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Abstract—The evolution of open architectures for Radio Ac-
cess Networks (RANSs) is revolutionizing network management
and optimization. This transformation, fostered by O-RAN,
expedites data acquisition and examination by exploiting newly
established open interfaces. Moreover, it has led to the rise of
near real-time RAN Intelligent Controllers (RICs), instigating
a wave of Al-driven applications, or xApps, that employ Arti-
ficial Intelligence (AI)/Machine Learning (ML) methods. Nev-
ertheless, deploying xApps as centralized applications presents
substantial challenges, such as handling vast data transactions,
potential delays, and security vulnerabilities, which are notably
prominent within the multifaceted, decentralized, multivendor,
and trustless nature of open networks. To alleviate these
predicaments, a transition from centralized apps operating in
near real-time to distributed real-time apps is imperative for
augmented security and efficiency. This paper addresses these
complexities by introducing an open platform that integrates
a federated reinforcement learning algorithm to operate as
distributed Apps (dApps) within the next-generation O-RAN
architecture. We present evaluation results in a specific test
environment.

Keywords: O-RAN, xApps, dApps, federated reinforcement
learning, distributed applications, autonomous network man-
agement, optimization.

I. INTRODUCTION

The domain of network management and optimization has
been significantly influenced by the emergence of software-
based radio access network solutions and the introduction
of intelligent controllers. This transformation stands as a
key development in the telecommunications industry. The
momentum of this shift has been further bolstered by Open
RAN (O-RAN), an initiative that champions open and in-
telligent RANs, leading to a fundamental change in the
way data acquisition and analysis are approached within
cellular networks. O-RAN introduces the near real-time RAN
intelligent controllers (near RT RICs) and inherently enables
AI/ML-enhanced microservices in the form of applications
called xApps. These applications promise a revolutionary
overhaul in network optimization and operation.

Transitioning these technologies from theory to practice
presents several technical challenges. One major challenge
is the careful management of large-scale data transactions,
potential latency bottlenecks, and security vulnerabilities that
come with integrating Al-driven applications into the core
infrastructure. These challenges become more pronounced
within the open network setting, mainly due to its decen-
tralized, multi-vendor framework. This framework increases
complexity, especially when deploying xApps as centralized
entities within the near-RT RIC.

Another critical aspect is the current reliance on centralized
xApps operating in the near real-time domain. This reliance
leaves a noticeable gap in the area of distributed applications
capable of real-time operations. The space for real-time
applications inside radio access networks such as dynamic
traffic management, autonomous network troubleshooting,
and adaptive quality of service provisioning is obvious [1].
These applications require immediate data processing and
decision-making to maintain network performance and user
experience, yet the existing centralized xApp solutions fall
short in meeting these real-time demands. Existing solutions,
such as intelligent O-RAN traffic steering for handover man-
agement [2], O-RAN resource allocation using actor-critic
reinforcement learning (RL)[3], and connection management
optimizing cell association using deep RL (DRL) with graph
neural networks[4], all highlight the need for real-time appli-
cations within the radio access network. The wide variety
of applications, machines, and programming languages in
O-RAN adds complexity. Tasks such as managing Kuber-
netes nodes, handling Docker containers in pods, complex
interface deployments, and socket communications become
intricate [5]. Additionally, developing databases across mul-
tiple programming languages can deter AI/ML researchers
and developers from O-RAN experiments.

Despite these challenges, the landscape lacks open plat-
forms that can aid AI/ML developers in easy model develop-
ment and integration. There’s a pressing need for a platform
that simplifies application development within the O-RAN
architecture, allowing researchers to focus their efforts on the
development, testing, and optimization of AI/ML solutions.

In response to these challenges, our research in this pa-
per introduces an open customizable platform designed to
tackle the complex challenges inherent to O-RAN and to
enable a variety of testing scenarios that reflect the intricate
dynamics within O-RAN networks. Our platform initiates
a shift towards distributed real-time applications (dApps),
Leveraging advanced Al algorithms to amplify the scope and
efficiency of O-RAN. The foundational element of this work
is the Federated Reinforcement Learning (FRL) algorithm.
This algorithm has demonstrated its applicability in areas
such as dynamic spectrum access for IoT and wireless com-
munications [6] as well as in enhancing spectrum utilization
for D2D communication [7].

FRL is positioned to tackle the existing security concerns
associated with expansive, data-intensive open network archi-



tectures like O-RAN. By implementing a federated learning
approach, the platform ensures data privacy and security,
providing a robust framework for the efficient operation
of dApps in the decentralized, multi-vendor environment
characteristic of O-RAN.

Furthermore, our platform provides a solid framework that
supports the development, deployment, and real-time exe-
cution of distributed applications. It empowers traditionally
centralized xApps to transition into decentralized, responsive
dApps capable of real-time operation, thereby reducing la-
tency and improving network optimization. Moreover, the
platform offers an intuitive interface for AI/ML researchers
and developers, aiding in overcoming the existing hurdles in
O-RAN experimentation. This accelerates the research and
deployment of AI/ML solutions within O-RAN, paving the
way for exploring new optimization methods and advancing
O-RAN technology.

The design of our platform reflects a thorough under-
standing of the O-RAN architecture, along with a vision
to address the current technical challenges. It offers a ro-
bust, scalable, and secure framework anticipated to foster
the transition towards a more intelligent and open RAN
ecosystem. With the introduction of this platform, we aim
to contribute significantly to the ongoing efforts to advance
the O-RAN architecture, propelling the telecommunications
industry towards a more open, intelligent, and efficient future.

The rest of this paper is organized as follows: Section II
provides a brief introduction to the O-RAN architecture. In
Section III, we present our FRL dApp design and its com-
ponents. Section IV outlines the deployment and integration
procedures for the proposed framework. Section V introduces
our initial experiment scenario and obtained results, and
Section VI is our concluding remarks.

II. O-RAN BACKGROUND

O-RAN forms a sophisticated architecture through its near
Real-Time RAN Intelligent Controller (near-RT RIC), non-
RT RIC, and service management and orchestration (SMO),
interconnected through interfaces such as E2, O1, and Al.
The near-RT RIC offers control and optimization through
the E2 interface for near-RT responses to rapidly changing
radio and network environments, while the non-RT RIC
provides policy and model management by interfacing with
the near-RT RIC through the Al interface for a more policy
control perspective over the network. The SMO orchestrates
the RAN’s end-to-end operation and manages the shared
data layer (SDL), a network-wide repository. It employs
various interfaces, such as Al for interacting with the non-RT
RIC and Ol to communicate with the network management
systems [8].

The dynamic radio environments can incite conflicts,
which are managed by predefined strategies. Additionally,
the O-RAN structure enforces various cycles: the near-RT
cycles overseen by the near-RT RIC for high-speed but non-
instantaneous data processing; and the non-RT cycles that are
slower, strategic operations governed by the SMO and non-
RT RIC. These cycles ensure optimal network performance
by balancing efficiency and adaptability.

In the open architecture of O-RAN which is shown in Fig-
ure 1, the O-RAN Central Unit (O-CU), O-RAN Distributed
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Fig. 1. O-RAN architecture.

Unit (O-DU), and O-RAN Radio Unit (O-RU) implement the
functions of a conventional base station in a distributed man-
ner. The O-CU, interfacing with the core network, performs
the Packet Data Convergence Protocol (PDCP) and manages
the Radio Link Control (RLC) for centralized control and
session management. The O-DU communicates with the
O-RU and the O-CU, carrying out real-time, low-latency
functions such as scheduling and error correction. The O-
RU implements the physical layer, data conversion, and radio
frequency processing. These components work in harmony
to render the network more flexible, scalable, and capable
of supporting the evolving demands of modern wireless
communications [9].

In the evolving domain of O-RAN, the number of estab-
lished solutions devised for robust testing and experimen-
tation remains limited. Three major open frameworks have
been specifically developed and introduced to date to aid in
the process of testing and exploring next-generation O-RAN
solutions.

One such framework is Open AI Cellular (OAIC) [10].
It serves as an open-source software architecture, providing
a comprehensive toolset that incorporates Al controllers
(OAIC-C) and an Al testing framework (OAIC-T). OAIC’s
primary function lies in its capacity to incorporate Al con-
trollers, initially developed as xApps within the near-RT RIC,
for controlling 5G network processes. This integration fosters
the expansion of research and development on Al-enabled
RAN networks, capitalizing on open-source 5G software and
software-defined radios (SDRs).

In tandem, OpenRAN Gym [11] represents another instru-
mental software-based platform. Designed primarily around
the principles of the O-RAN architecture, it specializes in
data collection within the near-RT RIC by leveraging the
OpenAirlnterface software and SDR hardware for RAN
implementations. The data collected can subsequently be
utilized to develop AI/ML control algorithms through xApps,
thereby enhancing the network’s management and optimiza-
tion capabilities. POWDER softwarized testbed [12] is an-
other open platform that enables advanced wireless and data-
driven experimental research with SDRs.



III. PROPOSED FRL DAPP DESIGN

This paper advocates for the extension of the current
OAIC framework and enables real-time dApps [13]. This
augmented platform enables users to configure an array of
AI/ML solutions and optimizations [14], extending the scope
of the O-RAN architecture. This enhanced platform allows
researchers to experiment with diverse testing scenarios and
problems such as interference management, beamforming,
mobility, vehicular communication, and resource manage-
ment, leveraging SDRs and available datasets [15], or open-
source RAN simulators. Designed for compatibility with a
range of environments, this platform expands its applicability
and utility for a variety of research purposes. We advocate
for the implementation of FRL algorithms to meet the high-
performance demands of real-time operation. These algo-
rithms represent the forefront of Al modeling, integrating
key aspects of efficiency, security, and swift responsiveness
to environmental changes. In the subsequent section, we will
delve into a more comprehensive discussion regarding the
intricacies of the FRL algorithm, in addition to detailing the
proposed approach for its deployment within the context of
our system design.

A. Algorithm Design

FRL incorporates the concepts of federated learning (FL)
and RL, aiming to train a model that can interact with its
environment and learn the optimal strategy, while preserving
data privacy and reducing communication overhead. In
recognition of the sophistication and potential utility of these
models, we are going to discuss them more in-depth here.

1) Federated Learning

FL is an ML technique where multiple edge devices
(clients) collaboratively learn a shared prediction model while
keeping all the training data on the original device, decou-
pling the ability to do ML from the need to store the data in
the cloud. In other words, FL is a decentralized ML approach
that enables model training on a large network of devices, or
nodes, while keeping data on the original device.

The generic update rule in FL is

K
0+ =01 —n > 0, VEL(0W), (1)
k=1
where 6 represents the global model parameters, ¢ the current
iteration, 7 the learning rate, K the number of clients, ny
the number of data samples for client &k, and Fj, the loss
function for client k.

2) Reinforcement Learning

RL agents learn to make decisions by interacting with
the environment through performing actions that enhance
the model’s capacity to adapt to changing conditions and
optimize its actions based on reward feedback [16]. This
will allow the system to rapidly adjust and respond to
variations in the network environment, thereby improving
network performance and reliability.

The core concept in RL is the action-value function Q for
policy T,

Q" (s,a) = E[Ry11 +YRi 1o +7 Rey3+...|S; = s, Ay = al,

(2)
where R; is the reward at time ¢, S; and A; represent the
state and action at time ¢ respectively, and v is the discount
factor.

3) Challenges in Federated Learning and Reinforcement
Learning

Despite their potential, both FL and RL come with unique
sets of challenges. One of the major challenges of FL
is dealing with non-independent and identically distributed
(IID) data across clients and the possibility of unbalanced
data. For RL, the challenges often stem from the need for a
significant amount of interaction data, the risk of getting stuck
in local optima, and difficulty in designing an appropriate
reward function.

Algorithm 1 Federated Reinforcement Learning Algorithm
Pseudocode.

1 Initialize global model parameters 6° at the server.

2 for each round t = 0,1,2, ... do

3 The server broadcasts 0% to all clients.

4 for each client k in parallel do

5 Each client collects experiences by interacting with the
environment using policy Tgt.

6 Each client updates their local model parameters 0y based

on these experiences using RL techniques.

end

7 The server aggregates the updated model parameters from all
clients to update the global model parameters.

8 Updated parameters: 9(t+1) = (t) — T]Zle nkVFk(HI(Qt))

end
Result: Optimal global model parameters 6

4) Federated Reinforcement Learning

FRL is an approach that combines FL and RL to address
their respective challenges. The RL model parameters are up-
dated locally on each client based on their own experiences.
These updated parameters are then sent back to the server and
aggregated to form an updated global model. Algorithm 1
provides the pseudocode of the FRL algorithm.

Parameter #(*) represents the global model parameters at
iteration ¢, nj the number of experiences collected by client
k, Fy the RL loss function (such as the time temporal dif-
ference, or TD-error, for Q-learning or the objective function
for policy gradient methods) for client k, and 7 the learning
rate.

In the RL context, the gradients are calculated based on
the TD-error for value-based methods, such as Q-learning,
and based on the policy gradient theorem for policy-based
methods. The TD-error for Q-learning is calculated by as

§ = Reyr + ymaxQ(Sis1,':6,”) — Q(S,, Ai:6,”). (3)

The gradient of the objective function for policy gradient
methods is obtained as

VJ(0) = E[Volog mo(Ai|Sy)(Rit1+vRip2+7 Revs+...)|.
“4)
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Fig. 2. Proposed O-RAN platform with FRL-based dApps.

By bringing together FL and RL into FRL, we can leverage
the strengths of both paradigms, such as privacy preservation
and minimized communication overhead from FL, and effi-
cient exploration-exploitation trade-off from RL. The FRL
approach can mitigate some of the challenges mentioned
earlier, including the non-IID issue in FL and the data
efficiency issue in RL, but also introduces some new chal-
lenges and complexities, such as dealing with non-stationary
and potentially adversarial multi-agent environments. These
challenges will create new opportunities for researchers to
explore and experiment with a diverse range of optimization
techniques in a new architecture enabled by the integration of
open Al dApps into O-RAN, fueling innovation in the field.

B. Gym Environment

Delineating observations, reward function, state, and action
spaces comprise the bedrock of the FRL algorithm. These
parameters intrinsically relate to the environmental setup
contingent on specific experimental scenarios. As outlined
in the system design and introduction section, srsRAN and
ns-3 are prominent, open-source RAN simulators that have
been extensively evaluated and utilized in this sphere of study,
supplemented by well-crafted frameworks. Complementing
these simulators, data-driven platforms, such as OpenRAN
Gym and Colosseum, serve as resources for providing exten-
sive datasets that represent a wealth of information extracted
from large-scale wireless networks.

We employ OpenAl Gym to cater to diverse RAN sim-
ulator types and data collection methodologies, thereby en-
hancing the research potential with our OpenAl dApp, [17].
OpenAl Gym is a comprehensive, open-source Python li-
brary, specifically designed to facilitate the development,

comparison, and reproducibility of RL algorithms. It pro-
vides a standardized, highly extensible API that promotes
smooth interaction between learning algorithms and an array
of different environments. This standardized interface not
only abstracts the complexities associated with environment
setup but also fosters interoperability among diverse RL
implementations. In our proposed model, Gym acts as a
consistent intermediary between the Al algorithm and any
RAN environment, thereby streamlining the definition of
essential parameters such as observation, reward function,
states, action space, and additional functions.

Interaction with srsRAN, a C++-based software library,
is facilitated through socket programming. Meanwhile, ns3-
gym, an extension of ns3-ai [18], enables seamless integration
with the ns-3 RAN simulator owing to its design foundation
on OpenAl Gym. For datasets, Gym is flexible in integrating
various data reading techniques. At present, we leverage
Pandas to extract data from diverse data sources such as
.txt or CSV files, with an open-ended option to incorporate
other methods, such as MySQL. All these methods are
encapsulated as distinct functions within Gym, enabling them
to be invoked on demand.

IV. PROPOSED FRL DAP DEPLOYMENT
A. O-RAN Integration

In the context of federated models, there exists a server
or global model along with multiple clients. In our proposed
model which integrates with reinforcement learning within
the O-RAN architecture, the clients are referred to as dApps
or federated actors. These dApps are specifically designed to
be integrated with the Distributed Units (O-DUs), enabling
operations on connected RUs and user equipment (UEs). The



global model is designed to reside inside the near real-time
RIC and we refer to it as the global xApp. Communication,
data transition, and messaging between the server and clients
are facilitated through the E2 interface and E2 messages. Fig-
ure 2 depicts the architecture of our OpenAl dApp platform.

It is imperative to incorporate the essential libraries, frame-
works, and functions of the O-RAN platform, as established
by O-RAN developers [19], to integrate a AI/ML controller.
These requirements are often streamlined when utilizing
Python for app development. Furthermore, considering that
the RIC cluster is built on the Kubernetes platform, apps must
be developed as containerized applications for deployment
on Kubernetes machines. This includes utilizing Kubernetes-
native APIs, such as the deployment and service APIs, to
define the desired state of the app and expose its functionality
to other components within the cluster.

We build the system model in a modular approach to
increase the flexibility and adaptability for further changes by
users, researchers, and developers. This entails simplifying
the main components of the system, including the envi-
ronment intermediary, training loops, FRL models, network
layers, and other critical elements. To ensure flexibility, these
components were implemented in Python using Tensorflow2,
a widely adopted framework. By leveraging Tensorflow2’s
capabilities, we facilitate ease of experimentation and future
advancements.

B. Installation and Setup

The installation requires the OAIC platform, the model
components including Global xApp, dApps, data layers, and
environments, and also some essential configurations such
as IP and port exposure settings. The open-source model
implementation, documentation, and installation instructions
will be made available through the OAIC repository [20].

V. EXPERIMENTAL DEPLOYMENT AND RESULTS

In the evolving landscape of cellular networks, one of the
most pressing challenges is the user-cell association. This
pivotal concern plays a central role for resource allocation.
The advent of 5G technology has substantially accelerated the
increase in the diversity and quantity of connected devices.
This influx of devices, coupled with inherent limitations in
network resources, emphasizes the urgency for efficient and
equitable distribution of these resources.

In this scenario, our test centers on an operational envi-
ronment with multiple O-DUs. Each iteration gathers en-
vironmental observations encompassing the data rate, the
numbers of connected and active UEs, and the Channel
Quality Indicator (CQI) as states for the learning agent. The
system aims to elevate the throughput while considering long-
term fairness. So, these metrics are integrated into the reward
function to encourage equitable resource distribution and
promote long-term network robustness. We introduce c; ;i to
represent the decision of assigning channel k to user j served
by the i*" Du. The total data rate for channel k assigned to
user j served by the it O-Du is diji, and F; is the fairness
function of the 7" O-Du. The reward function R for i*"* O-Du
then formulated as

L M
R; = Z Z Cijk(diji) — Fi. (5)
j=1k=1
TABLE I
TEST PARAMETERS.

Network Parameters Value
Actor NN Model Hidden Layers 5
Number of Hidden Layer Neurons 256 -1024
Actor NN Model Parameters 176,418
Number of gNB 2
Number of UEs 14
Maximum Traffic per UE(DL) 1 Mbps
Frequency 6 GHz
Bandwidth 10 MHz
Tx 20 dBm
Discount factor 0.9
learning-rate 0.01
Optimizer Adam
Number of Timeslots per Episode 1000
Number of Episodes 500-1000

The fairness function Fj is crucial in ensuring that the
resource allocation does not disproportionately favor certain
users or channels, maintaining balanced network performance
over time. It encompasses metrics that assess the equity in
resource distribution among different users, acting as a bal-
ance to the optimization of data rate. This emphasis on both
data rate enhancement and fairness highlights our approach’s
focus on developing a robust and equitable network infras-
tructure capable of handling the increased device diversity
and data traffic demands characteristic of 5G networks.

The action in this context refers to the cell association,
specifically determining which UEs connect to which O-
DUs. This association is represented by c;;;, where channel
k is assigned to user j. The decisions on cell association
are crucial as they impact the overall data rate, fairness, and
long-term robustness of the network, which are the primary
objectives our system aims to optimize through the defined
reward function R;.

We use srsRAN with SDRs to implement the RAN. Table
I provides the testing network parameters and federated
dApp network configuration. For testing and evaluation, we
are especially looking for two main results to prove the
goal of decentralized RAN control. First, we evaluate if the
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proposed FRL-based dApp can reach the network’s target
and convergence. Second, we verify real-time operation. For
the first evaluation, the trend of the network to reach the
maximum rewards is the best evaluation. Figure 3 plots the
reward results for two federated actors. It shows that both
actors reach the target and converge well. For the second
evaluation, we compare the proposed dApps to a central
xApp employing the same algorithm and the same actions.
The execution time is gathered for a period of one thousand
steps for both models. The results shown in Figure 4 show a
considerable processing time improvement achieved by the
proposed dApp control model. Operating at a time scale
between 10 ms to 1 s, the results in Figure 4 show that the
xApp operates at 40 ms. Moving to dApps the time improves
to below 10 ms. Better results can be achieved by precisely
tuning the model and optimization parameters.

VI. CONCLUSION

This paper has detailed the design, development, and
testing of the proposed OAIC dApp, underpinned by a FRL
algorithm. The model’s efficacy has been assessed in the
context of the user-cell association problem in an open-
source RAN environment, encompassing two gNodeBs and
fourteen UEs. The results indicate a robust convergence of
the federated dApps, thereby validating our approach. We
have further compared the latency of the deployed dApp with
a central xApp under identical conditions. The comparative
analysis highlights the efficiency of our designed model,
exhibiting its potential to respond in real time in a live
environment. We envisage expanding the scope of our work
by including a larger and RAN in our testbed. We anticipate
that this expansion will pave the way for wider research
possibilities, contributing to a more comprehensive under-
standing of the performance of federated dApps in complex
network environments. We remain committed to exploring
new frontiers in this domain, continually striving to enhance
our model and contribute to the evolution of O-RAN.
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