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ABSTRACT
A generative AI model can generate extremely realistic-looking

content, posing growing challenges to the authenticity of informa-

tion. To address the challenges, watermark has been leveraged to

detect AI-generated content. Specifically, a watermark is embedded

into an AI-generated content before it is released. A content is de-

tected as AI-generated if a similar watermark can be decoded from

it. In this work, we perform a systematic study on the robustness of

such watermark-based AI-generated content detection. Our work

shows that an attacker can post-process a watermarked image via

adding a small, human-imperceptible perturbation to it, such that

the post-processed image evades detection while maintaining its

visual quality. We show the effectiveness of our attack both theoret-

ically and empirically. Moreover, to evade detection, our adversarial

post-processing method adds much smaller perturbations to AI-

generated images and thus better maintain their visual quality than

existing popular post-processing methods such as JPEG compres-

sion, Gaussian blur, and Brightness/Contrast. Our work shows the

insufficiency of existingwatermark-based detection of AI-generated

content, highlighting the urgent needs of new methods. Our code

is publicly available: https://github.com/zhengyuan-jiang/WEvade.
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1 INTRODUCTION
Given a prompt, generative AI–such as DALL-E, Stable Diffusion,

and ChatGPT–can generate extremely realistic looking content in-

cluding image and text. Like any advanced technology, generative

AI is also a double-edged sword. On one hand, generative AI can
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assist human to enhance effectiveness and efficiency in various do-

mains such as searching, art image creation, and character design

in online games. The market for generative AI was predicted to

increase to 50 billion by 2028 [19]. On the other hand, generative AI

also raises many ethical concerns. For instance, their generated re-

alistic looking content can be used to aid disinformation campaigns

on social media; they are disruptive for learning and education

as students can use them to complete/aid homework and exams;

and people can use them to generate content and claim its owner-

ship/copyright, though not allowed by US Copyright Office [2].

Watermark-based detection [1, 9, 14, 39, 41] of AI-generated con-

tent is a key technology to address these ethical concerns. Multiple

AI companies–such as OpenAI, Google, and Meta–have made vol-

untary commitments to watermark AI-generated content [18]. In

particular, a watermark is embedded into an AI-generated content

when it is generated. The watermark enables proactive detection

of AI-generated content in the future: a content is AI-generated

if a similar watermark can be extracted from it. In this work, we

focus on AI-generated images. For instance, DALL-E embeds a visi-
ble watermark at the bottom right corner of its generated images

(Figure 29 in Appendix shows an example); Stable Diffusion uses a

non-learning-based watermarking method [24] to embed an invis-

ible watermark into generated images; and Meta [9] proposed to

use learning-based watermarking methods.

A watermarking method [3, 16, 23, 24, 34, 37, 42, 44, 46] con-

sists of three key components, i.e., watermark (we represent it as a

bitstring), encoder, and decoder. Given an image and a watermark,

an encoder embeds the watermark into the image to produce a

watermarked image; and a decoder decodes a watermark from an

image (a watermarked image or an original image without wa-

termark). We note that some watermarking methods [9, 38, 41]

embed the encoder into a generative AI model, so the watermark

is already embedded into its generated images at generation. An

image is predicted as AI-generated if the bitwise accuracy of the

decoded watermark is larger than a threshold 𝜏 , where bitwise ac-

curacy is the fraction of matched bits in the decoded watermark

and the ground-truth one. The threshold 𝜏 should be larger than

0.5 since the bitwise accuracy of original images without water-

marks would be around 0.5. In a non-learning-based watermarking

method [3, 23, 24], which has been studied for decades, both en-

coder and decoder are designed based on heuristics, while they are

neural networks and automatically learnt using a set of images in

learning-based watermarking methods [16, 34, 37, 42, 44, 46], an

emerging category of watermarking methods.

Robustness against post-processing, which post-processes an AI-

generated image, is crucial for a watermark-based detector. Unfor-

tunately, the visible watermark adopted by DALL-E can be easily

removed without sacrificing the image quality at all [20]. Non-

learning-based watermarks (e.g., the one used by Stable Diffusion)

can be removed by popular image post-processing methods (e.g.,
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(a) Original (b) Watermarked (c) JPEG (d) GN (e) GB (f) B/C (g) WEvade-W-II (h) WEvade-B-Q
Figure 1: Illustration of original image, watermarked image, and watermarked images post-processed by existing and our
methods (last two columns) to evade detection. The watermarking method is HiDDeN. GN: Gaussian noise. GB: Gaussian blur.
B/C: Brightness/Contrast. The encoder/decoder are trained via standard training (first row) or adversarial training (second row).

JPEG compression) [9, 46], which we also confirm in our experi-

ments in Section 7.5. Learning-based watermarking methods were

believed to be robust against post-processing [9, 16, 42, 46]. In

particular, the encoder and decoder can be trained using adver-
sarial training [12] to enhance robustness against post-processing.

In adversarial training, a post-processing layer is added between

the encoder and decoder; it post-processes a watermarked image

outputted by the encoder before feeding it into the decoder; and

the encoder and decoder are adversarially trained such that the

watermark decoded from a post-processed watermarked image is

still similar to the ground-truth one. However, existing studies only

evaluated the robustness of learning-based watermarking meth-

ods against popular image post-processing methods such as JPEG

compression, Gaussian blur, and Brightness/Contrast, leaving their

robustness against adversarial post-processing unexplored.

Our work:We aim to bridge this gap in this work. We propose WE-

vade, an adversarial post-processing method to evade watermark-

based detection of AI-generated images. WEvade adds a small,

human-imperceptible perturbation to a watermarked image such

that the perturbed image is falsely detected as non-AI-generated.

WEvade can be viewed as adversarial examples [33] to watermark-

ing methods. However, as we discuss below, simply extending stan-

dard adversarial examples to watermarking is insufficient. WE-

vade considers the unique characteristics of watermarking to con-

struct adversarial examples.

White-box setting. In this threat model, we assume the attacker

has access to the decoder used by detectors, but no access to the

ground-truth watermark and encoder. Given a watermarked im-

age generated by an AI model, an attacker aims to post-process

it via adding a small perturbation to it, such that detectors with

any threshold 𝜏 > 0.5 would falsely detect the post-processed

watermarked image as non-AI-generated. One way (denoted as

WEvade-W-I) to achieve the goal is to simply extend the standard

adversarial examples to the decoder. In particular, an attacker finds

the perturbation such that each bit of the decoded watermark flips,

leading to a very small bitwise accuracy and thus evasion. However,

we show that such attack can be mitigated by a double-tail detector,
which we propose to detect an image as AI-generated if the decoded

watermark has either too small or too large bitwise accuracy.

To address the challenge, we propose WEvade-W-II, which adds

perturbation to a watermarked image such that the decoded water-

mark has a bitwise accuracy close to 0.5, making the post-processed

image indistinguishable with original images without watermarks.

However, since the attacker does not know the ground-truth wa-

termark, it is challenging to measure the bitwise accuracy of the

decoded watermark. Our key observation to address the challenge

is that a watermark selected uniformly at random would have a

bitwise accuracy close to 0.5, no matter what the ground-truth wa-

termark is. Based on this observation, we find the perturbation with

which the decoded watermark is close to a random watermark. We

formulate finding such perturbation as an optimization problem

and propose a solution to solve it.

Black-box setting. In this threat model, we assume the attacker

can only query the detector API, which returns a binary result

("AI-generated" or "non-AI-generated") for any image. One way

(called WEvade-B-S) to evade detection is that the attacker trains a

surrogate encoder and decoder using a watermarking algorithm.

Then, given a watermarked image, the attacker finds the pertur-

bation based on the surrogate decoder using the white-box attack

WEvade-W-II. However, such attack achieves limited evasion rates

because the surrogate decoder and target decoder output dissimilar

watermarks for an image.

To address the challenge, we propose WEvade-B-Q, which ex-

tends state-of-the-art hard-label based adversarial example tech-

nique called HopSkipJump [6] to watermark-based detector. Given

a watermarked image, HopSkipJump can iteratively find a post-

processed version to evade detection via just querying the detec-

tor API. Specifically, starting from a random initial image that is

predicted as non-AI-generated by the detector, HopSkipJump itera-

tively moves the image closer to the given watermarked image to

reduce the added perturbation while always guaranteeing that the

image evades detection. Essentially, in each iteration, HopSkipJump

returns 1) a perturbation to update the image and 2) the number of

queries to the detector API used to find such perturbation. The iter-

ative process stops when HopSkipJump uses a given query budget.
However, simply applying HopSkipJump to watermarking may end

up with a large perturbation. The reasons include 1) the random

initial image may be far away from the given watermarked image,
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and 2) the iterative process does not always reduce the perturba-

tion, and thus an improper setting of query budget may actually

enlarge the perturbation. To address the challenges, our WEvade-

B-Q constructs the initial image using the watermarked image

post-processed by popular methods such as JPEG compression,

which results in an initial image closer to the watermarked image.

Moreover, WEvade-B-Q stops the iterative process when the added

perturbation starts to increase, which reduces both perturbation

and number of queries to the detector API.

Theoretical and empirical evaluation. Theoretically, we de-
rive the evasion rates of different variants of WEvade. For instance,

WEvade-W-I achieves evasion rate of 1 against the standard single-
tail detector, but its evasion rate reduces to 0 when our proposed

double-tail detector is used. We also derive a lower bound of the eva-

sion rate of WEvade-W-II using triangle inequality. Moreover, we

derive the evasion rate of WEvade-B-S based on a formal similarity

quantification between the watermarks outputted by the surro-

gate decoder and target decoder. We also show that WEvade-B-Q

achieves evasion rate of 1.

Empirically, we evaluate our attacks using multiple datasets

and multiple watermarking methods, including two learning-based

ones (HiDDeN [46] and UDH [42]) and the non-learning-based one

adopted by Stable Diffusion [24]. Our results show that our method

is effective and outperforms existing post-processing methods. In

particular, existing post-processing methods need to add much

larger perturbations in order to achieve evasion rates comparable

to our method. We find that adversarial training can enhance ro-

bustness of watermarking, i.e., a post-processing method needs to

add larger perturbation to evade detection. However, the perturba-

tion added by our method is still small and maintains image quality,

indicating the insufficiency of adversarial training. Figure 1 shows

an original image, its watermarked version, and the watermarked

versions post-processed by different methods such that the decoded

watermarks achieve bitwise accuracy close to 0.55 (indistinguish-

able with original images without watermarks). The results show

that existing post-processing methods substantially sacrifice image

quality to evade a watermark-based detector based on adversarial

training, while our methods still maintain image quality.

To summarize, our key contributions are as follows:

• WeproposeWEvade , which adds small, human-imperceptible

perturbations to AI-generated images to evade watermark-

based detectors.

• We theoretically analyze the evasion rates ofWEvade in both

white-box and black-box settings.

• We empirically evaluate WEvade on multiple watermarking

methods and datasets in various scenarios.

2 RELATEDWORK
2.1 Detecting AI-generated Content
Generative AI models could be GANs [11], diffusion models (e.g.,

DALL-E [25], Stable Diffusion [27]), or language models (e.g., Chat-

GPT [22]). AI-generated content could be image (our focus in this

work) or text. AI-generated content detection include passive detec-
tion [10, 21, 29, 35, 40, 45] and proactive detection [3, 16, 23, 24, 34,

37, 42, 44, 46]. Passive detection aims to leverage statistical artifacts

in AI-generated content to distinguish them with non-AI-generated

0110101

0110101Encoder DecoderPost-process
layer

Loss

Random watermark

Decoded watermark

Original image

Watermarked 
image

Post-processed
watermarked image

Figure 2: Illustration of training encoder and decoder in
learning-based watermarking methods.

content, while proactive detection aims to proactively embed a

watermark into AI-generated content when it is generated, which

enables detection in the future. Several studies [4, 7, 28] showed

that passive detectors are not robust to evasion attacks, i.e., an

attacker can slightly perturb an AI-generated content to remove

the statistical artifacts exploited by a passive detector and thus

evade detection. However, the robustness of proactive detectors

against evasion attacks is much less explored. For instance, recent

studies [9] suggested that proactive detectors are more robust than

passive ones. Our work focuses on proactive detectors and shows

that they are not as robust as previously thought.

2.2 Watermarking Methods
Since we focus on AI-generated images, we review image water-

marking methods. A watermarking method has three key compo-

nents: watermark, encoder, and decoder. We consider a watermark

𝑤 as a 𝑛-bit bitstring, e.g.,𝑤 = 0110101. An encoder takes an image

𝐼 and a watermark𝑤 as input and produces a watermarked image

𝐼𝑤 . Formally, we have 𝐼𝑤 = 𝐸 (𝐼 ,𝑤), where 𝐸 stands for encoder. A

decoder takes an image as input and outputs a watermark. Formally,

we have 𝑤𝐼 = 𝐷 (𝐼 ). Note that, given any image (e.g., an original

image without watermark or a watermarked image) as input, the

decoder can output a watermark. Watermarking methods can be

categorized into two groups depending on how the encoder and

decoder are designed, i.e., non-learning-based and learning-based.

Non-learning-based methods: In these methods [3, 23, 24], the

encoder and decoder are hand-crafted based on heuristics. Non-

learning-basedmethods have been studied for around three decades.

Invisible-watermark [24] is a representative non-learning-based

method, which is adopted by Stable Diffusion. Roughly speaking,

this method uses Discrete Wavelet Transform (DWT) to decompose

an image into several frequency sub-bands, applies Discrete Cosine

Transform (DCT) to each block of some carefully selected sub-bands,

and alters certain frequency coefficients of each block via adding

a bit of the watermark. The watermark is embedded in selected

frequency sub-bands of the image, and the watermarked image is

obtained via inverse transform.

Learning-basedmethods: In these methods [16, 34, 37, 42, 44, 46],

the encoder and decoder are neural networks and automatically

learnt via deep learning techniques. Roughly speaking, the second-

to-last layer of the decoder outputs a vector of real-value numbers,

each entry of which indicates the likelihood that the corresponding

bit of the watermark is 1. Formally, we denote by 𝐹 (𝐼 ) such vector

for an image 𝐼 , where 𝐹 (𝐼 )𝑖 is the likelihood that the 𝑖th bit of

the decoded watermark is 1; and the decoded watermark 𝑤𝐼 is

obtained by thresholding 𝐹 (𝐼 ), i.e., the 𝑖th bit of𝑤𝐼 is 1 if and only

if 𝐹 (𝐼 )𝑖 > 0.5. HiDDeN [46] and UDH [42] are two representative

learning-based methods. In HiDDeN, the encoder concatenates a
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watermark and an image to produce a watermarked image. In UDH,

the encoder transforms the watermark into a QR code, maps the

QR code to a secret image which has the same size as an original

image, and pixel-wisely adds the secret image to an original image

as a watermarked image. Figure 2 illustrates how the encoder and

decoder are trained, which we discuss next.

Standard training. The encoder and decoder are iteratively

trained using a set of images and the standard Stochastic Gradi-

ent Descent (SGD) algorithm. In each iteration, a mini-batch of

images are used to update the encoder and decoder. Specifically,

for each image 𝐼 in the mini-batch, a random watermark𝑤𝐼 is sam-

pled. The encoder 𝐸 produces a watermarked image 𝐸 (𝐼 ,𝑤𝐼 ) for
each image 𝐼 and the corresponding random watermark 𝑤𝐼 . The

decoder 𝐷 takes each watermarked image 𝐸 (𝐼 ,𝑤𝐼 ) as input and
outputs a watermark 𝐷 (𝐸 (𝐼 ,𝑤𝐼 )). The encoder and decoder are

learnt such that the decoded watermark 𝐷 (𝐸 (𝐼 ,𝑤𝐼 )) is close to𝑤𝐼 .

In particular, they are updated via SGD to minimize a loss function∑︁
𝐼 𝑙𝑜𝑠𝑠 (𝐷 (𝐸 (𝐼 ,𝑤𝐼 )),𝑤𝐼 ).
Adversarial training. A key advantage of learning-based meth-

ods is that they can leverage adversarial training [12, 17] to enhance

their robustness against post-processing [16, 37]. Specifically, as

illustrated in Figure 2, a post-processing layer is added between

the encoder and decoder, which post-processes each watermarked

image before feeding it to the decoder during training. For each

image in a mini-batch during training, a post-processing method is

randomly selected from a given set of ones, e.g., JPEG compression,

Gaussian noise, Gaussian blur, Brightness/Contrast, and our WE-

vade. The encoder and decoder are updated via SGD to minimize a

loss function

∑︁
𝐼 𝑙𝑜𝑠𝑠 (𝐷 (𝐸 (𝐼 ,𝑤𝐼 )+𝛿𝐼 ),𝑤𝐼 ), where 𝛿𝐼 is the perturba-

tion introduced by the post-processing method to the watermarked

image 𝐸 (𝐼 ,𝑤𝐼 ). As shown by previous works [16, 37] and confirmed

by our experiments, adversarial training makes learning-based wa-

termarking robust against popular post-processing methods. How-

ever, it is still vulnerable to our adversarial post-processing method.

We note that some watermarking methods [9, 38, 41] embed

the encoder into a generative AI model, so its generated images

are already embedded with the watermark, but they still rely on

the decoder for detection. For instance, Fernandez et al. [9] trains

encoder/decoder using HiDDeN, embeds the encoder into image

generator via fine-tuning it, and uses the decoder for detection.

Our attacks are also applicable to such watermarking methods

since they are agnostic to how a watermark is embedded into an

AI-generated image.

3 WATERMARK-BASED DETECTORS
We formally define the detection setup and the standard single-tail
detector. Moreover, we propose a double-tail detector, which can

defend against the evasion attack (discussed in Section 5.1) that

simply extends standard adversarial examples to watermarking.

Detection setup:We use 𝐼 to denote an image, 𝐼𝑜 to denote an orig-
inal image without watermark, 𝐼𝑤 to denote a watermarked image,
and 𝐼𝑝𝑤 to denote a post-processed watermarked image. Note that,
in our notations, 𝐼 could be an 𝐼𝑜 , 𝐼𝑤 , or 𝐼𝑝𝑤 . We use 𝐵𝐴(𝑤1,𝑤2)
to denote the bitwise accuracy of watermark𝑤1 compared to wa-

termark 𝑤2, i.e., 𝐵𝐴(𝑤1,𝑤2) is the fraction of bits that match in

𝑤1 and 𝑤2. Suppose a service provider (e.g., OpenAI) deploys a

(a) Single-tail detector (b) Double-tail detector
Figure 3: Illustration of (a) single-tail detector and (b) double-
tail detector with threshold 𝜏 . The bitwise accuracy of an
original image 𝐼𝑜 follows a binomial distribution divided
by 𝑛, i.e., 𝐵𝐴(𝐷 (𝐼𝑜 ),𝑤) ∼ 𝐵(𝑛, 0.5)/𝑛. The area of the shaded
region(s) is the false positive rate (FPR) of a detector.

generative AI model (e.g., a text-to-image generative model) as a

cloud service and has a ground-truth watermark𝑤 . Given a user

query (known as prompt), the cloud service uses the AI model to

generate an image, embeds its watermark 𝑤 into it using the en-

coder (or the generated image already has watermark𝑤 [9, 38, 41]),

and returns the watermarked image to the user. In such cloud

service, detecting AI-generated images reduces to detecting wa-

termarked images. Specifically, given an image 𝐼 , we can decode a

watermark 𝐷 (𝐼 ) using the decoder. Then, we calculate the bitwise

accuracy 𝐵𝐴(𝐷 (𝐼 ),𝑤) of the watermark 𝐷 (𝐼 ) with respect to the

ground-truth watermark𝑤 . A watermark-based detector (shown

in Figure 3) leverages the bitwise accuracy to detect watermarked

images, which we discuss below.

Single-tail detector: In the standard single-tail detector [9, 41], an

image 𝐼 is predicted as AI-generated if the bitwise accuracy of its

decoded watermark is larger than a threshold 𝜏 , i.e., 𝐵𝐴(𝐷 (𝐼 ),𝑤) >
𝜏 , where𝑤 is the ground-truth watermark. A key challenge is how

to set the threshold 𝜏 such that the false positive rate (FPR), i.e., the
probability that an original image is falsely detected as AI-generated,

is bounded by a small value 𝜂, e.g., 𝜂 = 10
−4
. This challenge can

be addressed by formally analyzing the relationship between the

threshold 𝜏 and the FPR of the single-tail detector [9, 41].

Suppose 𝐵𝐴(𝐷 (𝐼𝑜 ),𝑤) = 𝑚
𝑛 for an original image 𝐼𝑜 , where 𝑛

is the length (i.e., number of bits) of the watermark and𝑚 is the

number of matched bits between 𝐷 (𝐼𝑜 ) and𝑤 . The key idea is that

the service provider should pick the ground-truth watermark 𝑤

uniformly at random. Thus, the decoded watermark 𝐷 (𝐼𝑜 ) is not
related to the randomly picked 𝑤 , and each bit of 𝐷 (𝐼𝑜 ) matches

with the corresponding bit of𝑤 with probability 0.5. As a result,𝑚

is a random variable and follows a binomial distribution 𝐵(𝑛, 0.5).
Therefore, the FPR (denoted as 𝐹𝑃𝑅𝑠 (𝜏)) of the single-tail detector
with threshold 𝜏 can be calculated as follows [9, 41]:

𝐹𝑃𝑅𝑠 (𝜏) = Pr(𝐵𝐴(𝐷 (𝐼𝑜 ),𝑤) > 𝜏)

= Pr(𝑚 > 𝑛𝜏) =
𝑛∑︂

𝑘=⌈𝑛𝜏 ⌉

(︃
𝑛

𝑘

)︃
1

2
𝑛
, (1)

where 𝐹𝑃𝑅𝑠 (𝜏) is defined for any original image and the random-

ness in calculating the probability stems from picking the ground-

truth watermark𝑤 uniformly at random. Thus, to make 𝐹𝑃𝑅𝑠 (𝜏) <
𝜂, 𝜏 should be at least 𝜏∗ = argmin𝜏

∑︁𝑛
𝑘=⌈𝑛𝜏 ⌉

(︁𝑛
𝑘

)︁
1

2
𝑛 < 𝜂. For in-

stance, when 𝑛 = 256 and 𝜂 = 10
−4
, we have 𝜏 ≥ 𝜏∗ ≈ 0.613.



Evading Watermark based Detection of AI-Generated Content CCS’23, November 26–30, 2023, Copenhagen, Denmark

Double-tail detector: The single-tail detector can be easily evaded

by simply extending standard adversarial examples to watermark-

ing. In particular, a standard adversarial example based evasion

attack adds perturbation to a watermarked image such that the

decoded watermark has a very small bitwise accuracy, e.g., close to

0. However, we propose a double-tail detector to detect such per-

turbed images. Our key observation is that the watermarks decoded

from original images have bitwise accuracy close to 0.5, while those

decoded fromwatermarked images have large bitwise accuracy, e.g.,

close to 1. Thus, if the bitwise accuracy of the watermark decoded

from an image is significantly smaller than 0.5, it is likely to be an

adversarially perturbed image. Based on this observation, we pro-

pose a double-tail detector that detects an image 𝐼 as AI-generated

if its decoded watermark has a bitwise accuracy larger than 𝜏 or

smaller than 1 − 𝜏 , i.e., 𝐵𝐴(𝐷 (𝐼 ),𝑤) > 𝜏 or 𝐵𝐴(𝐷 (𝐼 ),𝑤) < 1 − 𝜏 .
We can calculate the FPR (denoted as 𝐹𝑃𝑅𝑑 (𝜏)) of the double-tail
detector with threshold 𝜏 as follows:

𝐹𝑃𝑅𝑑 (𝜏) = Pr(𝐵𝐴(𝐷 (𝐼𝑜 ),𝑤) > 𝜏 or 𝐵𝐴(𝐷 (𝐼𝑜 ),𝑤) < 1 − 𝜏)

= Pr(𝑚 > 𝑛𝜏 or𝑚 < 𝑛 − 𝑛𝜏) = 2

𝑛∑︂
𝑘=⌈𝑛𝜏 ⌉

(︃
𝑛

𝑘

)︃
1

2
𝑛
, (2)

where 𝐹𝑃𝑅𝑑 (𝜏) is defined for any original image and the random-

ness stems from picking the ground-truth watermark𝑤 uniformly

at random. Therefore, to make 𝐹𝑃𝑅𝑑 (𝜏) < 𝜂, 𝜏 should be at least

𝜏∗ = argmin𝜏 2

∑︁𝑛
𝑘=⌈𝑛𝜏 ⌉

(︁𝑛
𝑘

)︁
1

2
𝑛 < 𝜂. For instance, when 𝑛 = 256

and 𝜂 = 10
−4
, we have 𝜏 ≥ 𝜏∗ ≈ 0.621.

Deployment scenarios:Watermark-based detection of AI-generated

content is an emerging topic, and how watermark-based detectors

will be deployed in the real-world is still an open question. Never-

theless, we envision the following four deployment scenarios:

Detection-as-a-service. In this scenario, the service provider,

who provides the cloud service to generate images, also provides

detection-as-a-service to detect its generated images. A user can

upload an image to the detection-as-a-service, which returns a bi-

nary answer "AI-generated" or "non-AI-generated". In this scenario,

the service provider is a computation/communication bottleneck.

End-user detection. In this scenario, the detector is deployed

as an end-user application (e.g., a mobile app, a browser plugin),

which runs on end-user devices (e.g., smartphone, laptop).

Public detection. In this scenario, the service provider makes

its decoder and ground-truth watermark𝑤 public so everyone can

locally detect images generated by the service provider’s AI model.

Note that individuals may select their own personalized detection

thresholds 𝜏 in public detection.

Third-party detection. In this scenario, the service provider

shares its decoder and watermark𝑤 with selected third parties, so

they can locally detect images generated by the service provider’s AI

model. For instance, OpenAI may share its decoder and watermark

with Twitter, so the latter can detect images generated by OpenAI’s

models that are propagated on Twitter. Note that third parties may

select their preferred thresholds 𝜏 in third-party detection.

4 THREAT MODEL
Attacker’s goal: Suppose an attacker uses the aforementioned

cloud service to generate a watermarked image 𝐼𝑤 . The attacker

aims to post-process the watermarked image to evade watermark-

based detection while maintaining its visual quality. The attacker

may desire to achieve such goals in various scenarios. For instance,

the attacker may use the generated image to spread disinforma-

tion on the Internet; and the attacker may claim ownership of the

AI-generated image. Formally, the attacker aims to turn the water-

marked image 𝐼𝑤 into a post-processed one 𝐼𝑝𝑤 via adding a small,

human-imperceptible perturbation to it such that a detector falsely

predicts 𝐼𝑝𝑤 as non-AI-generated.

Attacker’s background knowledge: Recall that a watermarking

method has a ground-truth watermark 𝑤 , an encoder, and a de-

coder. A watermark-based detector requires𝑤 , the decoder, and a

detection threshold 𝜏 . Since detection does not involve the encoder,

whether it is available to the attacker is not relevant. Nevertheless,

we assume the attacker does not have access to the encoder. Since

our attack is encoder-agnostic, it is applicable to watermarking

methods [9, 38, 41] that embed watermarks to images at genera-

tion. Moreover, we assume the attacker does not have access to𝑤 .

Depending on what information (decoder and/or 𝜏 ) of the detectors

the attacker has access to, we consider the following two scenarios:

White-box. In this threat model, we assume the attacker has

white-box access to the decoder of the detectors. This scenario

arises in various circumstances: 1) an attacker can directly access

the decoder when the service provider makes it public in public

detection, e.g., the decoder used by Stable Diffusion is public [26]; 2)

an attacker can reverse engineer the end-user application to obtain

the decoder when the detector is deployed as an end-user applica-

tion in end-user detection; 3) a third-party may leak the decoder in

third-party detection; and 4) an insider may leak the decoder or an

attacker can exploit the computer system vulnerabilities to perform

a data leakage attack in detection-as-a-service. A recent example of

third-party leakage (not watermarking model, though) is that Meta

shared its LLaMA model with verified third parties, one of which

leaked it to the public [13].

Note that, given a decoder, different detectors may use different 𝜏 .

For instance, in public detection (or third-party detection), different

individuals (or third-parties) can choose their own 𝜏 . Therefore,

instead of evading a particular detector with a specific 𝜏 , an attacker

aims to post-process a watermarked image that can evade detectors

with any detection threshold 𝜏 > 0.5 in the white-box setting.

Black-box. In this threat model, we assume the attacker has

black-box access to a particular detector with a decoder and a 𝜏

(called target detector), and the attacker aims to evade this target

detector. Specifically, the attacker only has access to the binary

detection result ("AI-generated" or "non-AI-generated") for any

image. This threat model may arise in detection-as-a-service, end-

user detection, or third-party detection. For instance, in detection-

as-a-service or end-user detection, the attacker can query the target

detector to obtain the detection result for any image. In third-party

detection, the attacker can also obtain the detection result for any

image from a particular third party, e.g., the attacker can upload

an image to Twitter and obtain the detection result depending on

whether the image is blocked by Twitter or not.

Attacker’s capability: In the white-box setting, an attacker can

post-process a watermarked image via analyzing the decoder. In

the black-box setting, the attacker can query the target detector to
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obtain the detection result for any image. Moreover, we assume the

attacker can query the target detector multiple times. For instance,

the attacker can easily send multiple query images to detection-as-

a-service or end-user detection and obtain detection results. We

acknowledge that it may take a longer time for the attacker to

query a target detector in third-party detection. For instance, when

the third-party is Twitter, the attacker uploads a query image to

Twitter and may have to wait for some time before obtaining the

detection result, i.e., Twitter blocks or does not block the query

image. However, as our experiments will show, an attacker only

needs dozens of queries to evade a target detector while adding a

small perturbation to a watermarked image.

5 OURWEVADE
5.1 White-box Setting
Suppose we are given a watermarked image 𝐼𝑤 and a decoder𝐷 . An

attacker’s goal is to add a small, human-imperceptible perturbation

𝛿 to 𝐼𝑤 such that the post-processed watermarked image 𝐼𝑝𝑤 =

𝐼𝑤 + 𝛿 evades detectors with any 𝜏 > 0.5. We first extend standard

adversarial examples to watermarking to find the perturbation 𝛿 ,

which, however, can be defended by the double-tail detector. Then,

to address the limitation, we propose a new optimization problem to

formulate finding the perturbation 𝛿 to evade detection and design

an algorithm to solve the optimization problem.

5.1.1 Extending Standard Adversarial Examples to Watermarking
(WEvade-W-I). We denote this variant as WEvade-W-I, where W

indicates the white-box threat model. The decoder 𝐷 outputs a

watermark, each bit of which can be viewed as a binary class. There-

fore, given a watermarked image 𝐼𝑤 , one way is to add perturbation

𝛿 to it such that 𝐷 outputs a different binary value for each bit

of the watermark. Formally, inspired by the standard adversarial

examples [33], we formulate the following optimization problem:

min

𝛿
| |𝛿 | |∞

𝑠 .𝑡 . 𝐷 (𝐼𝑤 + 𝛿) = ¬𝐷 (𝐼𝑤), (3)

where | |𝛿 | |∞ is the ℓ∞-norm of the perturbation 𝛿 and ¬means flip-

ping each bit of the watermark 𝐷 (𝐼𝑤). This optimization problem

is hard to solve due to the highly nonlinear constraint. To address

the challenge, we reformulate the optimization problem as follows:

min

𝛿
𝑙 (𝐷 (𝐼𝑤 + 𝛿),¬𝐷 (𝐼𝑤)) (4)

𝑠 .𝑡 . | |𝛿 | |∞ ≤ 𝑟,

𝐷 (𝐼𝑤 + 𝛿) = ¬𝐷 (𝐼𝑤), (5)

where 𝑙 is a loss function to measure the distance between two

watermarks and 𝑟 is a perturbation bound. We discuss more details

on solving this reformulated optimization problem in Section 5.1.3.

The loss function should be small when 𝐷 (𝐼𝑤 + 𝛿) is close to
¬𝐷 (𝐼𝑤). For instance, the loss function could be ℓ2 distance, ℓ1
distance, negative cosine similarity, or average cross-entropy loss.

In defining the loss function, we treat ¬𝐷 (𝐼𝑤) as desired "labels".

Formally, for ℓ2 distance, we have 𝑙 (𝐷 (𝐼𝑤+𝛿),¬𝐷 (𝐼𝑤)) =
∑︁
𝑖 (𝐹 (𝐼𝑤+

𝛿)𝑖 −¬𝐷 (𝐼𝑤)𝑖 )2, where 𝐹 (𝐼𝑤 +𝛿) is the second-to-last layer outputs
of the decoder neural network 𝐷 and the subscript 𝑖 is the index in

a vector/bitstring; for ℓ1 distance, we have 𝑙 (𝐷 (𝐼𝑤 + 𝛿),¬𝐷 (𝐼𝑤)) =

∑︁
𝑖 |𝐹 (𝐼𝑤 + 𝛿)𝑖 − ¬𝐷 (𝐼𝑤)𝑖 |; and for negative cosine similarity, we

have 𝑙 (𝐷 (𝐼𝑤 + 𝛿),¬𝐷 (𝐼𝑤)) = 1 − 𝑐𝑜𝑠 (𝐹 (𝐼𝑤 + 𝛿),¬𝐷 (𝐼𝑤)), where
we treat 𝐹 (𝐼𝑤 +𝛿) and𝑤𝑡 as vectors and 𝑐𝑜𝑠 is the cosine similarity

between them. For cross-entropy loss, we can treat 𝐹 (𝐼𝑤 +𝛿)𝑖 as the
possibility that the 𝑖th bit is predicted as 1. Then we have 𝑙 (𝐷 (𝐼𝑤 +
𝛿),¬𝐷 (𝐼𝑤)) = −

∑︁
𝑖 (¬𝐷 (𝐼𝑤)𝑖 log 𝐹 (𝐼𝑤 +𝛿)𝑖 + (1−¬𝐷 (𝐼𝑤)𝑖 ) log(1−

𝐹 (𝐼𝑤 + 𝛿)𝑖 )). We use the second-to-last layer continuous-value

outputs instead of the final binary outputs, because the binary

outputs are obtained by thresholding the continuous-value outputs

(see details in Section 2.2) and thus contain no useful gradient

information for updating the perturbation 𝛿 .

5.1.2 Formulating a New Optimization Problem (WEvade-W-II).
Given a watermarked image 𝐼𝑤 , the perturbation 𝛿 found by solving

the above optimization problem can evade the single-tail detectors

with any threshold 𝜏 > 0.5. However, our double-tail detector can

still detect such post-processed watermarked images because their

watermarks have too small bitwise accuracy, as we formally show

in our theoretical analysis in Section 6. To address the limitation,

we propose a new optimization problem to formulate finding the

perturbation 𝛿 . Specifically, we aim to find a small perturbation 𝛿

such that the decoded watermark 𝐷 (𝐼𝑤 + 𝛿) has a bitwise accuracy
close to 0.5, compared to the ground-truth watermark𝑤 . As a re-

sult, the post-processed watermarked image is indistinguishable

with original images with respect to bitwise accuracy, evading both

single-tail and double-tail detectors. Formally, we formulate finding

the perturbation 𝛿 as the following optimization problem:

min

𝛿
| |𝛿 | |∞ (6)

𝑠 .𝑡 . |𝐵𝐴(𝐷 (𝐼𝑤 + 𝛿),𝑤) − 0.5| ≤ 𝜖, (7)

where 𝐵𝐴(𝐷 (𝐼𝑤 + 𝛿),𝑤) measures the bitwise accuracy of the wa-

termark 𝐷 (𝐼𝑤 +𝛿) compared to the ground-truth one𝑤 , 𝜖 is a small

value characterizing the difference between 𝐵𝐴(𝐷 (𝐼𝑤 + 𝛿),𝑤) and
0.5, and we call the constraint of the optimization problem bitwise-
accuracy constraint. However, solving the above optimization prob-

lem faces two challenges: 1) the attacker does not have access to the

ground-truth watermark𝑤 , and 2) the constraint is highly nonlin-

ear, making standard optimizationmethod like gradient descent (GD)
hard to apply. Next, we discuss how to address the two challenges.

Addressing the first challenge: One way to address the first chal-
lenge is to replace the ground-truth watermark𝑤 as the watermark

𝐷 (𝐼𝑤) decoded from the watermarked image 𝐼𝑤 in the optimiza-

tion problem. However, when the decoded watermark 𝐷 (𝐼𝑤) is
quite different from 𝑤 , even if the found perturbation 𝛿 satisfies

|𝐵𝐴(𝐷 (𝐼𝑤 + 𝛿), 𝐷 (𝐼𝑤)) − 0.5| ≤ 𝜖 , there is no formal guarantee

that the bitwise-accuracy constraint in Equation 7 is satisfied. To

address the challenge, we replace the ground-truth watermark𝑤

as a watermark 𝑤𝑡 picked uniformly at random, where we call

𝑤𝑡 target watermark. Moreover, we reformulate the optimization

problem such that when the watermark 𝐷 (𝐼𝑤 + 𝛿) decoded from

the post-processed watermarked image is very close to 𝑤𝑡 , it is

guaranteed to satisfy the bitwise-accuracy constraint in Equation 7

with high probability. Intuitively, since𝑤𝑡 is picked uniformly at

random, it has a bitwise accuracy close to 0.5 compared to any

ground-truth watermark𝑤 . Therefore, when 𝐷 (𝐼𝑤 + 𝛿) is close to
𝑤𝑡 , it is likely to have a bitwise accuracy close to 0.5 as well.
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Addressing the second challenge: Due to the bitwise-accuracy

constraint, it is hard to apply an iterative method like GD. This is

because it is hard to find the gradient of 𝛿 , moving 𝛿 along which

can make the bitwise-accuracy constraint more likely to be satisfied.

To address this challenge, we reformulate the optimization problem

such that it is easier to find a gradient along which 𝛿 should be

moved. Combining our strategies to address the two challenges, we

reformulate the optimization problem as follows:

min

𝛿
𝑙 (𝐷 (𝐼𝑤 + 𝛿),𝑤𝑡 ) (8)

𝑠 .𝑡 . | |𝛿 | |∞ ≤ 𝑟,

𝐵𝐴(𝐷 (𝐼𝑤 + 𝛿),𝑤𝑡 ) ≥ 1 − 𝜖, (9)

where 𝑙 is a loss function to measure the distance between𝐷 (𝐼𝑤 +𝛿)
and 𝑤𝑡 , 𝑟 is a perturbation bound, and 𝜖 is a small number. Our

reformulated optimization problem means that we aim to find a

perturbation bounded by 𝑟 to minimize the loss between 𝐷 (𝐼𝑤 + 𝛿)
and𝑤𝑡 such that the bitwise accuracy 𝐵𝐴(𝐷 (𝐼𝑤 +𝛿),𝑤𝑡 ) is close to
1. Note that a small 𝑟 may not be able to generate a perturbation 𝛿

that satisfies the constraint in Equation 9. Therefore, as detailed in

our method to solve the optimization problem, we perform a binary

search to find the smallest 𝑟 such that the found perturbation 𝛿

satisfies the constraint in Equation 9.

5.1.3 Solving the Optimization Problems. We propose a unified

framework to solve the reformulated optimization problems in

WEvade-W-I and WEvade-W-II. Our key idea of solving the refor-

mulated optimization problems is that we use the popular projected
gradient descent (PGD) [17] to iteratively find the perturbation 𝛿

that satisfies the constraints (if possible) for a given 𝑟 . Then, we

perform binary search over 𝑟 to find the smallest perturbation 𝛿

that satisfies the constraints. Specifically, the binary search inter-

val [𝑟𝑎, 𝑟𝑏 ] is initialized such that 𝑟𝑎 = 0 and 𝑟𝑏 is a large value

(e.g., 2). Then, we pick 𝑟 = (𝑟𝑎 + 𝑟𝑏 )/2 and solve a reformulated

optimization problem for the given 𝑟 . If the found perturbation 𝛿

satisfies the constraint in the reformulated optimization problem,

then we update 𝑟𝑏 = 𝑟 , otherwise we update 𝑟𝑎 = 𝑟 . We repeat

the process until the binary search interval size is smaller than a

threshold, e.g., 𝑟𝑏 − 𝑟𝑎 ≤ 0.001 in our experiments. Algorithm 1

in Appendix shows our binary search process, where the target

watermark 𝑤𝑡 = ¬𝐷 (𝐼𝑤) in WEvade-W-I and 𝑤𝑡 is a randomly

picked watermark in WEvade-W-II. The function FindPerturbation

solves a reformulated optimization problem to find 𝛿 for a given 𝑟 .

Next, we discuss the function FindPerturbation, which is illus-

trated in Algorithm 2 in Appendix. We solve the optimization prob-

lem for a given 𝑟 using PGD. The perturbation 𝛿 is initialized to be

0. In each iteration, we compute the gradient of the loss function

𝑙 (𝐷 (𝐼𝑤 + 𝛿),𝑤𝑡 ) with respect to 𝛿 and move 𝛿 towards the inverse

of the gradient by a small step 𝛼 , which is known as learning rate.
If the ℓ∞-norm of 𝛿 is larger than the perturbation bound 𝑟 , we

project it so its ℓ∞-norm is 𝑟 . We repeat the process for max_iter
iterations and stop the iterative process early if the constraint in the

reformulated optimization problem (i.e., Equation 5 in WEvade-W-I

or Equation 9 in WEvade-W-II) is already satisfied.

5.2 Black-box Setting
Surrogate-model-based (WEvade-B-S): The first direction is that
the attacker trains a surrogate encoder/decoder, and then performs

white-box attacks based on its surrogate decoder. The key hypothe-

sis of such method is that the surrogate detector outputs a similar

watermark with the target decoder for a post-processed water-

marked image, and thus the post-processed watermarked image

constructed to evade the surrogate decoder based detector may also

evade the target detector. Specifically, the attacker collects some

images and trains an encoder/decoder using the watermarking al-

gorithm on its own images. The attacker’s images and the service

provider’s images used to train encoders/decoders may be from dif-

ferent distributions. After training a surrogate encoder and decoder,

the attacker can turn a watermarked image 𝐼𝑤 into a post-processed

one 𝐼𝑝𝑤 using the surrogate decoder and the white-box attack, e.g.,

WEvade-W-II in our experiments. Note that WEvade-B-S does not

rely on information of the target detector (e.g., target decoder and

𝜏), and thus the same 𝐼𝑝𝑤 could be used for all detectors.

Query-based (WEvade-B-Q): WEvade-B-S does not directly take

information about the target detector into consideration. As a re-

sult, the surrogate decoder may be quite different from the target

decoder, leading to low evasion rates as shown in our experiments.

To address the challenge, WEvade-B-Q finds the post-processed

watermarked image 𝐼𝑝𝑤 by directly querying the target detector.

Note that in this setting, we post-process a watermarked image

to evade a target detector with a particular threshold 𝜏 , unlike the

white-box setting where we aim to evade detectors with any thresh-

old 𝜏 > 0.5. Finding 𝐼𝑝𝑤 in such scenario can be viewed as finding

adversarial example to the target detector (i.e., a binary classifier)

which returns a hard label for a query image. Therefore, we ex-

tend state-of-the-art hard-label query-based adversarial example

technique called HopSkipJump [6] to find 𝐼𝑝𝑤 in our problem.

Specifically, HopSkipJump first generates a random initial 𝐼𝑝𝑤
that evades the target detector by blending the given watermarked

image 𝐼𝑤 with uniform random noise. Then, HopSkipJump itera-

tively moves 𝐼𝑝𝑤 towards 𝐼𝑤 to reduce perturbation while always

guaranteeing that 𝐼𝑝𝑤 evades detection. In each iteration, Hop-

SkipJump returns a new 𝐼𝑝𝑤 and the number of queries to the

target detector API used to find such 𝐼𝑝𝑤 . HopSkipJump stops the

iterative process when reaching a given query budget. We found

that simply applying HopSkipJump to watermark-based detector

leads to large perturbations. This is because 1) the random initial

𝐼𝑝𝑤 may be far away from 𝐼𝑤 , and 2) the perturbation may increase

after some iterations before reaching the query budget.

Our WEvade-B-S extends HopSkipJump by addressing the two

limitations. First, instead of using a random initial 𝐼𝑝𝑤 , WEvade-B-S

uses a post-processed version of 𝐼𝑤 as the initial 𝐼𝑝𝑤 . For instance,

we can use JPEG compression to post-process 𝐼𝑤 as the initial 𝐼𝑝𝑤 .

In particular, we decrease the quality factor 𝑄 of JPEG in the list

[99, 90, 70, 50, 30, 10, 1] until finding a post-processed version

of 𝐼𝑤 that evades detection, which is our initial 𝐼𝑝𝑤 . When none

of the quality factor can generate a post-processed version of 𝐼𝑤
that evades the target detector, we revert to the random initial

𝐼𝑝𝑤 adopted by HopSkipJump. Second, we early stop the iterative

process when the perturbation in 𝐼𝑝𝑤 increases in multiple (denoted

as 𝐸𝑆) consecutive iterations. Algorithm 3 in Appendix shows our

WEvade-B-S, where the function HopSkipJump(𝐼𝑝𝑤 ) returns a new

𝐼𝑝𝑤 and the number of queries to the API used to find it.



CCS’23, November 26–30, 2023, Copenhagen, Denmark Zhengyuan Jiang∗ , Jinghuai Zhang∗ , and Neil Zhenqiang Gong

6 THEORETICAL ANALYSIS
Given a watermarked image 𝐼𝑤 , our attack turns it into a post-

processed watermarked image 𝐼𝑝𝑤 . We define evasion rate of 𝐼𝑝𝑤
as the probability that it is falsely detected as non-AI-generated,

where the randomness (if any) in calculating the probability stems

from our attack, e.g., the randomness in picking the target water-

mark𝑤𝑡 in WEvade-W-II. We formally analyze the evasion rate of

WEvade against both single-tail detector and double-tail detector

in the white-box and black-box settings. All the proofs are shown

in Appendix.

6.1 White-box Setting
WEvade-W-I: Suppose a watermarked image 𝐼𝑤 can be correctly

detected by a (single-tail or double-tail) detector with threshold

𝜏 > 0.5. The following theorem shows that the post-processed wa-

termarked image 𝐼𝑝𝑤 found by WEvade-W-I is guaranteed to evade

the single-tail detector with evasion rate 1, while it is guaranteed

to be detected by the double-tail detector (i.e., evasion rate is 0).

Theorem 1. Given a watermarked image 𝐼𝑤 that can be detected
by a single-tail or double-tail detector with a threshold 𝜏 > 0.5.
Suppose 𝐼𝑝𝑤 is found by our WEvade-W-I. 𝐼𝑝𝑤 is guaranteed to evade
the single-tail detector, but is guaranteed to be detected by the double-
tail detector. Formally, we have the following:

Single-tail detector: 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) < 𝜏, (10)

Double-tail detector: 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) < 1 − 𝜏
or 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) > 𝜏, (11)

where𝑤 is any unknown ground-truth watermark.

WEvade-W-II: The following theorems show the evasion rates of

WEvade-W-II against single-tail and double-tail detectors.

Theorem 2. Given a watermarked image 𝐼𝑤 and a single-tail
detector with any threshold 𝜏 > 0.5. Suppose 𝐼𝑝𝑤 is found by our
WEvade-W-II. For any ground-truth watermark 𝑤 , the probability
(i.e., evasion rate) that 𝐼𝑝𝑤 successfully evades the single-tail detector
can be lower bounded as follows:

Pr(𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏) ≥ 𝑃 (⌊(𝜏 − 𝜖)𝑛⌋), (12)

where 𝑛 is the watermark length and 𝑃 (𝑡) = Pr(𝑚 ≤ 𝑡) is the cumula-
tive distribution function of the binomial distribution𝑚 ∼ 𝐵(𝑛, 0.5).

Theorem 3. Given a watermarked image 𝐼𝑤 and a double-tail
detector with any threshold 𝜏 > 0.5. Suppose 𝐼𝑝𝑤 is found by our
WEvade-W-II. For any ground-truth watermark 𝑤 , the probability
(i.e., evasion rate) that 𝐼𝑝𝑤 successfully evades the double-tail detector
can be lower bounded as follows:

Pr(1 − 𝜏 ≤ 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏) ≥ 2𝑃 (⌊(𝜏 − 𝜖)𝑛⌋) − 1, (13)

where 𝑛 is the watermark length and 𝑃 (𝑡) = Pr(𝑚 ≤ 𝑡) is the cumula-
tive distribution function of the binomial distribution𝑚 ∼ 𝐵(𝑛, 0.5).

Theorem 2 and 3 indicate that the evasion rate lower bound of a

post-processed watermarked image 𝐼𝑝𝑤 constructed by WEvade-

W-II depends on 𝜏 used by the detector, 𝜖 adopted by the attacker

in WEvade-W-II, and the watermark length 𝑛. For instance, for a

detector with a larger 𝜏 , the evasion rate is larger.

6.2 Black-box Setting
WEvade-B-S: The evasion rate of WEvade-B-S relies on the "sim-

ilarity" between the surrogate decoder 𝐷′ and target decoder 𝐷 .

Based on a formal definition of similarity between the watermarks

decoded by the surrogate decoder 𝐷′ and target decoder 𝐷 for any

image, we can derive the evasion rate of WEvade-B-S. First, we

formally define the similarity between 𝐷′ and 𝐷 as follows:

Definition 1 ((𝛽,𝛾)-similar). Suppose we are given a surrogate
decoder 𝐷′ and target decoder 𝐷 . We say 𝐷′ and 𝐷 are (𝛽,𝛾)-similar
if their outputted watermarks have bitwise accuracy at least 𝛽 with
probability at least 𝛾 for an image 𝐼 picked from the watermarked-
image space uniformly at random. Formally, we have:

𝑃𝑟 (𝐵𝐴(𝐷′ (𝐼 ), 𝐷 (𝐼 )) ≥ 𝛽) ≥ 𝛾 . (14)

Then, given that 𝐷′ and 𝐷 are (𝛽,𝛾)-similar, the following the-

orem shows lower bounds of the evasion rates of WEvade-B-S

against single-tail detector and double-tail detector.

Theorem 4. Suppose WEvade-B-S finds an 𝐼𝑝𝑤 based on a surro-
gate decoder 𝐷′; and 𝐷′ and the target decoder 𝐷 are (𝛽,𝛾)-similar.
Then, the evasion rates of 𝐼𝑝𝑤 for a single-tail detector or double-tail
detector with threshold 𝜏 > 0.5 are lower bounded as follows:

Single-tail detector:

𝑃𝑟 (𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏) ≥ 𝛾𝑃 (⌊(𝜏 + 𝛽 − 𝜖 − 1)𝑛⌋) (15)

Double-tail detector:

𝑃𝑟 (1 − 𝜏 ≤ 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏) ≥ 2𝛾𝑃 (⌊(𝜏 + 𝛽 − 𝜖 − 1)𝑛⌋) − 1,
(16)

where𝑤 is the unknown ground-truth watermark.

WEvade-B-Q:WEvade-B-Q starts from an initial 𝐼𝑝𝑤 that evades

the target detector. During the iterative process to reduce the pertur-

bation, WEvade-B-Q always guarantees that 𝐼𝑝𝑤 evades detection.

Therefore, the evasion rate of WEvade-B-Q is 1. Note that the eva-

sion rate is only for the target detector.

7 EVALUATION
7.1 Experimental Setup
Datasets: We use three benchmark datasets, including COCO [15],

ImageNet [8], and Conceptual Caption (CC) [31]. Following HiD-

DeN [46] and UDH [42], we randomly sample 10,000 training im-

ages from each dataset to train watermarking encoder and decoder.

For evaluation, we randomly sample 100 images from the testing

set and embed a watermark into each image. For each image in all

datasets, we re-scale its size to 128 × 128.

Post-processing methods: We compare with the following exist-

ing post-processing methods, which are widely used to measure

robustness of watermarkingmethods. Each of these post-processing

methods has some parameter, which controls the amount of pertur-

bation added to a watermarked image and thus evasion rate.

JPEG. JPEG [43] is a popular image compression method. It

has a parameter called quality factor 𝑄 . A smaller quality factor

compresses an image more, is more likely to evade detection, and

also adds larger perturbation.

Gaussian noise. This method adds a random Gaussian noise to

each pixel of a watermarked image. The Gaussian distribution has
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a mean 0 and standard deviation 𝜎 . The 𝜎 controls the perturbation

and thus evasion rate.

Gaussian blur. This method blurs a watermarked image. It has

a parameter called kernel size 𝑠 and standard deviation 𝜎 . We did

not observe much impact of the kernel size once it is small enough,

and thus we set 𝑠 = 5. However, we will vary 𝜎 to control the

perturbation added to watermarked images and thus evasion rate.

Brightness/Contrast. This method adjusts the brightness and

contrast of an image. Formally, the method has two parameters 𝑎

and𝑏, where each pixel value 𝑥 is converted to 𝑎𝑥+𝑏.𝑏 has a smaller

impact. We set 𝑏 = 0.2 and vary 𝑎 to control the perturbation added

to watermarked images.

Watermarkingmethods:We consider two representative learning-

based methods HiDDeN [46] and UDH [42], whose implementa-

tions are publicly available. To consider watermarks with different

lengths, we use 30-bit watermarks in HiDDeN and 256-bit water-

marks in UDH. We use the default parameter settings of HiDDeN

and UDH in their publicly available code. HiDDeN normalizes the

pixel value range [0, 255] to be [-1, 1], while UDH normalizes to

[0, 1]. We consider both standard training and adversarial training

as described in Section 2.2. but the encoders/decoders are trained

using standard training unless otherwise mentioned. In adversarial

training, we randomly sample a post-processing method from no

post-processing, the existing ones, and ours with a random param-

eter to post-process each watermarked image in a mini-batch. We

use WEvade-W-II with the parameter 𝜖 = 0.01 if our adversarial

post-processing method is sampled. For the existing methods, we

consider the following range of parameters during adversarial train-

ing: 𝑄 ∈ [10, 99] for JPEG, 𝜎 ∈ [0, 0.1] for Gaussian noise, 𝜎 ∈[0,
1.0] for Gaussian blur, and 𝑎 ∈ [1, 5] for Brightness/Contrast. We

consider these parameter ranges because parameters out of the

ranges impact the images’ visual quality.

Evaluation metrics: We consider bitwise accuracy, evasion rate,
and average perturbation. Bitwise accuracy of an image is the frac-

tion of the bits of its watermark that match with the ground-truth

one. Evasion rate is the fraction of post-processed watermarked

images that evade detection. Perturbation added to a watermarked

image is measured by its ℓ∞-norm. For each dataset, we report

bitwise accuracy, evasion rate, and perturbation averaged over

100 original/watermarked/post-processed testing images. Note that

HiDDeN normalizes the pixel value range [0, 255] to be [-1, 1].

Therefore, we divide the perturbation in HiDDeN by 2, so the per-

turbation represents the fraction of the pixel value range [0, 255] in

both HiDDeN and UDH. For instance, a perturbation of 0.02 means

changing each pixel value by at most 0.02 ∗ 255 = 5 of an image.

Parameter settings: We set𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 5, 000, 𝛼 = 0.1 for HiD-

DeN and 𝛼 = 1 for UDH in WEvade-W-I and WEvade-W-II. We

use a larger 𝛼 for UDH because its watermark length is larger. We

set 𝜖 = 0.01 in WEvade-W-II. For WEvade-B-Q, unless otherwise

mentioned, we set the query budget to be 2,000 and the early stop-

ping threshold 𝐸𝑆 = 5. By default, we use the ℓ2-distance as the loss

function. Unless otherwise mentioned, we show results when the

dataset is COCO, watermarking method is HiDDeN, and detector

is the double-tail detector.
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Figure 4: False positive rate (FPR) and false negative rate
(FNR) of the double-tail detector based on UDH as the thresh-
old 𝜏 varies when there are no attacks.

0.0 0.5 1.0
Standard Deviation σ

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

B
it

w
is

e
A

cc
u

ra
cy Bitwise Accuracy

Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
er

tu
rb

at
io

n

Figure 5: Average bitwise accuracy and average perturbation
of the post-processed watermarked images when Gaussian
blur uses different standard deviations.
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Figure 6: Evasion rates of WEvade-W-II against the double-
tail detector with different 𝜏 for the three datasets when the
watermarking method is (a) HiDDeN and (b) UDH.

7.2 Detection Results without Attacks
We first show detection results when there are no attacks to post-

process watermarked images. Figure 4 shows the false positive rate

(FPR) and false negative rate (FNR) of the double-tail detector based

on UDH when the threshold 𝜏 varies from 0.99 to 0.50, where FPR

is the fraction of original testing images that are falsely detected as

watermarked and FNR is the fraction of watermarked testing images

that are falsely detected as original. The results for the double-tail

detector based on HiDDeN and single-tail detector are shown in

Figure 19 and Figure 20 in Appendix, respectively. The "Theoretical"

curves are the theoretical FPRs of the detectors, i.e., 𝐹𝑃𝑅𝑠 (𝜏) in
Equation 1 and 𝐹𝑃𝑅𝑑 (𝜏) in Equation 2. There is no theoretical

analytical form for FNR, and thus there are no curves corresponding

to "Theoretical" in the FNR graphs. Note that 𝐹𝑃𝑅𝑠 (𝜏) or 𝐹𝑃𝑅𝑑 (𝜏)
is the theoretical FPR for any original image when the ground-

truth watermark is picked uniformly at random. More specifically,

given any original image, if we pick 100 ground-truth watermarks

uniformly at random, the theoretical FPR is roughly the fraction
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Figure 7: Average perturbation added by each post-processing method to evade the double-tail detector with different threshold
𝜏 in the white-box setting. We set the parameters of existing post-processing methods such that they achieve the same evasion
rate as our WEvade-W-II. The watermarking method is HiDDeN and the results for UDH are shown in Figure 24 in Appendix.

of the 100 trials in which the original image is falsely detected as

watermarked. The empirical FPR shown in Figure 4 can be viewed as

estimating the theoretical FPR of each original testing image using

one randomly picked ground-truth watermark and then averaging

the estimated theoretical FPRs among the original testing images.

We have three observations. First, under no attacks, both single-

tail and double-tail detectors are accurate when the threshold 𝜏 is

set properly. In particular, for HiDDeN (or UDH), both FPR and FNR

of both detectors are consistently close to 0 on the three datasets

when 𝜏 varies from 0.7 to 0.95 (or from 0.6 to 0.99). The range

of such 𝜏 is wider for UDH than for HiDDeN, i.e., [0.6, 0.99] vs.

[0.7, 0.95]. This is because UDH uses a longer watermark than

HiDDeN, i.e., 256 vs. 30 bits. Second, the theoretical FPR is close to

the empirical FPRs, i.e., the "Theoretical" curve is close to the other

three FPR curves in a graph. They do not exactly match because

the empirical FPRs are estimated using only one randomly picked

ground-truth watermark. Third, given the same threshold 𝜏 , the

double-tail detector has a higher FPR than the single-tail detector,

which is more noticeable when 𝜏 is small (e.g., 0.55). This is because

the double-tail detector considers both the left and right tails of the

bitwise-accuracy distribution (see illustration in Figure 3).

7.3 Attack Results in the White-box Setting

WEvade outperforms existing post-processing methods: Each
existing post-processing method has a parameter (discussed in Sec-

tion 7.1), which controls how much perturbation is added to a wa-

termarked image. Figure 5 shows the average bitwise accuracy and

average perturbation of the watermarked images post-processed by

Gaussian blur with different parameter values, where HiDDeN and

COCO dataset are used. Figure 22 and Figure 23 in Appendix show

the results on other post-processing methods and datasets. Based on

these results, we compare WEvade with existing post-processing

methods with respect to evasion rate and average perturbation

added to the watermarked images. Note that there exists a trade-off

between evasion rate and average perturbation. Therefore, for a

given threshold 𝜏 , we tune the parameters of the existing methods

such that they achieve similar evasion rates (within 1% difference)

with WEvade and we compare the average perturbation.

Figure 6 shows the evasion rates of WEvade-W-II when the

double-tail detector uses different threshold 𝜏 , while Figure 7 shows
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Figure 8: Comparing different loss functions.

the average perturbations that each method requires to achieve

such evasion rates. The "Theoretical" curves in Figure 6 correspond

to the theoretical lower bounds of evasion rates of WEvade-W-

II in Theorem 3, i.e., 2𝑃 (⌊(𝜏 − 𝜖)𝑛⌋) − 1. Specifically, 𝜖 = 0.01

and 𝑛 = 30 in our experiments and we use 2𝑃 (⌊(𝜏 − 𝜖)𝑛⌋) − 1 to
calculate the lower bound of evasion rate for any 𝜏 . The average

perturbation of WEvade-W-II is a straight line in Figure 7 because

the perturbation added by WEvade-W-II does not depend on 𝜏 .

Note that, in our experiments, we give advantages to existing post-

processing methods, i.e., we assume they can tune their parameters

for a given threshold 𝜏 , while our WEvade-W-II does not assume

the knowledge of 𝜏 .

First, the empirical evasion rates are close to the "Theoretical"

lower bounds in Figure 6, which validates our theoretical analy-

sis. The empirical evasion rates are sometimes slightly lower than

the theoretical lower bounds because the empirical evasion rates

are calculated using a small number (100 in our experiments) of

watermarked images. Second, our results show that WEvade-W-

II substantially outperforms existing post-processing methods. In

particular, WEvade-W-II requires much smaller perturbations to

achieve high evasion rates. We also found that when existing meth-

ods use parameter values to achieve average perturbations no more

than WEvade-W-II, their evasion rates are all 0.

ComparingWEvade-W-I andWEvade-W-II: Figure 21 inAppen-
dix shows the evasion rates and average perturbations of WEvade-

W-I and WEvade-W-II as the single-tail detector or double-tail de-

tector uses different threshold 𝜏 , where the dataset is COCO and

watermarking method is HiDDeN. First, we observe that WEvade-

W-I achieves evasion rate of 1 for the single-tail detector while 0 for

the double-tail detector, which is consistent with our Theorem 1.

Second, for the single-tail detector, WEvade-W-I achieves higher
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Figure 10: Impact of watermark length 𝑛.

evasion rates than WEvade-W-II when 𝜏 is small (e.g., 0.6) but in-

curs larger average perturbation thanWEvade-W-II. This is because

WEvade-W-I adds (larger) perturbation to flip each bit of the wa-

termark of the watermarked image. However, we stress that their

average perturbations are both very small. Third, for the double-tail

detector, WEvade-W-II achieves higher evasion rates and incurs

smaller average perturbations than WEvade-W-I. Note that the per-

turbations added by both WEvade-W-I and WEvade-W-II do not

depend on the detector, and thus the average-perturbation curves

for WEvade-W-I (or WEvade-W-II) are the same for the single-tail

detector and double-tail detector in Figure 21.

Impact of loss function: Figure 8 compares different loss func-

tions with respect to evasion rate and average perturbation of

WEvade-W-II. We observe that these loss functions achieve com-

parable results, though ℓ2-distance and negative cosine similarity

achieve slightly smaller average perturbations. The reason is that,

in our Algorithm 1, we find the smallest perturbation that satisfies

the constraint in Equation 9 no matter what loss function is used;

and in Algorithm 2, we early stop as long as the constraint in Equa-

tion 9 is satisfied. Moreover, our Theorem 3 shows that the evasion

rate of WEvade-W-II does not depend on the loss function once the

found perturbation satisfies the constraint in Equation 9.

Impact of 𝜖: Figure 9 compares different 𝜖 values with respect to

evasion rate and average perturbation of WEvade-W-II. We observe

that 𝜖 achieves a trade-off between evasion rate and average pertur-

bation. As 𝜖 increases, perturbation decreases because Equation 9

is easier to be satisfied; but evasion rate also decreases because the

decoded watermark is less similar to the target watermark𝑤𝑡 .

Impact of watermark length 𝑛: Figure 10 shows the theoretical
lower bound of evasion rate of WEvade-W-II to double-tail detector

(i.e., 2𝑃 (⌊(𝜏 − 𝜖)𝑛⌋) − 1) as a function of the watermark length 𝑛,

where 𝜖 = 0.01 and 𝜏 varies from 0.6 to 0.9. We observe that the

lower bound increases as 𝑛 increases. This is because the randomly
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Figure 11: Standard vs. adversarial training forWEvade-W-II.
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Figure 12: Comparing evasion rates (first row) and average
perturbations (second row) of WEvade-B-S and WEvade-B-
Q in the black-box setting. The watermarking method is
HiDDeN and Figure 26 in Appendix shows results for UDH.

picked target watermark𝑤𝑡 is more likely to have a bitwise accuracy

0.5 compared to the ground-truth watermark as 𝑛 increases.

Adversarial training improves robustness but is still insuffi-
cient: Figure 11 compares standard training and adversarial train-

ing with respect to the evasion rates and average perturbations

of WEvade-W-II. We have three observations. First, adversarial

training improves robustness of the detector. In particular, WEvade-

W-II achieves the same evasion rates for standard and adversarial

training. This is because evasion rates of WEvade-W-II do not

depend on how the encoder and decoder are trained. However,

WEvade-W-II needs to add larger perturbations on average when

adversarial training is used. Second, adversarial training is still in-

sufficient. Specifically, the perturbations added by WEvade-W-II

are still small, which maintain visual quality of the images well

(Figure 1 shows some example images). Third, WEvade-W-II still

outperforms existing post-processing methods when adversarial

training is used. In particular, Figure 25 in Appendix shows that

WEvade-W-II still adds much smaller perturbations than existing

methods when they tune parameters to achieve similar evasion

rates with WEvade-W-II.

7.4 Attack Results in the Black-box Setting
WEvade-B-S vs. WEvade-B-Q: Figure 12 shows the evasion rate

and average perturbation of WEvade-B-S and WEvade-B-Q on the

three datasets. Note that, for target detectors with different 𝜏 , we ap-

ply WEvade-B-Q separately to find the (different) perturbations for

a watermarked image, while WEvade-B-S adds 𝜏-agnostic perturba-

tion to a watermarked image. First, WEvade-B-Q always achieves

evasion rate of 1 while the evasion rate of WEvade-B-S decreases

to 0 as the threshold 𝜏 decreases. This is because the surrogate
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Figure 13: (a) Average perturbation of WEvade-B-Q as query
budget varies. (b) Average perturbation of WEvade-B-Q to
evade the single-tail detector or double-tail detector with
different threshold 𝜏 .

decoder and the target decoder output dissimilar watermarks for an

image. As our Theorem 4 shows, when the surrogate decoder and

the target decoder are more likely to output dissimilar watermarks,

the evasion rate of WEvade-B-S decreases. Second, WEvade-B-Q

adds larger perturbation as 𝜏 decreases. This is because the decision

boundary of a detector with smaller 𝜏 is further away from the

watermarked images and WEvade-B-Q requires larger perturba-

tions to move them across such boundary. Third, the perturbation

of WEvade-B-S does not depend on 𝜏 because it uses the white-box

attack WEvade-W-II to find perturbations.

Impact of the number of queries on WEvade-B-Q: Figure 13a
shows the average perturbation added by WEvade-B-Q when the

query budget max_q per watermarked image varies, where the

threshold 𝜏 = 𝜏∗ = 0.83 (corresponding to FPR=10
−4
). Note that

the evasion rate is always 1. We observe that the average perturba-

tion added by WEvade-B-Q decreases rapidly as the query budget

increases. Moreover, when the query budget is small, the average

perturbation is already small. For instance, when the query budget is

30 and dataset is COCO, the average perturbation added byWEvade-

B-Q is 0.032. On the contrary, existing post-processing methods

JPEG, Gaussian noise, Gaussian blur, and Brightness/Contrast re-

spectively add average perturbations 0.211, 0.109, 0.395, and 0.439 to

achieve evasion rates close to 1. We acknowledge that WEvade-B-Q

requires queries for each watermarked image, so the total number

of queries may be large when an attacker aims to evade detection

of many watermarked images. However, we note that an attacker

can perform a high-profile targeted attack by evading detection of a

single or a small number of watermarked images, e.g., a fake image

of Elon Musk dating GM CEO Mary Barra [32]. In such scenarios,

an attacker can afford a larger number of queries for the targeted

watermarked images.

Single-tail vs. double-tail detector: Figure 13b shows the aver-
age perturbations added by WEvade-B-Q to evade the single-tail

detector and double-tail detector. We observe that WEvade-B-Q

adds similar perturbations to evade the two detectors. The reason is

that WEvade-B-Q only uses the detector API without considering

the internal mechanisms of the detector. Note that the evasion rates

of WEvade-B-Q are always 1.

Black-box vs. white-box: Figure 14 compares the evasion rate and

average perturbation of WEvade in the white-box (i.e., WEvade-W-

II) and black-box settings (i.e., WEvade-B-Q). First, WEvade-B-Q

adds smaller perturbations when 𝜏 is large (e.g., 0.9) but larger
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Figure 14: White-box vs. black-box.
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Figure 15: (a) Average perturbation of WEvade-B-Q as the
query budget increases. (b) WEvade-B-Q vs. HopSkipJump.

perturbations when 𝜏 is small (e.g., 0.6). This is because WEvade-B-

Q requires larger perturbations to move watermarked images across

the decision boundary of a detector with smaller 𝜏 whileWEvade-W-

II is agnostic to 𝜏 . However, we stress that the perturbations of both

WEvade-B-Q andWEvade-W-II are small. Second, the perturbations

of WEvade-B-Q are still much smaller than those of existing post-

processingmethods (refer to Figure 7). Third,WEvade-B-Q achieves

higher evasion rates than WEvade-W-II when 𝜏 is small (e.g., 0.6).

This is because WEvade-B-Q guarantees evasion rate of 1.

Adversarial training: Figure 15a compares the average perturba-

tions added by WEvade-B-Q with different query budget max_q for

detectors obtained by standard training and adversarial training,

where we set 𝜏 = 𝜏∗ = 0.83 (corresponding to FPR=10−4). Adversar-
ial training improves robustness in the sense that an attacker needs

more queries to achieve similar level of perturbation. However, we

stress that adversarial training is insufficient because a moderate

number of queries can still achieve small perturbations.

Comparing WEvade-B-Q with HopSkipJump: Figure 15b com-

pares WEvade-B-Q with HopSkipJump in terms of average per-

turbations, where the watermarking method is UDH and dataset

is COCO. We observe that WEvade-B-Q adds much smaller per-

turbations than HopSkipJump. This is because WEvade-B-Q uses

JPEG compressed version of a watermarked image as initialization

and adopts early stopping when the added perturbation increases.

Figure 27 in Appendix further shows that both the initialization and

early stopping contribute to WEvade-B-Q. We note that WEvade-

B-Q achieves comparable perturbations with HopSkipJump for

HiDDeN. This is because HiDDeN uses 30-bit watermarks and thus

the detectors have much simpler decision boundaries.

7.5 Attacking Stable Diffusion’s Detector
We generate 100 watermarked images using Stable Diffusion with

default setting. We use sd-v1-1.ckpt as the checkpoint. Stable Diffu-
sion uses a watermark="StableDiffusionV1", which is represented
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Figure 16: (a) Average bitwise accuracy and average pertur-
bation of the Stable Diffusion watermarked images post-
processed by JPEGwith different quality factor𝑄 . (b) Average
perturbation added by JPEG compression and WEvade-B-Q
to evade the double-tail detector with different threshold 𝜏 .

(a) Watermarked (b) JPEG (c) WEvade-B-Q
Figure 17: Illustration of a Stable Diffusion watermarked
image and the versions post-processed by JPEG and WEvade-
B-Q to evade watermark-based detection.

as 136 bits. The decoder can decode the exact watermark from each

of the 100 watermarked images. Figure 16a shows the average bit-

wise accuracy and average perturbation of the watermark images

post-processed by JPEG with different quality factor 𝑄 . When 𝑄 is

around 80, the bitwise accuracy already reduces to be around 0.5,

which means a watermark-based detector cannot distinguish JPEG

compressed watermarked images with original images. Figure 16b

shows the average perturbation incurred by JPEG compression

and WEvade-B-Q to evade the double-tail detector. Our WEvade-

B-Q incurs much smaller perturbations than JPEG compression.

Figure 17 shows an example Stable Diffusion watermarked image,

its JPEG compressed version, and the version post-processed by

WEvade-B-Q to evade the double-tail detector with 𝜏 = 0.66 (cor-

responding to FPR=10
−4
). As we can see, both JPEG compression

and WEvade-B-Q can evade the Stable Diffusion’s detector, which

is based on a non-learning-based watermarking method, without

sacrificing the image quality.

8 DISCUSSION AND LIMITATIONS
Other metrics to quantify perturbation: Attacker’s goal is to
add small perturbation to evade detection while preserving visual

quality of the image.We use ℓ∞-norm of the perturbation to quantify

whether it preserves visual quality, which is a popular choice in

adversarial examples [5, 12]. In particular, when ℓ∞-norm of the

perturbation is small enough, the visual quality is preserved. We

can also use other ℓ𝑝 -norms, e.g., ℓ2-norm, or SSIM [36] between a

watermarked image and its post-processed version, to quantify the

perturbation. For instance, Figure 18 compares the perturbations

added by different post-processingmethods in the white-box setting

when using ℓ2-norm or SSIM to quantify the perturbation, while

Figure 28 in Appendix shows the results in the black-box setting,
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Figure 18: Average perturbation, measured by ℓ2-norm (first
row) or SSIM (second row), added by each post-processing
method to evade the double-tail detector with different
threshold 𝜏 in the white-box setting.We set the parameters of
existing post-processing methods such that they achieve the
same evasion rate as our WEvade-W-II. The watermarking
method is HiDDeN and dataset is COCO.

where WEvade uses the default parameter settings described in

Section 7.1. Our results show that WEvade still adds much smaller

perturbations than existing methods when ℓ2-norm or SSIM is used

to quantify the perturbation. We acknowledge that ℓ𝑝 -norms and

SSIM are approximate measures of perturbations’ impact on visual

quality. Previous works [30] on adversarial examples showed that

small ℓ𝑝 -norms of perturbations may not be sufficient nor necessary

conditions to maintain visual quality. It is an interesting future work

to explore other metrics to quantify the impact of perturbation on

visual quality specifically in the generative AI domain.

Provably robust watermarking methods: The fundamental rea-

son that watermarking-based detectors can be evaded by our at-

tack is that existing watermarking methods do not have provable

robustness guarantees. Specifically, an attacker can add a small per-

turbation to a watermarked image such that the decoder outputs

a different watermark for the post-processed watermarked image.

To defend against such attacks, one interesting future work is to

build watermarking methods with provable robustness guarantees.

In particular, a provably robust watermarking method is guaran-

teed to output similar watermarks for a watermarked image and

its post-processed version once the added perturbation is bounded,

e.g., its ℓ∞-norm or ℓ2-norm is smaller than a threshold. For in-

stance, if the watermarks decoded from a watermarked image and

its post-processed version are guaranteed to have bitwise accuracy

of 0.85 once the ℓ∞-norm of the perturbation is bounded by 0.03,

then a detector with threshold 𝜏 = 0.8 is guaranteed to detect the

post-processed version once the ℓ∞-norm of the perturbation is

bounded by 0.03. If the perturbation bound is large enough to be

human-perceptible, an attacker has to sacrifice visual quality of the

watermarked image in order to evade watermarking-based detector,

leading to a dilemma for the attacker, i.e., either being detected or

perturbed images have low quality.
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9 CONCLUSION AND FUTUREWORK
We find that watermark-based detection of AI-generated content is

vulnerable to strategic, adversarial post-processing. An attacker can

add a small, human-imperceptible perturbation to an AI-generated,

watermarked image to evade detection. Our results indicate that

watermark-based AI-generated content detection is not as robust

as previously thought. We also find that simply extending standard

adversarial examples to watermarking is insufficient since they do

not take the unique characteristics of watermarking into consider-

ation. An interesting future work is to explore watermark-based

detectors with provable robustness guarantees.
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Figure 19: FPR and FNR of the double-tail detector based on
HiDDeN as the threshold 𝜏 varies when there are no attacks
to post-process the watermarked images.
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Figure 20: FPR and FNR of the single-tail detector as the
threshold 𝜏 varies when there are no attacks to post-process
the watermarked images.

Algorithm 1WEvade-W-I and WEvade-W-II

Input: Watermarked image 𝐼𝑤 and target watermark𝑤𝑡

Output: Post-processed watermarked image 𝐼𝑝𝑤
1: 𝑟𝑏 ← 2

2: 𝑟𝑎 ← 0

3: while 𝑟𝑏 − 𝑟𝑎 > 0.001 do
4: 𝑟 ← (𝑟𝑎 + 𝑟𝑏 )/2
5: 𝛿 ′ ← FindPerturbation (𝐼𝑤 ,𝑤𝑡 , 𝑟 )

6: if ((WEvade-W-I & Equation 5 is satisfied)

or (WEvade-W-II & Equation 9 is satisfied)) then
7: 𝑟𝑏 ← 𝑟

8: 𝛿 ← 𝛿 ′

9: else
10: 𝑟𝑎 ← 𝑟

11: end if
12: end while
13: return 𝐼𝑤 + 𝛿
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Figure 21: Comparing WEvade-W-I with WEvade-W-II
against the single-tail (first row) and double-tail (second row)
detector.

Algorithm 2 FindPerturbation (𝐼𝑤 ,𝑤𝑡 , 𝑟 )

Input: Decoder 𝐷 , objective function 𝑙 , learning rate 𝛼 , and maxi-

mum number of iterations max_iter.
Output: Perturbation 𝛿

1: 𝛿 ← 0

2: for 𝑘 = 1 to max_iter do
3: 𝑔← ∇𝛿 𝑙 (𝐷 (𝐼𝑤 + 𝛿),𝑤𝑡 )
4: 𝛿 ← 𝛿 − 𝛼 · 𝑔
5: //Projection to satisfy the perturbation bound

6: if ∥𝛿 ∥∞ > 𝑟 then
7: 𝛿 ← 𝛿 · 𝑟

∥𝛿 ∥∞
8: end if
9: //Early stopping

10: if ((WEvade-W-I & Equation 5 is satisfied)

or (WEvade-W-II & Equation 9 is satisfied)) then
11: return 𝛿

12: end if
13: end for
14: return 𝛿

A PROOF OF THEOREM 1
For the standard detector, 𝐼𝑤 is correctly detected and thus we have

𝐵𝐴(𝐷 (𝐼𝑤),𝑤) > 𝜏 > 0.5. Therefore, we have:

𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤)
= 𝐵𝐴(¬𝐷 (𝐼𝑤),𝑤) = 1 − 𝐵𝐴(𝐷 (𝐼𝑤),𝑤)
< 1 − 𝜏 < 𝜏 .

For the adaptive detector, 𝐼𝑤 is correctly detected and thus we

have 𝐵𝐴(𝐷 (𝐼𝑤),𝑤) > 𝜏 or 𝐵𝐴(𝐷 (𝐼𝑤),𝑤) < 1 − 𝜏 , where 𝜏 > 0.5.

Since𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) = 1−𝐵𝐴(𝐷 (𝐼𝑤),𝑤), we have𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) >
𝜏 or 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) < 1 − 𝜏 .
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Figure 22: Average bitwise accuracy and average perturbation of the post-processed watermarked images when an existing
post-processing method uses different parameter values. The watermarking method is HiDDeN. The datasets are COCO (first
row), ImageNet (second row), and CC (third row).

B PROOF OF THEOREM 2
We denote 𝐷 (𝐼𝑝𝑤) =𝑤𝐼𝑝𝑤 . According to Equation 9, we have:

𝐵𝐴(𝑤𝐼𝑝𝑤 ,𝑤𝑡 ) = 1 −
|𝑤𝐼𝑝𝑤 −𝑤𝑡 |1

𝑛
≥ 1 − 𝜖,

=⇒ |𝑤𝐼𝑝𝑤 −𝑤𝑡 |1 ≤ 𝜖𝑛,

where | · |1 is ℓ1 distance between two binary vectors. Then, accord-

ing to the triangle inequality, we have:

|𝑤𝑡 −𝑤 |1 = |𝑤𝑡 −𝑤𝐼𝑝𝑤 +𝑤𝐼𝑝𝑤 −𝑤 |1
≤ |𝑤𝑡 −𝑤𝐼𝑝𝑤 |1 + |𝑤𝐼𝑝𝑤 −𝑤 |1
≤ 𝜖𝑛 + |𝑤𝐼𝑝𝑤 −𝑤 |1 .

Therefore, we have:

Pr(𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏)
= Pr(𝐵𝐴(𝑤𝐼𝑝𝑤 ,𝑤) ≤ 𝜏)

= Pr(1 −
|𝑤𝐼𝑝𝑤 −𝑤 |1

𝑛
≤ 𝜏)

= Pr( |𝑤𝐼𝑝𝑤 −𝑤 |1 ≥ (1 − 𝜏)𝑛)
≥ Pr( |𝑤𝑡 −𝑤 |1 − 𝜖𝑛 ≥ (1 − 𝜏)𝑛)
= Pr( |𝑤𝑡 −𝑤 |1 ≥ (1 − 𝜏 + 𝜖)𝑛),

Since𝑤𝑡 is picked uniformly at random, we know |𝑤𝑡 −𝑤 |1 follows
a binomial distribution, i.e., |𝑤𝑡 −𝑤 |1 ∼ 𝐵(𝑛, 0.5). Thus, we have:

Pr(𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏)
≥ Pr( |𝑤𝑡 −𝑤 |1 ≥ ⌈(1 − 𝜏 + 𝜖)𝑛⌉)

= 𝑃 (⌊(𝜏 − 𝜖)𝑛⌋),
where 𝑃 (𝑡) = Pr(𝑚 ≤ 𝑡) is the cumulative distribution function of

the binomial distribution𝑚 ∼ 𝐵(𝑛, 0.5).

C PROOF OF THEOREM 3
According to Equation 9, we have:

𝐵𝐴(𝑤𝐼𝑝𝑤 ,𝑤𝑡 ) = 1 −
|𝑤𝐼𝑝𝑤 −𝑤𝑡 |1

𝑛
≤ 1 − 𝜖,

=⇒ |𝑤𝐼𝑝𝑤 −𝑤𝑡 |1 ≤ 𝜖𝑛.

Then, according to the triangle inequality, we have:

|𝑤𝐼𝑝𝑤 −𝑤 |1 = |𝑤𝐼𝑝𝑤 −𝑤𝑡 +𝑤𝑡 −𝑤 |1
≤ |𝑤𝐼𝑝𝑤 −𝑤𝑡 |1 + |𝑤𝑡 −𝑤 |1 ≤ 𝜖𝑛 + |𝑤𝑡 −𝑤 |1 .

Similarly, we have:

|𝑤𝑡 −𝑤 |1 = |𝑤𝑡 −𝑤𝐼𝑝𝑤 +𝑤𝐼𝑝𝑤 −𝑤 |1
≤ |𝑤𝑡 −𝑤𝐼𝑝𝑤 |1 + |𝑤𝐼𝑝𝑤 −𝑤 |1 ≤ 𝜖𝑛 + |𝑤𝐼𝑝𝑤 −𝑤 |1 .

Therefore, we have:

|𝑤𝑡 −𝑤 |1 − 𝜖𝑛 ≤ |𝑤𝐼𝑝𝑤 −𝑤 |1 ≤ |𝑤𝑡 −𝑤 |1 + 𝜖𝑛.
Thus, we have:

Pr(1 − 𝜏 ≤ 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏)
= Pr(1 − 𝜏 ≤ 𝐵𝐴(𝑤𝐼𝑝𝑤 ,𝑤) ≤ 𝜏)

= Pr(1 − 𝜏 ≤ 1 −
|𝑤𝐼𝑝𝑤 −𝑤 |1

𝑛
≤ 𝜏)
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(d) Brightness/Contrast
Figure 23: Average bitwise accuracy and average perturbation of the post-processed watermarked images when an existing
post-processing method uses different parameter values. The watermarking method is UDH. The datasets are COCO (first row),
ImageNet (second row), and CC (third row).
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(b) ImageNet
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Figure 24: Average perturbation added by each post-processingmethod to evade the double-tail detector with different threshold
𝜏 in the white-box setting. We set the parameters of existing post-processing methods such that they achieve the same evasion
rate as our WEvade-W-II. The watermarking method is UDH.

= Pr((1 − 𝜏)𝑛 ≤ |𝑤𝐼𝑝𝑤 −𝑤 |1 ≤ 𝜏𝑛)
= 1 − Pr((1 − 𝜏)𝑛 > |𝑤𝐼𝑝𝑤 −𝑤 |1) − Pr( |𝑤𝐼𝑝𝑤 −𝑤 |1 > 𝜏𝑛)
≥ 1 − Pr((1 − 𝜏)𝑛 > |𝑤𝑡 −𝑤 |1 − 𝜖𝑛) − Pr( |𝑤𝑡 −𝑤 |1 + 𝜖𝑛 > 𝜏𝑛)
= 1 − Pr((1 − 𝜏 + 𝜖)𝑛 > |𝑤𝑡 −𝑤 |1) − Pr( |𝑤𝑡 −𝑤 |1 > (𝜏 − 𝜖)𝑛)
= 1 − 2Pr( |𝑤𝑡 −𝑤 |1 > (𝜏 − 𝜖)𝑛)
= 1 − 2(1 − Pr( |𝑤𝑡 −𝑤 |1 ≤ (𝜏 − 𝜖)𝑛))
= 2Pr( |𝑤𝑡 −𝑤 |1 ≤ (𝜏 − 𝜖)𝑛) − 1.

Since |𝑤𝑡 −𝑤 |1 ∼ 𝐵(𝑛, 0.5), we have:

Pr(1 − 𝜏 ≤ 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏)
≥ 2Pr( |𝑤𝑡 −𝑤 |1 ≤ (𝜏 − 𝜖)𝑛) − 1
= 2Pr( |𝑤𝑡 −𝑤 |1 ≤ ⌊(𝜏 − 𝜖)𝑛⌋) − 1
= 2𝑃 (⌊(𝜏 − 𝜖)𝑛⌋) − 1.
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Figure 25: Average perturbation added by each post-
processing method to evade the double-tail detector with
different threshold 𝜏 for the COCO dataset. We set the pa-
rameters of existing post-processing methods such that they
achieve the same evasion rate as WEvade-W-II. The water-
marking method is HiDDeN and adversarial training is used.
After adversarial training, the average bitwise accuracy is
around 0.87. When 𝜏 is 0.95, empirical FNR is 99.6%, and thus
existing post-processing methods do not add perturbations
to a large fraction of watermarked images based on how we
evaluate them, leading to 0 perturbations. However, they
need much larger perturbations when 𝜏 is smaller than 0.9.
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(a) COCO
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(b) ImageNet
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Figure 26: Comparing evasion rates (first row) and average
perturbations (second row) of WEvade-B-S and WEvade-B-Q
in the black-box setting. Watermarking method is UDH.
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Figure 27: Impact of (a) initialization and (b) early stopping
on our WEvade-B-Q for UDH and COCO dataset.
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(a) Standard training
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(b) Adversarial training
Figure 28: Average perturbation, measured by ℓ2-norm (first
row) or SSIM (second row), added by each post-processing
method to evade the double-tail detector with different 𝜏 in
the black-box setting. WEvade-B-Q always achieves evasion
rate 1, and we set the parameters of existing post-processing
methods such that they achieve evasion rates as close to 1 as
possible. The watermarking method is HiDDeN and dataset
is COCO. When generating these perturbations, we change
the ℓ∞-norm to ℓ2-norm at Line 16 in Algorithm 3.

Figure 29: DALL-E generated image with a visible watermark
at the bottom right corner.

D PROOF OF THEOREM 4
For single-tail detector, we denote 𝐷′ (𝐼𝑝𝑤) = 𝑤 ′

𝐼𝑝𝑤
. According to

Equation 9, we have:

𝐵𝐴(𝑤 ′𝐼𝑝𝑤 ,𝑤𝑡 ) = 1 −
|𝑤 ′

𝐼𝑝𝑤
−𝑤𝑡 |1
𝑛

≤ 1 − 𝜖,

=⇒ |𝑤 ′𝐼𝑝𝑤 −𝑤𝑡 |1 ≤ 𝜖𝑛.

Then, according to the triangle inequality, we have:

|𝑤 ′𝐼𝑝𝑤 −𝑤 |1 = |𝑤
′
𝐼𝑝𝑤
−𝑤𝑡 +𝑤𝑡 −𝑤 |1

≤ |𝑤 ′𝐼𝑝𝑤 −𝑤𝑡 |1 + |𝑤𝑡 −𝑤 |1 ≤ 𝜖𝑛 + |𝑤𝑡 −𝑤 |1 .
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Algorithm 3WEvade-B-Q

Input: API of the target detector, a watermarked image 𝐼𝑤 , query

budget max_q, and early stop threshold 𝐸𝑆 .

Output: Post-processed image 𝐼𝑝𝑤
1: 𝑞 ← 0

2: //Initializing 𝐼𝑝𝑤
3: for 𝑄 ∈ [99, 90, 70, 50, 30, 10, 1] do
4: 𝑞 ← 𝑞 + 1
5: if 𝐴𝑃𝐼 (JPEG(𝐼𝑤 , 𝑄))=="non-AI-generated" then
6: 𝐼𝑝𝑤 ← JPEG(𝐼𝑤 , 𝑄)

7: break
8: end if
9: end for
10: //Iteratively move 𝐼𝑝𝑤 towards 𝐼𝑤
11: 𝛿𝑚𝑖𝑛 ← 𝐼𝑝𝑤 − 𝐼𝑤
12: 𝑒𝑠 ← 0

13: while 𝑞 ≤ max_q and 𝑒𝑠 ≤ 𝐸𝑆 do
14: 𝐼𝑝𝑤 , 𝑞

′ ← HopSkipJump(𝐼𝑝𝑤 )

15: 𝑞 ← 𝑞 + 𝑞′
16: if ∥𝐼𝑝𝑤 − 𝐼𝑤 ∥∞ < ∥𝛿𝑚𝑖𝑛 ∥∞ then
17: 𝛿𝑚𝑖𝑛 ← 𝐼𝑝𝑤 − 𝐼𝑤
18: 𝑒𝑠 ← 0

19: else
20: 𝑒𝑠 ← 𝑒𝑠 + 1
21: end if
22: end while
23: return 𝐼𝑤 + 𝛿𝑚𝑖𝑛

Similarly, we have:

|𝑤𝑡 −𝑤 |1 = |𝑤𝑡 −𝑤 ′𝐼𝑝𝑤 +𝑤
′
𝐼𝑝𝑤
−𝑤 |1

≤ |𝑤𝑡 −𝑤 ′𝐼𝑝𝑤 |1 + |𝑤
′
𝐼𝑝𝑤
−𝑤 |1 ≤ 𝜖𝑛 + |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 .

Therefore, we have:

|𝑤𝑡 −𝑤 |1 − 𝜖𝑛 ≤ |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 ≤ |𝑤𝑡 −𝑤 |1 + 𝜖𝑛.

Moreover, according to Definition 1, we have:

Pr(𝐵𝐴(𝑤 ′𝐼𝑝𝑤 ,𝑤𝐼𝑝𝑤 ) ≥ 𝛽)

= Pr(1 −
|𝑤 ′

𝐼𝑝𝑤
−𝑤𝐼𝑝𝑤 |1
𝑛

≥ 𝛽) ≥ 𝛾,

=⇒ Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤𝐼𝑝𝑤 |1 ≤ (1 − 𝛽)𝑛) ≥ 𝛾 .

Thus, we have:

Pr(𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏)
= Pr(𝐵𝐴(𝑤𝐼𝑝𝑤 ,𝑤) ≤ 𝜏)

= Pr(1 −
|𝑤𝐼𝑝𝑤 −𝑤 |1

𝑛
≤ 𝜏)

= Pr( |𝑤𝐼𝑝𝑤 −𝑤 |1 ≥ (1 − 𝜏)𝑛) .
Then, according to the triangle inequality, we have:

|𝑤 ′𝐼𝑝𝑤 −𝑤 |1 = |𝑤
′
𝐼𝑝𝑤
−𝑤𝐼𝑝𝑤 +𝑤𝐼𝑝𝑤 −𝑤 |1

≤ |𝑤 ′𝐼𝑝𝑤 −𝑤𝐼𝑝𝑤 |1 + |𝑤𝐼𝑝𝑤 −𝑤 |1,

=⇒ |𝑤𝐼𝑝𝑤 −𝑤 |1 ≥ |𝑤
′
𝐼𝑝𝑤
−𝑤 |1 − |𝑤 ′𝐼𝑝𝑤 −𝑤𝐼𝑝𝑤 |1 .

Similarly, we have:

|𝑤𝐼𝑝𝑤 −𝑤 |1 = |𝑤𝐼𝑝𝑤 −𝑤
′
𝐼𝑝𝑤
+𝑤 ′𝐼𝑝𝑤 −𝑤 |1

≤ |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 + |𝑤𝐼𝑝𝑤 −𝑤
′
𝐼𝑝𝑤
|1 .

Thus, we have:

Pr( |𝑤𝐼𝑝𝑤 −𝑤 |1 ≥ (1 − 𝜏)𝑛)
≥ Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 − |𝑤

′
𝐼𝑝𝑤
−𝑤𝐼𝑝𝑤 |1 ≥ (1 − 𝜏)𝑛)

≥ Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 − (1 − 𝛽)𝑛) ≥ (1 − 𝜏)𝑛)

· Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤𝐼𝑝𝑤 |1 ≤ (1 − 𝛽)𝑛)

≥ Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 ≥ (2 − 𝜏 − 𝛽)𝑛) · 𝛾
≥ 𝛾Pr( |𝑤𝑡 −𝑤 |1 − 𝜖𝑛 ≥ (2 − 𝜏 − 𝛽)𝑛)
= 𝛾Pr( |𝑤𝑡 −𝑤 |1 ≥ (2 − 𝜏 − 𝛽 + 𝜖)𝑛) .

Since |𝑤𝑡 −𝑤 |1 ∼ 𝐵(𝑛, 0.5), we have:
Pr(𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏)
≥ 𝛾Pr( |𝑤𝑡 −𝑤 |1 ≥ ⌈(2 − 𝜏 − 𝛽 + 𝜖)𝑛⌉)
= 𝛾 (1 − 𝑃 (⌈(2 − 𝜏 − 𝛽 + 𝜖)⌉))
= 𝛾𝑃 (⌊(𝜏 + 𝛽 − 𝜖 − 1)𝑛⌋) .

For double-tail detector, we have:

Pr(1 − 𝜏 ≤ 𝐵𝐴(𝐷 (𝐼𝑝𝑤),𝑤) ≤ 𝜏)
= Pr(1 − 𝜏 ≤ 𝐵𝐴(𝑤𝐼𝑝𝑤 ,𝑤) ≤ 𝜏)

= Pr(1 − 𝜏 ≤ 1 −
|𝑤𝐼𝑝𝑤 −𝑤 |1

𝑛
≤ 𝜏)

= Pr((1 − 𝜏)𝑛 ≤ |𝑤𝐼𝑝𝑤 −𝑤 |1 ≤ 𝜏𝑛)
= 1 − Pr((1 − 𝜏)𝑛 > |𝑤𝐼𝑝𝑤 −𝑤 |1) − Pr( |𝑤𝐼𝑝𝑤 −𝑤 |1 > 𝜏𝑛)
≥ 1 − Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 − |𝑤

′
𝐼𝑝𝑤
−𝑤𝐼𝑝𝑤 |1 < (1 − 𝜏)𝑛)

− Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 + |𝑤𝐼𝑝𝑤 −𝑤
′
𝐼𝑝𝑤
|1 > 𝜏𝑛)

≥ Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 − |𝑤
′
𝐼𝑝𝑤
−𝑤𝐼𝑝𝑤 |1 ≥ (1 − 𝜏)𝑛)

+ Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 + |𝑤𝐼𝑝𝑤 −𝑤
′
𝐼𝑝𝑤
|1 ≤ 𝜏𝑛) − 1

≥ 𝛾𝑃 (⌊(𝜏 + 𝛽 − 𝜖 − 1)𝑛⌋) + Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤 |1 + (1 − 𝛽)𝑛 ≤ 𝜏𝑛)

· Pr( |𝑤 ′𝐼𝑝𝑤 −𝑤𝐼𝑝𝑤 |1 ≤ (1 − 𝛽)𝑛) − 1
≥ 𝛾𝑃 (⌊(𝜏 + 𝛽 − 𝜖 − 1)𝑛⌋)
+ Pr( |𝑤𝑡 −𝑤 |1 + 𝜖𝑛 ≤ (𝜏 + 𝛽 − 1)𝑛) · 𝛾 − 1

≥ 𝛾𝑃 (⌊(𝜏 + 𝛽 − 𝜖 − 1)𝑛⌋)
+ 𝛾Pr( |𝑤𝑡 −𝑤 |1 ≤ (𝜏 + 𝛽 − 𝜖 − 1)𝑛) − 1

≥ 2𝛾𝑃 (⌊(𝜏 + 𝛽 − 𝜖 − 1)𝑛⌋) − 1.
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