)

where [is a loss function to measure the distance between two
watermarks and r is a perturbation bound. We discuss more details
on solving this reformulated optimization problem in Section 5.1.3.

The loss function should be small when D(I,, + §) is close to
=D(I,,). For instance, the loss function could be ¢, distance, £
distance, negative cosine similarity, or average cross-entropy loss.
In defining the loss function, we treat =D(I,,) as desired "labels".
Formally, for ¢, distance, we have [(D(I,,+6), =D (Iy)) = 2; (F(Iy+
8)i ——D(I,,);)%, where F(I,,+8) is the second-to-last layer outputs
of the decoder neural network D and the subscript i is the index in
a vector/bitstring; for #; distance, we have I[(D(I, + §), =D(I,,)) =

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

i |F(Iw + 8)i — =D(Iy)i|; and for negative cosine similarity, we
have I[(D(I,, + 6),~D(I,,)) = 1 — cos(F(I,, + 6), ~D(I,,)), where
we treat F(I,, +) and w; as vectors and cos is the cosine similarity
between them. For cross-entropy loss, we can treat F(I,, +); as the
possibility that the ith bit is predicted as 1. Then we have [(D(I,, +
8),~D(Iy)) = = 2;(=D(IL);ilog F(I,y+6); +(1—=D(Iy,);) log(1—
F(Iy + 0)i)). We use the second-to-last layer continuous-value
outputs instead of the final binary outputs, because the binary
outputs are obtained by thresholding the continuous-value outputs
(see details in Section 2.2) and thus contain no useful gradient
information for updating the perturbation 8.

5.1.2 Formulating a New Optimization Problem (WEvade-W-II).
Given a watermarked image Iy, the perturbation § found by solving
the above optimization problem can evade the single-tail detectors
with any threshold 7 > 0.5. However, our double-tail detector can
still detect such post-processed watermarked images because their
watermarks have too small bitwise accuracy, as we formally show
in our theoretical analysis in Section 6. To address the limitation,
we propose a new optimization problem to formulate finding the
perturbation §. Specifically, we aim to find a small perturbation §
such that the decoded watermark D(I,, + J) has a bitwise accuracy
close to 0.5, compared to the ground-truth watermark w. As a re-
sult, the post-processed watermarked image is indistinguishable
with original images with respect to bitwise accuracy, evading both
single-tail and double-tail detectors. Formally, we formulate finding
the perturbation § as the following optimization problem:

Hgn 116]]c0 (6)
s.t. |BA(D(Iy + 6),w) — 0.5] < ¢, (7)

where BA(D(I,, + §), w) measures the bitwise accuracy of the wa-
termark D(I,, +§) compared to the ground-truth one w, € is a small
value characterizing the difference between BA(D(I,, + §), w) and
0.5, and we call the constraint of the optimization problem bitwise-
accuracy constraint. However, solving the above optimization prob-
lem faces two challenges: 1) the attacker does not have access to the
ground-truth watermark w, and 2) the constraint is highly nonlin-
ear, making standard optimization method like gradient descent (GD)
hard to apply. Next, we discuss how to address the two challenges.

Addressing the first challenge: One way to address the first chal-
lenge is to replace the ground-truth watermark w as the watermark
D(I,) decoded from the watermarked image I,, in the optimiza-
tion problem. However, when the decoded watermark D(I,,) is
quite different from w, even if the found perturbation § satisfies
|BA(D(I,, + 8), D(I,y)) — 0.5] < e, there is no formal guarantee
that the bitwise-accuracy constraint in Equation 7 is satisfied. To
address the challenge, we replace the ground-truth watermark w
as a watermark w; picked uniformly at random, where we call
w; target watermark. Moreover, we reformulate the optimization
problem such that when the watermark D(I,, + §) decoded from
the post-processed watermarked image is very close to wy, it is
guaranteed to satisfy the bitwise-accuracy constraint in Equation 7
with high probability. Intuitively, since w; is picked uniformly at
random, it has a bitwise accuracy close to 0.5 compared to any
ground-truth watermark w. Therefore, when D(I,, + 9) is close to
wy, it is likely to have a bitwise accuracy close to 0.5 as well.

Evading Watermark based Detection of Al-Generated Content

Addressing the second challenge: Due to the bitwise-accuracy
constraint, it is hard to apply an iterative method like GD. This is
because it is hard to find the gradient of §, moving é along which
can make the bitwise-accuracy constraint more likely to be satisfied.
To address this challenge, we reformulate the optimization problem
such that it is easier to find a gradient along which § should be
moved. Combining our strategies to address the two challenges, we
reformulate the optimization problem as follows:

m§in I(D(Ly + &), wt) ®)

st ||6]]eo < 7,
BA(D(Iiy + 6),w;) = 1—¢, 9)

where [is a loss function to measure the distance between D(I,,+6)
and wy, r is a perturbation bound, and € is a small number. Our
reformulated optimization problem means that we aim to find a
perturbation bounded by r to minimize the loss between D(I,, + §)
and w; such that the bitwise accuracy BA(D (I, + §), wy) is close to
1. Note that a small r may not be able to generate a perturbation §
that satisfies the constraint in Equation 9. Therefore, as detailed in
our method to solve the optimization problem, we perform a binary
search to find the smallest r such that the found perturbation &
satisfies the constraint in Equation 9.

5.1.3 Solving the Optimization Problems. We propose a unified
framework to solve the reformulated optimization problems in
WEvade-W-I and WEvade-W-IIL Our key idea of solving the refor-
mulated optimization problems is that we use the popular projected
gradient descent (PGD) [17] to iteratively find the perturbation §
that satisfies the constraints (if possible) for a given r. Then, we
perform binary search over r to find the smallest perturbation §
that satisfies the constraints. Specifically, the binary search inter-
val [rg, rp] is initialized such that r, = 0 and r}, is a large value
(e.g., 2). Then, we pick r = (rq + rp)/2 and solve a reformulated
optimization problem for the given r. If the found perturbation &
satisfies the constraint in the reformulated optimization problem,
then we update r;, = r, otherwise we update r, = r. We repeat
the process until the binary search interval size is smaller than a
threshold, e.g., rp, — rq < 0.001 in our experiments. Algorithm 1
in Appendix shows our binary search process, where the target
watermark w; = =D(I,,) in WEvade-W-I and w; is a randomly
picked watermark in WEvade-W-II. The function FindPerturbation
solves a reformulated optimization problem to find ¢ for a given r.

Next, we discuss the function FindPerturbation, which is illus-
trated in Algorithm 2 in Appendix. We solve the optimization prob-
lem for a given r using PGD. The perturbation § is initialized to be
0. In each iteration, we compute the gradient of the loss function
I(D(I,, + &), w;) with respect to § and move § towards the inverse
of the gradient by a small step &, which is known as learning rate.
If the foo-norm of § is larger than the perturbation bound r, we
project it so its feo-norm is r. We repeat the process for max_iter
iterations and stop the iterative process early if the constraint in the
reformulated optimization problem (i.e., Equation 5 in WEvade-W-I
or Equation 9 in WEvade-W-II) is already satisfied.

5.2 Black-box Setting
Surrogate-model-based (WEvade-B-S): The first direction is that
the attacker trains a surrogate encoder/decoder, and then performs

CCS’23, November 26-30, 2023, Copenhagen, Denmark

white-box attacks based on its surrogate decoder. The key hypothe-
sis of such method is that the surrogate detector outputs a similar
watermark with the target decoder for a post-processed water-
marked image, and thus the post-processed watermarked image
constructed to evade the surrogate decoder based detector may also
evade the target detector. Specifically, the attacker collects some
images and trains an encoder/decoder using the watermarking al-
gorithm on its own images. The attacker’s images and the service
provider’s images used to train encoders/decoders may be from dif-
ferent distributions. After training a surrogate encoder and decoder,
the attacker can turn a watermarked image I,, into a post-processed
one Iy, using the surrogate decoder and the white-box attack, e.g.,
WEvade-W-1II in our experiments. Note that WEvade-B-S does not
rely on information of the target detector (e.g., target decoder and
7), and thus the same Ipw could be used for all detectors.

Query-based (WEvade-B-Q): WEvade-B-S does not directly take
information about the target detector into consideration. As a re-
sult, the surrogate decoder may be quite different from the target
decoder, leading to low evasion rates as shown in our experiments.
To address the challenge, WEvade-B-Q finds the post-processed
watermarked image Iy, by directly querying the target detector.
Note that in this setting, we post-process a watermarked image
to evade a target detector with a particular threshold 7, unlike the
white-box setting where we aim to evade detectors with any thresh-
old 7 > 0.5. Finding Iy in such scenario can be viewed as finding
adversarial example to the target detector (i.e., a binary classifier)
which returns a hard label for a query image. Therefore, we ex-
tend state-of-the-art hard-label query-based adversarial example
technique called HopSkipJump [6] to find I, in our problem.

Specifically, HopSkipJump first generates a random initial I,
that evades the target detector by blending the given watermarked
image I,, with uniform random noise. Then, HopSkipJump itera-
tively moves I, towards I, to reduce perturbation while always
guaranteeing that I, evades detection. In each iteration, Hop-
SkipJump returns a new Iy, and the number of queries to the
target detector API used to find such Ip,,. HopSkipJump stops the
iterative process when reaching a given query budget. We found
that simply applying HopSkipJump to watermark-based detector
leads to large perturbations. This is because 1) the random initial
Ipw may be far away from I,,, and 2) the perturbation may increase
after some iterations before reaching the query budget.

Our WEvade-B-S extends HopSkipJump by addressing the two
limitations. First, instead of using a random initial I,,,, WEvade-B-S
uses a post-processed version of I, as the initial I,,. For instance,
we can use JPEG compression to post-process I,, as the initial I,.
In particular, we decrease the quality factor Q of JPEG in the list
[99, 90, 70, 50, 30, 10, 1] until finding a post-processed version
of I,, that evades detection, which is our initial Ipw. When none
of the quality factor can generate a post-processed version of I,
that evades the target detector, we revert to the random initial
Ipw adopted by HopSkipJump. Second, we early stop the iterative
process when the perturbation in I, increases in multiple (denoted
as ES) consecutive iterations. Algorithm 3 in Appendix shows our
WEvade-B-S, where the function HopSkipJump(Iy,) returns a new
Ipw and the number of queries to the API used to find it.

CCS’23, November 26-30, 2023, Copenhagen, Denmark

6 THEORETICAL ANALYSIS

Given a watermarked image I,,, our attack turns it into a post-
processed watermarked image I,,,. We define evasion rate of I,
as the probability that it is falsely detected as non-Al-generated,
where the randomness (if any) in calculating the probability stems
from our attack, e.g., the randomness in picking the target water-
mark w; in WEvade-W-II. We formally analyze the evasion rate of
WEvade against both single-tail detector and double-tail detector
in the white-box and black-box settings. All the proofs are shown
in Appendix.

6.1 White-box Setting

WEvade-W-I: Suppose a watermarked image I,, can be correctly
detected by a (single-tail or double-tail) detector with threshold
7 > 0.5. The following theorem shows that the post-processed wa-
termarked image Iy, found by WEvade-W-Tis guaranteed to evade
the single-tail detector with evasion rate 1, while it is guaranteed
to be detected by the double-tail detector (i.e., evasion rate is 0).

THEOREM 1. Given a watermarked image I, that can be detected
by a single-tail or double-tail detector with a threshold T > 0.5.
Suppose Iy is found by our WEvade-W-1. 1., is guaranteed to evade
the single-tail detector, but is guaranteed to be detected by the double-
tail detector. Formally, we have the following:

Single-tail detector: BA(D(Ipy), W) < 1, (10)
Double-tail detector: BA(D(Ipy), w) <1-1
or BA(D(Ipw), w) > 1, (11)

where w is any unknown ground-truth watermark.

WEvade-W-II: The following theorems show the evasion rates of
WEvade-W-II against single-tail and double-tail detectors.

THEOREM 2. Given a watermarked image I,, and a single-tail
detector with any threshold t > 0.5. Suppose Ip,y is found by our
WEvade-W-II. For any ground-truth watermark w, the probability
(i.e., evasion rate) that Iy, successfully evades the single-tail detector
can be lower bounded as follows:

Pr(BA(D(Ipw),w) < 7) 2 P(|(7 — €)n]), (12)

where n is the watermark length and P(t) = Pr(m < t) is the cumula-
tive distribution function of the binomial distribution m ~ B(n, 0.5).

THEOREM 3. Given a watermarked image I,, and a double-tail
detector with any threshold T > 0.5. Suppose I, is found by our
WEvade-W-II. For any ground-truth watermark w, the probability
(i.e., evasion rate) that I, successfully evades the double-tail detector
can be lower bounded as follows:

Pr(1 -1 < BA(D(Ipw),w) < 1) 2 2P([(r —€)n]) - 1, (13)

where n is the watermark length and P(t) = Pr(m < t) is the cumula-
tive distribution function of the binomial distribution m ~ B(n,0.5).

Theorem 2 and 3 indicate that the evasion rate lower bound of a
post-processed watermarked image I, constructed by WEvade-
W-II depends on 7 used by the detector, € adopted by the attacker
in WEvade-W-II, and the watermark length n. For instance, for a
detector with a larger 7, the evasion rate is larger.

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

6.2 Black-box Setting

WEvade-B-S: The evasion rate of WEvade-B-S relies on the "sim-
ilarity" between the surrogate decoder D’ and target decoder D.
Based on a formal definition of similarity between the watermarks
decoded by the surrogate decoder D’ and target decoder D for any
image, we can derive the evasion rate of WEvade-B-S. First, we
formally define the similarity between D’ and D as follows:

DEFINITION 1 ((f, y)-SIMILAR). Suppose we are given a surrogate
decoder D’ and target decoder D. We say D’ and D are (B, y)-similar
if their outputted watermarks have bitwise accuracy at least with
probability at least y for an image I picked from the watermarked-
image space uniformly at random. Formally, we have:

Pr(BA(D'(I),D(I)) 2 p) > y. (14)

Then, given that D’ and D are (S, y)-similar, the following the-
orem shows lower bounds of the evasion rates of WEvade-B-S
against single-tail detector and double-tail detector.

THEOREM 4. Suppose WEvade-B-S finds an I, based on a surro-
gate decoder D’; and D’ and the target decoder D are (f,y)-similar.
Then, the evasion rates of I, for a single-tail detector or double-tail
detector with threshold T > 0.5 are lower bounded as follows:

Single-tail detector:
Pr(BA(D(Ipw),w) < 1) 2 yP(L(z+ f— €~ 1)n]) (15)
Double-tail detector:

Pr(1 -1 < BA(D(Ipw),w) <17) 2 2yP([(r+f—€e~-1)n]) -1,
(16)

where w is the unknown ground-truth watermark.

WEvade-B-Q: WEvade-B-Q starts from an initial I, that evades
the target detector. During the iterative process to reduce the pertur-
bation, WEvade-B-Q always guarantees that I,,, evades detection.
Therefore, the evasion rate of WEvade-B-Q is 1. Note that the eva-
sion rate is only for the target detector.

7 EVALUATION
7.1 Experimental Setup

Datasets: We use three benchmark datasets, including COCO [15],
ImageNet [8], and Conceptual Caption (CC) [31]. Following HiD-
DeN [46] and UDH [42], we randomly sample 10,000 training im-
ages from each dataset to train watermarking encoder and decoder.
For evaluation, we randomly sample 100 images from the testing
set and embed a watermark into each image. For each image in all
datasets, we re-scale its size to 128 X 128.

Post-processing methods: We compare with the following exist-
ing post-processing methods, which are widely used to measure
robustness of watermarking methods. Each of these post-processing
methods has some parameter, which controls the amount of pertur-
bation added to a watermarked image and thus evasion rate.

JPEG. JPEG [43] is a popular image compression method. It
has a parameter called quality factor Q. A smaller quality factor
compresses an image more, is more likely to evade detection, and
also adds larger perturbation.

Gaussian noise. This method adds a random Gaussian noise to
each pixel of a watermarked image. The Gaussian distribution has

Evading Watermark based Detection of Al-Generated Content

amean 0 and standard deviation ¢. The o controls the perturbation
and thus evasion rate.

Gaussian blur. This method blurs a watermarked image. It has
a parameter called kernel size s and standard deviation o. We did
not observe much impact of the kernel size once it is small enough,
and thus we set s = 5. However, we will vary o to control the
perturbation added to watermarked images and thus evasion rate.

Brightness/Contrast. This method adjusts the brightness and
contrast of an image. Formally, the method has two parameters a
and b, where each pixel value x is converted to ax+b. b has a smaller
impact. We set b = 0.2 and vary a to control the perturbation added
to watermarked images.

Watermarking methods: We consider two representative learning-
based methods HiDDeN [46] and UDH [42], whose implementa-
tions are publicly available. To consider watermarks with different
lengths, we use 30-bit watermarks in HiDDeN and 256-bit water-
marks in UDH. We use the default parameter settings of HiDDeN
and UDH in their publicly available code. HiDDeN normalizes the
pixel value range [0, 255] to be [-1, 1], while UDH normalizes to
[0, 1]. We consider both standard training and adversarial training
as described in Section 2.2. but the encoders/decoders are trained
using standard training unless otherwise mentioned. In adversarial
training, we randomly sample a post-processing method from no
post-processing, the existing ones, and ours with a random param-
eter to post-process each watermarked image in a mini-batch. We
use WEvade-W-II with the parameter € = 0.01 if our adversarial
post-processing method is sampled. For the existing methods, we
consider the following range of parameters during adversarial train-
ing: Q € [10, 99] for JPEG, o € [0, 0.1] for Gaussian noise, o €[0,
1.0] for Gaussian blur, and a € [1, 5] for Brightness/Contrast. We
consider these parameter ranges because parameters out of the
ranges impact the images’ visual quality.

Evaluation metrics: We consider bitwise accuracy, evasion rate,
and average perturbation. Bitwise accuracy of an image is the frac-
tion of the bits of its watermark that match with the ground-truth
one. Evasion rate is the fraction of post-processed watermarked
images that evade detection. Perturbation added to a watermarked
image is measured by its f-norm. For each dataset, we report
bitwise accuracy, evasion rate, and perturbation averaged over
100 original/watermarked/post-processed testing images. Note that
HiDDeN normalizes the pixel value range [0, 255] to be [-1, 1].
Therefore, we divide the perturbation in HiDDeN by 2, so the per-
turbation represents the fraction of the pixel value range [0, 255] in
both HiDDeN and UDH. For instance, a perturbation of 0.02 means
changing each pixel value by at most 0.02 * 255 = 5 of an image.

Parameter settings: We set max_iter = 5,000, & = 0.1 for HiD-
DeN and a = 1 for UDH in WEvade-W-I and WEvade-W-II. We
use a larger a for UDH because its watermark length is larger. We
set € = 0.01 in WEvade-W-II. For WEvade-B-Q, unless otherwise
mentioned, we set the query budget to be 2,000 and the early stop-
ping threshold ES = 5. By default, we use the £;-distance as the loss
function. Unless otherwise mentioned, we show results when the
dataset is COCO, watermarking method is HiDDeN, and detector
is the double-tail detector.

CCS’23, November 26-30, 2023, Copenhagen, Denmark

=+= (COCO i =+= COCO

0.8 ImageNet 08 ImageNet
o —— Theoretical =
= 0.4 0.4

0.2 1 0.2

!
0.0 4 0.0
‘[f.(l 0.9 0.8 0.7 0.6 0.5 'Lf.ll 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7
(a) FPR (b) FNR

Figure 4: False positive rate (FPR) and false negative rate
(FNR) of the double-tail detector based on UDH as the thresh-
old 7 varies when there are no attacks.

1.0 - 1.0
Z N-=- Bitwise Accuracy
% 0.8 —— Perturbation 0,8_%
I N =
2 0.6 R 0.6 2
Z il =
5 fan
/0.4 0.4 ¢
< =
2 g
£0.2 022
=

0. 0 05 10 0.0

Standard Deviation o
Figure 5: Average bitwise accuracy and average perturbation
of the post-processed watermarked images when Gaussian
blur uses different standard deviations.

1.00 g
o

1.00

=

Evasion Rate
&

50| —e COCO —— COCO
ImageNet ImageNet
0.251 -*- CC e CC
—=— Theoretical —=— Theoretical
U'()(i.() 0.9 0.8 0.7 0.6 0.5 ()'[][1.1) 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7
(a) HiDDeN (b) UDH

Figure 6: Evasion rates of WEvade-W-II against the double-
tail detector with different 7 for the three datasets when the
watermarking method is (a) HiDDeN and (b) UDH.

7.2 Detection Results without Attacks

We first show detection results when there are no attacks to post-
process watermarked images. Figure 4 shows the false positive rate
(FPR) and false negative rate (FNR) of the double-tail detector based
on UDH when the threshold 7 varies from 0.99 to 0.50, where FPR
is the fraction of original testing images that are falsely detected as
watermarked and FNR is the fraction of watermarked testing images
that are falsely detected as original. The results for the double-tail
detector based on HiDDeN and single-tail detector are shown in
Figure 19 and Figure 20 in Appendix, respectively. The "Theoretical”
curves are the theoretical FPRs of the detectors, i.e., FPRs(7) in
Equation 1 and FPR;(7) in Equation 2. There is no theoretical
analytical form for FNR, and thus there are no curves corresponding
to "Theoretical” in the FNR graphs. Note that FPR;(7) or FPR;(7)
is the theoretical FPR for any original image when the ground-
truth watermark is picked uniformly at random. More specifically,
given any original image, if we pick 100 ground-truth watermarks
uniformly at random, the theoretical FPR is roughly the fraction

CCS’23, November 26-30, 2023, Copenhagen, Denmark

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

0.0 0.0 0.0
£ —05 = —0.5 Beanrgp e —— £ —05
= = — e — =
Z e 2 —-+ JPEG Z
3 —10 Gaussian noise 5 —10 Gaussian noise g —10
= e Gaussian blur - e Gaussian blur =
= m-+ Brightness/Contrast o0 - «-m++ Brightness/Contrast =
= —15 iy ! T — < _15
5 15 —e— WEvade-W-II £-15 —e— WEvade-W-II £ 715 . prc
>4 = >4
P = P Gaussian noise ————o—
=-2.0 =920 S _9.(f ~* Gaussian blur
20 @ o0 -+m:- Brightness/Contrast
- - - —e— WEvade-W-I1
72.-5'1 - —2.5 P - . —2.5 P -
.0 0.9 0.8 0.7 0.6 0.5 1.0 0.9 0.8 0.7 0.6 0.5 1.0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7 Detection Threshold 7
(a) COCO (b) ImageNet (c) CC

Figure 7: Average perturbation added by each post-processing method to evade the double-tail detector with different threshold
7 in the white-box setting. We set the parameters of existing post-processing methods such that they achieve the same evasion
rate as our WEvade-W-II. The watermarking method is HiDDeN and the results for UDH are shown in Figure 24 in Appendix.

of the 100 trials in which the original image is falsely detected as
watermarked. The empirical FPR shown in Figure 4 can be viewed as
estimating the theoretical FPR of each original testing image using
one randomly picked ground-truth watermark and then averaging
the estimated theoretical FPRs among the original testing images.
We have three observations. First, under no attacks, both single-
tail and double-tail detectors are accurate when the threshold 7 is
set properly. In particular, for HIDDeN (or UDH), both FPR and FNR
of both detectors are consistently close to 0 on the three datasets
when 7 varies from 0.7 to 0.95 (or from 0.6 to 0.99). The range
of such 7 is wider for UDH than for HiDDeN, i.e., [0.6, 0.99] vs.
[0.7, 0.95]. This is because UDH uses a longer watermark than
HiDDeN, i.e., 256 vs. 30 bits. Second, the theoretical FPR is close to
the empirical FPRs, i.e., the "Theoretical" curve is close to the other
three FPR curves in a graph. They do not exactly match because
the empirical FPRs are estimated using only one randomly picked
ground-truth watermark. Third, given the same threshold 7z, the
double-tail detector has a higher FPR than the single-tail detector,
which is more noticeable when 7 is small (e.g., 0.55). This is because
the double-tail detector considers both the left and right tails of the
bitwise-accuracy distribution (see illustration in Figure 3).

7.3 Attack Results in the White-box Setting

WEvade outperforms existing post-processing methods: Each
existing post-processing method has a parameter (discussed in Sec-
tion 7.1), which controls how much perturbation is added to a wa-
termarked image. Figure 5 shows the average bitwise accuracy and
average perturbation of the watermarked images post-processed by
Gaussian blur with different parameter values, where HiDDeN and
COCO dataset are used. Figure 22 and Figure 23 in Appendix show
the results on other post-processing methods and datasets. Based on
these results, we compare WEvade with existing post-processing
methods with respect to evasion rate and average perturbation
added to the watermarked images. Note that there exists a trade-off
between evasion rate and average perturbation. Therefore, for a
given threshold 7, we tune the parameters of the existing methods
such that they achieve similar evasion rates (within 1% difference)
with WEvade and we compare the average perturbation.

Figure 6 shows the evasion rates of WEvade-W-II when the
double-tail detector uses different threshold 7, while Figure 7 shows

0.020

100 —= {y distance
Cross-entropy
< 0.75 -+ Negative cosine similarity
= —— {, distance
~ £
2 050 Eo.om0 B o N e A e
f —e— f, distance %
= 0.25 Cross-entropy gn_(m
#- Negative cosine similarity =
—e— {, distance
. - 0.00G n
0)(1.[) 0.9 0.8 0.7 0.6 0.5 I 1.0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7

Figure 8: Comparing different loss functions.

the average perturbations that each method requires to achieve
such evasion rates. The "Theoretical" curves in Figure 6 correspond
to the theoretical lower bounds of evasion rates of WEvade-W-
II in Theorem 3, i.e., 2P([(7r — €)n]) — 1. Specifically, e = 0.01
and n = 30 in our experiments and we use 2P(|(r — €)n]) — 1 to
calculate the lower bound of evasion rate for any 7. The average
perturbation of WEvade-W-II is a straight line in Figure 7 because
the perturbation added by WEvade-W-II does not depend on 7.
Note that, in our experiments, we give advantages to existing post-
processing methods, i.e., we assume they can tune their parameters
for a given threshold 7, while our WEvade-W-II does not assume
the knowledge of 7.

First, the empirical evasion rates are close to the "Theoretical"
lower bounds in Figure 6, which validates our theoretical analy-
sis. The empirical evasion rates are sometimes slightly lower than
the theoretical lower bounds because the empirical evasion rates
are calculated using a small number (100 in our experiments) of
watermarked images. Second, our results show that WEvade-W-
1T substantially outperforms existing post-processing methods. In
particular, WEvade-W-II requires much smaller perturbations to
achieve high evasion rates. We also found that when existing meth-
ods use parameter values to achieve average perturbations no more
than WEvade-W-II, their evasion rates are all 0.

Comparing WEvade-W-I and WEvade-W-II: Figure 21 in Appen-
dix shows the evasion rates and average perturbations of WEvade-
W-I and WEvade-W-II as the single-tail detector or double-tail de-
tector uses different threshold 7, where the dataset is COCO and
watermarking method is HiDDeN. First, we observe that WEvade-
W-I achieves evasion rate of 1 for the single-tail detector while 0 for
the double-tail detector, which is consistent with our Theorem 1.
Second, for the single-tail detector, WEvade-W-I achieves higher

Evading Watermark based Detection of Al-Generated Content

0.020
1.00 . oo
o £0.015 e=01
g0 Z v €= 0.05
(o =
- . £ —— =001
2050{ —— e=02 \ & 0.010
A e=01 ~ > | EIEE Sohi
025 s+ €=005 \ £0.005
. =
—— =001 N
0509 or or 06 o5 YT 09 o8 o7 o6 05

Detection Threshold 7 Detection Threshold 7

Figure 9: Comparing different € values.

£1.0] e ety
z ki
el
E Ar'/
o Rd
»
R4
k4
/
/
4
204
= 50 100

Watermark Length n
Figure 10: Impact of watermark length n.

evasion rates than WEvade-W-II when 7 is small (e.g., 0.6) but in-
curs larger average perturbation than WEvade-W-IL This is because
WEvade-W-I adds (larger) perturbation to flip each bit of the wa-
termark of the watermarked image. However, we stress that their
average perturbations are both very small. Third, for the double-tail
detector, WEvade-W-II achieves higher evasion rates and incurs
smaller average perturbations than WEvade-W-I. Note that the per-
turbations added by both WEvade-W-I and WEvade-W-II do not
depend on the detector, and thus the average-perturbation curves
for WEvade-W-I (or WEvade-W-II) are the same for the single-tail
detector and double-tail detector in Figure 21.

Impact of loss function: Figure 8 compares different loss func-
tions with respect to evasion rate and average perturbation of
WEvade-W-II. We observe that these loss functions achieve com-
parable results, though #;-distance and negative cosine similarity
achieve slightly smaller average perturbations. The reason is that,
in our Algorithm 1, we find the smallest perturbation that satisfies
the constraint in Equation 9 no matter what loss function is used;
and in Algorithm 2, we early stop as long as the constraint in Equa-
tion 9 is satisfied. Moreover, our Theorem 3 shows that the evasion
rate of WEvade-W-II does not depend on the loss function once the
found perturbation satisfies the constraint in Equation 9.

Impact of e: Figure 9 compares different € values with respect to
evasion rate and average perturbation of WEvade-W-II. We observe
that € achieves a trade-off between evasion rate and average pertur-
bation. As € increases, perturbation decreases because Equation 9
is easier to be satisfied; but evasion rate also decreases because the
decoded watermark is less similar to the target watermark w;.

Impact of watermark length n: Figure 10 shows the theoretical
lower bound of evasion rate of WEvade-W-1I to double-tail detector
(i-e., 2P([(r — €)n]) — 1) as a function of the watermark length n,
where € = 0.01 and 7 varies from 0.6 to 0.9. We observe that the
lower bound increases as n increases. This is because the randomly

CCS’23, November 26-30, 2023, Copenhagen, Denmark

0.10

—e+— Standard training

0.08 —— Adversarial training

turbation

0.06

=

—+— Standard training

Average Per
B

—— Adversarial training

P — b

0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7

(l.Uii (l.i)ii

0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7

Figure 11: Standard vs. adversarial training for WEvade-W-II.

] ——— 1.00 100

e WEvade-B-S
—— WEwdeB-Q

e WEwdeBS | “oas| o WEwdeBS [025

—— WEwdeBQ

025 Y
—— WEvadeBQ .

0. = - . 0 e - .0 =
{0 09 08 07 06 05 10 09 08 07 06 05 1o 09 08 07 o0
Detection Threshold 7 Detection Threshold 7 Detection Threshold 7

6 05

0 0.
—— WEvade B-S o _ e~ WEvade-B-S
—— WEwadeB-Q 2 2 —— WEwdeB-Q

e 2 0.02 2 0.02
20.01 Z0.01
[A, g z _
z z [o RN
. =
U959 o5 07 o5 o5 Mo 05 us o7 o6 o5 Mo o9 o5 o7 o5 05
Detection Threshold 7 Detection Threshold 7 Detection Threshold 7
(a) COCO (b) ImageNet (c) CC

Figure 12: Comparing evasion rates (first row) and average
perturbations (second row) of WEvade-B-S and WEvade-B-
Q in the black-box setting. The watermarking method is
HiDDeN and Figure 26 in Appendix shows results for UDH.

picked target watermark w; is more likely to have a bitwise accuracy
0.5 compared to the ground-truth watermark as n increases.

Adversarial training improves robustness but is still insuffi-
cient: Figure 11 compares standard training and adversarial train-
ing with respect to the evasion rates and average perturbations
of WEvade-W-II. We have three observations. First, adversarial
training improves robustness of the detector. In particular, WEvade-
W-II achieves the same evasion rates for standard and adversarial
training. This is because evasion rates of WEvade-W-II do not
depend on how the encoder and decoder are trained. However,
WEvade-W-II needs to add larger perturbations on average when
adversarial training is used. Second, adversarial training is still in-
sufficient. Specifically, the perturbations added by WEvade-W-II
are still small, which maintain visual quality of the images well
(Figure 1 shows some example images). Third, WEvade-W-II still
outperforms existing post-processing methods when adversarial
training is used. In particular, Figure 25 in Appendix shows that
WEvade-W-II still adds much smaller perturbations than existing
methods when they tune parameters to achieve similar evasion
rates with WEvade-W-IL

7.4 Attack Results in the Black-box Setting

WEvade-B-S vs. WEvade-B-Q: Figure 12 shows the evasion rate
and average perturbation of WEvade-B-S and WEvade-B-Q on the
three datasets. Note that, for target detectors with different 7, we ap-
ply WEvade-B-Q separately to find the (different) perturbations for
a watermarked image, while WEvade-B-S adds 7-agnostic perturba-
tion to a watermarked image. First, WEvade-B-Q always achieves
evasion rate of 1 while the evasion rate of WEvade-B-S decreases
to 0 as the threshold 7 decreases. This is because the surrogate

CCS’23, November 26-30, 2023, Copenhagen, Denmark

0.04 0.03
—+- COCO == Single-tail Detector
*, ImageNet E —e— Double-tail Detector
w CC £0.02
. E
. &
. -
* Ry 20.01
— Ty | E
N 3

0.00 30 100 1000 2000 “‘Uli .0

Query Budget (log scale)

0.9 0.8 0.7 0.6 0.5
Detection Threshold 7

(a) Impact of query budget max_q (b) Single-tail vs. double-tail detector
Figure 13: (a) Average perturbation of WEvade-B-Q as query
budget varies. (b) Average perturbation of WEvade-B-Q to
evade the single-tail detector or double-tail detector with
different threshold .

decoder and the target decoder output dissimilar watermarks for an
image. As our Theorem 4 shows, when the surrogate decoder and
the target decoder are more likely to output dissimilar watermarks,
the evasion rate of WEvade-B-S decreases. Second, WEvade-B-Q
adds larger perturbation as 7 decreases. This is because the decision
boundary of a detector with smaller 7 is further away from the
watermarked images and WEvade-B-Q requires larger perturba-
tions to move them across such boundary. Third, the perturbation
of WEvade-B-S does not depend on 7 because it uses the white-box
attack WEvade-W-II to find perturbations.

Impact of the number of queries on WEvade-B-Q: Figure 13a
shows the average perturbation added by WEvade-B-Q when the
query budget max_q per watermarked image varies, where the
threshold 7 = r* = 0.83 (corresponding to FPR=10"*). Note that
the evasion rate is always 1. We observe that the average perturba-
tion added by WEvade-B-Q decreases rapidly as the query budget
increases. Moreover, when the query budget is small, the average
perturbation is already small. For instance, when the query budget is
30 and dataset is COCO, the average perturbation added by WEvade-
B-Q is 0.032. On the contrary, existing post-processing methods
JPEG, Gaussian noise, Gaussian blur, and Brightness/Contrast re-
spectively add average perturbations 0.211, 0.109, 0.395, and 0.439 to
achieve evasion rates close to 1. We acknowledge that WEvade-B-Q
requires queries for each watermarked image, so the total number
of queries may be large when an attacker aims to evade detection
of many watermarked images. However, we note that an attacker
can perform a high-profile targeted attack by evading detection of a
single or a small number of watermarked images, e.g., a fake image
of Elon Musk dating GM CEO Mary Barra [32]. In such scenarios,
an attacker can afford a larger number of queries for the targeted
watermarked images.

Single-tail vs. double-tail detector: Figure 13b shows the aver-
age perturbations added by WEvade-B-Q to evade the single-tail
detector and double-tail detector. We observe that WEvade-B-Q
adds similar perturbations to evade the two detectors. The reason is
that WEvade-B-Q only uses the detector API without considering
the internal mechanisms of the detector. Note that the evasion rates
of WEvade-B-Q are always 1.

Black-box vs. white-box: Figure 14 compares the evasion rate and
average perturbation of WEvade in the white-box (i.e., WEvade-W-
IT) and black-box settings (i.e., WEvade-B-Q). First, WEvade-B-Q
adds smaller perturbations when 7 is large (e.g., 0.9) but larger

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

0.03

o WEvade-W-II
—=— WEvade-B-Q

ate

Evasion R

o WEvade-W-II
—=— WEvade-B-Q

e

0. = - - =
Hi,() 0.9 0.8 0.7 0.6 0.5 0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7

Figure 14: White-box vs. black-box.

[i.ll(i

- Standard Training o
—=— Adversarial Training 0.09 ’/r,/"
e

o

s —-=— HopSkipJump
= —— WEvade-B-Q

s
2003 e

0.00 30 100 1000 2000 U'Utiv()

Query Budget (log scale)

0.9 0.8 0.7 0.6 0.5
Detection Threshold 7

(a) Standard vs. adversarial training (b) WEvade-B-Q vs. HopSkipJump
Figure 15: (a) Average perturbation of WEvade-B-Q as the
query budget increases. (b) WEvade-B-Q vs. HopSkipJump.

perturbations when 7 is small (e.g., 0.6). This is because WEvade-B-
Q requires larger perturbations to move watermarked images across
the decision boundary of a detector with smaller r while WEvade-W-
11 is agnostic to 7. However, we stress that the perturbations of both
WEvade-B-Q and WEvade-W-II are small. Second, the perturbations
of WEvade-B-Q are still much smaller than those of existing post-
processing methods (refer to Figure 7). Third, WEvade-B-Q achieves
higher evasion rates than WEvade-W-II when 7 is small (e.g., 0.6).
This is because WEvade-B-Q guarantees evasion rate of 1.

Adversarial training: Figure 15a compares the average perturba-
tions added by WEvade-B-Q with different query budget max_q for
detectors obtained by standard training and adversarial training,
where we set 7 = r* = 0.83 (corresponding to FPR=10"%). Adversar-
ial training improves robustness in the sense that an attacker needs
more queries to achieve similar level of perturbation. However, we
stress that adversarial training is insufficient because a moderate
number of queries can still achieve small perturbations.

Comparing WEvade-B-Q with HopSkipJump: Figure 15b com-
pares WEvade-B-Q with HopSkipJump in terms of average per-
turbations, where the watermarking method is UDH and dataset
is COCO. We observe that WEvade-B-Q adds much smaller per-
turbations than HopSkipJump. This is because WEvade-B-Q uses
JPEG compressed version of a watermarked image as initialization
and adopts early stopping when the added perturbation increases.
Figure 27 in Appendix further shows that both the initialization and
early stopping contribute to WEvade-B-Q. We note that WEvade-
B-Q achieves comparable perturbations with HopSkipJump for
HiDDeN. This is because HiDDeN uses 30-bit watermarks and thus
the detectors have much simpler decision boundaries.

7.5 Attacking Stable Diffusion’s Detector

We generate 100 watermarked images using Stable Diffusion with
default setting. We use sd-vi-1.ckpt as the checkpoint. Stable Diffu-
sion uses a watermark="StableDiffusionV1", which is represented

Evading Watermark based Detection of Al-Generated Content

1.0 1.0 0.5
z \‘ —== Bitwise Accuracy —— JPEG
208 | —— Perturbation 085 Z04{ —— WEwdeB-Q >
5 \ = = /»—4-0-—0—-0--—0—/'
2061 Al
& 04
S
502
2
< —

0.0 100 Yo 50 25]O'O O'q.(] 0.9 0.8 0.7 0.6 0.5

Quality Factor Q Detection Threshold 7
(a) JPEG (b) Average Perturbation

Figure 16: (a) Average bitwise accuracy and average pertur-
bation of the Stable Diffusion watermarked images post-
processed by JPEG with different quality factor Q. (b) Average
perturbation added by JPEG compression and WEvade-B-Q
to evade the double-tail detector with different threshold 7.

(a) Watermarked
Figure 17: Illustration of a Stable Diffusion watermarked
image and the versions post-processed by JPEG and WEvade-
B-Q to evade watermark-based detection.

(b) JPEG (c) WEvade-B-Q

as 136 bits. The decoder can decode the exact watermark from each
of the 100 watermarked images. Figure 16a shows the average bit-
wise accuracy and average perturbation of the watermark images
post-processed by JPEG with different quality factor Q. When Q is
around 80, the bitwise accuracy already reduces to be around 0.5,
which means a watermark-based detector cannot distinguish JPEG
compressed watermarked images with original images. Figure 16b
shows the average perturbation incurred by JPEG compression
and WEvade-B-Q to evade the double-tail detector. Our WEvade-
B-Q incurs much smaller perturbations than JPEG compression.
Figure 17 shows an example Stable Diffusion watermarked image,
its JPEG compressed version, and the version post-processed by
WEvade-B-Q to evade the double-tail detector with 7 = 0.66 (cor-
responding to FPR=10"%). As we can see, both JPEG compression
and WEvade-B-Q can evade the Stable Diffusion’s detector, which
is based on a non-learning-based watermarking method, without
sacrificing the image quality.

8 DISCUSSION AND LIMITATIONS

Other metrics to quantify perturbation: Attacker’s goal is to
add small perturbation to evade detection while preserving visual
quality of the image. We use fo-norm of the perturbation to quantify
whether it preserves visual quality, which is a popular choice in
adversarial examples [5, 12]. In particular, when fo-norm of the
perturbation is small enough, the visual quality is preserved. We
can also use other {p-norms, e.g., £2-norm, or SSIM [36] between a
watermarked image and its post-processed version, to quantify the
perturbation. For instance, Figure 18 compares the perturbations
added by different post-processing methods in the white-box setting
when using #2-norm or SSIM to quantify the perturbation, while
Figure 28 in Appendix shows the results in the black-box setting,

CCS’23, November 26-30, 2023, Copenhagen, Denmark

80
60 e
£ U e e
40
< 4
20 /
220 /
= N PO - “?2'" .
N e e et i
(1,0 0.9 0.8 0.7 0.6 0.5 LLO 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7
T P——
i T
=075 B S
7 v
2050 ... \
8 \
= L TIRA G
0.25 3 [
T
—— WEw .
U'()Li.() 0.8 0.7 0.6 0.5 ()4[1[1.1) 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7

(a) Standard training (b) Adversarial training

Figure 18: Average perturbation, measured by £-norm (first
row) or SSIM (second row), added by each post-processing
method to evade the double-tail detector with different
threshold 7 in the white-box setting. We set the parameters of
existing post-processing methods such that they achieve the
same evasion rate as our WEvade-W-II. The watermarking
method is HiDDeN and dataset is COCO.

where WEvade uses the default parameter settings described in
Section 7.1. Our results show that WEvade still adds much smaller
perturbations than existing methods when #;-norm or SSIM is used
to quantify the perturbation. We acknowledge that £,-norms and
SSIM are approximate measures of perturbations’ impact on visual
quality. Previous works [30] on adversarial examples showed that
small £,-norms of perturbations may not be sufficient nor necessary
conditions to maintain visual quality. It is an interesting future work
to explore other metrics to quantify the impact of perturbation on
visual quality specifically in the generative AI domain.

Provably robust watermarking methods: The fundamental rea-
son that watermarking-based detectors can be evaded by our at-
tack is that existing watermarking methods do not have provable
robustness guarantees. Specifically, an attacker can add a small per-
turbation to a watermarked image such that the decoder outputs
a different watermark for the post-processed watermarked image.
To defend against such attacks, one interesting future work is to
build watermarking methods with provable robustness guarantees.
In particular, a provably robust watermarking method is guaran-
teed to output similar watermarks for a watermarked image and
its post-processed version once the added perturbation is bounded,
e.g., its fo-norm or f»-norm is smaller than a threshold. For in-
stance, if the watermarks decoded from a watermarked image and
its post-processed version are guaranteed to have bitwise accuracy
of 0.85 once the #--norm of the perturbation is bounded by 0.03,
then a detector with threshold 7 = 0.8 is guaranteed to detect the
post-processed version once the f-norm of the perturbation is
bounded by 0.03. If the perturbation bound is large enough to be
human-perceptible, an attacker has to sacrifice visual quality of the
watermarked image in order to evade watermarking-based detector,
leading to a dilemma for the attacker, i.e., either being detected or
perturbed images have low quality.

CCS’23, November 26-30, 2023, Copenhagen, Denmark

9 CONCLUSION AND FUTURE WORK

We find that watermark-based detection of Al-generated content is
vulnerable to strategic, adversarial post-processing. An attacker can
add a small, human-imperceptible perturbation to an Al-generated,
watermarked image to evade detection. Our results indicate that
watermark-based Al-generated content detection is not as robust
as previously thought. We also find that simply extending standard
adversarial examples to watermarking is insufficient since they do
not take the unique characteristics of watermarking into consider-
ation. An interesting future work is to explore watermark-based
detectors with provable robustness guarantees.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive com-
ments. This work was supported by NSF grant No. 1937787, 1937786,
2112562, and 2125977, as well as ARO grant No. W911NF2110182.

REFERENCES

[1] Sahar Abdelnabi and Mario Fritz. 2021. Adversarial watermarking transformer:
Towards tracing text provenance with data hiding. In IEEE Symposium on Security
and Privacy.

[2] ARTnews. 2023. US Copyright Office: AI Generated Works Are Not Eligible for
Copyright. https://www.artnews.com/art-news/news/ai-generator-art-text-us-
copyright-policy-1234661683.

[3] Ning Bi, Qiyu Sun, Daren Huang, Zhihua Yang, and Jiwu Huang. 2007. Ro-
bust image watermarking based on multiband wavelets and empirical mode
decomposition. IEEE Transactions on Image Processing (2007).

[4] Xiaoyu Cao and Neil Zhengiang Gong. 2022. Understanding the security of

deepfake detection. In EAI International Conference on Digital Forensics and Cyber

Crime.

Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of

neural networks. In IEEE Symposium on Security and Privacy.

[6] Jianbo Chen, Michael I Jordan, and Martin] Wainwright. 2020. Hopskipjumpat-
tack: A query-efficient decision-based attack. In IEEE Symposium on Security and
Privacy.

[7] Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi, Koki Nagano,
and Luisa Verdoliva. 2022. On the detection of synthetic images generated by
diffusion models. arXiv preprint arXiv:2211.00680 (2022).

[8] JiaDeng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition.

[9] Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy
Furon. 2023. The Stable Signature: Rooting Watermarks in Latent Diffusion
Models. arXiv preprint arXiv:2303.15435 (2023).

[10] Joel Frank, Thorsten Eisenhofer, Lea Schonherr, Asja Fischer, Dorothea Kolossa,

and Thorsten Holz. 2020. Leveraging frequency analysis for deep fake image

recognition. In International Conference on Machine Learning.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial

networks. Commun. ACM (2020).

[12] Ian] Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[13] James Vincent. 2023. Meta’s powerful Al language model has leaked on-
line. https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-
llama-leak-online-misuse.

[14] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, lan Miers, and
Tom Goldstein. 2023. A watermark for large language models. arXiv preprint
arXiv:2301.10226 (2023).

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European Conference on Computer Vision.

[16] Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and Peyman Milanfar. 2020.
Distortion agnostic deep watermarking. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition.

[17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083 (2017).

Makena Kelly. 2023. Meta, Google, and OpenAlI promise the White House they’ll

develop Al responsibly. https://www.theverge.com/2023/7/21/23802274/artificial-

intelligence-meta- google- openai- white-house-security-safety.

[5

[11

[18

™
=

™o
=

&
=

™
&=

™~
29,

[30

[31

(32

(33]

&
=

[35

[36

[37

[38

W
29,

[40

[41

[42

[43

S
&

[45

[46]

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

MARKETSANDMARKETS. 2023. Generative Al Market.
//www.marketsandmarkets.com/Market-Reports/generative-ai-market-
142870584.html.

Marking the Photo. 2022. How to Remove Dall-E Watermark. https://www.
youtube.com/watch?v=6EMROCxGCIA.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and
Chelsea Finn. 2023. Detectgpt: Zero-shot machine-generated text detection using
probability curvature. arXiv preprint arXiv:2301.11305 (2023).

OpenAl 2022. Chatgpt: Optimizing language models for dialogue. https://openai.
com/blog/chatgpt.

Shelby Pereira and Thierry Pun. 2000. Robust template matching for affine
resistant image watermarks. IEEE Transactions on Image Processing (2000).
Qingquan Wang and buley. 2020. Invisible watermark. https://github.com/
ShieldMnt/invisible-watermark.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation.
In International Conference on Machine Learning.

Robin Rombach. 2022. Stable Diffusion watermark decoder. https://github.com/
CompVis/stable-diffusion/blob/main/scripts/tests/test_watermark.py.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang,
and Soheil Feizi. 2023. Can AI-Generated Text be Reliably Detected? arXiv preprint
arXiv:2303.11156 (2023).

Zeyang Sha, Zheng Li, Ning Yu, and Yang Zhang. 2022. DE-FAKE: Detection and
Attribution of Fake Images Generated by Text-to-Image Diffusion Models. arXiv
preprint arXiv:2210.06998 (2022).

Mahmood Sharif, Lujo Bauer, and Michael K Reiter. 2018. On the suitability of Ip-
norms for creating and preventing adversarial examples. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. 2018. Concep-
tual captions: A cleaned, hypernymed, image alt-text dataset for automatic image
captioning. In Annual Meeting of the Association for Computational Linguistics.
Shivdeep Dhaliwal. 2023. Elon Musk isn’t dating GM’s Mary Barra: he has this to
say though on the photos. https://www.benzinga.com/news/23/03/31505898/elon-
musk-isnt- dating- gms-mary-barra-he- has- this-to-say-though-on- the-photos.
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

Matthew Tancik, Ben Mildenhall, and Ren Ng. 2020. Stegastamp: Invisible hyper-
links in physical photographs. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition.

Sheng-Yu Wang, Oliver Wang, Andrew Owens, Richard Zhang, and Alexei A
Efros. 2019. Detecting photoshopped faces by scripting photoshop. In IEEE/CVF
International Conference on Computer Vision.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing (2004).

Bingyang Wen and Sergul Aydore. 2019. Romark: A robust watermarking system
using adversarial training. arXiv preprint arXiv:1910.01221 (2019).

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. 2023. Tree-
Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust.
arXiv preprint arXiv:2305.20030 (2023).

Yuankun Yang, Chenyue Liang, Hongyu He, Xiaoyu Cao, and Neil Zhen-
qiang Gong. 2021. Faceguard: Proactive deepfake detection. arXiv preprint
arXiv:2109.05673 (2021).

Ning Yu, Larry S Davis, and Mario Fritz. 2019. Attributing fake images to gans:
Learning and analyzing gan fingerprints. In IEEE/CVF International Conference
on Computer Vision.

Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. 2021. Artificial
fingerprinting for generative models: Rooting deepfake attribution in training
data. In IEEE/CVF International Conference on Computer Vision.

Chaoning Zhang, Philipp Benz, Adil Karjauv, Geng Sun, and In So Kweon. 2020.
Udh: Universal deep hiding for steganography, watermarking, and light field
messaging. Advances in Neural Information Processing Systems (2020).
Chaoning Zhang, Adil Karjauv, Philipp Benz, and In So Kweon. 2020. Towards
robust data hiding against (jpeg) compression: A pseudo-differentiable deep
learning approach. arXiv preprint arXiv:2101.00973 (2020).

Kevin Alex Zhang, Alfredo Cuesta-Infante, Lei Xu, and Kalyan Veeramachaneni.
2019. SteganoGAN: High capacity image steganography with GANs. arXiv
preprint arXiv:1901.03892 (2019).

Hanging Zhao, Wenbo Zhou, Dongdong Chen, Tianyi Wei, Weiming Zhang, and
Nenghai Yu. 2021. Multi-attentional deepfake detection. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. 2018. Hidden: Hiding
data with deep networks. In European Conference on Computer Vision.

https:

https://www.artnews.com/art-news/news/ai-generator-art-text-us-copyright-policy-1234661683
https://www.artnews.com/art-news/news/ai-generator-art-text-us-copyright-policy-1234661683
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.theverge.com/2023/7/21/23802274/artificial-intelligence-meta-google-openai-white-house-security-safety
https://www.theverge.com/2023/7/21/23802274/artificial-intelligence-meta-google-openai-white-house-security-safety
https://www.marketsandmarkets.com/Market-Reports/generative-ai-market-142870584.html
https://www.marketsandmarkets.com/Market-Reports/generative-ai-market-142870584.html
https://www.marketsandmarkets.com/Market-Reports/generative-ai-market-142870584.html
https://www.youtube.com/watch?v=6EMROCxGCIA
https://www.youtube.com/watch?v=6EMROCxGCIA
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://github.com/ShieldMnt/invisible-watermark
https://github.com/ShieldMnt/invisible-watermark
https://github.com/CompVis/stable-diffusion/blob/main/scripts/tests/test_watermark.py
https://github.com/CompVis/stable-diffusion/blob/main/scripts/tests/test_watermark.py
https://www.benzinga.com/news/23/03/31505898/elon-musk-isnt-dating-gms-mary-barra-he-has-this-to-say-though-on-the-photos
https://www.benzinga.com/news/23/03/31505898/elon-musk-isnt-dating-gms-mary-barra-he-has-this-to-say-though-on-the-photos

Evading Watermark based Detection of Al-Generated Content

1.0 1.0
-+- COCO —+- COCO

0.8 ImageNet 0.8 ImageNet
o —e— Theoretical =
=04 = 0.4

0.2 0.2

) = b
0'Lf,() 0.9 0.8 0.7 0.6 0.5 (J'[(.() 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7
(a) FPR (b) FNR

Figure 19: FPR and FNR of the double-tail detector based on
HiDDeN as the threshold 7 varies when there are no attacks
to post-process the watermarked images.

1.0 1.0
—-+~- COCO —-+- COCO
0.8 ImageNet 08 ImageNet
o —e— Theoretical =
=04 =04
0.2 0.2
\ P .
509 08 07 06 05 40 09 08 07 06 05
Detection Threshold 7 Detection Threshold 7
(a) HiDDeN, FPR (b) HiDDeN, FNR
1.0 1.0
—-+- COCO i —-+- COCO
0.8 ImageNet 0.8 ImageNet
06 e €O 0.6 e OO
E —— Theoretical 5
=04 =04
0.2 0.2
) L).
09509 08 o7 06 05 0 09 08 07 06 05
Detection Threshold 7 Detection Threshold 7
(c) UDH, FPR (d) UDH, FNR

Figure 20: FPR and FNR of the single-tail detector as the
threshold 7 varies when there are no attacks to post-process
the watermarked images.

Algorithm 1 WEvade-W-I and WEvade-W-II

Input: Watermarked image I,, and target watermark w;
Output: Post-processed watermarked image Iy

1Lorp <2

2: rqg — 0
3. while r, —rg > 0.001 do
& re(rg+rp)/2
5. 8’ « FindPerturbation (I,,, wy, r)
6: if (WEvade-W-I & Equation 5 is satisfied)

or (WEvade-W-II & Equation 9 is satisfied)) then

7: ry < r
8: 6 «— (5’
9: else

10: Ta T
11: endif

12: end while
return I, + &

-
w

CCS’23, November 26-30, 2023, Copenhagen, Denmark

1.00 ._‘_‘_‘_‘_Yi'

—— e —— b

Evasion Rate

0.25{ —e— WEvade-W-I £0.005] —+— WEvade-W-I
—— WEvade-W-1I —— WEvade-W-II

0'Uti.(J 0.9 0.8 0.7 0.6 0.5 “'“”'{

0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7
20
1.00 00
oS %Uﬂl:» ——— b
£0.50 £0.010
'z
= 0
5] 1 -
025 —e— WEvade-W-1 £0.005] —+— WEvade-W-I
=
—— WEvade-W-II b —— WEvade-W-II
O'Uli,() 0.9 0.8 0.7 0.6 0.5 “'(""1.0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7

(a) Evasion rate (b) Average perturbation
Figure 21: Comparing WEvade-W-I with WEvade-W-II
against the single-tail (first row) and double-tail (second row)
detector.

Algorithm 2 FindPerturbation (I,,, wy, r)

Input: Decoder D, objective function /, learning rate o, and maxi-
mum number of iterations max_iter.
Output: Perturbation §
: <0
2: for k = 1 to max_iter do
3 g« Vsl(D(Iy +8), ws)

& de«—db-a-g

5. //Projection to satisfy the perturbation bound
6: if ||6]|co > r then

7: §—96- m

8. endif

9: //Early stopping

10: if (WEvade-W-I & Equation 5 is satisfied)
or (WEvade-W-II & Equation 9 is satisfied)) then
11 return §
122 endif
13: end for
14: return §

A PROOF OF THEOREM 1

For the standard detector, I,, is correctly detected and thus we have
BA(D(I,),w) > t > 0.5. Therefore, we have:

BA(D(Ipn), w)
= BA(~D(I,,), w) = 1 — BA(D(I,y),)

<l-7<T.

For the adaptive detector, I,, is correctly detected and thus we
have BA(D(I,,),w) > 7 or BA(D(I,,),w) < 1 — 1, where ¢ > 0.5.
Since BA(D(Ip+y), w) = 1-BA(D(ly), w), we have BA(D (Ipw), w) >
tor BA(D(Ipw),w) <1-7.

CCS’23, November 26-30, 2023, Copenhagen, Denmark

1.0
-=- Bitwise Accuracy N\ -=- Bitwise Accurgay
0.8 —— Perturbation —e— Perturbatic
AY
0.6] % e

0.4 /
2

100 K] 50 25
Quality Factor @

Average Bitwise Accuracy

0.0 0.2 0.4
Standard Deviation o

==%=" Bitwise Accuracy ==%= Bitwise Accuragy

0.8 —e— Perturbation

Aol

Average Bitwise Accuracy

o

e P e W= =T
0.4 0.4
0
0.2 0.2
00 100 75 50 25 0:0 0.0 0.2 0.4
Quality Factor @ Standard Deviation o
1.0
& === Bitwise Accuracy ==¥= Bitwise Accuragy
208 —— Perturbation
= X
£ 0.6{ \
Z04 TR
o
g
<

/

100 5 50 25 0 0.0 0.2 0.4
Quality Factor @ Standard Deviation o

(a) JPEG

(b) Gaussian noise

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

S < 1.0
-+~ Bitwise Accuracy \ -=- Bitwise Accuracy
—— Perturbation \ —e— Perturbation

. \
“~ ™
N e
= pa - 0.0
0.5 1.0 i 10 15 20
Standard Deviation o Parameter a
~ — i — Lo
=== Bitwise Accuracy \\ === Bitwise Accuracy
—s~Perturbation \ —— Perturbation
\
o)
“'1~~ \‘\
== \v~_
R ay v
- T - 0.0
0.5 1.0 5 10 15 20
Standard Deviation o Parameter a
N T 1.0
X === Bitwise Accuracy \ ==*= Bitwise Accuracy
\
*so— Perturbation \ —— Perturbation
v N
~ .,

0.5 1.0 5 10 15 20
Standard Deviation o Parameter a

(c) Gaussian blur (d) Brightness/Contrast

Figure 22: Average bitwise accuracy and average perturbation of the post-processed watermarked images when an existing
post-processing method uses different parameter values. The watermarking method is HiDDeN. The datasets are COCO (first

row), ImageNet (second row), and CC (third row).

B PROOF OF THEOREM 2
We denote D(Ipyy) = Wi, According to Equation 9, we have:

|w,,, — wel1
BA(wlpw,wt) =1-— > 1-¢
n

= |wy,,, —wil1 < en,
where | - |1 is #1 distance between two binary vectors. Then, accord-
ing to the triangle inequality, we have:
lwe = wh = [we —wp,, +wr,, —wh
< lwe = wi,,, i+ wr,, —wh
<en+ |w[pw - wli.
Therefore, we have:
Pr(BA(D(Ipw), w) < 1)
= Pr(BA(wIPW,w) <7)

[wr,,, —wh
=Pr(1- —2 <)
n

=Pr(lwp,,, —wli > (1-1)n)
>Pr(Jlwy —w|i —en > (1 —1)n)
=Pr(Jw —w|1 2 (1 -7t +¢€)n),
Since w; is picked uniformly at random, we know |w; —w/|; follows
a binomial distribution, i.e., |\w; — w|; ~ B(n,0.5). Thus, we have:
Pr(BA(D(Ipw), w) < 1)

> Pr(lws — w1 2 [(1—-7+€)n])

=P(L(z - e)n)),
where P(t) = Pr(m < t) is the cumulative distribution function of
the binomial distribution m ~ B(n, 0.5).

C PROOF OF THEOREM 3
According to Equation 9, we have:

[wr,,, = wel1
BA(wlpw,wt) =1-—2 <1-¢
n

= |w1Pw —we|1 < en.
Then, according to the triangle inequality, we have:
Wi, — Wl = wr,,, = we +wr —wly
< |w1pW —wel1 + |wr — w1 < en+|wr — w1,
Similarly, we have:
lwe = wli = [we = wp,,, +wr,,, —wh
< lwe —wp, 1+ wr,,, —wli < en+fwp, - wli.
Therefore, we have:
lwg —w|1 —en < |w1pw —wl|; < |wr —w|; +en.
Thus, we have:
Pr(1 -1 < BA(D(Ipw), w) < 7)
=Pr(1-7< BA(wy,,,s w) £ 1)
lwi,,, —wh

1-—2 <)
n

=Pr(1-r7

IA

Evading Watermark based Detection of Al-Generated Content CCS’23, November 26-30, 2023, Copenhagen, Denmark

10 1.0 - 1.0 ~

= \ \

g - \ - \

§ 0.8 5 \ 0.8 § ‘\ /

= £ < \ See

206 0.6 2 0.6 \ ey

Z S = = |-

z Kl 5

204 / 04 g 04 g

© 3 e

& £

£0.2 —== Bitwise Accuracy === Bitwise Accuracy 0.2 % X - Bitwise Accuracy —=- Bitwise Accuracy

= —— Perturbation —— Perturbation R —— Perturbation —— Perturbation
00550 7 50 2 00 007570 02 04 00 40 05 10 5 10 15 700

Quality Factor @ Standard Deviation o Standard Deviation o Parameter a

>

Average Perturbation

v~

0.6 R S .

DT T ST T

==¥= Bitwise Accuracy

—— Perturbation

B A

S

==¥= Bitwise Accuracy

o

“ %= Bitwise Accuracy ==¥= Bitwise Accuracy

—— Perturbation —— Perturbation —— Perturbation

100 i) 50 25 (i\]'“ 0.0 0.2 0.4 0.5 1.0 5 10 15 20

Quality Factor @ Standard Deviation o Standard Deviation o Parameter a
1.0 = 1.0 T 1.0
S, \
= \\ = \‘
085 A 082 X
£ 0.6 0.6 2 - 062 .. [t
B R 5 meeeee | R
04 04, 04,
I &
= 8 8
£0.2 -7= Bitwise Accuracy 0.2 2 === Bitwise Accuracy 0.2 Z Zw- Bitwise Accuracy —%= Bitwise Accuracy
= —s— Perturbation) —s— Perturbation oz —e— Perturbation —e— Perturbation
0. - - .(.(0.0 = . T - .|
050 7 50 2 o0 0.0 0.2 0.4 00 40 05 10] 10 15 70
Quality Factor @ Standard Deviation o Standard Deviation o Parameter a
(a) JPEG (b) Gaussian noise (c) Gaussian blur (d) Brightness/Contrast

Figure 23: Average bitwise accuracy and average perturbation of the post-processed watermarked images when an existing
post-processing method uses different parameter values. The watermarking method is UDH. The datasets are COCO (first row),
ImageNet (second row), and CC (third row).

0.0 PPN-ITEIE Lo S 0.0 AR - 0.0
Py = s ~— = .
= = =
2 2 2
5—0.5 SRR RL LR ‘;}—o.s :5—0.5
4;':: T i i A i U E é et et — et
& £ o
%71.0 &71‘0 ‘3071 0
Z - JPEG g —+-. JPEG z —-+ JPEG
é 15 + Gaussian noise é _q5| 7 Gawsian noie é 1] Gousian noie
ERR - Gaussian blur S 497 wae Gaussian blur 2 197 wae Gaussian blur
5‘3 + Brightness/Contrast 5‘3 -+m-+ Brightness/Contrast éﬂ -m+ Brightness/Contrast
—e— WEvade-W-TT —e— WEvade-W-IT —e— WEvade-W-TI
—2. - —2. - —2. -
OLU 0.9 0.8 0.7 0.6 0.5 q,O 0.9 0.8 0.7 0.6 0.5 (iAU 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7 Detection Threshold 7
(a) COCO (b) ImageNet (c) CC

Figure 24: Average perturbation added by each post-processing method to evade the double-tail detector with different threshold
7 in the white-box setting. We set the parameters of existing post-processing methods such that they achieve the same evasion
rate as our WEvade-W-II. The watermarking method is UDH.

=Pr((1-7)n < |WI;;W —wl|1 < n) Since |w; — w|1 ~ B(n,0.5), we have:
=1-Pr((1-1)n> |WIpw —-wlp) — Pr(|wIPw —wl|; > n)
>1-Pr((1-7)n> |wr — w|1 —en) — Pr(jw; — w|1 + en > 7n)

=1-Pr((1-t+¢e)n>|w; —wl1) —=Pr(Jws — w|1 > (t — €)n)

=1-2Pr(lw; —wli > (r —€)n) Pr(1 -7 < BA(D(Ipw), w) < 7)
=1-2(1-Pr(|lws —w|1 < (t-€e)n)) > 2Pr(|w — wli < (1= €)n) — 1
=2Pr(Jlw; —w|1 < (r—€)n) — 1. =2Pr(Jw; — w1 < [(r—€)n)) -1

=2P([(r—¢€)n]) — 1.

CCS’23, November 26-30, 2023, Copenhagen, Denmark

1.0
—-- JPEG
Gaussian noise
0.8 weae - Gaussian blur /.0—-—0
m- - Brightness/Contrast »
0.6 —— WEvade-W-I1 /

Average Perturbation

0'9.0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7

Figure 25: Average perturbation added by each post-
processing method to evade the double-tail detector with
different threshold 7 for the COCO dataset. We set the pa-
rameters of existing post-processing methods such that they
achieve the same evasion rate as WEvade-W-II. The water-
marking method is HiDDeN and adversarial training is used.
After adversarial training, the average bitwise accuracy is
around 0.87. When 7 is 0.95, empirical FNR is 99.6%, and thus
existing post-processing methods do not add perturbations
to a large fraction of watermarked images based on how we
evaluate them, leading to 0 perturbations. However, they
need much larger perturbations when 7 is smaller than 0.9.

1.00 1.00 > 1.00
)
~e= WEvade-B-S Y e WEvade-B-S
Y WEwdeBQ S WEvade-BQ
. e WEvade BS
LN A —— WEvade B-Q
g o o7 oe os N5 o3 s o7 o6 s N5 05 o5 o7 06 05
Detection Threshold 7 Detection Threshold 7 Detection Threshold 7
0. 0. 0.
e WEvade-B-S WEvade-B-S o= WEvade-B-S
—— WEvadeB-Q 4 310 —— WEvade B-Q
Mo o8 o7 05 o5 Mo o9 os o7 o6 o5 Mo 03 o8 07 06 05
Detection Threshold 7 Detection Threshold 7 Detection Threshold 7
(a) COCO (b) ImageNet (c)CC

Figure 26: Comparing evasion rates (first row) and average
perturbations (second row) of WEvade-B-S and WEvade-B-Q
in the black-box setting. Watermarking method is UDH.

0.12
£ 2000
--o-- Random e
—=— JPEG _“‘/""
o 1500
o
L
20.06 7 == w/o early stopping
5 < 1000 —— with early stopping

Aver

03 ..4—-——-—.——-/k_"/. 500 [UEDUEPUPEEDEEDS M

<
U'ULLU 0.9 0.8 0.7 0.6 0.5 LLU 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7

(a) Initialization (b) Early stopping
Figure 27: Impact of (a) initialization and (b) early stopping
on our WEvade-B-Q for UDH and COCO dataset.

Zhengyuan Jiang®, Jinghuai Zhang®, and Neil Zhengiang Gong

»

> (5 Per

1o

Average (5 Perturbation

.:':_/,,/ .
0.5 (i.l) 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7

B

).50

=
0.25

\ .
0.8 0.7 0.6 0.5 ()'U[“) 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7 Detection Threshold 7

(a) Standard training (b) Adversarial training

Figure 28: Average perturbation, measured by £-norm (first
row) or SSIM (second row), added by each post-processing
method to evade the double-tail detector with different 7 in
the black-box setting. WEvade-B-Q always achieves evasion
rate 1, and we set the parameters of existing post-processing
methods such that they achieve evasion rates as close to 1 as
possible. The watermarking method is HiDDeN and dataset
is COCO. When generating these perturbations, we change
the /w-norm to #,-norm at Line 16 in Algorithm 3.

Figure 29: DALL-E generated image with a visible watermark
at the bottom right corner.

D PROOF OF THEOREM 4
For single-tail detector, we denote D’ (Ipy) = w}p . According to

Equation 9, we have:

|W} —welt
v < 1-¢

’ - —
BA(wIpw,wt) =1
= |w; —w|y <en.
pw
Then, according to the triangle inequality, we have:
’ — ! — _
|W[PW wli = |W[pw Wt +w = Wy

Slw}pw—wt|1+|wt—w1Sen+|w,—w1.

Evading Watermark based Detection of Al-Generated Content

Algorithm 3 WEvade-B-Q

Input: API of the target detector, a watermarked image I,,, query

budget max_q, and early stop threshold ES.
Output: Post-processed image Iy
1. q 0
: //Initializing Iy
. for Q € [99, 90, 70, 50, 30, 10, 1] do
qge—q+1
if API(JPEG(I,, Q))=="non-Al-generated" then
Ipw < JPEG(L, Q)
break
end if
. end for
. //teratively move Ip,, towards I,

R B A A

_
(SN

¢ Omin < Ipw -1y

12: es < 0

13: while g < max_g and es < ES do
14 Ipw,q" < HopSkipJump(Iy-y)

15 qe—q+q

16: if [[Ipw — Iwlleo < [|8minllco then

17: (Smm — Ipw -1,
18: es «— 0

19: else

20: es «—es+1

21: endif

22: end while
23: return Iy, + Smin

Similarly, we have:

— _ 7’ ’ _
|we — w1 = |wy Y +w wly

Iy
’ ’ ’
< - - < - .
< |wy wIPW|1 + |WIpw wl; < en+ |W1pw wlp
Therefore, we have:
|lwr —w|1 —en < |w} —w|; < |wp —w|; +en.
pw
Moreover, according to Definition 1, we have:

Pr(BA(W}Pw, wi,,,) > f)

|w
=Pr(1-

I —WI,,W|1

>f) >y,

= Pr(|w}pw —wp, 1< (1-Pn) >y.

Ipwy

Thus, we have:
Pr(BA(D(Ipw), w) < 1)
= Pr(BA(wy,,,,w) < 1)

[wr,,, —wl1
=Pr(1- 2 <)
n

=Pr(lwy,,, —wh = (1-1)n).
Then, according to the triangle inequality, we have:
’ _ ’
|WI,,W -wli = |WI,,W — WL, t WL, ~ wli
’
< |W1Pw —wi, 1+ lwr,, —wl,

B |W[pw - W|1 > |W}pw - W|1 - |W}pW = Wi, 1.

CCS’23, November 26-30, 2023, Copenhagen, Denmark

Similarly, we have:

_ o ’
lwr,,, = wli = lwy,,, —wp +wp

—wly
< fwp = wh g, =)
Thus, we have:
Pr(|w1Pw -wl1 = (1-1)n)
> Prlwy, —whi = lwj, = w1 = (1= o))
2 Pr(jwy, = wh=(1=fn) = (1-1)n)
Pr(lwp, = w1 < (1= f)n)
> Pr(Iw}pW -whi2@2-1-fn) -y
> yPr(|lw; —w|i —en > (2—1 - f)n)
=yPr(lw; —wl|1 = (2—-17—- B +e€)n).
Since |w; — w|; ~ B(n,0.5), we have:
Pr(BA(D(Ipw), W) < 1)
2 yPr(lwe —wl 2 [(2—-7-f+e)n])
=y -P([2-1-f+6)])
=yP(l(z+p-e—-1n)).
For double-tail detector, we have:
Pr(1 -7 < BA(D(Ipw), w) < 7)
=Pr(1-r< BA(WIPW,W) <7

lwr,,, —wh

=Pr(1-r<1- <t

n
=Pr((1-7)n < |WIpw —-w|; < 1n)

\

7 ’
1= Pr(lw],, —wh —], =, < (1=)
’ ’
— Pr(|wIPW —wl + |WI,,W - WI,,Wll > n)
/7 7’
2 Pr(lwy = wli=Iwp —wp,, 112 (1-17)n)

’ ’
+Pr(|wlpw —wl + |«w1pw - WIpw|1 <) -1

>yP(l(t+pf—€e—-1)n)) +Pr(|w}Pw -wli1+(1-p)n <n)

Pr(lw], ~wi, i < (1= fn) — 1
2 yP(L(r+f—€—-1)n))

+Pr(lw —whi+en< (z+f-1n)-y-1
2 yP(L(r+f—€—-1)n))

+yPr(lwy —wl1 < (r+f—-€—-1)n) -1
>2yP([(r+f—-€e—-1n]) - 1.

1-Pr((1-17)n> |w[Pw —-wlp) — Pr(|wIpw —wl|; > n)

	Abstract
	1 Introduction
	2 Related Work
	2.1 Detecting AI-generated Content
	2.2 Watermarking Methods

	3 Watermark-based Detectors
	4 Threat Model
	5 Our WEvade
	5.1 White-box Setting
	5.2 Black-box Setting

	6 Theoretical Analysis
	6.1 White-box Setting
	6.2 Black-box Setting

	7 Evaluation
	7.1 Experimental Setup
	7.2 Detection Results without Attacks
	7.3 Attack Results in the White-box Setting
	7.4 Attack Results in the Black-box Setting
	7.5 Attacking Stable Diffusion's Detector

	8 Discussion and Limitations
	9 Conclusion and Future Work
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Theorem 3
	D Proof of Theorem 4

