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ABSTRACT

Prior work has developed numerous systems that test the security
and safety of smart homes. For these systems to be applicable in
practice, it is necessary to test them with realistic scenarios that
represent the use of the smart home, i.e., home automation, in the
wild. This demo paper presents the technical details and usage of
Helion, a system that uses n-gram language modeling to learn the
regularities in user-driven programs, i.e., routines developed for the
smart home, and predicts natural scenarios of home automation,
i.e., event sequences that reflect realistic home automation usage.
We demonstrate the HelionHA platform, developed by integrating
Helion with the popular Home Assistant platform. HelionHA allows
an end-to-end exploration of Helion’s scenarios by executing them
as test cases with real and virtual smart home devices.

The demo video can be found here: https://youtu.be/09g0wKiJJMI
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1 INTRODUCTION

In smart home platforms, automation is driven by trigger-action
programs known as routines, wherein a certain action event is pro-
grammed to occur after a certain trigger, e.g., IF the user is home
(trigger), THEN turn the camera off (action). Prior work has ana-
lyzed routines created by developers (i.e., IoT apps) to understand
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the security and safety issues in home automation [2-4, 8-10, 17].
However, 10T apps defined by developers may not reflect realistic
home automation use in the wild, i.e., the events that are likely to
actually occur in end-user homes. The unavailability of realistic
home automation usage makes it difficult to design or evaluate
systems designed to analyze/test home automation in a practical
manner.

For instance, consider the problem of testing the effectiveness
of a security analysis/system for evaluating home automation. At
present, researchers generally evaluate their systems with random
permutations of smart home events [4, 8, 17], which may not rep-
resent realistic home automation usage in the wild, and lead to
an impractical design or evaluation of the systems. One possible
solution to this problem would be to collect real execution traces of
smart home events from end-user homes, and then use those traces
to build/evaluate systems. However, not only is this approach ex-
tremely privacy-invasive (i.e., as the traces also represent physical
events in the user’s home), but may also be ineffective, since the
traces may contain superfluous events that represent platform and
device-specific intricacies, i.e., "noise", which may distract from the
real, semantically-relevant, smart home usage. Thus, there is a need
for synthetically generated but realistic home automation scenarios
that can be used to generate effective test cases.

We previously built a framework, Helion [12], that leverages
user-driven routines, i.e., routines created by end-users using simple
trigger-action user interfaces provided by most popular smart home
platforms (e.g., NEST [13], SmartThings [15]). User-driven routines
represent the real home automation requirements of users, as they
allow end-users to express their home automation workflows/pro-
grams via the Ul, without writing a single line of code, and hence,
eliminating the need for (or relevance of) developer-provided IoT
apps. That is, routines obtained from a user, combined with simple
cues regarding their order/frequency of execution, form the "home
automation program" for that user. Helion builds upon prior work
in the SE domain on leveraging the naturalness in code for tasks
such as code completion [6], and similarly, learns the regularities
in a corpus of such home automation programs derived from end-
users using n-gram LMs. Helion’s model can then be used as a
sequence generator to predict natural scenarios, i.e., realistic home
automation event sequences based on a given history of events.
These natural scenarios can then be used as test cases in the design
and evaluation of security systems built for the smart home, e.g.,
in lieu of random events used by prior work. The full details of
Helion’s methodology, design considerations, evaluation results,


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://orcid.org/0009-0009-1329-9818
https://orcid.org/0000-0003-3187-0044
https://orcid.org/0000-0003-1917-7677
https://orcid.org/0000-0001-9683-5616
https://orcid.org/0000-0002-5626-7586
https://orcid.org/0000-0001-6866-4565
https://youtu.be/o9g0wKiJJMI
https://doi.org/10.1145/3611643.3613095
https://doi.org/10.1145/3611643.3613095
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3613095&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

and discussion of the findings are described in our past study [12].
The source code of Helion is also publicly available on GitHub [16].

This demo paper describes the implementation and usage of
Helion, and particularly, the implementation of HelionHA, an exten-
sion to the popular Home Assistant platform [7] with Helion, which
enables users to generate natural scenarios as well as automatically
execute them as test cases with real/virtual devices connected to
the platform. HelionHA first provides a UI for configuring Helion’s
model and automatically generating scenarios adhering to the con-
figuration. These scenarios are in the form of sequences of event
tokens predicted by Helion. HelionHA converts the event tokens
from the sequences into Home Assistant-specific events, and passes
the events on to the system by interfacing with relevant compo-
nents (specifically, the Event Bus), and in this manner, executes the
scenario on the platform. HelionHA can be connected to physical
devices, or virtual devices configured via the UJ, to execute a wide
variety of Helion’s scenarios. HelionHA’s dashboard also enables
the user to monitor various smart home states during the execution
of a scenario. The source code and documentation of Helion on
Home Assistant, i.e., HelionHA, are publicly available [1].

The paper is organized as follows: Section 2 discusses the nec-
essary background on language modeling and the fundamentals
of Home Assistant. Section 3 provides a brief overview of Helion.
Section 4 presents the detailed design and implementation of Helion
and Section 5 presents the integration of Helion into Home Assis-
tant, i.e., HelionHA. Finally, Section 6 concludes the paper.

2 BACKGROUND

This section provides the rationale behind choosing the n-gram
language model for Helion and a brief overview of Home Assistant.

2.1 N-gram Language Model

Hindle et al. demonstrated that source code written by humans is
just like natural language and thus, contains patterns that make it
predictable [6]. Similarly, user-driven routines are also natural as
these are created by humans to fulfill a particular workflow, and
hence, may contain regularities/patterns that are predictable. Based
on this, we use statistical language modeling to learn the regularities
in home automation sequences composed of user-driven routines
(i.e., which represent the end-user’s overall “program”), and use the
model to predict natural scenarios of home automation.

In general, language models (LMs) measure the probability of a
sentence s = w{" = w1Ww2...Wn, given the probabilities of the indi-
vidual words in the sentence (i.e., w{"), as previously estimated from
a training corpus. This ability enables prediction, i.e., predicting
the next most probable word that can follow a sequence of words,
known as the “context” or “history”. When modeling smart home
routines, we define a “sentence” to represent a sequence of home
automation events, wherein the “words” (a.k.a tokens) are smart
home events (e.g.,<LightBulb, switch, ON>).

In Helion, we specifically use n-gram LMs as they assume the
Markov property, i.e., instead of computing the conditional proba-
bility given an entire event or language history, we can approximate
it by considering only a few tokens from the past as the history. The
intuition behind n-gram LMs applied to natural language is that
shorter sequences of words are more likely to co-occur in training
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Figure 1: An overview of the Helion framework, which mod-
els home automation sequences to construct natural scenar-
ios. Stakeholders use tools that analyze or execute scenarios
to obtain actionable outcomes.

corpora, thus providing the model with more examples to condi-
tion token probabilities, enhancing its predictive power. Using the
n-gram model, we estimate the probability of the event sequence

s = e’ = erez...epy as follows:

plef) = [ [ pleilei™) ~ | | pleileiTn,y) (1)
i=1

i=1

2.2 Home Assistant

Home Assistant is an open-source software platform for home
control and automation [7]. Here we briefly describe the key areas
of Home Assistant that are necessary for integrating Helion into it
to develop HelionHA.

The Home Assistant dashboard: The dashboard is a customizable
page where users can manage their home using HomeAssistant’s
mobile and Web interfaces. The overview dashboard is the first
thing that users see after installing Home Assistant. The dashboard
displays information connected to and available in Home Assistant,
including the connected devices, both real and virtual.

Cards: The Home Assistant Dashboard is composed of cards. Each
card has its own configuration options, which users can configure
as required. Moreover, users can build and use their own cards.
One of the most common cards is the “entities” card which groups
abstract items together into lists.

Configuration: Other than the user interface, users can configure
their Home Assistant instance by editing configuration.yaml. The
configuration.yaml file contains integrations to be loaded along
with their configurations.

3 HELION

Figure 1 shows Helion, a data-driven framework that models the
regularities of user-driven home automation, generates natural
home automation scenarios, and provides stakeholders with tools
to use the scenarios and obtain actionable outcomes.

The first step of Helion is data collection, i.e., collecting user-
driven routines from users along with execution indicators. Exe-
cution indicators are clues about when or how frequently those
user-driven routines are scheduled to execute. The next step is in-
formed scheduling where the routines and execution indicators
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are transformed into home automation event sequences, which rep-
resent the user’s “program” for a certain duration (e.g., a month).
During the modeling phase, Helion uses n-gram LMs on the corpus
of event sequences obtained from users. Finally, during scenario
prediction, Helion generates natural scenarios, which can be used
by stakeholders for testing the smart home, such as executable test
cases in HelionHA to be executed with real and virtual devices.

4 DESIGN AND IMPLEMENTATION

This section describes the design and implementation of Helion,
elaborating on its four steps: data collection and representation,
informed scheduling, modeling, and scenario prediction.

4.1 Data Collection and Representation

The most practical way to collect user-driven routines is collecting
routines directly from users. To do this, we conducted a user survey
with 40 users and obtained 273 routines (233 unique) created by the
users. After collecting data from users, we transformed those into
home automation tokens. Anonymized datasets and code for the
Hzelion are available at [16].

Collecting Data from Users: We used the survey to collect the
routines from users. In the survey, participants were asked to cre-
ate routines as in the “IF” and “THEN” trigger-action format, but
expressed in plain English text, allowing users to express any func-
tionality desired without enforcing artificial constraints. Here is
the raw routine from our dataset:

IF the motion is detected THEN camera takes a picture

After creating routines, participants specified execution indica-
tors, i.e., the time-range, day-range, and frequency indicators for
their routines (described in detail in Section 4.2).

Representing smart home events as tokens: A token is a home
automation event parsed from a structured natural language routine.
Here, an event can denote a change in the state of a device (e.g.,
door locked) or the home (e.g., the user is away). We define Helion’s
home automation event token as:

ej :=< devicej, attribute;, action; >

where device; represents the device (e.g., door lock, camera), the
attribute; corresponds to one of a predefined set of device attributes
(e.g., the lock attribute for the door lock, which can take the values
LockeED/UNLOCKED), and action; represents the change of state, and
hence, the current value of attribute;. Using this design, the exam-
ple routine discussed previously (i.e., the motion sensor/camera)
would be tokenized as (terms from SmartThings capabilities [14]):

< motion_sensor, motion, DETECTED>,
< security_camera, image, TAKE>

4.2 Informed Scheduling

A home automation event sequence is an approximate ordered
representation of how the routines would execute in the user’s
home in a particular timeframe. Helion transforms the tokenized
routines specified by a particular user into a home automation
event sequence. Here, the order is important for generating home
automation sequences. Therefore, we introduce a novel abstraction
for users to stipulate the approximate order in which routines may
execute, ie., routine-specific execution indicators. Users may be
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able to describe when they perform certain personal tasks which
trigger home automation,i.e., when they come home, go to work,
bed, cook, or do laundry. Execution indicators allow us to capture
such factors, which we then leverage to schedule routines to create
home automation sequences. This is why we define the approach
as informed scheduling, as the scheduling mechanism is informed
by the user’s understanding of their own home use.

Execution indicators constitute the time and frequency of the
potential execution of a routine. For Helion, we consider three types
of indicator: (1) the time-range indicator (e.g., early morning, noon,
and night), (2) the day-range indicator (e.g., mostly on weekdays,
and mostly on weekends), and (3) the frequency indicator (e.g., many
times a day, few times a day, few times a month). Routines collected
from users have been scheduled in the time series based on these
indicators, also provided by the users, we extract the ordered set of
routines from this month-long series as the execution sequence and
construct the HOME corpus. The HOME corpus consists of 30,518
events, from 40 month-long sequences (i.e., 40 users), generated
from 273 routines (233 unique) and their execution indicators.

4.3 Modeling

Helion uses the n-gram LM to learn the regularities in user-driven
home automation sequences. For the Helion’s n-gram model, we
choose n > 3. Choosing values of n < 3 can either completely
ignore the context or capture simple relationships that are already
observable from data. Considering larger values of n, i.e, n > 3,
the model can learn non-obvious regularities in home automation
corpora. However, considering too much of the event history (i.e., a
very large n) may actually hurt the predictive power of the model.
Moreover, longer sequences may be relatively uncommon in the
wild, even if they are realistic and useful for uncovering serious
security/safety flaws. Therefore, choosing n > 3 leads to a better
model. We used interpolated smoothing methods since it performs
well with lower-order (i.e., 3-4 gram) models [5].

4.4 Scenario Prediction

Helion considers the language model as a sequence generator that
can produce an arbitrarily long series of events, i.e., home automa-
tion scenarios.

For security and safety-related testing, researchers require both
natural scenarios that are reasonably likely to occur in end-user
homes and unnatural scenarios that demonstrate unsafe situations.
Hence, we designed Helion to generate two corresponding flavors
of scenarios:

The up flavor, natural scenarios: This is the default flavor where
Helion predicts the most probably event(s) given a history, i.e.,
generates natural home automation scenarios.

The down flavor, unrealistic scenarios: The down flavor gener-
ates unrealistic/unnatural scenarios by predicting the most improb-
able event(s) given a particular history.

5 IMPLEMENTATION OF HELIONHA

We implemented HelionHA by integrating Helion with Home As-
sistant. In this section, we describe how we implement Helion on
the Home Assistant platform to develop HelionHA as well as how
users can use it.



ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Settings Input Output
Onder Motion Sensor,Motion Door Lock,Lock
= 3grams = =

detected locked

up Door Lock Lock Null Time

alue) locked afternoon

Cp  InputEvent(s)  (empty

NullTime
Add Event(s)

Run Helion afternoon
Next Event

Reset

Figure 2: An overview of Helion on Home Assistant platform.

5.1 Conversion of Helion Tokens to Entities and
Cards in Home Assistant

Entities in Home Assistant are abstract objects that hold the state
of the simulated device, i.e., each entity is Home Assistant’s repre-
sentation of the function of a device. To elaborate, Home Assistant
allows users to connect to physical devices, and usually, entities
only serve as the interface to those devices. As we defined in Sec-
tion 4, a token is a Helion’s representation of a device, its attribute,
and its state (i.e., token, e; = < device;, attribute;, action; >). To
implement HelionHA, we needed to convert each token to an entity
name. We implemented the parse_token.py script which takes in a
token as an input and returns the corresponding entity. If the token
contains multiple devices, then each entity name will be separated
by a space. This entity is then added to the ui-lovelace.yaml or
helion.yaml file.

We used two types of entities in HelionHA: (i) input_boolean
for keeping track of two states (e.g., lightbulb has two states: on
or off). (ii) input_select for keeping track of multiple or complex
states (e.g., the motion sensor has four states: activated, deactivated,
detected, and not_detected).

Cards are the components that are displayed in the Home Assis-
tant dashboard and represent entities. The state of the entity can
be seen or changed through cards. In our implementation, each
card is set up to correspond to an entity. Users can also input a
token through an input card which will run a script to modify
helion.yaml. We implemented a script change_ui_cards.py, that is
used to create the cards that are displayed on the Home Assistant
dashboard. When tokens are output from the Helion server, we take
the tokens that are output and pass them to this script, which finds
the corresponding card and modifies helion.yaml.

5.2 Predicting Scenarios using the HelionHA Ul
and Executing them as Test Cases

In this section, we describe how exactly Helion integrates with
Home Assistant, in terms of both the user interface (i.e., the HelionHA
dashboard) as well as the backend (i.e., the Helion server).

We created a custom page on Home Assistant where the UL
specific to Helion resides. The new page is built on top of Lovelace
Ul which is a customizable Home Assistant dashboard [11]. Figure 2
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shows the UI of HelionHA. The UI of HelionHA has three main
parts: Settings, Input, and Output, each consisting of several cards.

The user first specifies the settings, particularly the order (3-gram
or 4-gram), and flavor (up or down). These elements are stored as
input_select entities in the backend. The user then specifies the
event history, i.e., the input events that form the context follow-
ing which Helion predicts future events. When “Run Helion” is
clicked on the dashboard Ul, HelionHA takes the user-provided
history/input events from the input_list and reprocesses them to
send to the Helion server (which executes in the backend). The
Helion server then provides predictions given the settings and in-
puts, and HelionHA transforms them into Home Assistant events,
and displays the same in the dashboard.

To elaborate, the scenario, i.e., predictions generated by the
Helion server are gathered in up.tsv and down.tsv based on which
flavor the user requested. Note that these predicted events are
Helion’s tokens, i.e., in the form < device, attribute, state >, which
must now be converted to HelionHA’s events, to be executed with
real and virtual devices on the platform.

To generate each Home Assistant event (represented as [de-
vice.attribute, state]) corresponding to a predicted token, we invoke
HelionHA’s call_service method, which takes the entity_id (i.e.,
the device) and the target_state (i.e., the state) as parameters, along
with the method to call (i.e, the attribute) to properly set the en-
tity_id to its target_state. This is equivalent to sending a command
to a physical (or virtual) device. In essence, after the call_service
method is invoked, the device.attribute in the Home Assistant token
is set to the state specified within that token. When the token is
executed, it is broadcast as an event in Home Assistant’s Event Bus
to let other entities (and automation) know that a state change has
occurred. Finally, it reloads the UI to display the updated states of
the entities.

6 CONCLUSION

This tool demonstration paper describes the implementation and
usage of Helion, a framework for predicting natural scenarios for
home automation to enable the testing of security and safety solu-
tions built for the smart home. Further, we develop and describe
Helion’s extension to the Home Assistant platform, HelionHA,
which allows end-users to generate diverse scenarios with vari-
ous model parameters (e.g., varying the n or the prediction flavor),
and automatically execute the scenarios as test cases with real and
virtual devices.
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