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Abstract

Since the early 1990s, single-molecule detection in solution at room tem-
perature has enabled direct observation of single biomolecules at work in
real time and under physiological conditions, providing insights into com-
plex biological systems that the traditional ensemble methods cannot offer.
In particular, recent advances in single-molecule tracking techniques allow
researchers to follow individual biomolecules in their native environments
for a timescale of seconds to minutes, revealing not only the distinct path-
ways these biomolecules take for downstream signaling but also their roles
in supporting life. In this review, we discuss various single-molecule track-
ing and imaging techniques developed to date,with an emphasis on advanced
three-dimensional (3D) tracking systems that not only achieve ultrahigh spa-
tiotemporal resolution but also provide sufficient working depths suitable for
tracking single molecules in 3D tissue models. We then summarize the ob-
servables that can be extracted from the trajectory data.Methods to perform
single-molecule clustering analysis and future directions are also discussed.
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1. INTRODUCTION

Fluorescence microscopy is an essential technique in all biological and biomedical laboratories.
Laser-induced fluorescence offers researchers direct visual access to the structures and organiza-
tions of the intracellular environment.With the significant progress made in instrumentation and
experimental methods in the 1980s and 1990s (1, 2), detection of single fluorophores in solution at
room temperature became feasible (3–7), allowing researchers to see stochastic processes or minor
reaction pathways embedded in the systems that would otherwise be masked in the conventional
ensemble measurements (8–10). In the past three decades, there has been an explosive develop-
ment in the methods to detect, image, and track single molecules in solution, on surfaces, or in
live cells. These methods are collectively termed single-molecule tracking (SMT) in this review,
including both single-molecule imaging (SMI) techniques and single-particle tracking (SPT) on
fluorescent nanoparticle probes. SMT methods have given researchers unprecedented power to
monitor molecular behaviors in live cells, seeing how a molecule jostles around, collides with,
binds to, and dissociates from another molecule in its proximity (11–14). Moreover, advanced
SMT techniques allow researchers to see a group of molecules concentrate, cluster, organize, and
dissociate in a cellular environment (15, 16), not only in the two-dimensional (2D) space (17–20)
but also in the three-dimensional (3D) (11, 21–25) space, or to follow an individual single molecule
for more than 10 min (26). Although this review aims to provide a broad overview of the topic,
considering the enormous diversity of SMT techniques and research, readers are advised to look
to previous reviews of this topic and its manifold applications (27–33).

SMT techniques have answered many fundamental questions in biology. These include eluci-
dating the motional mode of myosin V walking on the actin filament (34), revealing the selective
cargo transport mechanisms through the nuclear pore complex (19), validating the drug efficacy
in blocking glycosylated programmed death-ligand 1 (PD-L1) and inducing its internalization
(24), clarifying the search mechanisms that transcription factors take to find their targets (35, 36),
demonstrating the compartmentalization of highly dynamic plasma membranes (14), and iden-
tifying the agonist-specific dimer formation of opioid receptors (20). Considering the enormous
diversity of single-molecule research nowadays, any study aimed at completely reviewing all of
SMT research is a futile undertaking. SMT is not only beneficial for following single molecules
and seeing their movement patterns and transport routes in live cells, but it can also detect the ac-
tivation of important signaling molecules, often through fluorescence modulation schemes such
as fluorescence resonance energy transfer (FRET). For instance, activation of a single G pro-
tein Ras (tagged with an acceptor) can be observed upon its binding with a GTP (guanosine
triphosphate) (tagged with an acceptor) on a total internal reflection fluorescence (TIRF) mi-
croscope (37). Similarly, transient duplex formation between an oligonucleotide (tagged with a
donor) and its complementary strand (tagged with a quencher) can also be observed in live cells
using a custom-built confocal-feedback 3D-SMT system (11).

Whereas molecular, cellular, and developmental biology textbooks today are all filled with
beautiful schematics showing molecular interactions, complex formations, transport processes,
and signaling pathways, most of these schematics fail to provide any information on timescales,
rate constants, equilibrium constants, delivery routes, motion speeds, and oligomer sizes of the
molecular machine at work (27). In addition, many of the schematics were derived from the con-
ventional biochemical analysis and in vitro binding assays, such as pull-down assays, fluorescence
anisotropy, and surface plasmon resonance measurements, making these schematics speculative
rather than definitive. For example, many receptors in the plasma membrane repeatedly switch
between fast and slow diffusion modes (15, 17, 18, 21, 22), indicating transient interactions with
their environment or formation of molecular complexes and oligomers. These transient molec-
ular behaviors could not have been observed by any ensemble measurements but were visualized
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through SMT techniques. Moreover, modern SMT methods are capable of observing multicolor
species (38–40) and provide a temporal resolution down to 33 μs (on tracking a single organic
dye) (41) and 10 μs (on tracking a nanocrystal) (42). The capability to see biomolecules or viral
particles in action gives SMT a unique position in quantitative biology and analytical chemistry.

Although significant progress has been made in instrumentation, experimental approaches,
and trajectory analyses, SMT is still limited by the currently available fluorescent labels. Virtually
all fluorescence methods for single-molecule detection and analysis are indirect in that they do
not detect the molecule of interest but a fluorescent label (or a number of labels) that tags the
molecule. SMT in the early days required singlemolecules to be heavily labeled (43).But even with
improved instrumentation, multiple labeling strategies (44–46) are still used today in SMT for
various reasons.Here, we focus on tracking single molecules labeled with only a single fluorescent
tag, thus bypassing any unwanted effects from the multiply labeled systems.

New generations of fluorescent tags and labeling techniques have fueled the development of
novel SMT techniques, offering researchers unprecedented visual access to the inner workings of
the cells. The SMT community is constantly pushing for fluorophores that are smaller, brighter,
more photostable, less blinking, and easier in their genetic encoding processes (47). Besides, fluo-
rophores having a palette of colors (48–50) and diverse fluorescence lifetimes (51) are desirable for
simultaneous tracking of multiple molecular species (40). Early SMT works relied on genetically
encoded green fluorescent protein (GFP) and its relatives, such as PA-GFP,Dendra2, and mEOS3
(52–54), for cellular studies (55, 56). But the low brightness and poor photostability of fluorescent
proteins, as compared to organic dyes (54), made some SMT results questionable (47). Although
organic dyes derived from rhodamine, coumarin, xanthene, and cyanine [e.g., Alexa, ATTO, and
Cy fluorophores (57)] exhibit much-improved photophysical and photochemical properties, con-
jugating these dyes to the molecules of interest is not straightforward, and electroporation or
microinjection of the labeled molecules into cells is often required for SMT experiments (11, 58).
Semiconductor nanocrystals (59, 60) and fluorescent beads (21) are still used for SMT, but they
are mostly restricted to labeling receptors on the plasma membranes for tracking.

A probe strategy that became popular in recent years is chemigenetic labels (also called hy-
brid labels) that combine genetically encodable protein tags with cell-permeable dyes for labeling
the proteins of interest. For example, the HaloTag protein is a bacterial dehalogenase variant that
binds rapidly and specifically to a synthetic ligand of choice (61).Expression of the protein of inter-
est with aHaloTag, followed by labeling theHaloTag with a cell-permeable, ligand-functionalized
organic dye, enables reliable and long-term tracking of single molecules inside live cells (26).
Other chemigenetic tags, such as SNAP-tag (62) and CLIP-tag (63), are based on similar princi-
ples, thus allowing for orthogonal labeling and multicolor imaging (20, 29, 64). Recent advances
in cell-permeable dyes (49, 65, 66) have further promoted the use of chemigenetic strategy in
SMT. Tetramethylrhodamine (TMR) derivatives such as Janelia Fluor JF549 (67, 68) and silicon-
containing rhodamine derivatives such as JF646 (29) and SaraFluor SF650 (69) are frequently used
by SMT researchers today, owing to their improved photostability (as compared to TMR) and
great labeling efficiency [SNAP-tag can have >90% labeling efficiency (20)]. Interestingly, it was
recently found that the HaloTag-JF549 outperforms SNAP-tag-JF549 or CLIP-tag-JF549 in SMT
experiments, showing higher photostability and less nonspecific binding (47). It was also found
that by creating HaloTag variants (HT7,HT9,HT10 and HT11), HaloTag-TMR complexes can
have four different lifetimes, ranging from 1.34 to 2.80 ns (51). The rapid development of chemi-
genetic labeling techniques will soon allow researchers to differentiate the tracked molecules not
only by their fluorescence colors but also by their fluorescence lifetimes. In the following sections,
we continue to describe how the recent advances in instrumentation give SMT a deeper, longer,
and clearer view of the dynamic processes of the molecules of interest.
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2. TWO-DIMENSIONAL SINGLE-MOLECULE TRACKING
AND IMAGING TECHNIQUES

Single-molecule detection has changed the way we study complex biological systems (3–7),
allowing us to see subpopulations, stochastic processes, or minor reaction pathways embedded in
the systems (8–10). Without the need to synchronize the molecular states (70), single-molecule
detection enables direct measurement of the association/dissociation kinetics among individual
molecules (11, 13, 30, 71, 72). While the early works of single-molecule detection have revealed
subspecies in a mixture (73, 74) and protein-folding pathways (75), the use of a flow-through,
confocal scheme limits the observation window to about 1 ms (76, 77), thus producing little
information on the single molecules. In contrast, TIRF microscopy (Figure 1a) allows us to
observe surface-tethered (78) or membrane-bound (14) single molecules for an extended period
[up to tens of minutes (26), only limited by photobleaching]. Although critical information on
enzyme reactions [e.g., walking of myosin V (34) and rotation of ATP synthase (79)], receptor
dimerization dynamics [e.g., G protein–coupled receptor dimerization (13)], and cargo transport
mechanisms [e.g., through the nuclear pore complex (19)] has been obtained, observation by
TIRF microscopy is limited to the 2D space right above the cover slip. The pseudo-TIRF mode,
termed highly inclined and laminated optical sheet (HILO) microscopy (80) (Figure 1a), enabled
single-molecule observation inside mammalian cells (47, 80). Although important processes
such as the searching mechanisms of transcription factors in nucleus were revealed (81), the
7-μm-thick optical sheet of HILOmode did not provide a good signal-to-background (S/B) ratio
for high-quality SMT (56, 82).

Different from the TIRF microscopy, light-sheet microscopy (LSM) is a 2D optical sectioning
technique that can visualize the whole cell or whole organism (83) (Figure 1b,c). However, it was
not until the creation of a thin light-sheet (≤3 μm), using a high numerical-aperture (NA) objec-
tive (56, 84, 85) or Bessel plane illumination (86), that enabled SMT on a light-sheet microscope
(Figure 1d). The current lattice LSM has the sheet thickness of 400 nm across a 40 × 80 μm field
of view (29), which is thin enough to suppress most of the fluorescence background to achieve
high-quality SMT (Figure 1e).

It is possible to achieve 3D-SMT by rapidly scanning a volume using a lattice light-sheet. One
example is the 3D-SMT of transcription factor Sox2 in the whole nucleus, achieving an imaging
speed of 50 ms per slice and 3 s per volume (67). In this example, HaloTag-Sox2 molecules were
labeled with the membrane-permeable dye JF549. After repeating the volumetric scan 500 times,
the 3D positions of Sox2 were tracked. Although interesting target search dynamics of Sox2 in
the embryonic stem cell nucleus were revealed, this light-sheet scanning method is only suitable
to track slow moving molecules in cytosol or nucleus (on the order of 0.1–1 μm2/s, such as Sox2
diffusing within the enhancer clusters or the heterochromatins).

The superior optical sectioning capabilities of TIRF, HILO, and advanced LSM enable 2D-
SMT. However, without axial scanning, these tools cannot provide information on the molecule’s
axial movement. Considering that most intracellular and some membrane-bound motions are
inherently 3D, a 3D-SMT technique is highly desired.

3. THREE-DIMENSIONAL SINGLE-MOLECULE TRACKING
AND IMAGING TECHNIQUES

Three key methods extend 2D wide-field observation into the 3D space and enable 3D tracking
of single molecules, including point-spread-function (PSF) engineering, multiple plane imaging
(92–95) and interferometry (96, 97). Some of these methods are becoming standard techniques,
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Figure 1

Different 2D-SMT and imaging techniques. (a) Epi/HILO/TIRF microscopy (87), HILO (80), and TIRF (88). (b) SPIM (83).
(c) DSLM (89). (d) Bessel beam light-sheet microscopy (90). (e) Lattice light-sheet microscopy (91) for generating an ultrathin
illumination plane and a large field of view. The dashed circle at the BFP denotes the critical angle position (assuming a glass/water
interface). Abbreviations: 2D, two-dimensional; BFP, back focal plane; CL, cylindrical lens; DSLM, digital scanned laser light-sheet
fluorescence microscopy; Epi, epiluminescence; GM, galvo mirror; HILO, highly inclined and laminated optical sheet; NA, numerical
aperture; SLM, spatial light modulator; SMT, single-molecule tracking; SPIM, selective plane illumination microscopy; TIRF, total
internal reflection fluorescence; TL, tube lens.

such as astigmatism-based 3D imaging. They are often implemented at core facilities, and many
commercial systems are offered.

3.1. Multifocal Plane Microscopy

An early method to achieve 3D-SMT is multifocal plane microscopy (MPM), which can be real-
ized by using one (94), two (92, 93), or four (98) cameras or by phase modulation (95). Because
each focal plane has an imaging depth of approximately±1μm, four focal planes can cover a range
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Figure 2

Different 3D-SMT and imaging techniques. (a) MPM: (left) biplane microscopy (92) and (right) 9-plane
MPM (95). (b) PSF engineering with astigmatism (60, 102, 103). (c) PSF engineering using a phase mask in
the Fourier plane (31, 104). L1 and L2: two lenses in the 4f system. (d) iPALM (96). Abbreviations: 3D,
three-dimensional; BS1, 66:33 beam splitter; BS2, 50:50 beam splitter; dz, focus step between successive
planes; f, lens focal length; IP, intermediate plane; iPALM, interferometric photoactivation and localization
microscope; MFG, multifocus grating; MPM, multifocal plane microscopy; PSF, point-spread-function; TL,
tube lens.

of 8 μm or more in the z direction (98), making MPM suitable for molecular tracking in mam-
malian cells. While the concept of MPM is straightforward, the spacings between distinct focal
planes need to be carefully chosen to yield an appropriate 3D localization accuracy (99). Although
biplane imaging can be achieved by using a single EM-CCD (electron-multiplying CCD) (94),
MPM with four focal planes typically requires four EM-CCDs, making the system prohibitively
expensive (98).

Alternatively, by taking advantage of phase modulation, MPM with nine equally spaced focal
planes can be realized by using only a single camera (95) (Figure 2a). In this scheme, a specially
designed diffractive multifocus grating splits and shifts the focus of the sample emission light
to form an instant focal series, where each focal plane corresponds to a diffractive order of the
multifocus grating (95) and has an interplane spacing of ∼440 nm (100). Although MPM enables
rapid volumetric imaging of the whole cell without the need for scanning (100), the lack of optical
sectioning and splitting of light into multiple planes lead to a reduced S/B ratio and weaker
signals, making MPM more suitable to track single molecules heavily labeled with fluorescent
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proteins (101). However, taking advantage of chemigenetic labeling, Liu’s group (95) tracked
single HaloTag-Sox2 molecules labeled with TMR in embryonic stem cells using the 9-plane
MPM (Figure 2a). Interestingly, they later switched to the aforementioned scanning lattice
light-sheet method to track the same transcription factor (67). Although the 3D-SMT data
obtained by the 9-plane MPM provided mechanistic insights into the target search process by
Sox2, the data by the scanning lattice light-sheet shed light on how the 3D spatial distribution of
enhancer sites might affect target search dynamics (67). Lattice LSM clearly has an advantage in
tracking molecules in a high-background environment and imaging multicolor species, while the
9-plane MPM achieves a much faster volumetric imaging rate (33 ms versus 3 s per volume).

3.2. Point-Spread-Function Engineering

A more popular approach to achieve 3D imaging is to embed the molecule’s axial position infor-
mation into the 2D image. This can be realized by modifying the PSF of an imaging system by
inserting an additional optical component [e.g., a cylindrical lens (102), a deformable mirror (103),
or a spatial light modulator (SLM) (104)] into its detection path. After modification, the PSF is
no longer symmetrical to the focal plane, and the molecule’s z position can be discerned from the
asymmetric PSF with a position uncertainty even smaller than the diffraction limit of light (105).

Astigmatism imaging is the simplest form of PSF engineering (102) for 3D-SMT (60). By
placing a weak cylindrical lens [or a deformable mirror (103)] before the tube lens to intro-
duce astigmatism, horizontal rays and vertical rays are focused on two offset focal planes (105)
(Figure 2b). As a result, PSFs of the fluorescent molecules that reside in the average focal plane
(approximately halfway between the horizontal and vertical ray focal planes) have a circular shape,
but the shape becomes ellipsoidal when the molecule is above or below the average focal plane.
The centroid and the ellipticity of the PSF image are then used to determine the lateral (x and
y) and axial (z) positions of the molecule, respectively (106). Because of its simplicity, astigma-
tism imaging has been incorporated into various types of microscopy, including super-resolution
microscopy (106), temporal focusing multiphoton microscopy (107), and LSM (108, 109). By
combining astigmatism imaging with stochastic optical reconstruction microscopy (STORM), 3D
super-resolution imaging with a lateral resolution of 20 nm and an axial resolution of 50 nm has
been achieved (105). However, when a weak cylindrical lens is used, the z-tracking range of an
astigmatism PSF is only ±0.4 μm.

To further extend the z-tracking range, PSF has to be engineered through phase modulation
of the fluorescence emission, which can be achieved by placing a phase mask at the Fourier plane
of a 4f optical system (104) (Figure 2c). In the 4f system, the objective and tube lens produce
an image of the sample at an intermediate plane. The lens L1 placed at a distance f from this
intermediate plane performs Fourier transform of the image at a distance f behind the lens. The
transform is then phase modulated by a reflective SLM, reverse Fourier transform is performed
by the second lens L2 (at the distance f to the SLM), and the transformed image is projected onto
a camera (110). One such example is the double-helix PSF (DH-PSF) (111), which is achieved by
placing a specially designed phase mask at the Fourier plane of the 4f system. With DH-PSF, a
single emitter’s image is transformed into two lobes, where the midpoint between the two lobes
of the DH-PSF denotes the lateral position of the emitter and the angle between the two lobes
denotes the z position (Figure 2c). DH-PSF not only has a z tracking range larger than that of
astigmatism imaging (1 μm versus 0.8 μm), but it also exhibits superior and uniform precision (a
smaller Cramér-Rao lower bound) over the tracking range (112). Following the same philosophy,
other phase mask designs have been proposed to further extend the z-tracking ranges, creating
tetrapod PSF (113), self-bending PSF (114), corkscrew PSF (115), and bisected pupil PSF (116),
typically at the cost of a reduced S/B ratio. It should also be noted that any optical systems using
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phase modulation [including the 9-plane MPM (95)] need to be rigorously calibrated to avoid
any artifacts raised by field-dependent variation and chromatic aberration. To further improve
the S/B ratio, DH-PSF can be combined with a 2D optical sectioning technique such as LSM for
high-quality 3D-SMT (117, 118).

3.3. Interferometry

The axial position of the molecule can also be encoded in a 2D image using multiphase inter-
ferometry. In the 4Pi microscopy configuration, self-interference of single photons creates an
interference pattern along the axial direction (96, 97). Depending on the z-position of the sin-
gle molecule, the optical path lengths to the three cameras vary, leading to distinctive intensity
ratios among the acquired images. At least three images of different phase delays are needed for
z-position determination (96) (Figure 2d). Whereas amazing details in nanoscale structures of
focal adhesions (119), cadherin-based adhesions (119), and cytoskeleton organization in embry-
onic stem cells (120) were revealed by the interferometric 3D microscopy [coined as iPALM (96)]
(Figure 2d), its z-tracking range is limited to λ/n (31). In addition, 4Pi microscopy requires a
perfect alignment condition and a thin sample, preventing the widespread use of this technology.
Table 1 summarizes the advantages and disadvantages of several key SMT and SMI techniques.

4. THREE-DIMENSIONAL FEEDBACK-CONTROL SINGLE-MOLECULE
TRACKING AND IMAGING

Although feedback-control tracking systems often only track onemolecule at a time, they have sev-
eral advantages over the nonfeedback systems. First, with the feedback loop to keep the molecule
inside the detection volume (11) or drive the detection volume to follow the molecule path (21)
for tracking, the 3D tracking range is no longer limited by the imaging depth or the field of view
of the high NA objective (21, 42). Second, unlike the phase modulation methods for 3D-SMT
(95, 104), there is no need for complicated PSF calibration to avoid tracking artifacts. Third, by
using a femtoliter-sized detection volume, feedback-control systems are particularly suitable for
3D-SMT in a high-background environment (11, 21, 24, 121). Fourth, most feedback systems
use single-pixel detectors such as avalanche photodiodes or photon multipliers for tracking. It is
thus possible to time stamp the detected photons using a pulsed laser and time-correlated single-
photon-counting (TCSPC) module for monitoring the fluorescence lifetime (11, 21) and the
antibunching behavior (23, 122) of the tracked molecule. However, other than the low through-
put, feedback systems often need to be combined with another imaging modality to gain visual
access to the cellular environment where the molecule is tracked (42, 123).

4.1. Multidetector Feedback-Control 3D-SMT

Berg (124) first proposed the idea of 3D feedback-control tracking using multiple detectors in
1971 and implemented it for tracking bacteria, where scattered light, instead of fluorescence, was
used for tracking. It was not until three decades later that tracking fluorescent nanoparticles or
molecules became possible with this multidetector strategy, achieved separately by Yang’s group
(42, 125, 126) and Werner’s group (122, 127). Both of their approaches use spatial filtering to
improve the S/B ratio and a feedback loop–controlled xyz piezo stage to keep the molecule in the
center of detection volumes for 3D tracking. In Yang’s approach, a pinhole is placed at the focus
of the tube lens but slightly offset axially (Figure 3e). The fluorescence intensity through the
pinhole will change as the molecule moves axially, thereby providing the z-position information.
To detect the molecule’s lateral position, the fluorescence emission is projected onto the ridges
of two orthogonal prism mirrors, which split the signal into the two single-photon detectors.
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b   3D-DyPLoT c   TSUNAMI

2D EOD
Δt

2Δt

3Δt

TAG lens

APD

Pinhole

Offset pinhole

Y prism

Y prism

xy

z

Dichroic
mirror

(long pass)

BS

3D piezo 
stage

Pinhole

APD

2D EOD

Phase mask

Objective

Optical
fibers

Laser

Time (ns)
0

0

1

147

Scan pattern 

PMT
GM

Camera

Orbital
focal
planes

2D Knight’s tour
scan pattern with

axial scanning

Ph
ot

on
co

un
ts

Time-gated detection

z-piezo

G1 + 0 ns
G2 + 3.3 ns
G3 + 6.6 ns
G4 + 9.9 ns

Detection
volumes

Cover 
slip

Molecule/
particle

First orbital beam 

Second orbital beam 

Excitation laser
Excitation laser 
+ fluorescence
Fluorescence

TL

Mirror

Dichroic mirror
(short pass )

Figure 3

Different tracking modalities developed for 3D-SMT tracking. (a) Orbital tracking (129), (b) 3D-DyPLoT (132, 133), (c) TSUNAMI
SMT (21, 136), (d) MINFLUX (140–142), and (e) split confocal 3D-SMT (125, 126). ( f ) Tetrahedral confocal detection feedback
tracking (127, 195). (g) Biplane feedback tracking (196). Abbreviations: 2D, two-dimensional; 3D, three-dimensional; APD, avalanche
photodiode; BS, beam splitter; EOD, electro-optic deflector; GM, galvo mirror; PMT, photomultiplier tube; SMT, single-molecule
tracking; TAG lens, tunable acoustic gradient index of refraction lens; TSUNAMI, tracking of single particles using nonlinear and
multiplexed illumination.

When the molecule is centered, the detectors receive the same number of photons. When the
molecule moves laterally, the photon count difference between the detectors (normalized by the
total photon count, termed error signals) will vary accordingly (Figure 3e). Signals from the five
detectors (one for the z-position, two for the x-positions, and two for the y-positions) are fed
to the controller, which sends a command to the xyz piezo stage to bring the molecule back to
the laser focus center for tracking. By combining confocal tracking with two-photon scanning
microscopy, Yang’s group (42) has monitored cellular uptake of peptide-coated nanoparticles with
a wide range of spatial and temporal resolutions.
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Instead of using five detectors to achieve 3D confocal tracking, Werner’s group (122, 127)
used only four (Figure 3f ). In their approach, the emission is split into two beams, and each
beam focuses on the center of a custom-made fiber bundle that consists of two multimode optical
fibers. Each fiber serves as a spatial filter for the avalanche photodiode (APD) connected to it. The
two fiber bundles are orthogonally orientated and axially offset. The resulting detection volumes
form a tetrahedral geometry in the sample space (Figure 3f ). A fluorescent molecule right in
the center of the detection tetrahedron would give equal photon counts in the four detectors,
but any displacement from the center would lead to asymmetric photon count distribution. This
asymmetry, known as error signal, forms the basis for a feedback loop that drives the xyz piezo
stage to reposition themolecule at the center of the detection tetrahedron.Taking advantage of the
single-photon detectors, Werner’s group has demonstrated lifetime measurement (122), photon-
pair correlation analysis (i.e., antibunching) (121), and time-gated detection (128) (beneficial for
SMT in a high-background environment, e.g., inside a cell) together with 3D-SMT, which are
not possible with camera-based tracking.

4.2. Single-Detector Feedback-Control 3D-SMT

One of the first feedback-control 3D-SMT designs is the orbital tracking. In this scheme, the
laser beam is circularly scanned around the emitter [enabled by galvo mirrors (129), acousto-optic
modulators (130), or resonant beam deflectors (129)] at the frequency ωxy. When the molecule is
right at the center of the scanning circle (Figure 3a), there is no signal intensity fluctuation during
a scanning cycle. However, when the molecule deviates from the center, a sinusoidal variation of
the signal is observed over time. Therefore, the molecule’s lateral position can be derived from
the magnitude and phase of this sinusoidal fluorescence signal by Fourier transform of the signal
(131). To obtain the emitter’s axial position, the focus is shifted between the two axial planes by
moving the objective, using an electrically tunable lens or a tunable acoustic index gradient lens.
The molecule’s axial position is calculated from the difference of the fluorescence intensity in the
two focal planes (Figure 3a). Using the real-time 3D emitter position relative to the orbital laser
scan, active feedback is achieved by moving the center of the scanning circle to track the emitter’s
position. The use of two SPADs (single-photon avalanche diodes) to simultaneously monitor the
two offset focal planes bypasses the need of the axial scanning, further improving the temporal
resolution. The fluorescence emission is split by a 50:50 beam splitter and focused through two
separate confocal channels corresponding to image planes slightly above or below the focus plane
of the excitation laser (Figure 3b). These methods extract the emitter’s axial information only
from intensity measurements, which are subject to low-frequency noise, including fluorescence
fluctuation due to the emitter’s dynamics. Such methods have succeeded in tracking only objects
that move slowly or lack intrinsic photophysical dynamics. To overcome the limitation, a new
method was developed to encode the emitter’s axial position into the frequency component of
the fluorescence emission. Two modulated laser beams rotate at the same frequency ωxy and are
focused at different depths (separated by ∼1 μm) inside the sample.More importantly, the optical
powers in the beams are modulated 180° out-of-phase at the frequency ωz by an acousto-optic
modulator (130) or acousto-optic deflector (132), thus allowing the molecule’s axial position to
be encoded in the ωz frequency component of the fluorescence signal. This tracking method was
used to investigate the behavior of nanoparticles at the silicone oil–water interface and found a
nonlinear relationship between the diffusion coefficient and the particle size for small particles on
the surface (132). The binding of DNA origami and quantum dots was also investigated with this
method (133).

An alternative to orbital scanning is the discontinuous scanning method. The method was first
implemented with a knight’s tour pattern in the ABEL trap (134). Instead of continuously scanning
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in a circle, the laser beam is discontinuously scanned across a group of points on a knight’s tour
pattern (Figure 3b). This heuristic cycles through grid points to sample the entire area, rather
than from side to side as in a raster scan. This allows feedback to be applied on every photon
detected without the need of waiting for a scan to complete, facilitating the tracking of fast-moving
particles that might move across the scan area faster than a raster scan does. Recently, the method
was extended to 3D tracking, creating a 3D dynamic photon localization tracking system termed
3D-DyPLoT (132, 133) (Figure 3b). This method could further increase the size of the tracking
area and allow tracking of faster molecules, at the price of reduced localization precision.

In contrast to the orbital tracking and the 3D knight’s tour tracking, the tetrahedral tracking
(121, 122, 127, 128) provides a better S/B ratio because of spatial filtering. Besides, the laser beam
is locked directly on themolecule for tracking, rather than having a small offset from themolecule.
Furthermore, tetrahedral tracking can achieve a higher temporal resolution because it does not
require laser scanning to build up an intensity time trace for position estimation. Tetrahedral
tracking can be divided into tetrahedral detection and tetrahedral excitation.Tetrahedral detection
techniques typically require 4–5 single-photon counting devices to track single molecules in the
3D space (discussed in Section 4.2).However, tetrahedral excitation methods can be implemented
with a single detector. The first tetrahedral excitation-based tracking microscopy was developed
using four alternately pulsed laser diodes (135). Four laser diodes were coupled into single-mode
fibers and attached to beam collimators with offsets to create two converging and two diverging
beams. The four beams were combined by beam splitters and formed four overlapping excitation
foci in tetrahedral geometry at the focus of the objective lens. A counter-timer card was used to
modulate four laser diodes and count photon arrival pulses from the SPAD. Any xyz displacement
of the molecule from the center can be estimated via the normalized photon count difference
between the four foci. A closed feedback loop then drives the 3D piezo stage to lock the excitation
tetrahedron on the molecule for tracking.

Following the tetrahedral excitation strategy, our group developed a 3D tracking microscope,
termedTSUNAMI (tracking of single particles using nonlinear andmultiplexed illumination) (21,
136), that only requires one photomultiplier tube to achieve 3D-SMT (Figure 3c). The approach
is based on passive pulse splitters used for nonlinear microscopy to achieve spatiotemporally mul-
tiplexed two-photon excitation and temporally demultiplexed detection to discern the 3D position
of the molecule. In TSUNAMI, multiplexed illumination is realized by splitting the pulsed laser
from a 76 MHz Ti-sapphire oscillator into four beams, with each beam pulse delayed by 3.3 ns
(one-fourth of the laser repetition period) relative to its preceding pulse. These beams are focused
through a high NA objective at slightly offset xyz positions, resulting in four two-photon excita-
tion volumes arranged in a tetrahedral geometry. In our case, the four excitation volumes receive
laser pulses at different time frames.With TCSPC analysis, each detected photon is assigned to a
3.3-ns-wide time gate (G1–G4 in the fluorescence decay histogram) and thus can be attributed to
a specific excitation volume. When the molecule sits at the center of the excitation tetrahedron,
the photon counts are approximately equal in all four time gates (Figure 3c). Any xyz displacement
of the molecule from the center can be estimated via the normalized photon count difference in
the four time gates (i.e., error signal). A closed feedback loop then drives the galvo mirrors and
the objective z-piezo stage locking the excitation tetrahedron on the molecule for tracking.

A two-photon microscope by nature, TSUNAMI enables multicolor imaging and an imag-
ing depth that the traditional one-photon feedback SMTmicroscopes cannot achieve. Our group
(21) has demonstrated 3D tracking of epidermal growth factor receptor complexes at a depth
of ∼100 μm in live tumor spheroids. At shallow depth, TSUNAMI has localization accuracy as
good as 35 nm and temporal resolution down to 50 μs (with bright fluorophores). Our tech-
nique was recently expanded to incorporate two-color detection (25). The multicolor extension
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of TSUNAMI can simultaneously localize two spectrally distinct targets separated by distances of
33 to 250 nm with 15-nm tracking precision. The technique allows us to measure the 3D position,
the 2D rotation, and the separation distance between closely linked targets.We demonstrated the
capability of monitoring the landing of the anti-EGFR IgG-conjugated dumbbell-shaped trac-
ers on the plasma membrane and revealed that the interactions between antibody and epidermal
growth factor receptors (EGFRs) confined the translational and rotational motions of tracers.

Despite the simplicity in implementation, it is worth noting that the error signal analysis used in
the original TSUNAMI and tetrahedral confocal tracking microscopes is not optimal for molecu-
lar position estimation.Our recent work (137) demonstrated that a maximum likelihood estimator
[initially developed by Hell and Eggeling’s groups for their nonfeedback 2D confocal tracking mi-
croscope (138, 139)] could provide a much better axial position estimate without sacrificing lateral
localization accuracy or temporal resolution.

Extended from the orbital scanning, MINFLUX utilizes a doughnut-shaped laser beam spot
to scan through a small number of selected locations on a circle (140–142). Keeping the parti-
cle at the illumination minimum minimizes the total number of photons required for tracking,
thus enabling more position information to be obtained within the photon budget (Figure 3d).
This concept contrasts with the abovementioned methods, where more photons are desired for
better localization precision, at the price of reduced track duration due to early photobleach-
ing. While the standard 2D-MINFLUX approach rapidly scans the doughnut-shaped beam spot
among the four points (three on a circle and one at the center) (140), the newly developed version,
p-MINFLUX (143), sends temporally offset pulses to the four points, similar to our TSUNAMI
method. Although this scheme eliminates the need for beam scanning, it requires a pulsed laser
for excitation and time-gated electronics for data acquisition and analysis.

Orbital tracking, tetrahedral tracking, and MINFLUX microscopes are superior to camera-
based tracking systems in probing the fast dynamics of a single molecule. However, it is equally
important to find out how the rapid single-molecule motion fits into the context of the entire
biological system.This lack of contextual information (e.g., cellular microdomains or neighboring
molecules) can pose the risk of misinterpreting molecular behaviors. To solve this issue, spinning
disk microscopy (123) and two-photon laser scanning microscopy (42) have been integrated into
feedback-control tracking microscopes to provide a view of the cellular environment where the
rapidly diffusing molecules reside.

5. ANALYTICAL MEASUREMENTS

Single organic dyes can emit only 105–106 photons before photobleaching. This determines not
only how precisely we can localize a molecule but also how long we can track a single dye. If all
emitted photons are collected in a single image frame, localization precision (28) can be as good as
1.5 nm (34, 144).However, for a trajectory with track duration of 50 frames, the localization preci-
sion of the single molecule in each frame can only be 10 nm, without considering the influence of
background fluorescence from the environment (27). To overcome the background fluorescence
and achieve a comparable localization precision, SMT in live cells often needs twice as many
photons as required for in vitro measurements. When the photon budget remains the same, this
means either a 50% reduction in track duration or a 33–50% decrease in single-molecule localiza-
tion precision in live-cell experiments. As researchers need long trajectories (200–2,000 frames or
longer) to elucidate the molecular behaviors, and photobleaching probability typically follows a
single exponential decay, an SMT experiment for one particular cellular condition needs to be re-
peated many times to obtain a sufficient number of long tracks for analysis. This is the key reason
that SMT in live cells is much more challenging than that in vitro.What is even more challenging

266 Nguyen et al.

A
nn

ua
l R

ev
. A

na
l. 

C
he

m
. 2

02
3.

16
:2

53
-2

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

7.
19

8.
10

2.
21

5 
on

 0
7/

29
/2

3.
 S

ee
 c

op
yr

ig
ht

 fo
r a

pp
ro

ve
d 

us
e.

 



is that the background fluorescence in live cells can fluctuate significantly during the experiment.
Using receptor tracking in plasma membranes as an example, the fluctuating background comes
from fluorescently labeled vesicles and molecules approaching (or leaving) the receptor of inter-
est. To mitigate the background noise effect, the fluorescently tagged molecules’ concentration
is generally kept below 15 nM (27). To differentiate individual receptors on plasma membranes,
the expression level of receptors is usually less than 1 copy per μm2 (which gives <3,000 fluo-
rescent receptors per cell). From a data acquisition perspective, all observed molecules should be
tracked and considered in the trajectory analysis. In this section, we discuss the key methods to ex-
tract important dynamic (motional modes), kinetic (association/dissociation rates and equilibrium
constant), and clustering (oligomerization) information of the tracked molecules.

5.1. Single-Molecule Trajectory Analysis

Extracting useful information from single-molecule trajectory data can be as challenging as per-
forming SMT in live cells (145). Factors such as background fluorescence, detection shot noise,
blinking of fluorophore, resolution of the imaging system, and density of the molecules all af-
fect the performance of a connection algorithm to plot the molecular trajectory. For connection
algorithms, readers are encouraged to refer to prior reviews (146–148). Here we are not focus-
ing on trajectory generation algorithms, but on trajectory analysis algorithms. Trajectory analysis
methods have been continuously evolving over the past two decades, with a number of methods
widely used by researchers around the world and having open-source packages available online,
such as hidden Markov model (HMM)-based methods (149, 150), Bayesian statistics (151, 152),
and machine learning (ML)-based (153, 154) and deep learning (DL)-based (15, 155) techniques.
These methods allow researchers to determine the number of diffusive states, the occupancy of
each state, and the transition probabilities among these states.Here, we summarize the advantages
and disadvantages of commonly used algorithms that have provided insights into the mechanisms
of transport in live cells and the role of diffusion-regulated cellular function (Table 2).

5.1.1. Trajectory-relevant physical properties. Themean-squared displacement (MSD) anal-
ysis is themost straightforward approach widely employed to extract the diffusion coefficient value
and identify the type of the diffusion regime of molecules (156, 157). The MSD curve is typically
plotted as a function of the lag time. In the case of Brownian diffusion in an isotropic medium,
the MSD stays linear, and the underlying diffusion coefficient can be obtained from the slope of
the fitted linear model. However, other diffusion types such as anomalous diffusion change the
linear dependence into a nonlinear one. The nonlinear least-squares fitting approach is utilized to
obtain a parameter, α, depicting the nonlinear relationship of MSD with lag time. The trajectory
is then categorized as either superdiffusive (α > 1) or subdiffusive (α < 1) process (Figure 4a).
However, measurement errors in the real world are inevitable, which degrade the fitting accuracy
of an experimental MSD curve. Beyond MSD, the distribution of relative angles of the motion
provides supplemental information about the diffusive process. Dinner’s group (158) utilized this
parameter to illustrate the common signature of directional motion in the insulin granules and
filament motor system, which could not be characterized by the MSD analysis. Recently, Taddei’s
group (159) analyzed the diffusion of Rad52 molecules inside the repair foci using a survival prob-
ability curve, providing more details of the diffusive behavior of Rad52 around the boundary of
subcompartments.

5.1.2. HiddenMarkovmodel and hiddenMarkovmodel–basedmethods. Although hetero-
geneous diffusion behaviors of membrane receptors can be observed using MSD analysis (160),
the reliance on the averaged measure poses difficulties for characterizing the transient changes
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a   Trajectory-relevant physical properties

c   Deep learning–based methods

b   Hidden Markov model

d   Kinetics

Two state, random walk

vbSPT
n state, random walk

BPNN

Threshold

Hidden states

States

Emission

Transition matrix

1 2

10

1

2

State change

PBA PAB

PAA

P12

P22

P11

P21

PBB

A

B

Observations

Subdiffusion

Superdiffusion
Normal
diffusion

Diffusion
 mode…

…

…

… …

MSD

M
SD

 <
r2

(τ
)>

Lag time

Change point analysis ebFRET

HMM-Bayes
n state, random walk 
+ active transport

r(t + τ)

r(t + 2τ)

ΔE

mβ µλ πρ αab A

ΔE

r(t + 3τ)
r(t)

Input Hidden Output

Time
Model 
hyperparameters

Trajectory parameters for 
different trajectories

Transition 
probability

State number

St
at

e 
nu

m
be

r
Figure 4

Trajectory analysis methods. (a) Trajectory-relevant physical properties (156, 157). Each trajectory yields an
MSD curve, which can be used to characterize the diffusion type. (b) HMM (149, 161, 162). HMM is a
probabilistic model to predict the sequence of hidden states and observations, where each state can have
different diffusion coefficients or types. (c) Deep learning–based methods (155). The BPNN or
convolutional neural network can detect the local and transient diffusion behavior from hundreds of tracking
data. (d) Algorithm to calculate molecular association/dissociation kinetics (11, 72, 164, 168). Change point
analysis and ebFRET applied to the single-molecular trajectory allow characterization of kinetics
information of the molecular interaction. Abbreviations: BPNN, back-propagation neural network;
ebFRET, empirical Bayesian-based fluorescence resonance energy transfer; HMM, hidden Markov model;
MSD, mean-squared displacement; vbSPT, variational Bayes single-particle tracking.

in diffusion within a single trajectory. The HMM was introduced to identify the diffusion states
and extract the transition probabilities between different states from the single-molecule tracking
data (149, 161, 162) (Figure 4b). Burroughs’ group (163) further developed the HMM harmonic
potential well confinement algorithm to detect the diffusive behavior of the gold nanoparticle-
tagged lipids in model membranes. This algorithm can partition trajectories into periods of free

270 Nguyen et al.

A
nn

ua
l R

ev
. A

na
l. 

C
he

m
. 2

02
3.

16
:2

53
-2

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

7.
19

8.
10

2.
21

5 
on

 0
7/

29
/2

3.
 S

ee
 c

op
yr

ig
ht

 fo
r a

pp
ro

ve
d 

us
e.

 



diffusion and confinement states. With a clear view of the confinement events, molecular actions
such as receptor clustering and hop diffusion become observable.

To avoid the bias in determining the number of diffusive states, Elf’s group (150) employed the
variational maximum-evidence approach to develop an analytical tool, termed variational Bayes
single-particle tracking (vbSPT) (Figure 4b). Because it is unlikely for a complex model to gener-
ate data that could be obtained from a simpler model with a smaller parameter space, the merit of
the maximum-evidence-based method is to penalize the overly complicated model (164). In con-
trast to the conventional HMMmethod, the vbSPT can learn the parameters and make the model
selection based on the number of hidden states. As many interactions of the single molecules in
the intracellular environment are still unknown even using the purified samples in the test tube,
the vbSPT method opens the door to probing and studying these transient or rare interactions.
However, existing BayesianHMM is restricted to modeling purely diffusive motion. Bathe’s group
(165) applied the Bayesian model selection to Bayesian model selection to infer transient trans-
port states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons
(Figure 4b).

5.1.3. Bayesian statistical methods. An alternative to MSD- and HMM-based approaches
for discriminating disparate complex diffusion modes is the Bayesian statistical method (166).
This method utilizes Bayes’ theorem to update the knowledge about the parameters with the
information encoded in the observations. Leake’s group (151) presented the Bayesian ranking of
diffusion process to determine the diffusive types among anomalous, Brownian, confined, and di-
rected diffusion from the protein tracking data. The top-ranked diffusion model selected based
on the posterior indicates a significant proportion of the single-molecule trajectories exhibiting
confined diffusion. In addition, as the protein motion is also often influenced by the binding ener-
gies with its interacting partners, Dahan’s group (152) provided a Bayesian inference framework
to map the diffusion and energy landscapes in the cellular surface and investigate the underlying
biochemical interactions.

5.1.4. Machine learning– and deep learning–based methods. Recently, ML and DL meth-
ods are becoming more popular in single-molecule image and trajectory classification. Although
theML- andDL-basedmethods require additional tasks such as data preparation andmodel train-
ing for implementation, these approaches can achieve high classification accuracy.ML enables the
identification of motion patterns from the SMT data and allows for continuous improvement of
motion classification with the growing amount of data. Sbalzarini’s group (153) implemented the
support vector machine to identify different types of human adenovirus motion in host cells using
trajectory-derived features. Wiemann’s group (154) utilized the ensemble-based random forest
classifier to successfully classify the motion types of the particles inside and outside of lung fi-
broblasts. Other than the ML methods, DL was also used to analyze single-molecule trajectories
(Figure 4c). Milhiet’s group (155) applied the back-propagation neural network to detect the lo-
cal and transient diffusion behaviors of membrane proteins, eliminating the need for a minimum
number of observed particle displacements within the trajectory to infer the presence of multi-
ple motion states. Szwabiński’s group (167) demonstrated that the convolutional neural network
could be superior to the feature-based methods. Most recently, our group (15) presented a novel
14-layer variant of residual neural network to analyze the trajectory data of a transmembrane re-
ceptor and achieved 83% accuracy in breast cancer cell line classification. Although bothML- and
DL-based methods provide promising results, further exploitations are indispensable to address
the needs of selecting optimal features and speeding up the training without compromising the
performance.
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5.1.5. Extension from dynamics to kinetics. Another important piece of information that can
be derived from single-molecule trajectories is the kinetics of molecular interactions (11, 72, 164,
168). FRET is the most commonly used method to assess the binding kinetics between the donor
and the acceptor. The computational tools developed to probe the conformational dynamics of
a surface-tethered molecule can also be used to probe the donor/acceptor fluorescence fluctua-
tion time trace along a molecular trajectory, unveiling the change points (Figure 4d). Although
the change point analysis is straightforward when the threshold and number of states are pre-
determined, user biases may deteriorate the change point estimates (169). The step transition
and state identification algorithm introduced by Landes’ group (170) reduced user bias by de-
termining the state transition and the optimum number of states via the student’s t-test and the
minimum description length principle, respectively. In addition, Ha’s group (171) established the
HaMMy package that implements HMM to uncover the state evolution. Wiggins’ group (172)
developed the variational Bayesian-based tool, termed vbFRET, that enables automatic model se-
lection. vbFRET is similar to vbSPT but has different target properties. The main shortcoming
of vbFRET was that it can only model an individual trajectory or multiple trajectories with the
same parameters. Accordingly, Gonzalez’s group (173) presented an empirical Bayesian-based ap-
proach, ebFRET, to infer features of the prior distribution. This allowed for an accurate analysis
of the short time traces with a very low S/B ratio (Figure 4d).

5.2. Single-Molecule Clustering Analysis

Cell signaling is often triggered by molecular clustering (16). Transmembrane receptors fre-
quently form homodimers or heterodimers upon stimulation (13, 20, 174). Studying molecular
cluster structure and organization is important to understand their functions in the cell. Bio-
physical parameters of the molecular clusters, such as cluster density, cluster size, and cluster
distribution, directly associate with a cell’s physiological state. The molecular tracking and imag-
ing methods described in this review also generate single-molecule localization (SML) data that
can be used to explore the cluster structure and organization, thus shedding light on the cluster’s
function. Here, we discuss the pros and cons of the commonly used clustering analysis methods
(Table 3).

In cluster analysis, positions of single molecules are grouped into coherent structures for visu-
alization and interpretation of the clusters. A simple approach for clustering analysis is the Ripley’s

Table 3 Summary of the commonly used methods for cluster analysis

Method Output data Advantages Disadvantages
Ripley’s K-function

(175, 178)
H-function, which
represents the extent
of clustering

Simple protocol and rapid analysis Limited to homogeneous clusters
Has only a single-value output that

represents the extent of clustering
DBSCAN (181) Cluster size and cluster

density
Includes a noise removal algorithm
Applicable to most structures

Limited to homogeneous clusters
Prone to user bias in selecting

parameters
Voronoi tessellation

(184, 185)
Well-defined cluster
region and cluster
distribution

Simple protocol and rapid analysis
Includes a noise removal algorithm
Applicable to filament-like

structures

Not compatible with hollow clusters
and anisotropic cluster distribution

Bayesian cluster
identification (186)

Cluster size and relative
density

Includes a noise removal algorithm
Not dependent on parameters
Not sensitive to changes in

localization precisions

Highly computationally intensive
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K-function that measures the density of molecules in an area as a function of the radius around
eachmolecule in the data set and compares the result to a group of randomly distributedmolecules
of the same density (175–177). The L-function is a normalization of the K-function (178), which
can be used to derive the sizes of the clusters (179). Normalizing the L-function further produces
the H-function, whose value fluctuates around zero for uniformly distributed molecules, above
zero for clustered molecules, and below zero for dispersed molecules. Although Ripley’s func-
tions do not require any input of initial parameters, they can only quantify the level of molecular
clustering globally, not the sizes of individual clusters (16, 33, 180).

In contrast to Ripley’s functions, density-based clustering methods require initial parameters
but can define individual clusters (181). Density-based spatial clustering of applications with noise
(DBSCAN) is one of the most popular density-based methods, which can identify clusters of ar-
bitrary shapes (180, 181). This method requires two user-defined parameters: a neighborhood
radius (ε) and a minimum number of molecules in the neighborhood (MinPts) to initiate the clus-
tering analysis. As the analysis has a minimum threshold for each detection radius, noisy events in
the SML data can be filtered out when appropriate parameters are used. Based on these criteria,
each localization point is labeled as a core point, an edge point, or a noise point. Core and edge
points belong to clusters, while noise points do not. Although this algorithm can assign molecules
into individual clusters, the main disadvantage is that the user-defined parameters ε and MinPts
strongly affect the clustering analysis outcome (182). In practice, optimizing ε and MinPts is a
try-and-error process that requires users to run DBSCAN multiple times (183).

Alternatively, clustering analysis can be performed using Voronoi polygons (184, 185). Voronoi
tessellation is generated by dividing the space into regions based on Euclidean distances of one
molecule to other neighboring molecules, producing a Voronoi diagram (184). Clusters are de-
fined by connecting adjacent Voronoi cells with similar geometric properties (e.g., size and shape).
Voronoi tessellation-based methods usually rely on Voronoi cell size to segment molecular clus-
ters, where the Voronoi cell size is inversely proportional to the molecular density (16). By
comparing the Voronoi cell sizes with a reference distribution chosen to be either spatially uni-
form (184) or randomly distributed (185), the threshold for segmentation of the Voronoi diagram
can be determined.

In contrast to the density-based and Voronoi tessellation-based methods, the Bayesian ap-
proach is a parameter-free and model-based method (186). SML data are analyzed by several
clustering models generated by a statistic method such as Ripley’s K-function.Whereas user bias
can be minimized in the Bayesian method, the performance is highly dependent on the model
selection.

6. CONCLUSION AND OUTLOOK

Future textbooks in molecular, cellular, and developmental biology will not only have beauti-
ful models and schematics that describe molecular interactions, complex formations, transport
processes, and signaling pathways, but they will also include videos that show single molecules
in action and provide information on timescales, rate constants, equilibrium constants, delivery
routes, motion speeds, and oligomer sizes of various molecular machines (27). To realize this
dream, a true 3D-SMT method is required, which enables the tracking of a large number of
molecules freely diffusing in the intracellular 3D space altogether with an unlimited z-tracking
range and spatiotemporal resolution. Besides, such a method should also have a multiplexed de-
tection capability, allowing for the simultaneous observation of a variety of molecular species.
Moreover, labels on the molecules of interest are stably bright and will not interfere with any na-
tive functions of the molecule. Apparently, there is no true 3D-SMT method today (Figure 5).
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Roadmap to true 3D-SMT in live cells. (a) Spatiotemporally resolved single DNA annealing-melting kinetics measurement with
fluorescence lifetime. In our DNA model system, the longer lifetime (from unquenched dye) represents the single-stranded DNA state
(red segments) while the shorter lifetime (from quenched dye) indicates the double-stranded DNA state (blue segments). The acquired
single-molecule lifetime trace is mapped onto the molecule’s 3D trajectory, providing the temporal and spatial information of
annealing-melting events that take place along this 1,015-ms trajectory. Panel adapted with permission from Reference 23; copyright
2017 Royal Society of Chemistry. (b) Typical single-molecule trajectories of Cy3-DOPE in intact apical plasma membranes recorded at
(i) normal video rate and (ii) enhanced rates with advanced cameras. Panel adapted from Reference 41 with permission from the
authors. (c) UCNPs enabled superlong tracking of individual cargos transported by dynein motors in live neurons. Panel adapted with
permission from Reference 188 with permission from the authors. (d) 3D tracking of epidermal growth factor receptor complexes at a
depth of ∼100 μm in live tumor spheroids. This example trajectory shows slow diffusive transport in cytosol and interaction with the
nucleus. Isocontours of the zoomed-in image stack taken 90 μm deep in a spheroid with plasma membrane (red) and nucleus (blue) are
overlaid with the trajectory (rainbow path). Panel adapted with permission from Reference 21; copyright 2015 Springer Nature. (e, right)
Typical trajectories for ST647 molecules linked to CD47 in the live cell plasma membrane that could be tracked without photoblinking
and photobleaching for periods longer than 400 s. (e, left) Typical two-color, single-molecule image sequences. CD59 and DAF
molecules, labeled with Alexa488-Fab–CD59 (green) and Alexa594-Fab–DAF (red), respectively. The colocalization of two spots with
different colors was determined by measuring the distances between the two determined coordinates. Panel adapted with permission
from Reference 26, copyright 2018 Springer Nature; and Reference 38, copyright 2012 Springer Nature. ( f ) Volume rendering of 3D
Sox2 single-molecule image (purple) superimposed with single-molecule trajectories generated by simultaneous multifocal plane
microscopy. Three molecules with distinct behaviors were selectively displayed on the right ( from top to bottom: freely diffusing particle,
particle undergoing a free/bound transition, and immobile molecule). Color bar shows the corresponding frame number. Panel adapted
with permission from Reference 86; copyright 2014 Elsevier. Abbreviations: 3D, three-dimensional; PSF, point-spread-function; SMT,
single-molecule tracking; UCNP, upconversion nanoparticle.
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Using an ultrafast camera system, a single Cy3 dye (which has the lowest tendency to reach
emission saturation) can be tracked at 10 kHz or every 100 μs, with 20-nm single localization
precision and in a frame size of 14 μm × 14 μm (256 × 256 pixels) (41).While the camera system
can be operated at a faster speed, the emission rate of a single organic dye cannot keep up with
the camera rate [limited by the triplet bottleneck saturation (41, 187)]. The camera tracking frame
rate of 104–105 Hz is likely to be the ultimate rate achievable by the currently available organic
dyes (41, 187). New fluorescent labels that bypass the limitations of emission rate bottleneck and
photobleaching, such as upconversion nanoparticles, are under development. However, although
upconversion nanoparticles have enabled superlong tracking of individual cargos transported by
dynein motors in live neurons (188), how to further reduce their sizes and allow for intracellular
labeling is still a problem to overcome.

All SMT techniques mentioned in this review have their advantages and disadvantages. Al-
though microscopists continue to push for deeper tracking of multiple molecular species with
higher spatiotemporal resolution in three-dimensional tissue samples, another trend is to gain
more information from the detected photons, such as polarization (189), fluorescence lifetime
(11), and emission spectrum (190) for understanding the state of the molecule (11) or the environ-
ment (189) surrounding themolecule. In recent years, hyperspectral imaging techniques combined
with fluorescence lifetime measurements have facilitated differentiation of fluorophores, creating
methods such as phasor-sFLIM (spectral fluorescence lifetime imaging microscopy) (191). Using
a 32-channel PMT detector array and a digital-frequency-domain electronics setup for lifetime
acquisition and processing, phasor-sFLIM provides parallel, simultaneous lifetime and spectral
detection at each pixel, enabling unmixing of three unknown fluorophores at each excitation wave-
length. It is possible to integrate phasor-sFLIM with an SMT technique to create a whole new
method that can monitor the change of lifetime and emission spectrum of a single molecule along
its trajectory. Such changes on fluorescence signatures can shed light on molecules’ interactions
with their environments or other signalingmolecules.Other thanmultiparameter fluorescence de-
tection, scanless imagingmethods are under rapid development for high-speed imaging (192–194),
which may soon give us a high-speed and high-quality volumetric imaging tool. But of course, lit-
tle information can be derived from the SMT data if the photon budget is still very limited. We
anticipate in the foreseeable future that SMT techniques will continue to evolve and the bottle-
necks for the emission rate and photon budget will be lifted. We will then be one step closer to
the true 3D-SMT in live cells, tissues, or organisms.
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