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Stochastic gravitational-wave backgrounds (SGWBs) derive from the superposition of numerous
individually unresolved gravitational-wave (GW) signals. Detecting SGWBs provides us with invaluable
information about astrophysics, cosmology, and fundamental physics. In this paper, we study SGWBs from
binary black-hole (BBH) and binary neutron-star (BNS) coalescences in a network of next-generation
ground-based GWobservatories (Cosmic Explorer and Einstein Telescope) and determine how well they can
be measured; this then limits how well we can observe other subdominant astrophysical and cosmological
SGWBs. We simulate all-Universe populations of BBHs and BNSs and calculate the corresponding
SGWBs, which consist of a superposition of (i) undetected signals and (ii) the residual background from
imperfect removal of resolved sources. The sum of the two components sets the sensitivity for observing
other SGWBs. Our results show that, even with next-generation observatories, the residual background is
large and limits the sensitivity to other SGWBs. The main contributions to the residual background arise
from uncertainties in inferring the coalescence phase and luminosity distance of the detected signals.
Alternative approaches to signal subtraction would need to be explored to minimize the BBH and BNS
foreground in order to observe SGWBs from other subdominant astrophysical and cosmological sources.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) from a
binary black-hole (BBH) coalescence in 2015 has opened a
new window to the Universe [1]. Soon after that, the first
detection of GWs from a binary neutron-star (BNS)
coalescence [2] and the observation of its electromagnetic
counterpart [3,4] have significantly advanced the field of
multimessenger astronomy. So far, nearly 100 BBHs and 2
BNSs have been detected [5–7]. These observations have
made crucial contributions to astrophysics, cosmology, and
fundamental physics [8–10].
In addition to those loud and individually resolved GW

events, a plethora of signals from multiple kinds of sources
remain too weak to be detected, and their incoherent
superposition gives rise to stochastic GW backgrounds
(SGWBs) [11–15]. A huge variety of SGWBs are expected.
Some are of astrophysical origin, such as those from
supernova explosions [16–20] or the cumulative sum of
unresolved compact-binary coalescences (CBCs) [21–26].
Others are of cosmological origin and include SGWBs from
standard inflation [27–29], axion inflation [30], cosmic

strings [31–34], etc. The predicted energy densities of these
different SGWBs vary by many orders of magnitude.
The detection and characterization of SGWBs has

important scientific payoffs. Astrophysical backgrounds
potentially contain key information about the mass and
redshift distributions and other properties of their corre-
sponding sources [9,35,36]. In addition, observing cosmo-
logical SGWBs would open up a unique window to the
earliest moments of the Universe and to the physical laws
that apply at the highest energy (up to the limits of the
Planck scale) [27–34]. The current second-generation
detector network (i.e., advanced LIGO [37,38], advanced
Virgo [39], and KAGRA [40]) did not detect any SGWB in
their searches [41], putting upper bounds on the amplitude
of the energy spectrum in various frequency bands [9,41].
The SGWB for current detectors is projected to be
dominated by the CBC background, as their network
sensitivity allows only a small fraction of them to be
resolved and subtracted. Therefore, detection of the sub-
dominant astrophysical and cosmological SGWBs cannot
be accomplished.

PHYSICAL REVIEW D 108, 064040 (2023)

2470-0010=2023=108(6)=064040(19) 064040-1 © 2023 American Physical Society

https://orcid.org/0000-0003-1600-8835
https://orcid.org/0000-0002-8143-6767
https://orcid.org/0000-0003-0751-5130
https://orcid.org/0000-0002-4906-2670
https://orcid.org/0000-0001-7018-2055
https://orcid.org/0000-0003-3845-7586
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.064040&domain=pdf&date_stamp=2023-09-20
https://doi.org/10.1103/PhysRevD.108.064040
https://doi.org/10.1103/PhysRevD.108.064040
https://doi.org/10.1103/PhysRevD.108.064040
https://doi.org/10.1103/PhysRevD.108.064040


The situation could be significantly improved in next-
generation (XG) observatories, including Cosmic Explorer
(CE) [42] and the Einstein Telescope (ET) [43]. They are
expected to detect hundreds of thousands of BBHs and
BNSs per year at a signal-to-noise ratio (SNR) larger than
12 (this is the standard SNR threshold used by LIGO and
Virgo, although the optimal choice may be different for XG
detectors [44–46]). Meanwhile, the individually resolvable
sources will be much better measured, and thus more
precisely subtracted as a foreground.
In this work, we study the CBC background in XG

ground-based GW observatories. We consider populations
of BNSs and BBHs with local merger rates consistent with
the latest LIGO/Virgo/KAGRA (LVK) catalog [5,9]. We
study how well the individually resolvable events can be
measured and subtracted, and how much the unavoidable
contribution from imperfect subtraction (Ωerr) contributes
to the remaining SGWBs of CBCs. The other contribution
is from the superposition of unresolved CBC GW signals
(Ωunres). The sum of these two residual backgrounds sets
the effectivity sensitivity and determines how well other
subdominant SGWBs can be detected. It is thus essential to
understand these backgrounds and to think about how they
can be minimized. In this paper we estimate the optimal
signal-to-noise ratio threshold at which the sum Ωunres þ
Ωerr is minimized for BBH and BNS populations,
respectively.
To our knowledge, the problem of subtracting the CBC

foreground from resolved sources to detect subdominant
SGWBs was first studied in detail in the context of the Big
Bang Observer (BBO), a space-based interferometer net-
work concept to observe primordial GWs [47,48]. After the
detection of GW150914, various authors considered the
possibility that BBHs may contribute to the confusion noise
for the space-based detector LISA [49] and possible
methods for their subtraction [50]. More recent studies
have applied an information-matrix formalism to the case
of XG observatories [51,52]. Here (and in the companion
paper [53]) we build upon the prior work of Refs. [51,52]
by expanding the range of binary parameters assumed to be
determined for each GW signal. While those studies
focused on the effect of the three dominant phase param-
eters (the redshifted detector-frame chirp mass Mz, coa-
lescence phase ϕc, and time of coalescence tc), we consider
the larger nine-dimensional parameter space characterizing
nonspinning binaries. We find that correlations and degen-
eracies between different parameters, and, in particular, the
uncertainty in the amplitude of the individual signals, result
in a much larger value for Ωerr.
The rest of the paper is organized as follows. In Sec. II,

we present the assumptions on the mass and redshift
distributions and local merger rates that underlie our
simulation of BBH and BNS coalescence events. In
Sec. III, we detail the formalism and assumptions (on
waveform models, detector networks, and parameter

estimation) that we use to compute SGWBs, and, in
particular, Ωunres and Ωerr. In Sec. IV we present our
results, and in Sec. V we discuss their implications and
possible directions for future work.
Throughout this paper G is the gravitational constant, c

the speed of light, H0 the Hubble constant, and we use the
ΛCDM cosmological model with cosmological parameters
taken from Planck 2018 [54].

II. SIMULATING THE COMPACT BINARY
POPULATION

In general, the GW signal emitted by a noneccentric
BBH (or BNS with tidal interactions neglected) can be
characterized by a set of 15 parameters.

(i) Eight intrinsic parameters, which includes the two
independent mass parameters and two spin vectors
(χ1;2, where 1 stands for the primary while 2 for the
secondary). For the masses, one uses either the
companion masses fm1; m2g or fM; ηg, where
M is the chirp mass and η is the symmetric mass
ratio. We use the former combination when generat-
ing the astrophysical populations, and the latter when
calculating the information matrix.

(ii) Seven extrinsic parameters, which includes the
merger redshift z (or luminosity distance DL), the
sky position of the source (right ascension α and
declination δ), the inclination angle ι, the polarization
angle ψ , the coalescence phase ϕc, and the coales-
cence time tc.

Table I summarizes the distributions of the above
parameters for our BBH and BNS populations. We specify
the parameters for the mass and redshift distributions in
Secs. II A and II B, respectively. The effect of spins is
expected to be subdominant, so we set the spins to zero for
all binaries. Moreover, we use uniform distributions for
cos ι, cos δ, α, ψ , and ϕc. We use zero as the initial (true)
value of the coalescence time tc for all the binaries, but we
include uncertainties on its recovered value from parameter
estimation. The choice of tc ¼ 0 as the initial value does not

TABLE I. Distributions for the parameters of our BNS and
BBH populations. See text for the details.

Parameter BNS BBH

m1 Double Gaussian [55] POWERþ PEAK [9]
m2 Uniform ½1.14; 1.46�M⊙

χ1, χ2 0

z SFR [56] þ time delay SFR [56] þ time delay þ
metallicity

cos ι
Uniform in ½−1; 1�

cos δ

α, ψ , ϕc Uniform in ½0; 2π�
tc 0
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induce a biased result because sampling the sources iso-
tropically in the sky is effectively degenerate with assuming
a uniform distribution in tc. In Sec. II C we discuss the local
merger rates of BBHs and BNSs, which sets the normali-
zation of the redshift distribution (Sec. II B).

A. Mass distribution

We model the masses of our BBH population using the
POWERþ PEAK phenomenological model described by
the LVK Collaboration [9], which performed a population
study based on the third Gravitational-Wave Transient
Catalog (GWTC-3). This model gives the highest Bayes
factor among all the options considered there.1 The primary
black-hole (BH) mass follows a truncated power law with
the addition of a Gaussian peak and an exponential tapering
at low masses, i.e.,

Pðm1Þ ∝ ½ð1 − λÞPlawðm1jγ1; mmaxÞ
þ λGðm1jμm; σmÞ�Sðm1jmmin; δmÞ; ð1Þ

where Plawðm1jγ1; mmaxÞ is a power-law distribution with
slope γ1 ¼ −3.40 and cutoff at mmax ¼ 86.85M⊙,
Gðm1jμm; σmÞ a Gaussian distribution with mean μm ¼
33.73M⊙ and standard deviation σm ¼ 3.36M⊙, and
Sðm1jmmin; δmÞ is a tapering function which rises mono-
tonically from 0 to 1 within ½mmin; mmin þ δm�, where
mmin ¼ 5.08M⊙ and δm ¼ 4.83M⊙ (see Appendix B of
Ref. [9] for details).
The secondary BH mass is derived from the mass ratio

q ¼ m2=m1, which is sampled, for each binary, according
to the smoothed power law

PðqÞ ∝ qγqSðm1qjmmin; δmÞ; ð2Þ

with γq ¼ 1.08.
The masses of our BNS population are distributed

according to the preferred model from Ref. [55]. They
performed a Bayesian analysis on a sample of 17 Galactic
BNSs and showed that the primary (recycled) neutron-star
(NS) mass follows a double Gaussian distribution,

Pðm1Þ ¼
γNSffiffiffiffiffiffi
2π

p
σ1

e
ðm1−μ1Þ2

2σ2
1 þ 1 − γNSffiffiffiffiffiffi

2π
p

σ2
e
ðm1−μ2Þ2

2σ2
2 ; ð3Þ

with μ1 ¼ 1.34M⊙, μ2 ¼ 1.47M⊙, σ1 ¼ 0.02M⊙, σ2 ¼
0.15M⊙, and γNS ¼ 0.68. The secondary (nonrecycled)
NS mass is instead distributed uniformly within the
range m2 ∈ ½1.14; 1.46�M⊙.

B. Redshift distribution

We simulate BBHs and BNSs up to redshift z ¼ 10. The
redshift distribution we use comes from Refs. [51,52], as
detailed below.
First of all, we assume the binary formation rate to follow

the star-formation rate (SFR) [56],

RsfðzfÞ ¼ ν
a ebðzf−zpÞ

a − bþ be½aðzf−zpÞ�
; ð4Þ

where ν ¼ 0.146M⊙ yr−1Mpc3, zp ¼ 1.72, a ¼ 2.80, and
b ¼ 2.46. The functional form is taken from Ref. [59], with
the best-fit parameters from high-redshift star-formation
data based on gamma-ray bursts, and normalization from
Refs. [60,61].
In addition, we set a metallicity cut on BBHs, as massive

BHs are more likely to have formed in low-metallicity
environments [62,63]. For binaries with at least one BH
heavier than 30M⊙, we reweigh the star-formation rate by
the fraction of stars with metallicities less than half of the
solar metallicity [64]. The metallicities of stars are drawn
from a log10-normal distribution with standard deviation of
0.5 and redshift-dependent mean value from Ref. [65],
rescaled upwards by a factor of 3 to account for local
observations [56,66].
The time delay td between the formation of a binary and

its merger has probability distribution pðtdÞ. We assume
pðtdÞ ∝ 1=td in the range tmin

d < td < tmax
d . We set tmax

d to
be the Hubble time [67–74], while we assume tmin

d ¼
50 Myr for BBHs [62,64,74], and tmin

d ¼ 20 Myr for
BNSs [64,75].
Combining all of the assumptions above leads to the

merger rate per comoving volume in the source frame

RmðzÞ ¼
Z

tmax
d

tmin
d

Rsffz̃½t̃ðzÞ − td�gpðtdÞdtd; ð5Þ

where z is the merger redshift, t̃ðzÞ is the cosmic time when
the merger happens, z̃ is the redshift as a function of
cosmic time, and t̃ðzÞ − td is the cosmic time when the
binary forms.
Finally, the merger rate in the observer frame is

RzðzÞ ¼
RmðzÞ
1þ z

dVc

dz
ðzÞ; ð6Þ

where dVc=dz is the comoving volume element.

C. Local rates and astrophysical uncertainty

The normalization of RzðzÞ in Eq. (6), i.e., Rmðz ¼ 0Þ, is
set by the measured local merger rate from LVK observa-
tions [9,35]. For each of our binary populations, we choose
a fiducial value and a 90% confidence interval based on the
GWTC-3 catalog [9] to characterize the uncertainties.

1We note that the population parameters of this model have
been slightly revised in the latest versions of the preprint [9].
However, to this day the public data release [57] has not been
updated since the first version, and thus we adopt those
parameters for our study [58]. The impact on our analysis of
the slight change in the population parameters is negligible.
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For BBHs, the fiducial value we use is the best estimate
for the POWERþ PEAK model from GWTC-3 [9], i.e.,
Rmðz ¼ 0Þ ¼ 28.3 Gpc−3 yr−1. The 90% confidence inter-
val is ½17.9; 44� Gpc−3 yr−1, covering several different
astrophysical models [9].
For BNSs, we use a more sophisticated mass distribution

that is different from those used in Ref. [9]. However,
Ref. [9] considers several different models, so their com-
bined 90% confidence interval, ½10; 1700� Gpc−3 yr−1,
should mostly cover that of our model. The large uncertainty
is mainly because there are only two BNS coalescence
events detected so far [2,76]. For the fiducial value, we use
the best estimate from GWTC-2 [35], 320 Gpc−3 yr−1. This
number is well within the uncertainty range quoted above
and closer to the estimates considered in recent forecasts for
XG detectors [44–46], allowing for more direct compar-
isons with the literature.

III. CALCULATION OF THE STOCHASTIC
GRAVITATIONAL-WAVE BACKGROUND FROM

COMPACT BINARIES

The energy-density spectrum of a SGWB can be
described by the dimensionless quantity [11]

ΩGWðfÞ≡ f
ρc

dρGW
df

ðfÞ ¼ 1

ρcc
fFðfÞ; ð7Þ

where f is the GW frequency, ρGW the GWenergy density,
F the GW energy flux, and ρc ¼ 3H2

0=8πG is the critical
density of the Universe.
In this section, we summarize the formalism we used to

compute the CBC SGWBs. We first give an overview of
the SGWB in Sec. III A, including its different compo-
nents. Then, we present the detection SNR of a GW signal
in Sec. III B, and the statistical uncertainty due to imperfect
subtraction of the resolved signals in Sec. III C. Finally,
in Sec. III D we discuss the systematic effects due to
waveform modeling uncertainties and the XG detector
networks considered in the analysis. For some of our
calculations, including the waveforms, the detection SNR,
and the information matrix of each CBC event, we use
GWBENCH [77], a Python package designed for GW infor-
mation matrix analyses given a network of GW detectors.

A. Contributions to the stochastic
gravitational-wave background

The total energy flux from a given population of sources
(BBHs or BNSs) is given by [11]

FtotðfÞ ¼ T−1 πc
3

2G
f2

XN
i¼1

h
jh̃iþðfÞj2 þ jh̃i×ðfÞj2

i
; ð8Þ

where the index i runs over the N sources, and h̃iþ and h̃i×
are the two polarization modes (þ and ×) of the waveform

in the Fourier domain. The number of sources N is
proportional to the total observation time T.2

The energy-density spectrumΩtotðfÞ of those sources can
then be calculated using Eq. (7). This quantity encompasses
the contribution from all the sources in a population. The
sources are individually resolvable if their detection SNR,
defined in Sec. III B below, is larger than a threshold value
SNRthr. The contribution of resolvable sources to the total
SGWB, Ωres, can, in principle, be subtracted, leaving an
incoherent sum of unresolved signals, Ωunres, that contrib-
utes to the SGWB. The unresolved contribution Ωunres can
be calculated in the same way as Ωtot [Eqs. (7) and (8)],
replacing the sum over all sources with a sum over
individually unresolvable sources.
However, the subtraction of the resolvable component

Ωres is always imperfect: the error in the characterization of
the sources produces an additional contribution to the
background, Ωerr. The reason is that the parameters of a
resolvable event are never recovered perfectly due to
detector noise. In other words, when we fit for the resolved
signals and remove them from the data to get the remaining
background, each of them leaves behind an unfitted
residual in the data. Thus, Ωerr also contributes, effectively,
to the unresolved SGWB (see Sec. III C for details). In
summary, the total CBC SGWB residual foreground is
given by Ωerr þ Ωunres.
Future XG observatories can resolve a very large number

of individual sources, mostly BBHs and BNSs. The goal of
the analysis presented below is to understand what types of
SGWBs (other than those produced by CBCs) could be
detected after subtraction. The sensitivity to these “other”
SGWBs is set by the sum Ωerr þ Ωunres, which should be
minimized.

B. Detection signal-to-noise ratio

The detectability of a GW signal can be assessed by
computing its matched-filtered SNR. For a single GW
detector, the SNR is defined by

SNR2 ¼ 4

Z
∞

0

jh̃ðfÞj2
SnðfÞ

df; ð9Þ

where SnðfÞ is the power spectral density (PSD) of the
detector (Sec. III D). For a network of Ndet GW detectors,
assuming uncorrelated noise between different detectors,
the matched-filtered SNR of a GW signal is given by
summing the individual-detector SNRs in quadrature:

2To make sure that our computed backgrounds are convergent
we consider BBH and BNS samples with N ¼ 105 events in each
case, corresponding to T ≃ 2.6 years (for BBHs) and 0.2 years
(for BNSs) of observations.
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SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNdet

j¼1

SNR2
j

vuut ; ð10Þ

where j labels each of the Ndet detectors in the network.
We consider a signal resolved if its network SNR is

larger than a certain threshold SNRthr. For the LIGO/Virgo
network, the typical threshold for detection is SNRthr ¼ 12,
while for a network of XG detectors it is still under
discussion. For this reason we will consider different
choices for SNRthr. In fact, one of the main goals of our
analysis is to find the optimal value of SNRthr that allows us
to best subtract the compact binary foreground.

C. Ωerr from imperfect subtraction

As mentioned above, the imperfect subtraction of
individually resolved GW signals leaves behind a residual,
Ωerr, that contributes to the total SGWB. This can be
calculated as

Ωerror ¼
1

ρcc
fFerrorðfÞ; ð11Þ

with

FerrorðfÞ ¼ T−1 πc
3

2G
f2

XNres

i¼1

h���h̃þðθitr; fÞ − h̃þðθirec; fÞ
���2

þ
���h̃×ðθitr; fÞ − h̃×ðθirec; fÞ

���2i;
where the vector θi represents the parameters of source i,
while θitr and θirec are the true and recovered parameters,
respectively. The sum is computed only over the Nres < N
resolved sources such that SNRi > SNRth.
Ideally, one could do a full Bayesian parameter estima-

tion on each resolved source, from which the recovered
parameters are distributed according to a certain posterior
probability. However, this method is impractical because of
the size of our sample (we typically have N ∼ 105).
We thus provide an estimate of the errors by adopting the

linear signal approximation [78]. We assume the posterior
probability distribution for each source to be a multivariate
Gaussian centered at the true parameters θitr with covariance
matrix Σ ¼ Γ−1, where Γ is the information matrix. For a
single GW detector, Γ is defined as

Γαβ ¼
�
∂h
∂θα

���� ∂h
∂θβ

�
; ð12Þ

with ð·j·Þ the usual signal inner product,

ðajbÞ ¼ 4Re
Z

∞

0

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð13Þ

where a and b are two generic signals and we denote the
complex conjugate with an asterisk. For a network of Ndet
detectors with uncorrelated noise, the total information
matrix is given by the sum of single-detector information
matrices

Γ ¼
XNdet

j¼1

Γj: ð14Þ

From a knowledge of the information matrix we can then
draw the recovered parameters θirec. We consider a set of
nine parameters for the calculation of the information
matrix for each CBC event:

θ ¼
�
ln

�
Mz

M⊙

�
; η; ln

�
DL

Mpc

�
; cos ι; cos δ; α;ψ ;ϕc; tc

�
;

ð15Þ

where Mz ¼ Mð1þ zÞ is the detector-frame chirp mass.
As mentioned in Sec. II, we ignore the six spin param-

eters because their effects are expected to be subdominant.
We have reproduced all of the results in the previous
study [52], which considered only three parameters (Mz,
ϕc, and tc) when implementing the information-matrix
formalism. Compared to their work, our choice results in
more realistic estimates of the statistical errors.
In XG detectors, longer signals (e.g., close-by BNSs) are

expected to overlap. The overlap has two main effects. In
searches for GW signals, the presence of overlapping signals
might cause some of them to be missed. Reference [79]
estimates that this will reduce the redshift reach by 8% for
ET, and by 15% for CE. In parameter estimation, it may be
challenging to infer the parameters of multiple coincident
signals simultaneously [80–83]. Furthermore, multiple weak
overlapping signals can produce a “confusion noise” con-
tribution that must be added to instrumental noise, increas-
ing the uncertainties on the recovered parameters of loud
signals [84,85]. Both effects (reduced redshift reach and
larger parameter estimation errors) increase Ωunres þ Ωerr
compared to our estimates, which therefore can be consid-
ered conservative.

D. Effect of waveform modeling systematics and choice
of detector networks

The waveform polarizations h̃þ;× must be computed by
assuming a specific model, which may lead to systematic
biases that add further deviations in the recovered GW
signals [86–88]. A detailed study of waveform systematics
is beyond the scope of this work, but to roughly estimate
their effect we show results for two different waveforms: we
adopt IMRPhenomD [89,90] as our “fiducial” reference
model, and we compare it against IMRPhenomC [91] to
investigate possible effects from modeling systematics. We
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neglect tidal effects in BNSs, and we adopt the same
waveform models for both our BNS and BBH populations.
We study two possible networks of XG ground-based

detectors. A multiple-detector network is needed because
SGWBs are detected by cross-correlating the data
of multiple detectors, with the background in one
detector used as a matched filter for the data in the other
detectors [11,92]. If the detectors are geographically well
separated, which is our case, the risk of common noise of
terrestrial origin is greatly reduced. The two network
choices are

(i) A fiducial scenario consisting of three XG observa-
tories. We choose one CE detector with 40-km arm
length in the U.S., one CE with 20-km arm length in
Australia, and one ET in Italy. The locations of these
detectors can be found in Table III of Ref. [77] under
the labels C, S, and E, respectively.

(ii) An optimistic scenario with five XG observatories:
four CE detectors with 40-km arm length at the
current locations of LIGO Hanford, Livingston,
India and KAGRA, plus one ET at the location of
Virgo. The location choice is the same as the five-
detector case in previous studies [51,52], to facilitate
a direct comparison of the results. The coordinates
for the detectors in this network can be found under
the labels H, L, I, K, and V in Table III of Ref. [77].

We chose networks of three and five XG detectors to
facilitate comparison with recent studies [44,46,51,52,85].
The detection SNR and the statistical errors on the
recovered parameters depend on the detector network
considered: see Eqs. (10) and (14).
Figure 1 shows the power spectral density, or more

precisely
ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
, of these detectors. We assume all the CE

detectors to be in the latest phase of their development and
optimized at low frequencies, i.e., we select the CE2 and the
CBO option in GWBENCH [77]. Here CE2 stands for the final
stage of CE detectors (in contrast to CE1, which means the
initial stage) and CBO stands for “compact-binary optimi-
zations” (in contrast to PMO, which means “postmerger
optimizations”). For ET, we consider its most up-to-date
triangular configuration with ET-D sensitivity [43].

We set the minimum frequency in our calculations to be
3 Hz, which is consistent with the PSDs of the detectors in
our networks (Fig. 1). Regarding the final frequency, we
use 2048 Hz. This is larger than the frequency at the
innermost stable circular orbit [93] for most of the sources
in our catalog, and the detector noise makes contributions
above this maximum frequency negligible [44].
We include Earth-rotation effects for BNSs and neglect

them for BBHs. This is because GW signals from BBHs
last only a few minutes in the detector frame [81], during
which the change in the detectors’ response [94] is small, so
the effect on their SNR and parameter estimation is
negligible [44]. For BNSs, on the contrary, the signals

last up to several hours [81], and hence the change of the
detectors’ response must be taken into account [44].

IV. RESULTS AND DISCUSSION

In this section, we present and discuss our results.
We mainly focus on our fiducial three-detector network.
We usually compare our fiducial waveform model
IMRPhenomD to the older model IMRPhenomC as a
simple way to quantify waveform modeling uncertainties.
Figure 2 shows Ωtot, Ωunres, and Ωerr for BBHs and

BNSs, computed using different values of SNRthr (as
indicated in the legend) and the two waveform models.
For BBHs, the whole signal (inspiral, merger, and ring-
down) can be observed in the frequency range of interest.
For BNSs, by contrast, the inspiral phase dominates. In
both cases, we recover the expected inspiral behavior at low
frequencies, where Ωtot ∝ Ωunres ∝ f2=3 [95].

For all the panels in Fig. 2, as we increase SNRthr, the
number of unresolved CBC events increases, and so does
Ωunres. On the contrary, Ωerr decreases with growing
SNRthr, because the number of resolved CBC events
decreases and the events with larger SNRs have smaller
parameter estimation errors.
By comparing the left and right panels we see that the

difference between IMRPhenomD and IMRPhenomC is
visible but small, especially for BBHs. The difference
between Ωerr for PhenomD and PhenomC becomes more
noticeable as SNRthr grows, because differences between
waveforms dominate over statistical errors for large-SNR
signals.

FIG. 1. Power spectral densities
ffiffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
for the detectors in our

network. The curve for ET represents the sensitivity of the whole
triangular configuration [43,77].
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Figure 3 shows the fraction of resolved events as a
function of SNRthr. For BBHs, 99%, 53%, and 20% of the
total events are resolved above SNRthr ¼ 8, 40, and 80,
respectively. Resolving BNSs is harder: only 29%, 8%, and
1% of the total events are resolved above SNRthr ¼ 12, 20,
and 40, respectively. These numbers do not depend on the
waveform model.
For small values of SNRthr (8 or 12) most events are

detected, so the unresolved contribution to the background
is small, in the sense that Ωunres ≪ Ωerr and Ωunres ≪ Ωtot.
On the contrary, for large SNRthr (say, SNRthr ¼ 80 for
BBHs), Ωerr and Ωunres become comparable and over-
whelm the detectors’ sensitivity. As we increase SNRthr,
Ωunres þΩerr first decreases and then increases. If we want
to search for SGWBs of cosmological origin or for
subdominant astrophysical SGWBs, our goal is to mini-
mize Ωunres þΩerr. This happens at some optimal value of
SNRthr that we wish to determine.

Figure 4 shows our frequency-dependent, minimized
Ωunres þ Ωerr for the two subpopulations of BBHs and
BNSs (upper panel), as well as the corresponding optimal
SNRthr, which, in general, is also a function of frequency
(lower panel). It is clear from this plot that the optimal
SNRthr is nearly constant below hundreds of Hz, with only
small fluctuations. This is because Ωunres þ Ωerr varies very
slowly with SNRthr, especially near the optimal SNRthr.
Above hundreds of Hz, where merger and ringdown
dominate, the optimal SNRthr increases. This effect is more
prominent for BBHs, whose energy density drops rapidly
in this frequency range.
The mild variability of SNRthr with frequency means that

we can compute Ωunres þΩerr using a frequency-indepen-
dent optimal SNRthr. We choose this optimal SNRthr to be
10 (20) for BBHs (BNSs) when we consider the
IMRPhenomD model, and 12 (42) for BBHs (BNSs) when
we work with the IMRPhenomC model. These values are

FIG. 2. Energy-density spectra Ωtot (black solid lines), Ωunres (dashed lines), and Ωerr (dot-dashed lines) assuming our fiducial three-
detector network and different SNR thresholds, as indicated in the legend. We show results for BBHs (top panels) and BNSs (bottom
panels) using two different waveform models, IMRPhenomD (left panels) and IMRPhenomC (right panels).
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chosen to match the frequency-dependent optimal SNRthr
computed in the lower panel. The dashed lines in the upper
panel of Fig. 4 show that the minimal Ωunres þ Ωerr
computed using a frequency-independent optimal SNRthr
is nearly identical to the value computed using a frequency-
dependent detection threshold. This is very convenient from
an experimental point of view. In the rest of this section we

will compute Ωunres þΩerr using a frequency-independent
optimal SNRthr.
Figure 5 clarifies why the optimal SNRthr is so different

for the two waveform models in the BNS case, while it is
not for BBHs. The main effect of a changing SNRthr is to
uniformly shift Ωunres and Ωerr up or down at any given
frequency, so (for concreteness) in Fig. 5 we evaluate all
backgrounds at a single frequency (f ¼ 100 Hz), and we
plot them as functions of SNRthr for different waveform
models. The choice of waveform model does not affect
Ωunres (compare Fig. 3), but it does affect Ωerr. In particular,
the BNS estimates for Ωerr evaluated using IMRPhenomD
and IMRPhenomC are remarkably different. This differ-
ence increases at large values of SNRthr, as expected,
because systematic errors dominate over statistical uncer-
tainties in this regime. The large variation in Ωerr for BNSs
explains why the optimal SNRthr that minimizes the sum
Ωunres þ Ωerr can vary by as much as a factor of order 2,
from 20 (for BNS backgrounds computed using
IMRPhenomD) to 42 (for BNS backgrounds computed
using IMRPhenomC). The larger difference in Ωerr for
BNSs must lie in the differences in how IMRPhenomC and
IMRPhenomD treat the inspiral part of the signal, because
BNS signals are inspiral dominated. In both models, the
inspiral phase in the frequency domain is modeled using a
post-Newtonian (PN) expansion, i.e. Taylorf2 [96,97], plus
higher-order corrections tuned to inspiral-merger-ringdown
(IMR) hybrids [90,91]. However, in IMRPhenomC the

FIG. 4. Frequency-dependent minimized Ωunres þ Ωerr for BBHs and BNSs (solid lines in the upper panels), and their corresponding
optimal SNRthr (lower panels), for two different waveform models: IMRPhenomD (left) and IMRPhenomC (right). We also plot
Ωunres þ Ωerr for BBHs and BNSs computed by choosing the frequency-independent optimal SNRthr that matches the results in the lower
panel (dashed lines in the upper panels): the results are almost indistinguishable from the solid lines. For comparison, in the upper panels
we also plot the total energy densityΩtot for BBHs and BNSs (dash-dotted lines). All results refer to our fiducial three-detector network.

FIG. 3. Fraction of resolved events for BBHs (in red) and BNSs
(in blue) as a function of SNRthr for our fiducial three-detector
network. Solid (dashed) lines refer to IMRPhenomD (IMRPhe-
nomC), and they show that the difference between waveform
models is negligible from the point of view of detection.
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Taylorf2 model is also used for the inspiral phase of the
IMR hybrids, while in IMRPhenomD the inspiral phase of
the IMR hybrids is constructed with an effective-one-body
model, SEOBNRv2 [98]. Further uncertainties related to
waveform systematics may be caused by the inclusion of
additional PN terms, such as tidal deformations. Note that
uncertainties due to waveform systematics are subdominant
compared to other uncertainties (e.g., on the local merger

rates) considered here. A thorough analysis of waveform
systematics is beyond the scope of this paper.
Figure 6 shows Ωunres and Ωerr for BBHs and BNSs

computed at the optimal SNRthr with the two waveform
models. For Ωerr, we show the comparison between our
calculation, in which we include nine parameters, and the
three-parameter estimate of Ωerr (which included only Mz,
tc, ϕc) considered in previous work [52]. Our three-
parameter estimate of Ωerr is similar in amplitude and
functional form to the results of Ref. [52]: in fact, we
checked that we can recover their results if we use the same
value of SNRthr and the same population model. The
difference between the residual backgroundsΩerr computed
using our full nine-parameter recovery and those computed
using the three-parameter recovery of Ref. [52] is quite
striking. The nine-parameter estimate of Ωerr is 2–3 orders
of magnitude larger than the three-parameter estimate of
Ωerr at the same SNRthr. As we elaborate below, there are
two reasons for this difference. One is quite obvious: as we
increase the number of parameters, correlations and degen-
eracies between different parameters significantly increase
the spread of the posteriors, and therefore the typical
deviations of the recovered parameters from their true
values become much larger. The second reason is not so
obvious: some of the parameters that were not included in
Ref. [52] affect directly the estimate of the signal’s
amplitude, and signals with poorly known amplitude have
a large impact on the removal of the foreground.
The shaded bands in Fig. 6 show the impact of astro-

physical uncertainties on the local merger rates (note that
this is a lower bound on astrophysical uncertainties, because
the redshift evolution of the rates is even more poorly

FIG. 5. Backgrounds Ωerr (solid lines) and Ωunres (dashed lines)
evaluated at f ¼ 100 Hz for our fiducial three-detector network
and for the two different waveform models, IMRPhenomD and
IMRPhenomC. The choice of waveform model is irrelevant to
determine the unresolved population Ωunres (compare Fig. 3), but
it does affect Ωerr, in particular, for BNSs. The difference in the
BNS Ωerr evaluated for different waveform models increases at
large values of SNRthr, as expected.

FIG. 6. Unresolved background Ωunres (dotted lines) and error contributions to the background Ωerr (solid lines) computed using
both our nine-parameter recovery (“9 pars”) and the three-parameter recovery (including only Mz, tc, and ϕc) considered in previous
work [52] (“3 pars”). All backgrounds are computed at the frequency-independent optimal SNRthr for the nine-parameter case: 10 (for
BBHs) and 20 (for BNSs) in the left panel; 12 (for BBHs) and 42 (for BNSs) in the right panel. The shaded band around the nine-
parameterΩerr shows astrophysical uncertainties on the rates. The worsening inΩerr due to including nine parameters instead of three is
quite dramatic and it is larger than astrophysical uncertainties, especially for BBHs.
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constrained). It is difficult to formulate reliable predictions
for the CBC SGWB, especially for BNSs, where the
background can vary by about 2 orders of magnitude.
However, the increase in Ωerr due to the addition of the
amplitude parameters is even larger than the variability of
the background due to the uncertain merger rates. There is a
clearly visible difference in the residual background Ωerr
predicted by the two waveform models, which is larger for
BNSs than for BBHs. This difference, while small com-
pared to current astrophysical uncertainties, highlights the
importance of waveform systematics in data analysis and it
will play a more prominent role in SGWB forecasts in the
coming years, as new detections will steadily reduce the
uncertainties in merger rates.
We can better understand why the nine-parameter

estimate of Ωerr is so much larger than the three-parameter
estimate by identifying which parameters have large
uncertainties, and therefore can give a large contribution
to Ωerr even when SNRthr is large. To compute the
contribution to Ωerr due to each parameter, we evaluate
Eq. (11) by using the recovered value of that parameter
only in θirec, while we use the “true” values for all other
parameters. We perform this calculation on each of the
parameters in Eq. (15), with three exceptions: α, δ, and ψ .
The reason is that these three parameters do not affect the
waveform polarizations (hence the energy flux and Ω), but
only the detectors’ response (hence the SNR and the
information matrix). However, they have a very important
indirect impact on Ωerr through their correlations with the
other six parameters.
Figure 7 shows the results for BBHs (left) and BNSs

(right), using either IMRPhenomD (top) or IMRPhenomC
(bottom). In each of the panels, we compute the errors at
the optimal value of SNRthr. One common feature of all
panels is that large contributions to the uncertainty at
nearly all frequencies arise from ϕc and DL, with ϕc
generally yielding the dominant contribution. The domi-
nance of the error on ϕc is mostly caused by its degeneracy
with the polarization angle ψ , as both parameters con-
tribute to an overall phase term in the detector response
(see e.g., [99,100]). The degeneracy is more severe for
nearly face-on/face-off binaries, because for these binaries
a rotation about the line of sight is identical to a shift in the
orbital phase [100,101]. These systems also generate
louder signals, meaning that detected sources tend to be
preferentially close to face-on/face-off binaries [102,103].
The luminosity distance is highly degenerate with the
inclination ι, since both parameters appear only in the
amplitudes of the waveform polarizations at leading order
(see, e.g., [101,104]). In order to break this degeneracy,
one would need to determine the two amplitudes of the
þ and × polarizations independently, but the difference
between these two amplitudes is quite small for most
binary systems [105]. In fact, various studies in the
literature have shown that the luminosity distance remains

poorly constrained for a significant subset of high-red-
shift, low-SNR sources, even with a network of XG
detectors [44–46].
In principle, these degeneracies can be broken or at least

reduced by adopting waveform models that include higher
harmonics [106–110]. However, contributions from higher
harmonics are expected to be significant only for binaries
whose components have fairly different masses [111],
while the majority of the systems in our catalogs are nearly
equal mass. We do not expect the inclusion of higher modes
to significantly reduce Ωerr (especially in the BNS case),
and we leave a more detailed exploration of higher
harmonics to future work.
The main take-home message of this discussion is that

including the contribution of parameters that affect the
waveform amplitudes (such as ι and DL) and the antenna
patterns (such as α, δ and ψ) is crucial to understand
whether we can remove compact binary foregrounds.
Interestingly, the two waveform models IMRPhenomD

and IMRPhenomC show large differences in the contribu-
tion from the two mass parameters (Mz and η) to Ωerr. In
particular, the Mz contribution to Ωerr is mostly negligible
at all frequencies for IMRPhenomC, while it becomes even
larger than the contribution from the luminosity distance for
IMRPhenomD. Careful scrutiny shows that this is not due
to differences in the information matrices, which are similar
for the two waveform models. The effect is more subtle and
related to waveform systematics: small perturbations inMz
and η in the two models are different, and their effect piles
up when we consider the whole population. We have tested
this observation by using exactly the same information
matrices to sample θirec in Eq. (11): even in this case we get
different results for IMRPhenomD and IMRPhenomC,
which are qualitatively similar to the results shown in
Fig. 7. The contributions due to the Mz and η parameters
are always subdominant compared to other parameters (in
particular, the coalescence phase), and therefore these
differences have a small impact on the overall estimate
of Ωerr, but they do highlight the fact that waveform
systematics will play an important role in the data analysis
of large populations in the XG detector era.
While the effect of waveform systematics is important, its

effect on the estimate of Ωunres þ Ωerr is currently dwarfed
by astrophysical rate uncertainties (Sec. II C). Figure 8
compares the uncertainties of our calculated minimal
Ωunres þ Ωerr due to the two different waveform models
with astrophysical rate uncertainties for BBHs (left panel),
BNSs (central panel), and their sum (right panel). The
uncertainty band in each panel is shown for IMRPhenomD
only (IMRPhenomC has the same relative uncertainty). The
difference between the two waveform models is negligible
compared to astrophysical rate uncertainties, the only
exception being BBHs at the highest frequencies, where
the energy density is low and the merger-ringdown part of
the waveform dominates the signal. By looking at the total
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FIG. 7. Breakdown of Ωerr (at the optimal SNR thresholds) showing the contribution from the errors on each of the parameters. All
results are for our fiducial three-detector network.

FIG. 8. Minimal value of Ωunres þΩerr (i.e., “total” unresolved background corresponding to the optimal SNRthr) including
astrophysical rate uncertainties for BBHs (left), BNSs (center) and for the combined populations (right). Solid lines refer to
IMRPhenomD, dashed lines to IMRPhenomC. In each panel, for clarity, the uncertainty band at 90% confidence level is shown only for
IMRPhenomD; the backgrounds computed for IMRPhenomC have the same relative uncertainty. The error band in the right panel is
larger than that in the middle panel: it only looks narrower because we are using a log scale for the y axis. The red and blue solid curves
in the right panel represent the contributions from BBHs and BNSs. They are the same as in the left and middle panels, but we show
them together to facilitate comparisons. All results refer to our fiducial three-detector network.
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Ωunres þ Ωerr found by adding BBHs and BNSs (right panel)
we see that BBHs dominate below ≃400 Hz, while BNSs
dominate at higher frequencies.
Figure 9 shows the sum of the (minimized) Ωunres þ Ωerr

contributions from BBHs and BNSs for different waveform
models and detector networks. The grey band shows the
90% confidence level due to astrophysical uncertainties in
our fiducial case (IMRPhenomD and a three-detector net-
work). We overplot the sensitivities of three-detector and
five-detector networks to SGWBs, computed in the absence
of foregrounds from CBCs and other sources, assuming the
data is integrated for one year. We also show the energy
densities of SGWBs from other possible sources [52],
including (i) axion inflation [30], (ii) postinflation oscil-
lations of a fluid with an equation of state stiffer than
radiation [112], (iii) a network of cosmic strings [31–34],
(iv) the most optimistic prediction from cosmic supernovae
throughout the Universe [20], and (v) postinflation preheat-
ing models aided by parametric resonance [113–116]. Note
that the energy densities of these sources are model

dependent, and they could be larger or smaller depending
on the choice of model parameters.
In summary, subtracting the SGWB foreground from

BBHs and BNSs is much harder than previously estimated.
As shown in Fig. 4 for our fiducial case of a three-detector
network and IMRPhenomD, the BBH background sub-
traction only reduces it by a factor of 2–3. Crucially, the
remaining background still overwhelms the BNS back-
ground at frequencies below ∼100 Hz. Similarly, the
BNS background subtraction only reduces it by a factor
of ≲2.

V. CONCLUSIONS

The recent detections of nearly 100 individual CBC
events (one with electromagnetic counterpart) have given
us important information about astrophysics, cosmology,
and fundamental physics. Future observations of SGWBs,
which are the superposition of many individually unre-
solvable events (either astrophysical or cosmological in
nature), also carry invaluable physical information. In the
current (second-generation) detectors, BBHs and BNSs
dominate, making it hard to observe astrophysical or
cosmological SGWBs. More sensitive XG detectors will
allow us to detect many more individual BBHs and BNSs
and to better measure their parameters. The question we
address in this paper is whether these individual signals can
be characterized and subtracted well enough to observe
other, subdominant SGWBs.
We simulate BBH and BNS populations based on our

current best estimates of their mass and redshift distributions
and locally measured merger rates, making reasonable
assumptions for the other parameters (see Table I). We
find that the minimum Ωunres þ Ωerr for BBHs or BNSs is
reached at an optimal SNR threshold SNRthr, which can be
taken to be frequency independent. For BBHs, we estimate
an optimal SNRthr of 10 for our fiducial waveform model
IMRPhenomD and 12 for IMRPhenomC in our fiducial
three-detector network. For BNSs, we estimate an optimal
SNRthr of 20 for IMRPhenomD and 42 for IMRPhenomC.3

The difference between the two waveform models, while
important, is always much smaller than current astrophysi-
cal rate uncertainties, with the only exception of BBHs at
high frequencies, where the energy density is low and
details of the merger/ringdown waveform make a differ-
ence. More realistic estimates should also include the NS-
BH binary population. Note that the distinction between
BBH, BNS and NS-BH systems is blurred by parameter
estimation errors on the component masses, and for data
analysis purposes it may be more practical to consider all
three CBC populations at the same time.
One of our main findings is that the minimized value of

Ωunres þ Ωerr in XG detector networks is much larger than

FIG. 9. Minimal value of Ωunres þ Ωerr for BBHs and BNSs
combined (black linesþ grey band). This quantity is a good
estimate of the total CBC foreground when observing the SGWB
produced by other possible sources, as labeled. For our fiducial
three-detector network, we show results for both IMRPhenomD
(solid) and IMRPhenomC (dashed). We also show IMRPhe-
nomD results for the optimistic five-detector network (dotted).
The astrophysical uncertainty band at 90% confidence level is
shown only in our fiducial case of IMRPhenomD and three
detectors, for clarity. Green dashed lines are the sensitivities of
XG detectors to SGWBs, assuming 1-year integration, in the
absence of foregrounds from CBCs and other sources. The
SGWB from standard inflation [27–29] (ΩGW ∼ 10−15) is below
the range of the plot.

3In our optimistic five-detector network and for IMRPhe-
nomD, the corresponding values are 6 for BBHs and 20 for BNSs.
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previous estimates. By computing the contribution to Ωerr
from each parameter, we can determine which parameters
dominate Ωerr. We find that the uncertainty in the coa-
lescence phase ϕc dominates for nearly all frequencies, due
to its degeneracy with the polarization angle ψ . Another
important contribution comes from the luminosity distance
DL, due to its degeneracy with the inclination angle cos ι.
We find large differences in the contribution from Mz
and η between IMRPhenomD and IMRPhenomC. These
differences reflect waveform modeling systematics to some
extent, but they do not affect too much our estimate of Ωerr,
which is comparable in the two models because ϕc
dominates.
For our fiducial three-detector network, the minimized

Ωunres þΩerr for BBHs is only a factor of 2–3 smaller than
the total BBH SGWB, and it still overwhelms the back-
ground from BNSs below ∼100 Hz. For BNSs, the
minimized Ωunres þ Ωerr is more than half of the total
BNS background. As shown in Fig. 9, even for the
optimistic five-detector network, the BBH and BNS
subtraction can only be improved by a factor of < 2
compared to the three-detector network. This large residual
makes it difficult to look for other SGWB sources.
In conclusion, subtracting the SGWB from BBHs and

BNSs may be harder than anticipated. We hope that this
will stimulate further work on data analysis techniques. The
residuals due to imperfect removal could be reduced by
subtracting the component tangent to the signal manifold at
the point of best fit. This approach has been first proposed
by Refs. [47,117], although more detailed investigations
are needed to understand the extent of this reduction when
applied to realistic astrophysical catalogs. Other possibil-
ities include notching in the time-frequency plane [118],
using Bayesian techniques to estimate the foreground and
background signal parameters simultaneously [119], adopt-
ing a principal-component analysis to extract subdominant
SGWBs [50], or exploiting the design topology of ET to
construct a null stream [120] that will help in understanding
the foreground of CBC events [121]. One could also take
advantage of the temporal and positional information of
each event for a more precise subtraction.
The exceptional scientific payoff of a future detection of

astrophysical and cosmological SGWBs motivates
enduring efforts in the characterization of CBC SGWBs
and further work on data analysis methods for their
subtraction.
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APPENDIX: NETWORK SENSITIVITY CURVES

In this appendix, we briefly summarize the formalism
adopted to estimate the network sensitivity curve shown as
a reference in Fig. 8. We also compute the overlap
reduction functions (ORFs) for the fiducial locations and
orientations of the CE detectors adopted in GWBENCH [77].
We mostly follow Ref. [125] for the definition of sensi-
tivity curves, and Refs. [11,126] for the calculation of
the ORFs.
Searches for SGWBs in instrumental noise are

conducted by cross-correlating the outputs of multiple
GW detectors (see, e.g., [41]). The optimal SNR for an
unpolarized, isotropic SGWB in a network of Ndet inter-
ferometers with PSDs Sn;iðfÞ; Sn;jðfÞ is given by [95,125]

SNRb ¼
3H2

0

10π2

�
2T

Z
∞

0

df
XNdet

i¼1

XNdet

j>i

γ2ijðfÞΩ2
GWðfÞ

f6Sn;iðfÞSn;jðfÞ
	1=2

:

ðA1Þ

Here T is the observing time and γijðfÞ is the ORF [11,126],
a dimensionless function of frequency that accounts for the
reduction in sensitivity due to the different positions and
orientations of the detectors in the network. Explicitly, the
ORF between the ith and jth detector in the network is
defined as [11,126]:

γijðfÞ ¼
5

8π

X
A

Z
S2
dΩ̂FA

i ðΩ̂ÞFA
j ðΩ̂Þei2πΩ̂·Δx; ðA2Þ

where Ω̂ is a unit vector specifying the direction on a sphere,
Δx the separation vector between the two detector sites, and
FA
i ðΩ̂Þ; FA

j ðΩ̂Þ are the response functions of the two
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detectors i, j to the A ¼ þ;× polarizations. The
normalization factor 5=8π is introduced so that
γijðfÞ ¼ 1 for colocated and cooriented interferometers
[11]. A closed form for the integral (A2) is derived in
Refs. [11,126].
Figure 10 shows the ORFs for our fiducial three-detector

network. The ORFs for detector pairs in the ET triangle are
approximately constant, with a value of about γijðfÞ ≈
−0.38 in the entire observation band [117,127], as the
detectors are almost colocated. The amplitude of the ORFs
for the CE detectors with any detector in the network drops
rapidly, meaning that the network sensitivity to SGWBs
will be dominated by ET at high frequency. The amplitude
of the ORF for a pair of CEs located in the U.S. and in
Australia is close to zero due to the relative orientations of
the interferometers: in our fiducial setting, the projection of
the bisectors of these two detectors onto the local horizontal
plane are rotated by an angle of about π=4 with respect to
each other [77].
By analogy with Eq. (9), we can define an effective

network noise PSD [125]

Sn;netðfÞ ¼
�XNdet

i¼1

XNdet

j>i

γ2ijðfÞ
Sn;iðfÞSn;jðfÞ

	−1=2
: ðA3Þ

Any noise PSD SnðfÞ can be interpreted as the mean square
amplitude of the noise per unit frequency, and is associated
to a spectral energy density ∝ fSnðfÞ [103,128]. Therefore,
by applying the definition [Eq. (7)], we can introduce an
effective dimensionless noise energy spectrum for the
detector network [125,129]

ΩnðfÞ ¼
10π2

3H2
0

f3Sn;netðfÞ; ðA4Þ

such that the optimal SNR [Eq. (A1)] can be rewritten as

SNRb ¼
�
2T

Z
∞

0

df
Ω2

GWðfÞ
Ω2

nðfÞ
	
1=2

: ðA5Þ

Most SGWBs take the form of power laws, i.e.,

ΩGWðfÞ ¼ Ωβ

�
f
fref

�
β

; ðA6Þ

where fref is an arbitrary reference frequency and
Ωβ is the amplitude of the background evaluated at
f ¼ fref . Most cosmological backgrounds are pure power
laws [30–32,112], and even the CBC background can be
approximated by a power law at lower frequencies, in the
regime where the inspiral phase dominates [95]. By
plugging Eq. (A6) into Eq. (A5), we can compute the
amplitude that corresponds to SNRb ¼ 1 for a given
spectral index β:

Ωβ ¼
�
1

2T

Z
∞

0

df
ðf=frefÞ2β
Ω2

nðfÞ
	−1=2

: ðA7Þ

Each pair ðΩβ; βÞ corresponds to a different power-law
background (A6) with network SNR equal to one. We call
the power-law integrated sensitivity curve the envelope of
all these backgrounds, i.e., [125]

FIG. 10. ORFs for all the detector pairs in our fiducial network. The ORFs of the 40 km CE detector located in the U.S. with all
other detectors in the network are shown in the left panel, while the ORFs for the 20 km CE in Australia are in the right panel. Both
panels also show the ORF for any detector pair in the ET triangular configuration (cyan line), which is approximately constant in the
frequency range considered here. The amplitude of the ORF for the CE pair is close to zero due to the relative orientations of the
detectors.
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ΩPIðfÞ ¼ max
β

�
Ωβ

�
f
fref

�
β
	
: ðA8Þ

This curve represents a natural way to estimate the
detector network sensitivity to SGWBs, as any power-law

SGWB that lies somewhere above the curve has
SNRb > 1, and thus it may be detectable.

The network sensitivity shown in Fig. 8 is a power-law
integrated sensitivity curve computed with the formalism
described here for our fiducial three-detector network,
assuming an observing time T ¼ 1 yr.
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