

1 Detecting parallel polygenic adaptation to novel evolutionary pressure in wild populations: a
2 case study in Atlantic cod (*Gadus morhua*)

4 Brendan N. Reid¹, Bastiaan Star², Malin L. Pinsky¹

6 ¹Department of Ecology, Evolution, and Natural Resources, Rutgers University, New
7 Brunswick, NJ, USA 08540

8 ²Center for Ecological and Evolutionary Synthesis, Department of Biosciences, University of
9 Oslo, Blindern, NO-0316, Oslo, Norway

10 ABSTRACT

12 Populations can adapt to novel selection pressures through dramatic frequency changes in a few
13 genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic
14 adaptation) is expected to be the primary mode of evolution for many life-history traits but tends
15 to be more difficult to detect than changes in genes of large effect. Atlantic cod (*Gadus morhua*)
16 were subjected to intense fishing pressure over the 20th century, leading to abundance crashes
17 and a phenotypic shift toward earlier maturation across many populations. Here, we use spatially
18 replicated temporal genomic data to test for a shared polygenic adaptive response to fishing
19 using methods previously applied to evolve-and-resequence experiments. Cod populations on
20 either side of the Atlantic show covariance in allele frequency change across the genome that are
21 characteristic of recent polygenic adaptation. Using simulations, we demonstrate that the degree
22 of covariance in allele frequency change observed in cod is unlikely to be explained by neutral
23 processes or background selection. As human pressures on wild populations continue to increase,
24 understanding and attributing modes of adaptation using methods similar to those demonstrated
25 here will be important in identifying the capacity for adaptive responses and evolutionary rescue.

26 INTRODUCTION

28 Biodiversity is changing rapidly in response to human activity (Dornelas et al., this issue). When
29 faced with accelerating environmental change in the Anthropocene, many wild populations may
30 only be able to persist through evolutionary adaptation to novel conditions (Kinnison & Hairston
31 2007, Hoffmann & Sgró 2011). Such evolutionary responses to recent change have been
32 suggested in multiple taxa, including birds (Karell et al. 2011, Helm et al. 2019), fish (Swain et
33 al. 2007), mammals (Büntgen et al. 2018), insects (Fritz et al. 2017), and plants (Franks and
34 Weis 2008). Proving that responses have been evolutionary rather than the result of phenotypic
35 plasticity, however, has often been difficult in the wild (Mörla and Hendry 2014).

37 The capacity for contemporary evolution depends on the amount of existing genomic variation
38 and on the genomic architecture of the trait under selection (Bay et al. 2017). Highly polygenic
39 traits may have a greater capacity for evolutionary response to novel conditions (Messer et al.
40 2016, Jain and Stephan 2017). Since a large number of loci may underpin these traits, however,

41 genetic redundancy (or the degree to which multiple combinations of different alleles can
42 produce the same phenotype; Barghi et al. 2022) may be high, such that different loci can
43 contribute to a similar phenotypic response across populations (Yair and Coop 2022). If the same
44 loci contribute to the evolution of a similar trait value in different populations, the evolutionary
45 genetic response is considered parallel. The degree to which polygenic evolutionary responses
46 are parallel or non-parallel will depend on a number of factors, including the frequency of alleles
47 contributing to the selective response in the founding populations, the degree to which their
48 phenotypic effects are redundant, and the distance to a novel trait optimum (Barghi et al. 2022).
49 Empirical studies of recent repeated adaptation have shown evidence of both parallel genetic
50 responses (Ferris et al. 2021) and non-parallel responses (Whiting et al. 2022, Szukala et al.
51 2022).

52
53 The genetic signatures of evolutionary adaptation, and the methods used to detect these
54 signatures, depend on the genetic architecture of the trait and the data available. For traits
55 controlled by a few loci, selection will result in distinct genomic sweeps characterized by large
56 changes in frequency of the loci responsible for adaptation as well as nearby loci (Stephan et al.
57 2016, Messer et al. 2016). When spatial or temporal genome-scale genetic data is available,
58 regions influenced by sweeps can be identified as outliers with atypically high genetic
59 differentiation (Nielsen 2005). For more polygenic architectures, allele frequency changes will
60 be more subtle and will be spread across a large number of loci, rendering tests for outliers less
61 useful (Yeaman 2015). If trait data are available, genome-wide association studies (GWAS) may
62 be able to identify loci under selection, although trait data are not always available and GWAS
63 may be of limited utility when the trait architecture is highly polygenic (Mathieson 2021).
64 Recently, a framework for detecting highly polygenic responses to selection from covariance in
65 genome-wide allele frequency change across temporal or spatial replicates has been developed
66 (Buffalo and Coop 2019) and applied to evolve-and-resequence studies (Buffalo and Coop
67 2020). However, this method has not yet been applied in wild populations.

68
69 Studies of contemporary adaptation to novel environments in the wild have found that
70 evolutionary responses can be mediated by a wide range of genomic architectures, ranging from
71 single loci of large phenotypic effect to whole-genome polygenic architectures with many loci of
72 very small effect (Whiting et al. 2022). When survival in altered environments is strongly
73 controlled by a single locus, adaptive responses may depend on the presence of a particular allele
74 (Jones et al. 2020, Czorlich et al. 2022). Recent adaptation to freshwater environments in
75 threespine sticklebacks has been mediated by a small number (<20) of genomic regions recycled
76 across multiple instances of adaptation, producing parallel genetic responses in freshwater
77 populations (Bell and Aguirre 2013, Terekhanova et al. 2014). Evolution of life history traits
78 (including timing of reproduction and maturation) may be particularly important in determining
79 the response to climate change and other novel selection pressures (Visser et al. 2015,
80 Lustenhouwer et al. 2018). Since life history is often considered to be a composite character

81 bound to multiple fitness-related traits, life history evolution is often assumed to be highly
82 polygenic, with many loci of small effect rather than a few loci of large effect contributing to
83 quantitative changes in traits (Lande 1982, Braendle et al. 2011), although some life history traits
84 are controlled by only one or a few loci (e.g. migration timing in Pacific salmonids; Pearse et al.
85 2019, Czorlich et al 2022, Waples et al. 2022). Given the difficulties inherent in correctly
86 detecting and attributing highly polygenic adaptive responses, studying contemporary evolution
87 in polygenic life history traits may require novel methods.

88
89 Here, we use the approach developed by Buffalo and Coop (2020) to investigate the evidence for
90 parallel polygenic adaptation to fishing in Atlantic cod (*Gadus morhua*). Cod were subject to
91 intense fishing pressure in the mid-20th century, resulting in both a steep population decline and a
92 phenotypic shift in life-history toward smaller size at maturity and lower age at reproduction
93 (Olsen et al. 2004, Swain 2011). These responses were observed in parallel across both Northeast
94 Atlantic and Northwest Atlantic stocks (Heino 2015). A recent study using temporal genomic
95 data from Northeast and Northwest Atlantic populations before and after exploitation (Pinsky et
96 al. 2021) found that despite population declines, Atlantic cod have retained much of their pre-
97 decline genetic variability. Additionally, there was scant evidence for dramatic sweeps in allele
98 frequency characteristic of adaptation via a few genes of small effect. One possibility is that
99 phenotypic plasticity explains the developmental changes, perhaps through socially mediated
100 developmental processes that are common in fishes (Hutchings et al. 1999, Rowe and Hutchings
101 2003, Olsen et al. 2004, Diaz Pauli and Heino 2013). Polygenic selection, however, also remains
102 a possible explanation for the similar response to overfishing observed in these populations.
103 Differentiating between these two possibilities has been difficult. However, spatial and temporal
104 replication can be particularly important for determining whether evolution occurs via polygenic
105 responses (Barghi et al. 2020). Ultimately, evolution is a change in allele frequencies through
106 time, and some of the clearest evidence for evolutionary change in other systems has come from
107 temporal genomic approaches (Campbell-Staton et al. 2017, Alves et al. 2019, Bi et al. 2019).
108

109 We re-visit the genomic data from Pinsky et al. (2021), which includes data from two cod
110 populations in the Northeast and Northwest Atlantic sampled over a span of 100 years, using the
111 covariance method developed by Buffalo and Coop (2020) to test whether Atlantic cod exhibit a
112 signature of parallel polygenic selection. We hypothesized that parallel polygenic selection
113 would generate positive covariance in allele frequency change across the two sampled
114 populations. We examine whether covariance differs across genomic regions (chromosome-level
115 linkage groups and chromosomal inversions), and we use simulations to evaluate whether neutral
116 processes (demographic change or gene flow) or background selection could generate
117 comparable signals of covariance in allele frequency change. This work demonstrates the utility
118 of novel methods for detecting recent parallel adaptation and deepening our understanding of
119 how wild populations and species can respond to novel selective pressures.
120

121

122 METHODS

123 *Cod SNP data and data filtering*

124 We utilized a SNP dataset generated by Pinsky et al. (2021) from 113 Atlantic cod samples. The
 125 dataset includes individuals from both the Northwest Atlantic (Canada) and the Northeast
 126 Atlantic (Norway) sampled at five discrete time points (Figure 1a). To summarize the
 127 bioinformatic methods briefly, shotgun sequence data were aligned to a reference genome from a
 128 northeast Atlantic cod (version gadMor2) and stringently filtered to remove potentially erroneous
 129 variants that could be caused by mapping errors or DNA damage in historic samples. The final
 130 dataset consisted of 346,290 called SNPs (Pinsky et al. 2021).

131

132 Although this SNP dataset (referred to hereafter as the “original” dataset) was stringently
 133 filtered, some differences between the historical and modern data remained, including lower
 134 genotype quality and higher levels of missing data in historic samples for putative outlier SNPs
 135 compared to the rest of the dataset (Pinsky et al. 2021). To address these potential differences,
 136 we created a second dataset further filtered for quality and missing data (hereafter the “filtered”
 137 dataset). We first used vcftools v.0.1.17 (Danecek et al. 2011) to remove genotypes with Phred-
 138 scaled quality scores <30. We then assessed the level of missing data across each sample. As the
 139 proportion missing was highest for individuals in the 1940 Canada sample, we identified loci
 140 with <40% missing data across individuals in this sample and kept only these loci across all
 141 individuals.

142

143 *Assessing evidence for parallel adaptation*

144 We calculated sample-level allele frequencies at each locus in the original and filtered datasets
 145 for each of the five temporal samples from the Northwest and the Northeast Atlantic using plink
 146 v.2.0 (Chang et al. 2015). We then calculated the change in allele frequency between 1940 to
 147 2013 for the Northwest Atlantic and between 1907 and either 2011 or 2014 for the Northeast
 148 Atlantic. To assess evidence for parallel adaptation, we adapted the “convergent correlation”
 149 statistic described by Buffalo and Coop (2020). Covariance in allele frequency change is taken as
 150 evidence of shared response to selection (both direct selection of loci that affect the trait under
 151 selection and linked selection of loci that are physically near the loci under selection). This
 152 statistic was originally applied to allele frequency changes over the same time interval in
 153 replicated experimental populations subjected to a novel selection pressure. As identical
 154 temporal sampling intervals were not available for the cod dataset, we used the irregular time
 155 points available. We calculated the correlation as:

156

$$157 \text{ConvCor}(\Delta s1, \Delta s2) = \text{cov}(\Delta s1, \Delta s2) / \sqrt{(\text{var}(\Delta s1) * \text{var}(\Delta s2))}$$

158

159 where $\Delta s1$ and $\Delta s2$ represent vectors of allele frequency change between two time points for a
 160 given population. We conducted all calculations using R version 4.2.0 (R Core Team 2022).

161
162 We calculated this statistic for a number of comparisons. To measure covariance in allele
163 frequency change across the Northwest and Northeast Atlantic populations, we calculated
164 ConvCor₁(Canada 1940-2013, Norway 1907-2011) and ConvCor₂(Canada 1940-2013, Norway
165 1907-2014). If parallel evolution occurred, we expected these to show positive correlation. We
166 also calculated two other statistics as controls. As a positive control, we calculated
167 ConvCor₃(Norway 1907-2011, Norway 1907-2014), which is the covariance between measured
168 temporal allele frequency change for the two contemporary Norway samples. Since the
169 contemporary samples were taken roughly within the same generation, covariance should be
170 high and we expected this statistic to be large and positive as long as allele frequency
171 measurements are relatively accurate and unbiased. As a negative control, we calculated
172 ConvCor₄ (Canada 1940-2013, Norway 2011-2014). Measured allele frequency change between
173 the two contemporary Norway samples should mainly correspond to sampling variation, and
174 since there should be little covariance between this and temporal allele frequency change in
175 Canada, this statistic should be close to zero.
176

177 The cod genome contains a number of inversions with suppressed recombination among inverted
178 haplotypes (Kirubakaran et al. 2016, Berg et al. 2017). These regions act as “supergenes” and
179 have been implicated in differences among cod migratory ecotypes (Matschiner et al. 2022). As
180 these inversions may be under different selection pressures than the rest of the genome and are
181 expected to act in a manner similar to one long locus rather than as independent loci, we also
182 evaluated the ConvCor₁ and ConvCor₂ statistics within specific known inversions, within all
183 known inversions, and outside of known inversions. We used the “high LD regions” identified in
184 Matschiner et al. (2022) to define inversions on linkage groups 1, 2, 7, and 12. We also
185 calculated each ConvCor statistic for each linkage group separately, as well as for all SNPs
186 located within coding regions based on the annotated gadmor2 genome. We estimated 95%
187 bootstrap confidence intervals by resampling the loci used to calculate each ConvCor statistic
188 one hundred times with replacement and re-calculating the statistic.
189

190 *Simulations*

191 Buffalo and Coop’s convergence correlation statistic was developed for replicated evolve-and-
192 resequence experiments. Natural populations differ notably from these in several ways, including
193 the potential for migration among populations. To examine the potential for migration to create a
194 false signal of allele frequency covariance among populations without parallel adaptation, we
195 conducted simulations of allele frequency change over time in two populations experiencing
196 gene flow. Forward simulations were conducted in SLiM version 4.0 (Haller and Messer 2019)
197 using non-Wright-Fisher mode. We used parameters mimicking the known history of cod
198 populations in the Atlantic. The simulations began with a single population representing the
199 common ancestor of modern Atlantic cod populations with a population size of $N_e = 7,000$ that
200 corresponded to the Pleistocene minimum population size estimated by Matschiner et al. (2022).

201 This population was simulated for 57,400 generations (roughly 574,000 years assuming 10 years
202 per generation) and then split into two subpopulations (subpop1 and subpop2), corresponding to
203 the split between the Northwest and the Northeast Atlantic cod populations (Matschiner et al.
204 2022). The two subpopulations then grew at a constant rate over 6,530 generations to a final size
205 of $N_e = 35,000$ corresponding to recent population size of the Northeast Atlantic populations
206 estimated by Pinsky et. al (2021). After the split, migration between the two subpopulations was
207 allowed to occur, with a proportion of individuals in each population migrating to the other
208 population each generation. The proportion of individuals migrating per generation (the
209 migration rate) was varied over five orders of magnitude, from 10^{-2} to 10^{-3} , 10^{-4} , 10^{-5} , and 10^{-6} .
210

211 We simulated a single 5 Mb genomic region, roughly corresponding to the “callable bases” for a
212 single cod chromosome in Pinsky et al. (2021). Due to the reduced size of the simulated
213 chromosome relative to the size of an actual cod chromosome (roughly 6 times smaller), to
214 preserve a realistic probability of recombination among genomic regions within the simulated
215 chromosome we set the recombination rate to 1.5×10^{-7} , approximately six times higher than the
216 generally assumed vertebrate recombination rate of 1×10^{-8} per base. We used a mutation rate of
217 1.64×10^{-8} per base per generation previously estimated for Atlantic cod (Matschiner et al. 2022).
218 Two “historic” samples (VCF files) of 20 individuals from subpopulation 1 and subpopulation 2
219 were taken at 6,525 and 6,530 generations after the split (corresponding to the historic samples
220 taken from Norway and Canada, respectively). Finally, three “contemporary” samples were also
221 taken. Two additional samples of 20 individuals each were taken from subpopulation 1 and one
222 additional sample of 20 individuals was taken from subpopulation 2 at 6,540 generations after
223 the split, corresponding to the contemporary samples taken from Norway and Canada,
224 respectively. Twenty replicate simulations were conducted for each migration scenario. To
225 match filters applied to the empirical dataset, we filtered the simulated datasets to remove any
226 loci with minor allele frequency less than 0.05 and any loci with more than two alleles. We
227 calculated Weir and Cockerham’s FST using vcftools between the two populations using both
228 the historic samples and the contemporary samples, as well as between the two time points for
229 each population. We also calculated the four ConvCor statistics described above using the
230 corresponding simulated samples. We compared simulated FST values to empirical FSTs
231 calculated by Pinsky et al. (2021, Figure 1b) and we compared simulated ConvCor statistics to
232 the empirical statistics calculated here.
233

234 Parallel polygenic selection is most likely to occur if populations share adaptive variants that are
235 present at high frequencies (Barghi et al. 2020). Covariance in allele frequency change could also
236 be produced by background selection on shared deleterious variation (Buffalo and Coop 2020),
237 meaning that if strongly deleterious variants arose prior to the split between the two populations
238 and persisted to the present, these variants could also produce a similar signal of covariance in
239 allele frequency change. To evaluate the potential distribution of allele frequencies and ages for
240 different types of variants, we conducted an additional simulation that included neutral

241 mutations, deleterious mutations, and mutations under stabilizing selection. We parameterized
242 this simulation with the same set of demographic parameters used for the neutral simulation, and
243 we used a migration probability of 10^{-4} . We simulated deleterious mutations as completely
244 recessive, with fitness effects following a gamma distribution with a mean of -0.05 and a shape
245 parameter of 0.5 (after Berdan et al. 2019). For mutations under stabilizing selection, we
246 modified the quantitative trait loci (QTL) parameterization from SLiM's template for simulating
247 polygenic selection, in which mutations have an average phenotypic effect of 0 and a variance of
248 1, and selection maintains a phenotype near an optimum value of 0. The same total mutation rate
249 (1.64×10^{-8}) was used, with each type of mutation equally likely to occur. To capture the full
250 spectrum of all mutations, we did not apply a minor allele frequency filter to this simulated
251 dataset. We identified how many mutations segregating in the present time of each type (under
252 neutral, deleterious, or balancing selection) occurred before and after the split between the two
253 populations as well as the mean frequencies of mutations in the present of each type occurring
254 before and after the split.

255

256 RESULTS

257 *Dataset and filtering*

258 The original dataset consisted of 346,290 SNPs, with historical samples tending to exhibit higher
259 levels of missing data than contemporary samples (Supplementary Figure 1a). The filtered
260 dataset contained 112,082 loci with roughly equal proportions of missing data across samples
261 (Supplementary Figure 1b).

262

263 *Assessing evidence for parallel adaptation*

264 The genome-wide convergence correlations across the Atlantic were positive and similar across
265 the two contemporary Norway timepoints for the unfiltered dataset ($\text{ConvCor}_1 = 0.139$, ConvCor_2
266 = 0.119 and the filtered dataset ($\text{ConvCor}_1 = 0.085$, 95% bootstrap CI = 0.08 to 0.092; ConvCor_2
267 = 0.082, 95% bootstrap CI = 0.077 to 0.088). The ConvCor_1 and ConvCor_2 values for each
268 linkage group were uniformly positive for the unfiltered dataset (range: 0.0871 to 0.317) and
269 there was only one negative value in the filtered dataset (range: -0.013 to 0.123; Figure 1a,
270 Supplementary Figure 2). The negative value was for linkage group 1, which has a large
271 inversion. Particularly low and high values for the filtered and unfiltered datasets, respectively,
272 were associated with the inversion in linkage group 1. On both linkage groups 1 and 7, the
273 ConvCor_1 and ConvCor_2 statistics were quite low inside the inversion, but higher outside for the
274 filtered data (Figure 1b, Supplementary Figure 3). ConvCor statistics calculated for coding SNPs
275 did not differ substantially from the genome-wide statistics for the filtered dataset but were lower
276 than the genome-wide statistics for the original dataset (Figure 1b, Supplementary Figure 3).

277

278 As expected for the positive control, ConvCor_3 was high for both the filtered dataset (0.519, 95%
279 bootstrap CI = 0.514 to 0.523) and for the unfiltered dataset (0.712, 95% bootstrap CI 0.71 to
280 0.715) (Figure 1a, Supplementary Figure 2). As expected for the negative control, ConvCor_4 was

281 close to zero, exhibiting slightly negative values for the filtered dataset (-0.026, 95% bootstrap
282 CI -0.019 to -0.031) and the unfiltered dataset (genome-wide = -0.042, 95% bootstrap CI -0.019
283 to -0.031) (Figure 1a, Supplementary Figure 2).

284

285 *Simulations*

286

287 Spatial FST values between subpopulations for both the historical and contemporary samples
288 generated by simulations varied from near zero (for migration rates of 10^{-2} and 10^{-3}) to 0.08-0.12
289 (for migration rates of 10^{-5} and 10^{-6}). The FST from these lower migration rates approximately
290 matched the rates observed in empirical cod populations (FST = 0.11, Supplementary Figure 4).
291 Simulated temporal FST values between time points within a subpopulation, on the other hand,
292 were close to zero for all migration scenarios, suggesting that very little genetic drift is expected
293 for these populations given their size and the number of generations elapsed between sampling
294 points. Observed temporal FST values were approximately 0.012 for both populations, which
295 was larger than any of the simulated values (Supplementary Figure 4).

296

297 The ConvCor₁ and ConvCor₂ statistics calculated for simulated data were on average near zero
298 but demonstrated substantial variability, especially when migration rates were higher ($\geq 10^{-3}$).
299 The observed genome-wide ConvCor₁ and ConvCor₂ statistics, however, were larger than any of
300 the simulated statistics for both the unfiltered and filtered datasets at the lower migration rates
301 ($\leq 10^{-5}$) that were consistent with observed FST (Figure 3). Simulated values for ConvCor₃ were
302 approximately 0.5 across migration scenarios, similar to values observed for the filtered cod
303 dataset but lower than values for the unfiltered dataset (Figure 3). Simulated values for ConvCor₄
304 were close to zero, and observed values were similar or slightly lower (Figure 3).

305

306 The simulation including neutral, deleterious, and QTL variants indicated that most segregating
307 variants were recent. Of the mutations (all three variant types) still segregating at the end of the
308 simulation, 2.5% had originated before the split between the two populations. The fraction of
309 segregating deleterious recessive mutations originating before the split was lower (only 1.1%).
310 For the other types of mutations, 4.8% of segregating neutral mutations had originated before the
311 split, and 1.2% of QTL variants had originated before the split (Supplementary Figure 5a).

312 Mutations originating before the split tended to exhibit a much higher allele frequency at the end
313 of the simulation than mutations originating after the split for each type of variant. The mean
314 frequency of neutral mutations originating before the split was 0.247, while the mean frequency
315 of mutation originating after the split was only 2.38×10^{-3} (Supplementary Figure 5a). The
316 equivalent frequencies for QTL variants was 0.208 (before-split) and 8.88×10^{-4} (after-split,
317 Supplementary Figure 5a), and for deleterious variants equivalent frequencies were 0.083
318 (before-split) and 0.001 (after-split). While simulated mutations originating from before the split
319 comprised a small proportion of all segregating mutations, they made up the majority (86.3%) of
320 segregating variants with allele frequencies greater than 0.05 at the end of the simulation.

321 Segregating variants in the empirical dataset (which was filtered to exclude alleles with minor
322 allele frequencies less than 0.05) exhibited a similar pattern, with a majority (76.3%) of SNPs
323 segregating in all populations. The distribution of fitness effects of deleterious mutations
324 originating before the split was highly skewed toward zero compared to the distribution of
325 effects originating after the split, indicating that shared deleterious mutations had weaker effects
326 on fitness compared more recent unshared mutations (Supplementary Figure 5b). QTL mutations
327 originating before the split also tended to be of smaller phenotypic effect sizes than mutations
328 originating after the split (Supplementary Figure 5c).

329

330 DISCUSSION

331 Despite rapid phenotypic change in Atlantic cod associated with intensive fishing, clear genomic
332 evidence for evolutionary adaptation has been elusive to date (Hutchings and Kuparinen 2021).
333 Here, we found evidence for parallel evolutionary responses to novel selection pressures change
334 across two cod populations. Cod populations in the Northeast and Northwest Atlantic showed
335 remarkably consistent positive covariance in allele frequency change over the last few decades,
336 regardless of genomic linkage group, suggesting that an evolutionary response to fishing was
337 mediated by allele frequency changes across many loci of small effect. This finding is consistent
338 with the trait under selection being a highly polygenic quantitative trait, in line with the
339 architecture of many other life history traits (Braendle et al. 2011).

340

341 The accumulated support for fisheries-induced evolution, and evolution in harvested populations
342 in general, has thus far mainly consisted of abundant evidence for selection on and phenotypic
343 change in life-history traits, with comparatively little molecular evidence for changes in specific
344 genes (Heino et al. 2015). Many populations showing evidence for fisheries-induced evolution,
345 including cod, also show potential for reversibility of phenotypic change when the pressure of
346 selective harvesting is removed (Olsen et al. 2005, Hutchings and Kuparinen 2020, Pinsky et al.
347 2021). A highly polygenic basis for fisheries-induced evolution, as suggested in this study,
348 provides a potential basis for reconciling these observations. As is the case for many traits
349 implicated in local adaptation and adaptation to fish, evolution of traits under fisheries-induced
350 evolutionary pressure may be mediated by small changes in many alleles with high levels of
351 standing genetic variation (Bernatchez 2016), meaning that these evolutionary responses can
352 occur rapidly and have the potential for reversal when fishing pressure is removed.

353

354 While our results are consistent with a highly polygenic response to fisheries-induced selection,
355 it is important to note that definitive causal attribution is difficult with the current data. The
356 populations are responding to a number of changes in the marine environment, including changes
357 in climate, biotic interactions, and other factors (Therkildsen et al. 2013, Bradbury et al. 2010).
358 Covariance in allele frequency change may represent a shared genetic response to one of these
359 other factors or to multiple factors (including fishing) combined. A more definitive attribution of
360 the causes is usually explored with experiments, but these are difficult in long-lived species like

361 cod. Attributing polygenic responses is also more difficult than attributing responses mediated by
362 one or a few traits because oligogenic responses can often be traced back to particular genes with
363 functions related to the observed evolutionary response (Alves et al. 2019, Jones et al. 2020).
364 Alternatively, sampling multiple populations subject to a gradient of fishing pressure and
365 environmental change over multiple time points could enable more robust tests of fisheries-
366 induced evolution in a causal modeling framework (Gonzalez et al., this issue).

367

368 Life-history traits such as age at maturity can also exhibit genomic architectures that are not
369 genome-wide but rather highly localized. Clusters of genes, or “supergenes”, residing within
370 genomic inversions have been shown to underlie divergence between stationary and migratory
371 ecotypes in cod (Kirubakaran et al. 2016, Berg et al. 2016) as well as other ecologically
372 important traits in Atlantic silversides (Tigano et al. 2021), sunflowers (Huang et al. 2020), and
373 butterflies (Kim et al. 2022). While theory predicts that supergene complexes within inversions
374 may be particularly important in parallel evolution (Westram et al. 2022), the trans-Atlantic
375 response to fishing does not in this case appear to be particularly strongly associated with
376 inversions, and correlations in allele frequency change within inversions tended to be somewhat
377 weaker than the genome-wide trend in the filtered dataset. Strong directional selection can
378 produce both low levels of within-population diversity and high levels of differentiation among
379 populations within inversions (as in silversides; Wilder et al. 2020), and this may reduce the role
380 of these inversions in parallel adaptation in cod. Investigating the role of inversions in other
381 instances of fisheries-induced evolution would, however, still be a fruitful avenue for future
382 research.

383

384 Covariance in allele frequency change over time could conceivably be produced by the joint
385 action of migration and drift as well. Without migration, drift will tend to produce divergent
386 allele frequency changes across populations, but with sufficient migration, allele frequencies in
387 separate populations will tend to change in the same directions. The neutral genetic simulations
388 performed here suggest, however, that the observed genetic differentiation among populations is
389 consistent with very low migration rates ($<10^{-5}$ probability of an individual migrating between
390 populations per generation). This inferred rate of migration is consistent with population
391 assignment and clustering analyses conducted for these populations, which suggested strong
392 differentiation and little evidence of admixture among the Northeast and Northwest Atlantic
393 populations (Bradbury et al. 2010, Pinsky et al. 2021, Matschiner et al. 2022). Neutral
394 simulations suggested that false positives for the convergence correlation statistic are unlikely to
395 be generated by migration at the low rates experienced by Northeast and Northwest Atlantic cod.
396 Although simulated values for spatial divergence were consistent with expectations based on cod
397 demographic history, values for temporal divergence were lower than expected under all
398 migration scenarios. The observations of high temporal divergence could potentially be
399 explained by genome allele frequency change due to a novel selection pressure, which would be
400 consistent with our finding of covariance in allele frequency change. In general, neutral

401 simulations are valuable for generating expectations for change over time without selection.
402 Incorporating selective pressures into the simulation framework used here can also help produce
403 expectations for non-neutral scenarios. For example, incorporating deleterious mutations into our
404 simulation framework indicated that strongly deleterious mutations would likely not be shared
405 between populations, suggesting that background selection on shared deleterious variants is
406 unlikely to explain the observed results. However, since conducting more realistic non-neutral
407 simulations would require considerably more knowledge of the genomic architecture of traits
408 under selection and past and present history of selection on those traits, we consider these
409 simulations to be a first step toward fully understanding the evolutionary trajectories of cod
410 genomes. Our simulations also used a relatively simple model of recombination with only a
411 single simulated chromosome to increase computational efficiency. More realistic simulations
412 incorporating variability of recombination rate across the genome would be useful for better
413 understanding the effects of linked selection and explaining variation in the observed covariance
414 in allele frequency change across the genome and within chromosomal inversions.
415

416 It is also important to note that, although the original data were stringently filtered and subjected
417 to additional filters in this study, artifacts in historical data could have influenced our results.
418 Errors in historic data due to DNA degradation can be random (such as introducing singleton
419 alleles) or systematically biased, such as increased rates of transversions or reference bias
420 (Orlando et al. 2013, Gopalakrishnan et al. 2017). While random changes are highly unlikely to
421 produce covariance among change across populations, systematic biases could. The original
422 dataset was filtered to remove transversions and minimize reference bias as a factor (Pinsky et al.
423 2021), meaning that these sources of systematic bias were minimized, but careful attention to
424 systematic bias should always be examined if covariance in allele frequency change is of
425 interest.
426

427 The multi-population temporal method used here holds promise for detecting polygenic
428 evolutionary change in the wild. Detecting such responses in the past has been very difficult. We
429 note, however, that this approach is less likely to work in cases involving extremely polygenic
430 traits exhibiting high genetic redundancy. Such redundancy can produce non-parallel responses
431 across populations because the same phenotype change can be produced by independent locus
432 sets (Yeaman 2015). When responses are highly non-parallel, the convergent correlation method
433 would likely not detect a signal of convergent allele frequency change. The likelihood of non-
434 parallel responses will depend on multiple factors, including the number of loci responsible for a
435 trait (more loci generally meaning a higher degree of redundancy and a higher probability of
436 non-parallel responses) as well as the frequency of adaptive alleles in the population, with shared
437 high-frequency alleles increasing the likelihood of repeatable evolutionary responses. In contrast
438 to experimentally generated populations in evolve-and-resequence experiments originally used to
439 develop Buffalo and Coop's covariance statistics, real populations also have complex, long-term
440 histories of divergence and demographic change that could affect the potential for redundant or

441 non-parallel responses (Fang et al. 2020). Populations that have diverged in the more distant past
442 will be more likely to lose shared quantitative loci by drift and gain population-specific loci
443 through mutation, meaning that the proportion of shared QTL will likely decrease with split
444 times further in the past (Bohutínská et al. 2021). The simulation of QTL conducted here
445 suggested that many of these loci may indeed be recent mutations. However, these simulations
446 also suggested that recent mutations will likely be present at very low frequencies and that
447 shared QTL that originated before the populations split will be present at much higher
448 frequencies and more available to selection by novel environments. These simulations therefore
449 suggest that repeated polygenic adaptation via high-frequency alleles could explain the signal of
450 covariance in allele frequency change observed in trans-Atlantic cod populations despite their
451 past divergence. Over longer time periods, however, covariance in allele frequency change
452 across populations may decay (Barghi et al. 2019, Buffalo and Coop 2020) as alternate loci
453 contribute to long-term adaptation in different populations. We anticipate that this could also
454 occur in cod, particularly as more recent unshared mutations present at low frequencies begin to
455 exhibit larger changes in allele frequencies. Even when the same loci are under selection across
456 populations, divergence may obscure the signal of covariance in allele frequency change across
457 the genome since recombination will break up associations shared among populations between
458 causative loci and linked neutral loci over time (Cutter and Payseur 2013). While the particular
459 sampling scenario examined here (parallel selection in two divergent populations) may not be
460 possible for many systems, if >2 time points are available for a single population similar
461 statistics can also be calculated (Buffalo and Coop 2020). Redundancy and loss of linkage will
462 not be as much of a problem for multi-temporal sampling schemes as long as the same causative
463 loci continue to contribute to phenotypic change through time. Overall, assessing covariance in
464 genome-wide allele frequency change is a promising means of detecting polygenic responses to
465 novel selection pressures in the wild, and using these methods to assess past selective responses
466 and the possibility for future responses will be an important component of conservation
467 management in an evolutionary framework.

468

469

470 **Data accessibility**
471 Scripts used to conduct the analyses can be found at <https://github.com/pinskylab/codPolyEvol>
472 and are archived as a Git repository through Zenodo at <https://doi.org/10.5281/zenodo.7612393>.
473 The original VCF files used to calculate allele frequencies can be downloaded at
474 <https://doi.org/10.6084/m9.figshare.22006988>.
475
476 **Acknowledgments**
477 This work was supported by National Science Foundation grants #OISE-1743711 and #DEB-
478 2129351. We thank two anonymous reviewers for helpful comments on earlier drafts. The
479 authors also acknowledge the Office of Advanced Research Computing (OARC) at Rutgers, The
480 State University of New Jersey, USA for providing access to the Amarel cluster and associated
481 research computing resources that have contributed to the results reported here.
482

483 **References**

484

485 Alves JM, Carneiro M, Cheng JY, Lemos de Matos A, Rahman MM, Loog L, Campos PF,
486 Wales N, Eriksson A, Manica A, Strive T, Graham SC, Afonso S, Bell DJ, Belmont L,
487 Day JP, Fuller SJ, Marchandea S, Palmer WJ, Queney G, Surridge AK, Vieira FG,
488 McFadden G, Nielsen R, Gilbert MTP, Esteves PJ, Ferrand N, Jiggins FM. 2019.
489 Parallel adaptation of rabbit populations to myxoma virus. *Science* 363:1319–26.

490 Barghi, N., Tobler, R., Nolte, V., Jakšić, A. M., Mallard, F., Otte, K. A., ... Schlötterer, C.
491 (2019). Genetic redundancy fuels polygenic adaptation in *Drosophila*. *PLOS Biology*,
492 17(2), e3000128. doi: 10.1371/journal.pbio.3000128

493 Barghi N, Hermisson J, Schlötterer C. 2020. Polygenic adaptation: a unifying framework to
494 understand positive selection. *Nat Rev Genet* 21:769–81.

495 Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi
496 SR, Ralph P. 2017. Predicting Responses to Contemporary Environmental Change
497 Using Evolutionary Response Architectures. *The American Naturalist* 189:463–73.

498 Bell M, Aguirre W. 2013. Contemporary evolution, allelic recycling, and adaptive radiation
499 of the threespine stickleback. *Evolutionary Ecology Research* 15:377–411.

500 Berdan, E. L., Blanckaert, A., Butlin, R. K., & Bank, C. (2021). Deleterious mutation
501 accumulation and the long-term fate of chromosomal inversions. *PLOS Genetics*, 17(3),
502 e1009411. doi: 10.1371/journal.pgen.1009411

503 Berg PR, Star B, Pampoulie C, Bradbury IR, Bentzen P, Hutchings JA, Jentoft S, Jakobsen
504 KS. 2017. Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated
505 with large inversions. *Heredity* 119:418–28.

506 Bernatchez L. 2016. On the maintenance of genetic variation and adaptation to
507 environmental change: considerations from population genomics in fishes. *Journal of*
508 *Fish Biology* 89:2519–56.

509 Bi K, Linderöth T, Singhal S, Vanderpool D, Patton JL, Nielsen R, Moritz C, Good JM.
510 2019. Temporal genomic contrasts reveal rapid evolutionary responses in an alpine
511 mammal during recent climate change. *PLOS Genetics* 15:e1008119.

512 Bohutínská M, Vlček J, Yair S, Laenen B, Konečná V, Fracassetti M, Slotte T, Kolář F.
513 2021. Genomic basis of parallel adaptation varies with divergence in *Arabidopsis* and
514 its relatives. *Proceedings of the National Academy of Sciences* 118:e2022713118.

515 Bradbury IR, Hubert S, Higgins B, Borza T, Bowman S, Paterson IG, Snelgrove PVR,
516 Morris CJ, Gregory RS, Hardie DC, Hutchings JA, Ruzzante DE, Taggart CT, Bentzen
517 P. 2010. Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean

518 in response to temperature. *Proceedings of the Royal Society B: Biological Sciences*
519 277:3725–34.

520 Braendle C, Heyland A, Flatt T. 2011. Integrating mechanistic and evolutionary analysis of
521 life history variation. In: *Mechanisms of Life History Evolution: The Genetics and*
522 *Physiology of Life History Traits and Trade-Offs* Oxford University Press. p. 3–10.

523 Buffalo V, Coop G. 2019. The Linked Selection Signature of Rapid Adaptation in Temporal
524 Genomic Data. *Genetics* 213:1007–45.

525 Buffalo V, Coop G. 2020. Estimating the genome-wide contribution of selection to temporal
526 allele frequency change. *Proceedings of the National Academy of Sciences* 117:20672–
527 80.

528 Büntgen U, Galván JD, Mysterud A, Krusic PJ, Hülsmann L, Jenny H, Senn J, Bollmann K.
529 2018. Horn growth variation and hunting selection of the Alpine ibex. *Journal of*
530 *Animal Ecology* 87:1069–79.

531 Campbell-Staton SC, Chevron ZA, Rochette N, Catchen J, Losos JB, Edwards SV. 2017.
532 Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole
533 lizard. *Science* 357:495–98.

534 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 2015. Second-generation
535 PLINK: rising to the challenge of larger and richer datasets. *GigaScience* 4:s13742-015-
536 0047–0048.

537 Cutter AD, Payseur BA. 2013. Genomic signatures of selection at linked sites: unifying the
538 disparity among species. *Nat Rev Genet* 14:262–74.

539 Czorlich Y, Aykanat T, Erkinaro J, Orell P, Primmer CR. 2018. Rapid sex-specific
540 evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. *Nat*
541 *Ecol Evol* 2:1800–1807.

542 Czorlich, Y., Aykanat, T., Erkinaro, J., Orell, P., & Primmer, C. R. (2022). Rapid evolution
543 in salmon life history induced by direct and indirect effects of fishing. *Science*,
544 376(6591), 420–423. doi: 10.1126/science.abg5980

545 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE,
546 Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis
547 Group. 2011. The variant call format and VCFtools. *Bioinformatics* 27:2156–58.

548 Debes PV, Pivchenko N, Ruokolainen A, Ovaskainen O, Moustakas-Verho JE, Parre N,
549 Aykanat T, Erkinaro J, Primmer CR. 2021. Polygenic and major-locus contributions to
550 sexual maturation timing in Atlantic salmon. *Molecular Ecology* 30:4505–19.

551 Diaz Pauli B, Heino M. 2013. The importance of social dimension and maturation stage for
552 the probabilistic maturation reaction norm in *Poecilia reticulata*. *Journal of*
553 *Evolutionary Biology* 26:2184–96.

554 Dornelas M, Chase J, Gotelli Ni, Magurran A, McGill B, Antão L, Blowes S, Daskalova G,
555 Leung B, Martins I, Moyes F, Myers-Smith I, Thomas C, Vellend M. 2023. Looking
556 back on biodiversity change: lessons for the road ahead. *Philosophical Transactions of*
557 *the Royal Society B*, this issue.

558 Fang B, Kemppainen P, Momigliano P, Feng X, Merilä J. 2020. On the causes of
559 geographically heterogeneous parallel evolution in sticklebacks. *Nat Ecol Evol* 4:1105–
560 15.

561 Ferris KG, Chavez AS, Suzuki TA, Beckman EJ, Phifer-Rixey M, Bi K, Nachman MW.
562 2021. The genomics of rapid climatic adaptation and parallel evolution in North
563 American house mice. *PLOS Genetics* 17:e1009495.

564 Franks SJ, Weis AE. 2008. A change in climate causes rapid evolution of multiple life-
565 history traits and their interactions in an annual plant. *Journal of Evolutionary Biology*
566 21:1321–34.

567 Fritz ML, DeYonke AM, Papanicolaou A, Micinski S, Westbrook J, Gould F. 2018.
568 Contemporary evolution of a Lepidopteran species, *Heliothis virescens*, in response to
569 modern agricultural practices. *Molecular Ecology* 27:167–81.

570 Gagnaire P-A, Gaggiotti OE. 2016. Detecting polygenic selection in marine populations by
571 combining population genomics and quantitative genetics approaches. *Current Zoology*
572 62:603–16.

573 Gonzalez A, Chase J, O'Connor M. A framework for the detection and attribution of
574 biodiversity change. *Philosophical Transactions of the Royal Society B*, this issue.

575 Gopalakrishnan S, Castruita JAS, Sinding M-HS, Kuderna LFK, Raikkonen J, Petersen B,
576 Sicheritz-Ponten T, Larson G, Orlando L, Marques-Bonet T, Hansen AJ, Dalnn L,
577 Gilbert MTP. 2017. The wolf reference genome sequence (*Canis lupus lupus*) and its
578 implications for *Canis* spp. population genomics. *BMC Genomics* 18.

579 Haller BC, Messer PW. 2019. SLiM 3: Forward Genetic Simulations Beyond the Wright–
580 Fisher Model. *Molecular Biology and Evolution* 36:632–37.

581 Heino M, Diaz Pauli B, Dieckmann U. 2015. Fisheries-Induced Evolution. *Annual Review*
582 *of Ecology, Evolution, and Systematics* 46:461–80.

583 Helm B, Van Doren BM, Hoffmann D, Hoffmann U. 2019. Evolutionary Response to
584 Climate Change in Migratory Pied Flycatchers. *Current Biology* 29:3714–3719.e4.

585 Hoffmann AA, Sgrò CM. 2011. Climate change and evolutionary adaptation. *Nature*
586 470:479–85.

587 Huang K, Andrew RL, Owens GL, Ostevik KL, Rieseberg LH. 2020. Multiple chromosomal
588 inversions contribute to adaptive divergence of a dune sunflower ecotype. *Molecular
589 Ecology* 29:2535–49.

590 Hutchings JA, Bishop TD, McGregor-Shaw CR. 1999. Spawning behaviour of Atlantic cod,
591 *Gadus morhua*: evidence of mate competition and mate choice in a broadcast spawner.
592 *Can J Fish Aquat Sci* 56:97–104.

593 Hutchings JA, Kuparinen A. 2020. Implications of fisheries-induced evolution for
594 population recovery: Refocusing the science and refining its communication. *Fish and
595 Fisheries* 21:453–64.

596 Hutchings JA, Kuparinen A. 2021. Throwing down a genomic gauntlet on fisheries-induced
597 evolution. *Proceedings of the National Academy of Sciences* 118:e2105319118.

598 Jain, K., & Stephan, W. (2017). Modes of Rapid Polygenic Adaptation. *Molecular Biology
599 and Evolution*, 34(12), 3169–3175. doi: 10.1093/molbev/msx240

600 Jones MR, Mills LS, Jensen JD, Good JM. 2020. Convergent evolution of seasonal
601 camouflage in response to reduced snow cover across the snowshoe hare range*.
602 *Evolution* 74:2033–45.

603 Jump AS, Peñuelas J. 2005. Running to stand still: adaptation and the response of plants to
604 rapid climate change. *Ecology Letters* 8:1010–20.

605 Karell P, Ahola K, Karstinen T, Valkama J, Brommer JE. 2011. Climate change drives
606 microevolution in a wild bird. *Nat Commun* 2:208.

607 Kim K-W, De-Kayne R, Gordon IJ, Omufwoko KS, Martins DJ, ffrench-Constant R, Martin
608 SH. 2022. Stepwise evolution of a butterfly supergene via duplication and inversion.
609 *Philosophical Transactions of the Royal Society B: Biological Sciences* 377:20210207.

610 Kinnison MT, Hairston NG. 2007. Eco-Evolutionary Conservation Biology: Contemporary
611 Evolution and the Dynamics of Persistence. *Functional Ecology* 21:444–54.

612 Kirubakaran TG, Grove H, Kent MP, Sandve SR, Baranski M, Nome T, De Rosa MC,
613 Righino B, Johansen T, Otterå H, Sonesson A, Lien S, Andersen Ø. 2016. Two adjacent
614 inversions maintain genomic differentiation between migratory and stationary ecotypes
615 of Atlantic cod. *Molecular Ecology* 25:2130–43.

616 Kuparinen A, Hutchings JA. 2017. Genetic architecture of age at maturity can generate
617 divergent and disruptive harvest-induced evolution. *Philosophical Transactions of the
618 Royal Society B: Biological Sciences* 372:20160035.

619 Lande R. 1982. A Quantitative Genetic Theory of Life History Evolution. *Ecology* 63:607–
620 15.

621 Lustenhouwer N, Wilschut RA, Williams JL, van der Putten WH, Levine JM. 2018. Rapid
622 evolution of phenology during range expansion with recent climate change. *Global
623 Change Biology* 24:e534–44.

624 Mathieson I. 2021. The omnigenic model and polygenic prediction of complex traits. *The
625 American Journal of Human Genetics* 108:1558–63.

626 Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT, Brieuc MSO, Pampoulie C,
627 Bradbury I, Jakobsen KS, Jentoft S. 2022. Supergene origin and maintenance in
628 Atlantic cod. *Nat Ecol Evol* 6:469–81.

629 Merilä J, Hendry AP. 2014. Climate change, adaptation, and phenotypic plasticity: the
630 problem and the evidence. *Evolutionary Applications* 7:1–14.

631 Messer PW, Ellner SP, Hairston NG. 2016. Can Population Genetics Adapt to Rapid
632 Evolution? *Trends in Genetics* 32:408–18.

633 Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U. 2004.
634 Maturation trends indicative of rapid evolution preceded the collapse of northern cod.
635 *Nature* 428:932–35.

636 Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M,
637 Cappellini E, Petersen B, Moltke I, Johnson PLF, Fumagalli M, Vilstrup JT, Raghavan
638 M, Korneliussen T, Malaspina A-S, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J,
639 Dolocan A, Stenderup J, Velazquez AMV, Cahill J, Rasmussen M, Wang X, Min J,
640 Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock
641 J, Gregersen K, Røed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen
642 MF, Brunak S, Al-Rasheid KAS, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert
643 MTP, Kjær K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R,
644 Shapiro B, Wang J, Willerslev E. 2013. Recalibrating *Equus* evolution using the
645 genome sequence of an early Middle Pleistocene horse. *Nature* 499:74–78.

646 Pearse, D. E., Barson, N. J., Nome, T., Gao, G., Campbell, M. A., Abadía-Cardoso, A., ...
647 Lien, S. (2019). Sex-dependent dominance maintains migration supergene in rainbow
648 trout. *Nature Ecology & Evolution*, 3(12), 1731–1742. doi: 10.1038/s41559-019-1044-6

649 Pinsky ML, Eikeset AM, Helmerson C, Bradbury IR, Bentzen P, Morris C, Gondek-
650 Wyrozemska AT, Baalsrud HT, Brieuc MSO, Kjesbu OS, Godiksen JA, Barth JMI,
651 Matschiner M, Stenseth NChr, Jakobsen KS, Jentoft S, Star B. 2021. Genomic stability
652 through time despite decades of exploitation in cod on both sides of the Atlantic.
653 *Proceedings of the National Academy of Sciences* 118:e2025453118.

654 Prince DJ, O'Rourke SM, Thompson TQ, Ali OA, Lyman HS, Saglam IK, Hotaling TJ,
655 Spidle AP, Miller MR. 2017. The evolutionary basis of premature migration in Pacific
656 salmon highlights the utility of genomics for informing conservation. *Science Advances*
657 3:e1603198.

658 Rowe S, Hutchings JA. 2003. Mating systems and the conservation of commercially
659 exploited marine fish. *Trends in Ecology & Evolution* 18:567–72.

660 Stephan W. 2016. Signatures of positive selection: from selective sweeps at individual loci
661 to subtle allele frequency changes in polygenic adaptation. *Molecular Ecology* 25:79–
662 88.

663 Swain DP. 2011. Life-history evolution and elevated natural mortality in a population of
664 Atlantic cod (*Gadus morhua*). *Evolutionary Applications* 4:18–29.

665 Swain DP, Sinclair AF, Mark Hanson J. 2007. Evolutionary response to size-selective
666 mortality in an exploited fish population. *Proceedings of the Royal Society B:
667 Biological Sciences* 274:1015–22.

668 Szukala A, Lovegrove-Walsh J, Luqman H, Fior S, Wolfe TM, Frajman B, Schönswetter P,
669 Paun O. n.d. Polygenic routes lead to parallel altitudinal adaptation in *Heliosperma
670 pusillum* (Caryophyllaceae). *Molecular Ecology* n/a.

671 Terekhanova NV, Logacheva MD, Penin AA, Neretina TV, Barmintseva AE, Bazykin GA,
672 Kondrashov AS, Mugue NS. 2014. Fast Evolution from Precast Bricks: Genomics of
673 Young Freshwater Populations of Threespine Stickleback *Gasterosteus aculeatus*.
674 *PLOS Genetics* 10:e1004696.

675 Therkildsen NO, Hemmer-Hansen J, Als TD, Swain DP, Morgan MJ, Trippel EA, Palumbi
676 SR, Meldrup D, Nielsen EE. 2013. Microevolution in time and space: SNP analysis of
677 historical DNA reveals dynamic signatures of selection in Atlantic cod. *Molecular
678 Ecology* 22:2424–40.

679 Tigano A, Jacobs A, Wilder AP, Nand A, Zhan Y, Dekker J, Therkildsen NO. 2021.
680 Chromosome-Level Assembly of the Atlantic Silverside Genome Reveals Extreme
681 Levels of Sequence Diversity and Structural Genetic Variation. *Genome Biology and
682 Evolution* 13:evab098.

683 Turelli M, Barton NH. 2004. Polygenic Variation Maintained by Balancing Selection:
684 Pleiotropy, Sex-Dependent Allelic Effects and G × E Interactions. *Genetics* 166:1053–
685 79.

686 Visser ME, Gienapp P, Husby A, Morrissey M, Hera I de la, Pulido F, Both C. 2015. Effects
687 of Spring Temperatures on the Strength of Selection on Timing of Reproduction in a
688 Long-Distance Migratory Bird. *PLOS Biology* 13:e1002120.

689 Waples, R. S., Ford, M. J., Nichols, K., Kardos, M., Myers, J., Thompson, T. Q., ... Willis,
690 S. C. 2022. Implications of Large-Effect Loci for Conservation: A Review and Case
691 Study with Pacific Salmon. *Journal of Heredity*, 113(2), 121–144.

692 Westram AM, Faria R, Johannesson K, Butlin R, Barton N. 2022. Inversions and parallel
693 evolution. *Philosophical Transactions of the Royal Society B: Biological Sciences*
694 377:20210203.

695 Whiting JR, Paris JR, Parsons PJ, Matthews S, Reynoso Y, Hughes KA, Reznick D, Fraser
696 BA. 2022. On the genetic architecture of rapidly adapting and convergent life history
697 traits in guppies. *Heredity* 128:250–60.

698 Wilder AP, Palumbi SR, Conover DO, Therkildsen NO. 2020. Footprints of local adaptation
699 span hundreds of linked genes in the Atlantic silverside genome. *Evolution Letters*
700 4:430–43.

701 Yair S, Coop G. 2022. Population differentiation of polygenic score predictions under
702 stabilizing selection. *Philosophical Transactions of the Royal Society B: Biological*
703 *Sciences* 377:20200416.

704 Yeaman S. 2015. Local Adaptation by Alleles of Small Effect. *The American Naturalist*
705 186:S74–89.

706

707 **Figures legends.**

708

709 **Figure 1.** Map showing sampling scheme and divergence among populations (adapted from
710 Pinsky et al 2021). (a) Sampling locations and times. Distribution of Atlantic cod (dark blue) is
711 shown based on UN FAO data
712 (<https://www.fao.org/fishery/geonetwork/srv/eng/catalog.search#/metadata/fao-species-map-cod>). (b) Population assignment for each individual (with proportion of inferred ancestry Q
714 shown as colored bars) for Canada (1940 and 2013 samples) and Norway (1907 and 2014
715 samples) along with overall temporal and spatial F_{st} values between these samples.

716

717 **Figure 2.** Empirical convergent correlation values from the filtered dataset. ConvCor1(Canada
718 1940-2013, Norway 1907-201) is shown in blue, ConvCor2(Canada 1940-2013, Norway 1907-
719 2014) in green, ConvCor3(Norway 1907-2011, Norway 1907-2014) in purple, and
720 ConvCor4(Canada 1940-2013, Norway 2011-2014) in orange. Points represent the overall value,
721 and lines represent bootstrap 95% confidence interval. (a) ConvCor values by linkage group. (b)
722 Convergent correlations for groups of loci inside and outside known genomic inversions, as well
723 as for SNPs in coding regions and all SNPs overall.

724

725 **Figure 3.** Box-and-whisker plots showing distribution of simulated values for the four
726 convergent correlation statistics. Migration rate is the proportion of simulated individuals
727 migrating between populations in each generation. Dotted lines show genome-wide values and
728 colored bands show the 95% bootstrap confidence interval calculated from the filtered empirical
729 dataset.