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Inference of the equation of state (EOS) of dense nuclear matter in neutron-star cores is a principal science
goal of x-ray and gravitational-wave observations of neutron stars. In particular, gravitational-wave
observations provide an independent probe of the properties of bulk matter in neutron star cores that can then
be used to compare with theoretically derived equations of state. In this paper, we quantify the systematic
errors arising from the application of EOS-independent quasiuniversal relations in the estimation of neutron
star tidal deformabilities and radii from gravitational-wave measurements and introduce a strategy to correct
for the systematic biases in the inferred radii. We apply this method to a simulated population of events
expected to be observed by future upgrades of current detectors and the next generation of ground-based
observatories. We show that our approach can accurately correct for the systematic biases arising from
approximate universal relations in the mass-radius curves of neutron stars. Using the posterior distributions
of the mass and radius for the simulated population we infer the underlying EOS with a good degree of
precision. Our method revives the possibility of using the universal relations for rapid Bayesian model

selection of the dense matter EOS in gravitational-wave observations.
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I. INTRODUCTION

Gravitational wave observations of compact binary coa-
lescences over three observing runs [1-5] of the Advanced
Laser Interferometer Gravitational-wave Observatory
(LIGO) [6] and Advanced Virgo [7] have determined that
binary neutron star mergers are among the most abundant
sources of transient gravitational waves in the Universe [8].
Imprinted in the gravitational waves from binary neutron
stars (BNS) is the bulk deformation of the stars due to the
tidal field of their companions, quantified in terms of their
tidal deformability parameter A. The measurement of A
from gravitational-wave observations can provide insight
into the thermodynamic properties of the high-density
nuclear matter in their cores [9-11] as described by their
equation of state (EOS) [12].

A zero temperature EOS is a curve with a functional
relationship between the pressure p and energy density e,
i.e., p = p(e). Several formulations of the EOS have been
used in the literature such as parametrizations of p as a
function of e in the form of piecewise polytropes (see, e.g.,
[13,14]), spectral representations [15,16], or the speed of
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sound [17]. In this work, we use functional relationships
among the mass, radius, and tidal deformability of a
nonspinning neutron star (NS), obtained by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations [18,19], for
a given pressure-density curve p(e), as a mathematical
model for an EOS. The magnitude of the tidal deformability
is determined by the neutron star mass and their EOS.
Tidal effects alter the orbital dynamics of a binary neutron
star and hence the emitted gravitational waves. The phase
evolution of gravitational waves depends predominantly on
a certain linear combination of the individual tidal deform-
abilities A; of the companion stars called the reduced tidal
deformability A [see Eq. (9) for a definition of A in terms of
individual tidal deformabilities]. The reduced tidal deform-
ability is a measure of the sum of the individual tidal
deformabilities and enters the phase evolution of gravita-
tional waves at the fifth post-Newtonian (PN) order [9]. The
dual parameter SA, which is a measure of the difference in
individual tidal deformabilities, enters the phase evolution at
a higher, sixth PN order [9,11,20,21]. The high PN orders
imply that the tidal effects contribute significantly to the
phase evolution at gravitational-wave frequencies greater
than about 100 Hz [22] and most significantly just before the
two neutron stars merge at frequencies of 1-1.5 kHz,
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depending on the EOS [23]. The noise spectral density of the
current detector network is at its lowest around 200 Hz and
raises quadratically at larger frequencies [24]. Consequently,
there is currently no hope of accurately measuring both the
parameters but only the reduced tidal deformability, that too
with significant errors. While future observatories might
measure symmetric mass ratio [ = mm,/(m; + m,)?],
chirp mass [M = #*/>(m; + m,)] and SA better than now,
the sensitivity will not be good enough to accurately measure
both of the tidal parameters (see, e.g., Smith ez al. [25]). The
individual tidal deformabilities of the component NSs can be
determined only if both A and SA are measured. In the
absence of such measurements, Yagi and Yunes [26] found
approximate correlations between combinations of the
individual tidal deformabilities that depend only on the
mass ratio of the companion stars and are largely indepen-
dent of the equations of state (EOSs). These quasiuniversal
relations can be used to infer the individual tidal deform-
abilities Ay, (k = 1, 2) from a measurement of A alone.

In addition to the above universal relations, Damour and
Nagar [27] discovered a strong sensitivity of the quadrupolar
tidal deformability on NS compactness C; = GM,;/c?,
irrespective of the properties of the nuclear matter making
up the cores. New universal relations have been proposed
recently by Saes and Mendes [28], where the ratio of central
pressure and densities are found to be correlated with the
compactness. It should be pointed out that these universal
relations are also “quasi” in nature because the correlations
among the various quantities are only approximately true
across the different EOS models.

The universal relations are currently one way to deduce
the radii of component NSs without making any
assumption about the underlying EOS. This is because
the measurement of the radius requires knowledge of the
EOS which is currently unknown. Universal relations were
used to infer the radii of companion neutron stars in
GW170817 [1,2,29]—the first BNS merger ever observed.
The residuals on the systematic errors due to the approxi-
mate nature of the universal relations were marginalized,
assuming a Gaussian distribution of the residuals [30-33].
Kumar and Landry [31] construct their own universal
relation for combining constraints obtained from multiple
events. We note an important limitation of model selection
based on universal relations. A set of TOV sequences for
individual EOSs were used to find quasiuniversal features.
It, then, seems contradictory to calculate the evidence for
the same set of models using the thence inferred quantities.
The resolution of such a fallacy is that the use of universal
relations is only as good as the fits for them which are 20%
and 2% accurate for the universal relations given in
Egs. (8a) and (8b), respectively [34]. The procedure of
marginalizing over the residuals was meant to alleviate
some of the systematic errors present in the universal
relations. However, this process is not infallible since
marginalization can bring its own set of systematic errors

in the presence of any non-Gaussian feature in the
residuals. Moreover, the residuals are not random num-
bers, they are known quite precisely. Hence, assuming that
residuals are described by a normal distribution and
marginalizing over it can potentially introduce systematic
errors. Abbott et al. [35] avoid these systematic biases
sampling tidal deformability of both components inde-
pendently without using universal relations. The inferred
posteriors of the mass-tidal deformability of both neutron
stars were then compared with a wide collection of EOSs.
A more direct approach to model selection is to para-
metrize the p = p(e) curve to obtain the posterior in the
space of an assumed set of (e.g., piecewise polytropic,
spectral or nuclear) parameters, capable of describing a
wide variety of ab initio zero temperature EOS models. The
posterior probability of these parameters is inferred for a set
of events, which are then combined to develop an effective
model selection method. Lackey and Wade [36] have used a
piecewise polytropic method while Wade et al. [21] argue
that spectral parametrization provides a better constraint
when stacking multiple events in model selection. Biswas
[33], on the other hand, used a set of nuclear parameters to
constrain and combine events for the same purpose.
While we break the degeneracy contained in the posterior
probability density function (PDF), p(M,n,A) before
model selection, one can also obtain the evidence of an
EOS model directly from such a PDF. Among such
approaches, Pacilio et al. [37] uses the joint posterior
PDF to calculate the Bayes factor for each EOS model
against a particular EOS by integrating the TOV equations
foreach value of central densities in a prior range. Ghosh
et al. [38] follows the method similar to [35] but, in the
space of (M, 5, A) rather than (m;, m,, A, A,). However,
we believe that there are larger degeneracies among
model EOSs that might be affecting the approach to model
selection using the effective tidal deformability compared to
breaking the degeneracy to individual tidal deformabilities.
In this study, we will describe a different and improved
method of taking the systematic errors of universal relations
into account for model selection which works equally well
for all binary configurations. Our proposal is as follows. We
recognized that at the time of model selection, we have an
estimate for the component masses and the assumption of a
fiducial model. This gives us the expected distribution of
the tidal/radial parameters. Together, given a measurement
of the tidal/radial terms, we do a piecewise shift of the
samples using the precisely known residuals with respect to
the fiducial model to construct an unbiased inference. The
evidence in favor of a model is calculated from this
distribution. We find that if systematic errors are unac-
counted for, it can lead to an incorrect model being
preferred. Predictably, correcting for them results in an
unbiased model selection.
The rest of this paper is organized as follows. In Sec. II,
we describe the BNS population assumed in this study and
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present the distributions of errors in key inferred parameters
for one of the samples from our simulation. In Sec. III, we
describe the universal relations and the EOS-agnostic
analysis pipeline that is currently used in the study of
dense matter EOSs. We also show that the use of universal
relations in inferring neutron star tidal deformabilities and
radii lead to systematic biases and propose a simple
algorithm to correct for the bias during model selection.
Section IV summarizes the main results of this study
concluding that the next-generation gravitational-wave
observatories will have the ability to precisely measure
the dense matter EOS. Section V concludes with a brief
summary of the paper and future directions.

II. NETWORKS AND POPULATION

In this section, we will outline the two gravitational-wave
detector networks considered in this study and describe the
population of BNS mergers accessible to them. We will then
discuss the parameter estimation capabilities of these net-
works for gravitational waves from binary neutron star
mergers, and in particular, how well they can measure the
chirp mass, mass ratio, and tidal deformability that are
relevant to measuring the dense matter EOS.

A. Networks

We consider two different detector networks in this study

and they are acronymed and elucidated as follows:

(i) HLVKI+: This is a planned global network of five
gravitational-wave detectors operating at A+ sensi-
tivity. It consists of three LIGO detectors [39] at
Hanford (H), Livingston (L), and India (I) operating
at A+ sensitivity, the Virgo (V) detector at
AdVirgo+ [40] sensitivity, and the KAGRA detec-
tor at KAGRA+ [41] sensitivity.

(ii) ECS: This is a proposed next-generation gravita-
tional-wave detector network consisting of two
Cosmic Explorer detectors [42], one in the U.S.
and the other in Australia, each with an arm length of
40 km, optimized for low frequency, and an Einstein
Telescope [43] in Europe.

Additional details about the networks such as the tech-
nologies to be used in them and their sensitivities to
different populations of compact binaries can be found
in Borhanian and Sathyaprakash [44] and the references
therein. We do not consider the detector noise realizations
which could further impact the recovery of correct
parameters.

B. Population characteristics

1. Redshift distribution

We simulate a population of BNS mergers up to a
redshift of z = 1. The redshift distribution of the population
is given by

P = g m

where R_(z) is the merger rate density in the observer frame
and can be expressed as

(2)

Here dV(z)/dz is the comoving volume element and R, (z)
is the merger rate per comoving volume in the source frame
which, in turn, is assumed to be proportional to the star
formation rate (SFR), R/(¢) and takes the form [45]

Ra(2) = [ R0 = )Pt ()

where the 7, is given by

i d7
E(Z)’

1+z
H(z) =
H, J

(4)

This equation signifies that the binaries that form at time
t(z) — t, merge at time #(z) (i.e., redshift z) after a delay
time ?,. Here, we choose the cosmic SFR to follow
Vangioni et al. [46]. The probability distribution for the
time to coalesce for a binary after formation is taken to
be P(t;) « 1/t; [47] with a minimum merger time of
fmin=20 Myr and a maximum of f,,,=1/Hy=
14.4 Gyr using Hy = 67.7 kms™' Mpc™' [48] (rz = 30).
Using the local merger rate R, (z = 0) from the second

LIGO-Virgo Gravitational-Wave Transient Catalog,
GWTC-2 [49] to be
R, (z = 0) =320 Gpc3yr!, (5)

TABLE I. The number of BNS mergers with an SNR greater
than a threshold of 10, 30, and 100 out of a simulated population
of 80,000 events expected to be detected annually by next
generation GW detectors. We show the number of events in
the two detector networks and the three EOS considered.

Network
HLVKI+ ECS
EOS events per year  events per year
SNR = 10 ALF2 260 74304
APR3 327 75868
APR4 299 75191
SNR = 30 ALF2 10 22565
APR3 19 27620
APR4 9 25252
SNR =100 ALF2 638
APR3 e 846
APR4 e 767
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we find the total number of BNS mergers up to z =1
comes out to be approximately 80,000 per year and we
take this to be the annual rate.

2. Equations of state simulated

We simulate the gravitational-wave signal for our pop-
ulation of BNS for three different EOSs: ALF2 [50], APR3,
APR4 [51]—with sufficiently different mass-radius curves.
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FIG. 1.

These three EOSs are representative of different regions of
the mass-radius space as well as a range of maximum
masses for NSs as shown in Fig. 9. In addition to these we
use several other EOSs from literature (BHB [52], DD2
[53], H3 [54], H4 [54], LS220 [55], SFHo [56], SLy [57])
for the model selection process to be discussed in Sec. III.
Two EOSs have been constructed by randomly selecting
piecewise polytropic indices from [58] marked here as PP2
and PP5.
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Distribution of selected parameters in our population for different SNR thresholds in the two detector networks considered.

These are the subpopulations that are used in the bias correction analysis. The HLVKI + network is not expected to observe a significant
number of events above an SNR of 30. The median values for the observed population are also quoted on top of each column.
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3. Distributions of intrinsic and extrinsic parameters

We consider the individual neutron stars to be non-
spinning and distributed uniformly in masses between
1 My and the maximum mass allowed by the correspond-
ing EOS. The extrinsic parameters—cosine of the inclina-
tion angle cos 1, location of the source in the sky (cosine of
the declination angle cos é and right ascension a), polari-
zation angle y, and the phase of coalescence ¢, of the
fiducial BNS population are drawn from a uniform dis-
tribution across their domains. The luminosity distances are
calculated from the redshifts of the binaries using Planckl!8
[59] cosmology.

In Table I, we show the number of BNS mergers per year
above a certain signal-to-noise ratio (SNR) for our simu-
lated populations in the two detector networks and the three
EOSs considered in this study [44]. The variation of the
detection rate across different EOS is directly related to the
maximum mass allowed by the corresponding EOS. Note
that for an SNR threshold of 10, which is a typical detection
criterion for an event, the next-generation network detects
almost all BNS mergers within a redshift of z = 1 [44]. In
Fig. 1, we also depict the distributions of various param-
eters of the binary given a threshold SNR. This shows the
parameter space probed by the observed population com-
pared to the astrophysical distribution of sources.

C. Parameter estimation

We simulate gravitational waves from the population of
binaries distributed as detailed in the present section using
the TaylorF2-tidal waveform model [21]. The signal spans a

log(381) = —3.2710% complete sample
SNR > 10
network: HLVKI+
eos: ALF2
no. of events/yr: 260
l()g(i,;l) = —1.228)%
Q
R
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D
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/bv /:>V /0‘). /03 /{\:31) /{b /\. /\ /Q. B S ~
aum A g
log(57) log(42) log(&1)

frequency range of [fin, fmax] Where fin is 5 Hz for ECS
while 10 Hz for A+ detectors and fy,,, = min(figco,
1024 Hz). fisco = 1/(6’/>zM) is the orbital frequency
of the innermost stable circular orbit for a point particle
in an effective black hole spacetime, where M is the total
mass of the binary [60]. The signal is truncated at 1024 Hz
because signals at higher frequencies do not contribute to the
SNR [44].

The errors on the parameters of the gravitational-wave
signal are calculated using the Fisher approximation for the
likelihood of a signal using the publicly available code
GWBENCH [61]. The Fisher matrix is defined using fre-
quency domain inspiral gravitational waveform, A(f), as

_ /oh(f) on(f)
Fij _< 00" " 00 > (6)

with a vector in this space given by 6= (M., A, Dy,
La,8,y, do.t.) where M, n, A, D, and ¢, are the chirp
mass, symmetric mass ratio, combined tidal deformability,
luminosity distance and the time of coalescence, respec-
tively, and the other parameters are defined in the previous
section. The covariance matrix for the errors on these
parameters is then C;; = F i‘jl. The inner product in the
above expression is given by

Su(f)

where S, (f) is the noise spectral density of the detectors.
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FIG. 2. Distribution of relative errors on log scale for the key quantities for our population of BNS systems with ALF2 EOS. The full
population is depicted in black while the sample with SNR greater than 10 is shown in red. The right panel contains the results for ECS
while the left panel is for the HLVKI+ network. The median values of error distributions in each of the quantities are mentioned on the

top of each column.
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In Fig. 2, we show the normalized distribution of lo
statistical errors for our population in the parameters M, 7,
and A. The error distributions are shown for only these
parameters because we will use them to calculate the
individual tidal deformabilities and radii of the NSs.
Furthermore, only the population having ALF2 as its
EOS is shown and they are similar for the other EOS.
The results for the full population are shown in black while
the subpopulation with a minimum SNR of 10 is shown in
red. The right panel shows the capabilities of the next-
generation network of ECS whereas the left panel depicts
the HLVKI+ network. The 1D histograms show that the
error distributions for the detected population and the full
population are similar in the parameters shown with the
median errors for the detected population tabulated above
the histograms corresponding to the relevant parameters.
This implies that the errors on these parameters are weak
functions of the SNR of the signal, which is used to
demarcate a detection from a nondetection. The ellipses
show how the errors on the different parameters are
correlated. As expected, we see a positive correlation
between the error distributions of the intrinsic parameters
signifying that if one of the parameters is well measured
then so are the others. Nevertheless, it can also be seen that
the correlation of M and 5 with A is less than that between
them. This is because the A errors are determined by the
high-frequency sensitivity of the network while the M and
n errors are primarily controlled by the low-frequency
sensitivity [23,62]. Note that the ellipses are not the
correlations among the different parameters for a given
event but rather the distribution of the errors for a population
of events.

III. USE OF QUASIUNIVERSAL RELATIONS
IN MODEL SELECTION

This section begins by discussing the two universal
relations that relate the symmetric and asymmetric combi-
nations of the tidal deformabilities on the one hand and the
compactness and tidal deformability on the other. This is
followed by a brief outline of the current method for
inferring the tidal deformabilities and radii of individual
neutron stars from gravitational-wave observations [29].
We point out how this approach can lead to biased
estimation of the tidal deformability parameters and the
radii due to systematic errors in the universal relations and
hence lead to erroneous EOS model selection. For the ECS
network of next-generation observatories, the systematics
can dominate over statistical uncertainties even for indi-
vidual events. For the HLVKI+ network, the systematics
for individual events are smaller than statistical uncertain-
ties; however, model selection with a population of 30
events or more can be biased even for this network. We
describe how to rectify systematic uncertainties at the time
of model selection and introduce several statistical

measures to show that the bias-corrected estimates of the
tidal deformability and radius converge to the correct EOS.
Marginalizing over the errors due to universal relations can
account for the biases but that comes at the expense of
increased errors in the inferred quantities.

A. Universal relations and residuals

1. Universal relation between tidal deformabilities
of a pair of neutron stars

The structure of neutron stars is determined by their
nuclear EOS via the TOV equations [18,19]. The EOS of
neutron stars is currently unknown and there are numerous
models describing the pressure-density (equivalently, mass
radius) curves of neutron stars (for a review see Lattimer
and Prakash [63] and references therein). Although x-ray
and gravitational-wave observations severely constrain the
family of viable EOS models, many of them are still
consistent with data.

First universal relation.—In spite of the huge variation in
the relationship between the masses and radii of neutron
stars amongst different EOS models, Yagi and Yunes [34]
found the remarkable result that the asymmetric combination
A, of the tidal deformabilities of two neutron stars, defined
by 2A, = (A, — Ay), is uniquely related to the symmetric
combination, Ay, defined by 2A, = (A, + A;), depending
only on the ratio of their masses g = m,/m; < 1. This
universal relation is given by [30,64]

1+ Z?f biq! [ A

A, = F,(q)A, L 8a
DN S e &)
1= qIO/(3—n)

F,(q) = T4 6 (8b)

where A; and A, are the individual tidal deformabilities of
the companion stars, b;;, ¢;; and n are the fitting parameters
given in Table 3 of Yagi [64] (see also Chatziioannou et al.
[30] and Godzieba et al. [58]).

Residuals in the first universal relation.—The universal
relation between A, and A; is plotted in the top left panel of
Fig. 3 for three different values of the mass ratio g = 0.5,
0.8 and 0.9. Solid and dot-dashed curves use the fitting
formulas in Yagi [64] and Godzieba et al. [58], respectively.
The two versions of the universal relations agree with each
other pretty well over a wide range of A, for ¢ = 0.5 but
less so for larger masses (smaller A,) and larger mass ratios.

The bottom left panel plots the residual of the fits with
respect to the exact TOV sequences for the EOS models
used in this work. The residuals remain below ~10% for
many EOS models and over a wide range of A;; the fits of
Godzieba et al. [58] have smaller residuals than those of
Yagi [64] but can still be as large as 25% when the tidal
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FIG. 3. The top left panel plots the universal relation between the asymmetric and symmetric combinations, A, and Ay, respectively, of
the individual tidal deformabilities A; and A, for several EOS as constructed in Yagi and Yunes [34] and Godzieba et al. [58]. The
(small) difference in the two versions of the universal relations is due to the error in the fitting function and the EOS data. In the lower left
panel, we plot the deviation of the universal relations from the TOV sequences corresponding to the EOS models used in this work
provided by Godzieba et al. [58] (in black) and Yagi and Yunes [34] (in yellow), respectively. These residuals can be as large as 25% for
the largest and smallest tidal deformabilities (A;) corresponding to smallest and largest neutron star masses, respectively. The top right
panel plots the second universal relation between a neutron star’s compactness C and its tidal deformability A as constructed by the same
two authors [34,58]. Please note that the left panel shows universal relations for a pair of NSs while the universal relation shown in the
right panel is for single NSs. We use these exactly known deviations to correct the radius and tidal deformability posteriors at the time of

model selection.

deformabilities are small, corresponding to heavier neutron
stars and/or softer EOSs.

Individual tidal deformabilities.—In spite of the resid-
uals, Eq. (8) is still very useful in inferring the individual
tidal deformabilities and hence assist in the process of EOS
model selection. The PN expansion of the gravitational-
wave phase contains the individual tidal deformabilities as
linear combinations in the PN coefficients at the fifth and
sixth PN orders [i.e., corrections in the phase evolution at
orders O(v/c)'® and O(v/c)"? beyond the leading order
quadrupole term], respectively. Tidal effects are encoded in
parameters A and A defined by

A:i[(l—l—qu)(As—Ag)ﬁ-<1+%>(AS+A‘1)} (9a)

26
) 13272 8944
o= 1_4’7<1_ 1319 T 13197 )AS
15910 32850 , 3380 ,
+ <1 531971319 T 1319 )A“' (%0)

The high PN orders at which they appear imply that the
effect of A is only important for frequencies fgw = 100 Hz
and that of SA at even larger frequencies [22] (see also

Dietrich et al. [23]). Thus, only the final few cycles of the
waveform before the merger contain significant tidal effects
and only A is measurable to a good accuracy even when the
SNRs are ~100 [25]. Thus, there is no hope of inferring the
individual tidal deformabilities from gravitational-wave
observations alone. But universal relation Eq. (8) can be
of help albeit inferred A values will be biased.

Systematic errors in A.—Suppose (g,A) are known
exactly. We can numerically solve the pair of Egs. (8) and
(9a) for A, and A, and hence infer the individual tidal
deformabilities A, k=1, 2. The numerical inversion
algorithm is found to be accurate to a relative error of
~1078 while the interpolation of TOV tables are accurate to
better than ~10~*. Since the universal relations are not
exact, however, the inferred values of A; will not be the
same as the ones that went into computing A. We assess the
systematics incurred using a population of BNS systems
uniformly sampled in the m; — m, plane.

For each pair of masses, and for a given EOS, we find A
and A, by solving the TOV equations using the TOV solver
developed in Damour and Nagar [27], Bernuzzi and Nagar
[65],l which are then used to obtain A. For a given EOS, we

"https://bitbucket.org/bernuzzi/tov/src/master’.
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FIG. 4. This figure shows the relative error in the reconstruction of individual tidal deformabilities of NSs in the space of component
masses of BNS systems for three example EOSs. The component masses are sampled uniformly over the range allowed by the respective
EOS without imposing any restriction on the mass ratio. Colors represent the systematic error in the tidal deformability of the primary
companion (i.e., the heavier NS) while the size of the circle represents the systematic error in the tidal deformability of the lighter
companion. The errors are greater for more massive NSs and softer EOS.

solve TOV equations for a discreet set of masses to obtain
the tidal deformabilities and radii and interpolate the
solutions to obtain these parameters for arbitrary NS
masses. The interpolated values of tidal deformabilities
and radii agree with the exact numerical solution of TOV
equations to within a fractional error of 107#, which, as we
shall see below, is far smaller than the systematic errors due
to universal relations.

For each binary pair in the population, the bottom panels
of Fig. 4 show the fractional difference in the true and
reconstructed tidal deformabilities |AgyAj,|/A; 2, the col-
orbar representing the systematic error in A (i.e., the tidal
deformability of the heavier companion) and the size of the
circles representing the systematic error in A, (i.e., the tidal
deformability of the lighter companion). The biases are
shown for three example EOSs: ALF2, APR3, and APR4,
corresponding to increasingly softer EOS from left to right.
The biases are particularly large (~75%) for softer EOS and
heavier NSs whose A values are around few tens to
hundreds. For intermediate masses and stiffer EOSs, the
errors are lower but could still be few to ten percent. This is
consistent with the fact that the fit residuals of the universal
relation (8) are smaller for stiffer EOSs [34].

Thus, while the tidal deformabilities obtained using
universal relations are EOS agnostic the inferred values
are biased. Consequently, a model selection algorithm that
compares the mass-tidal deformability curve obtained from
a collection of BNS events with the ones obtained from
solving TOV equations could lead to a greater evidence for
an incorrect EOS model.

2. Universal relation between tidal deformability and
compactness of a single neutron star

The first universal relation helps infer the individual tidal
deformabilities of neutron stars from gravitational-wave
observations but this does not help in inferring their radii.
This is because the tidal deformability of a neutron star is
related to its radius via

A%@(E)S, (10)

m

where k,, R and m are the star’s tidal Love number, radius
and mass [9]. A knowledge of the Love number k,, also
determined by the EOS, is necessary to deduce the radius of
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a neutron star from its mass and tidal deformability.
Although k, varies quite a bit from one EOS to another
for a given neutron-star mass, there seems to be a second
universal relation [27,34] that connects A to the star’s
compactness defined by C = GM/(Rc?):

2

C(A) = ar(in A, (11)

k=0

where a;s are the fitting coefficients in Godzieba et al. [58].
The right panel of Fig. 3 plots this second universal relation
constructed in Godzieba et al. [58] and Yagi and Yunes
[34]. Both versions agree with each other pretty well over a
wide range of tidal deformability. The residual between the
universal relation and the true dependence of the compact-
ness on the tidal deformability for the collection of EOS
considered in this work (bottom right panel) is at most 5%
over the entire range of A. This error is tolerable given the
large measurement uncertainties of reduced tidal deform-
ability expected in the near future (i.e., for the HLVKI+
network). However, an error of 5% is too large for the ECS
network which has the potential to measure the radii and
deformabilities at the subpercent level.

This second universal relation, together with the pos-
terior probabilities of the component masses and tidal
deformabilities, allows the construction of the posterior
probabilities of the radii. While the A posteriors are only
affected by the systematics in the first universal relation, the
radii posteriors are affected by the systematics of both
universal relations.

In the next section, we summarize the analysis pipeline
used to infer the mass-tidal deformability and mass-radius
curves using the two universal relations. A similar pipeline
was applied to GW170817 to obtain EOS-independent
posterior distribution of masses and radii [29].

B. Inference of tidal deformability parameters
and neutron star radii without the residuals

The current approach for the calculation of EOS-agnostic
radii of neutron stars from gravitational-wave observations
of BNS mergers, as described in Abbott et al. [29], involves
the use of the two universal relations given in Egs. (8) and
(11). We developed an alternative, but equivalent, approach,
the flowchart for which is shown in Fig. 5.

(1) In the first step, posterior distributions are obtained
for the chirp mass, symmetric mass ratio and A for a
catalog of expected events as shown in the box at the
top left of the flowchart. To this end, we use the
GWBENCH implementation of Fisher information
matrix [61] for fast computation of the posteriors
but in a real data analysis problem posteriors would
be obtained using a Bayesian inference algorithm.

(2) From the posterior distribution of the chirp mass and
the symmetric mass ratio we can derive the posterior

Using TOV Sequences
for a given EoS (e.g. @)

""""""" convention : my > my, q = mylmy, A, < A,
Injection EoS l

4 [

A(A,, q) EoS® EoS@® FoS®  EoS@

l I T S

(my, 1, Ay)

lUsing Universal relation, A,(A,,¢)

EoS-independent measurement of
masses and radii

A

l Using Universal relation, C(A)

FIG. 5. This is a sketch of the data analysis pipeline. The
posterior samples for M,,n, A are created using the Fisher
information matrix which is in the left-uppermost box. Yellow
boxes represent information coming out from the construction of
TOV sequences using multiple choice of EOS. We use quasiu-
niversal relations, (8) and (11) to obtain the component mass-radii
posterior probability distribution, which is then compared to a set
of EOS models as represented by a vertical double arrow.

distribution of the companion masses m, and m, and
the mass ratio g.

(3) In the next step (first downward arrow from top left),
the first universal relation Eq. (8a) is used to
eliminate A, from Eq. (9a) to arrive at an expression
for A that depends only on the symmetric combi-
nation of the tidal parameters and the mass ratio g,
namely A = A(A,, q).

(4) The transcendental equation A = A(A,, q), together
with the posterior distributions of ¢ and A, is then
solved to obtain the posterior of A; and the first
universal relation is deployed once again to derive
the posterior of A,. From the A, and A, posteriors, it
is straightforward to deduce the posteriors of the
individual tidal deformabilities (second downward
arrow from top left).

(5) In the next step, the second universal relation
Eq. (11), together with the m; and m, posteriors,
is used to infer the posteriors of the neutron star radii
(third downward arrow from top left).

(6) The above steps essentially give us posteriors in the
mass-tidal deformability (m — A) or mass-radius
(m — R) plane (bottom, horizontal, upward turn-
ing arrow).

(7) Given an EOS, the mass-radius and mass-tidal
deformability curves can also be obtained by solving
the TOV equations (top horizontal arrow) and can be
compared with the posterior distributions.

The above pipeline essentially compares the measured
parameters (e.g., the mass-radius curve) with the predictions
of a set of models to choose the best EOS consistent with the
data. However, the systematic biases in the tidal parameters
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(arising from the approximate nature of the first universal
relation) and radii (arising from both the first and second
universal relations) could favor the wrong model. We next
discuss a strategy to remedy the biases by incorporating the
residuals as part of the universal relation. We differ from
Ref. [35] in that we do not sample the tidal deformability of
the companions but instead only the reduced tidal deform-
ability. Additionally, instead of marginalizing over the
residuals while inferring radii and individual tidal deform-
abilities we correct for them at the time of model selection,
which differs in one key aspect from Ref. [29]. Oue method
is equivalent to calculating the A, — A, relation for
each EOS.

C. Mitigating systematic errors in the tidal
deformability and radius

In this section, we elucidate our method to correct for the
systematic biases incurred in the estimation of the indi-
vidual tidal deformabilities and radii due to the use of
quasiuniversal relations. The biases, being systematic and
not statistical, do not asymptote to zero with increasing
SNR but become the dominant source of error as the
statistical errors decrease.

Using residuals to correct systematic biases.—Our
proposal is to correct for systematic errors at the time of
model selection. To do so, we begin with a specific EOS
model and compare its predictions of the mass-A or mass-
radius curve with the posterior distributions of the same but
obtained from gravitational-wave observations, typically
computing the y* or Bayesian evidence for the model given
the data. At this point, we know not only the prior
probability for the model but also the residuals of the
model with respect to the universal relations. We can,
therefore, subtract the known residuals for the model from
the measured tidal deformabilities and radii before calcu-
lating the y? or evidence for the model. We emphasize that
the residuals cannot be used to obtain EOS-agnostic tidal
deformabilities or radii as the corrections are specific to the
EOS model chosen.

In more detail, we start with an EOS-agnostic estimate as
calculated using the procedure outlined in the previous
section. Given an EOS model and the measured masses
from gravitational wave observations, one can infer the
corresponding distributions of As and radii using the m — A
or the M — R curves for the EOS model. In the presence of
systematic biases these curves would shift from those
inferred using universal relations, which also broaden
due to the statistical uncertainties in their measurements.
Depending on the SNR of an event, statistical uncertainties
can be larger than systematic biases. In that case, correcting
for the systematics would not significantly improve the
evidence for the correct model. But as we will see, the
ECS network will observe events where such a correction
would be critical. Moreover, as mentioned before, biases

accumulate as the evidences from multiple events are
combined and, therefore, the correction would be important
even for the less sensitive HLVKI+ network.

Bias correction for a specific event.—In Fig. 6 we show
the impact of bias correction for a fiducial event in our
population. Here, an event with the ALF2 EOS is chosen
from the ECS network. The component masses of the
binary system are m; = 1.63 My and m, = 1.11 M and
the event had an SNR of 103.

The green horizontal and vertical lines show the true tidal
deformabilities and radii corresponding to these masses.
The EOS agnostic measurements for the event are depicted
by solid lines in red and blue for the universal relations
proposed in Chatziioannou et al. [30] and Yagi and Yunes
[34] and Godzieba et al. [58], respectively. The corrected
distributions are shown with the same colors but in dashed
lines. Evidently, the shift in the estimation of the radii with
respect to their true values vanishes upon correction.

Bias correction for a population of events.—In the top
row of Fig. 7, we show in gray filled circles the median
values of the radii (left panel) and tidal deformabilities

network: ECS
eos: ALF2
mlm2 = 1.64,1.11

Ry = 1240008

uncorrected sample YY2017
corrected sample, YY2017
uncorrected sample GZ2021
corrected sample, GZ2021
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FIG. 6. The comparison between the uncorrected and corrected
distributions of radii as well as the tidal deformabilities of the
component neutron stars are shown for a fiducial event in our
population. The uncorrected and respective corrected distribu-
tions are shown with respect to two universal relations shown in
the figure—YY2017 [34] and GZ2021 [58]. The event was
simulated in the ECS network with the ALF2 EOS. The true
values corresponding to the injected masses of m; = 1.64 My
and m, = 1.11 M, are shown with green horizontal and vertical
lines and values on top of each subplot are the median values of
the corresponding distributions. Note that both components need
not be massive for the bias to be significant.
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FIG.7. Inferred radii and A before and after bias correction for 30 random events with SNR values larger than 100 in the ECS network,

where injection EOS is APR3. Such corrections can also be included separately for two universal relations for tidal deformability and
compactness correction. However we find the second universal relation to be quite accurate. Hence, we report the joint correction due to
the relevance of radii as a key parameter constraining EOS. We find the recovery of A to be quite accurate, however individual tidal
deformabilities show larger variance. We report the impact of correction on individual A.

(right panel) as a function of the component mass, for a
randomly selected population of 30 events with SNRs
greater than 100 in the ECS network. Tidal deformabilities
and radii for this set of events were generated for the APR3
EOS model shown as blue solid lines. Note that the median
values of A and radii differ significantly from the corre-
sponding EOS curves for the largest and the smallest masses
as expected from the systematic bias plot in Fig. 4. Note that
the smallest masses are part of a small mass ratio system.

Correcting the radii and tidal deformabilities using
residuals appropriate for APR3 yield filled blue circles.
Note that the corrected values are now much closer to the
true EOS curves. Since the SNRs are pretty large, statistical
uncertainties for these events are far smaller than the
systematic errors, demonstrating the extent of the biases
and effectiveness of the corrections. Note also that sys-
tematic biases in the case mass-radius curve, affected by
two universal relations, are far greater than the mass-A
curve, affected by only the first universal relation.

D. Model selection criteria

We now describe our model selection method for a
population of events satisfying a given SNR threshold.
As before, the population contains 50 events each having an
SNR of at least 100 and the events were generated assuming
APR3 to be the true EOS. To select a model among a set of
EOSs, say, ALF2, APR3, and APR4, we correct for biases

in EOS-agnostic distributions using residuals appropriate to
each EOS in the set. The bottom panels of Fig. 7 show how
uncorrected median values (gray circles in the top panels)
shift to new positions when bias corrections appropriate for
the ALF2 (red circles), APR3 (blue circles) and APR4
(green circles) models were applied. Also shown are the
mass-A (right panel) and mass-radius (left panel) curves
corresponding to the three models. Evidently, the population
matches better with an EOS model when the bias correction
corresponds to the true EOS.

This procedure can be repeated for radii and tidal
deformabilities sampled from the posterior distributions
of tidal deformabilities and radii, which can then be used in
computing the y” relative to each model (see below). We
emphasize, however, that in this process we did not
consider the errors in the distributions of masses as they
are negligibly small but it is straightforward to account for
statistical uncertainties in masses.

Model selection with chi square.—Next, to quantify how
well the inferred mass-radius curve matches with an EOS
model we calculate the ¥ between the two using

1~ (= x)?
X =52 ’ (12)

2
n=1 On

where x¥ is the tidal deformability (or the radius) of the
EOS model M corresponding to the nth event and x¥ is a
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FIG. 8. Distribution of y? for a sample of 30 random events with SNR larger than 100 in the ECS network where the true EOS model is
APR3. Bias-corrected y? distributions are shown as unhatched histograms while uncorrected ones are shown as hatched histograms, for
radii (top panel) and A (bottom panel). Low values of y? at the left end of the panels for bias-corrected y? distributions imply that the
reference EOS model is distinguishable from the rest. Similar values of y? for the reference and alternative EOS models for bias-
uncorrected y? distributions in the middle of the panels implies that it is hard to distinguish the reference EOS model from an alternative.
Note that the distributions are not normalized which accounts for why some look thinner than others.

sample drawn from the bias-corrected posterior distribution
(for model M) of the nth event whose standard deviation is
o,. The set of values {m,,xk}, n =1,..., N forms the kth
realization of the mass-A (or the mass-radius) curve, giving
the chi-square value )(% s for model M. We compute y? for
1000 realizations of the mass-A (or the mass-radius) curves
to obtain the y? distribution for a given model.

We construct such y? distributions for each model in the
set of all EOSs. For an unbiased model selection, the y?
distribution constructed from a population of bias-corrected
posteriors should have the smallest y> value for the true
EOS. In Fig. 8, we plot y? histograms before (hatched) and
after (unhatched) bias correction. APR3 was chosen as the
true EOS model for the simulated population in the ECS
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In this figure we plot mass-radius (top panels) and mass-A (bottom panels) for a selection of 12 different EOS models and their

L, distance from a reference EOS model thick black line, ALF2 (left panels), APR3 (middle panels) and APR4 (right panels). The range
of integration in the L, norm is taken from 1 M up to the smaller of the maximum mass of the two EOSs.
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network and 30 events with SNR larger than 100 were
chosen at random from the full population for model
selection. It is evident from the plots that bias correction
vastly improves model selection, giving lower y* values for
the correct EOS model for both the mass-radius (top panel)
and mass-A comparisons. Furthermore, for this sample
population of events model selection without bias correc-
tion will either be inconclusive or lead to the selection of an
incorrect model as the true model, once again highlighting
the efficacy of bias correction.

Kolmogorov-Smirnov (KS) test for model selection.—We
use the directional Kolmogorov-Smirnov test statistic [66]

to distinguish two (near-by) y* distributions. Let {47  } and
{x%.4} be the y* distributions for two EOS models T and A,
respectively, and let ®; and ®, be the corresponding
cumulative distribution functions. We have chosen 7T to be
the true model and A to be an alternative. Our null () and
alternative (H;) hypotheses are defined as

() Ho: ®7(y?) < D4 (y?) for all y2, and

(i) H;: Dp(y?) > ®4(x?) for at least one y2.
This implies that for an unbiased model selection, where
the »* values for the true EOS are expected to be smaller
and mostly nonoverlapping with the y? values for the false
EOS, the KS statistic will be close to 1. On the contrary, if
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FIG. 10. The plot shows the distribution of the directional KS statistics between the reference model [ALF2 (top), APR3 (middle) and
APR4 (bottom)] and an alternative listed along the horizontal axis for mass-A curves. The statistic is computed for 50 simulated events
with SNR > 10 in the HLVKI+ network. Also listed along the top of each panel are the L, distances between the reference model and
the alternatives. Blue horizon lines in violin plots are the median values of the KS statistic. Filled (empty) violins are the KS statistic for
bias-corrected (uncorrected) posteriors of the tidal deformability. The median posterior is close to zero when the alternative model is the
same as the reference model. However, the medians are small for many alternative models. Thus, the HLVKI4- network will not have the

sensitivity to determine the right EOS.
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two x> distributions are indistinguishable or the model
selection is biased meaning that the y? distribution for the
incorrect EOS has lower values, the KS statistic will
approach 0. In order to not be misled by the fluctuations
of a specific realization of a population of events, we
bootstrap over 500 distinct realizations of the population.
We verified that this is large enough to describe the
variation in different realizations of the population.

E. L, distance between EOS models

We exemplify the limitations of any model selection
method in the following. First, the mass-radius curves of
EOSs are not unique for all masses of NSs, but only a
subset of them (see Fig. 9). Many of the mass-radius or

mass-tidal deformability EOS pairs intersect each other
making those pairs identical at and around the point of
intersections (for example ALF2-SLy around 1.4 M).
Some pairs of EOSs are similar, or even identical, over
a large range of masses, which means they are distinguish-
able only for events in the nonoverlapping region (for
example, BHB and DD2 overlap for masses < 1.5 M in
mass-radius plane). Hence, identification of the correct
model also depends on the component masses of NSs in the
catalog of BNS events, and only events at which a pair of
EOSs do not intersect can distinguish them. Luckily, there
are many EOS pairs that do not intersect and differ over the
entire allowed range of masses. It is easier to discriminate
between such pairs.
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FIG. 11.

Same as Fig. 10 but for the ECS network with a random sample of 50 (blue violins), 100 (yellow violins) and 150 (red violins)

events with SNR > 10. It is evident that bias correction increases the KS statistic for incorrect models leaving the statistic unchanged for
the reference EOS. As expected, the statistic has greater discriminatory power between different models for a larger number of events.
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The L, distance between the mass-radius or mass-A
curves can be used as a measure of the distance between a
pair of EOS models. We propose that two models are more
easily distinguishable greater is the L, distance between the
corresponding curves defined as

Ly n(A.B) = Ny / ™ [Ru(m) = Ry(m)2dm  (13)

LyA(A.B) =N, / ™ [Aa(m) = Ag(m)P2dm. (14)

where N and N, are normalization constants to render the
distances dimensionless chosen to be

Ng

m, my, —1/2

[/ Ridm/ R%dm] ,
m; my

my my _1/2

Ny = [ / Adm / A%dm} ,
m m;

R, (m) and A, (m) [Rg(m) and Ag(m)] are the mass-radius
and mass-A curves corresponding to model A (B), m; is the
smallest NS mass in the observed population and m,, is the
smaller of the maximum mass allowed by models A and B.
Figure 9 plots mass-radius (top panels) and mass-A (bottom
panels) curves for 12 different EOS models and their L,
distance from ALF2 (left panels), APR3 (middle panels)
and APR4 (right panels).
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It is evident from the figure that mass-A and mass-radius
curves are complementary in measuring the distance
between different EOS models. For example, DD2 and
PP2 are most distant from APR3 in the mass-radius plane
(top middle panel) while H4 happens to be most distant in
the mass-A plane (bottom middle panel). Likewise, APR4
is most distant from ALF2 in both the mass-radius (top left)
and mass-A (bottom left) planes. This feature highlights the
importance of model selection in both mass-radius and
mass-tidal deformability planes. On the contrary, the model
closest to the reference EOS happens to be the same no
matter the parameter space. For example, SFHo has the
smallest distance from APR3 in both mass-radius and
mass-A planes.

IV. MODEL SELECTION WITH A + AND XG
NETWORKS

In this section, we will determine the ability of the ECS
network to distinguish between different EOS models using
the measures introduced in the previous section. We will
also consider the HLVKI+ network as a fiducial. Results
for mass-A curves are presented here; conclusions drawn
from mass-radius curves are similar.

As discussed in the previous section, the preferred model
is the one for which the y? between the model and the
inferred realization of an EOS curve is the smallest.
Following the procedure described in the last section (i.e.,
construction of multiple realizations of the mass-A curve for
a given population by sampling from the posterior
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FIG. 13. Same as for Fig. 11 but for events with SNR > 100. Now, just ten events suffice to select the correct model.
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distribution of A and bootstrapping over several populations
of events) gives a distribution of the KS statistics, which is
plotted in Figs. 10-13. In order to test the robustness of our
method ALF2 (top panels), APR3 (middle panels), and
APR4 (bottom panels) were in turn considered to be the true
EOS model and model selection was performed over a set of
12 EOSs depicted in Fig. 9.

HLVKI+ network.—Figure 10 plots the distribution of
the KS statistic for different realizations of a set of 50
events with SNR > 10, observed in the HLVKI+ network
over a one year observing period. The distribution of the
KS statistic between the reference model (ALF2 top, APR3
middle and APR4 bottom) and an alternative (shown along
the x axis) is shown for both bias-corrected (filled violins)
and uncorrected (empty violins) posteriors. Blue markers
correspond to the KS statistic for the bias-corrected median
realization. Also listed at the top of each panel are the L,
distance between the reference EOS model and an alter-
native shown along the x axis.

We see that in general bias correction increases the
KS statistic for the incorrect models. This implies that
the population realizations that were otherwise indistin-
guishable or giving rise to an incorrect model selection
have better distinguishability. Regardless of the true EOS,
H3 is more readily distinguishable from the reference
models. Of further note is that APR3 is the easiest to
distinguish among the three reference EOS. But otherwise
it will be difficult to converge on the true EOS using the
HLVKI+ network.

It may be tempting to conclude that the reference model
does not have long tails towards KS statistic > 1 but this is
not correct since in a real experiment we would not know
the true EOS model and hence likely to obtain violins with
low medians and long posteriors for many models in the
HLVKI+ detector network.

ECS network.—Next, we turn to the next-generation
detector network of ECS. Instead of using the full set of
the detectable population of events, we choose a subpopu-
lation of events to distinguish between different EOS
models. In Fig. 11, we randomly choose 50, 100, and
150 events from the full population of events but with
network SNR > 10. We again find that H3 is more readily
distinguishable from the reference models. Moreover, dis-
tinguishability increases, as expected, with the number of
events considered for model selection. We confirm once
again that bias correction leads to better distinguishability
and correct model selection. This is easily seen for the EOS
models H3, H4, and LS220. When the reference EOS is
ALF2, correcting the bias in the tidal deformability makes
the median realization of a population of 150 events
distinguishable. For an injected APR3 or APR4 EOS, it
makes almost every realization of the population distin-
guishable. We note that the events in this population are
expected to be predominantly low SNR.

In Figs. 12 and 13 we take the minimum SNR to be 30
and 100, respectively, and also consider three subpopula-
tions of 10, 50, and 100 events. We find that higher SNR
events increase the distinguishability across the set of EOS
models considered. We report that the median realization of
a population of 100 events having a minimum SNR of 100,
as is expected from a year of observation, can distinguish
the correct EOS model among all the models considered in
this work. We further note a divergence in the KS statistic
where the statistic for the uncorrected tidal deformability
estimates decreases for the SNR threshold of 100 compared
to an SNR threshold of 30 for the same number of events. In
contrast, the statistic increases for bias-corrected distribu-
tions. We conclude that the ECS network, with its ability to
frequently detect high SNR events, will have the ability to
precisely determine the EOS of dense matter.

V. CONCLUSIONS AND DISCUSSIONS

The determination of the individual tidal deformabilities
and radii of a BNS system using gravitational-wave
observations suffers a systematic bias due to the use of
universal relations. Traditionally, this bias is accounted for
by marginalizing over the residuals in the universal
relations and, in the process, trading in the systematic
errors for statistical ones. This procedure, nevertheless,
results in a biased estimate of the relevant quantities and,
therefore, to a biased model selection. In this paper, we
propose a different method for an unbiased model selection
that does not involve residual marginalization and, hence,
is, in principle, superior to the existing procedure.

Model selection is performed by calculating the y?, or
alternatively, the evidence, for a model given an observa-
tion. Since a specific model is assumed in the computation
of the evidence, one has knowledge of the residual
associated with the model and can rectify the measured
quantities by their value at that point. We note that this
method does not produce model-agnostic distributions of
masses and tidal deformabilities since the corrections are
for a specific model.

Given an observed astrophysical population satisfying a
minimum SNR condition, we create an EOS curve in the
mass-A and mass-radius planes by drawing a representative
point from the posterior distributions. We repeat this
process multiple times to get a band of values in the
respective planes. This bootstrapping procedure helps to
not bias the inferences to a specific realization of an EOS
curve. Next, we consider a set of models to be hierarchi-
cally ranked based on their )(2 values. Here, we calculate the
x> for every model in the set, first with the EOS-agnostic
band and then with a band obtained after correcting for
systematic errors specific to chosen models. This results in
two sets of y? distributions which we call the uncorrected-
y? and corrected-y* distribution sets.
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For an unbiased inference, the model corresponding to
the distribution with smaller y> values is the preferred
model. Unfortunately, this is not always the case since the
bias-uncorrected-y? distributions for the wrong model could
have lower y? values. Luckily, the bias-corrected-y* dis-
tributions are always the lowest for the true model.
However, if two EOS curves are similar (i.e., small L,
distance) then their y? distributions overlap and the models
might be indistinguishable. To quantify the distinguish-
ability of two »? distributions and unbiased model selection,
we use the directional KS statistic. A statistic for a pair of
distributions close to 1 indicates an unbiased model selec-
tion and complete distinguishability of the pair. On the other
hand, if the statistic is close to zero, the pair of distributions
either overlaps or model selection is biased.” When the
statistic is close to zero it is not possible to discriminate
overlapping distributions from biased ones. Specifically,
one can have nonoverlapping y? distributions with the
incorrect model having smaller values, in which case the
statistic will necessarily be zero.

To ensure that our inferences are not biased by the
specific realization of our population, we bootstrap over
the observed population. We discussed the violin plots in the
previous section, which show the distribution of the KS
statistic between a reference model and an alternative

’In this study, we restrict the calculation of the KS statistic to
the case where one of the y? distributions is that of the reference
model and so the KS statistic indicates how likely the reference
model is to be chosen as the preferred one.

model. We observe that the injected model is more likely
to be recovered for bias-corrected-y? distributions and for a
greater number of observations. The two main advantages
of our method over the residual marginalization method are
as follows. First, we do not need to sample over the
parameters that model the residuals and hence are computa-
tionally favored. Second, the statistical errors are mostly
unaffected in our method and, therefore, our model selection
has greater sensitivity. Though not explored in this work, it
would be interesting to do a direct comparison of the model
selection prowess of our method versus the method of
residual marginalization. More specifically, this would
reveal the effect of the latter method on the statistical errors
and its subsequent effect on the unbiased distinguishability
of nearby EOS curves. We leave this to future work.
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