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With the advent of gravitational-wave astronomy it has now been possible to constrain modified theories
of gravity that were invoked to explain the dark energy. In a class of dilaton models, distances to cosmic
sources inferred from electromagnetic and gravitational wave observations would differ due to the presence
of a friction term. In such theories, the ratio of the Newton’s constant to the fine structure constant varies
with time. In this paper we explore the degree to which it will be possible to test such models. If collocated
sources (e.g., supernovae and binary neutron star mergers), but not necessarily multimessengers, can be
identified by electromagnetic telescopes and gravitational-wave detectors one can probe if light and
gravitational radiation are subject to the same laws of propagation over cosmological distances. This helps
in constraining the variation of Newton’s constant relative to fine-structure constant. The next generation of
gravitational wave detectors, such as the Cosmic Explorer and Einstein Telescope, in tandem with the Vera
Rubin Observatory and gamma ray observatories such as the Fermi Space Observatory will be able to
detect or constrain such variations at the level of a few parts in 100. We apply this method to GW170817

with distances inferred by the LIGO and Virgo detectors and the observed Kilonova.
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I. INTRODUCTION

Gravitational waves (GWs) and electromagnetic (EM)
waves follow the same propagation equations in General
Relativity (GR) [1]. Consequently, the various distance
measures in cosmology (e.g., luminosity distance, angular
diameter distance, comoving distance, etc.) are identical for
both GW and EM. Several alternative theories of gravity
with additional scalar degrees of freedom [2—12] modify
the propagation of either or both by altering the friction
term in the wave equations due to the evolution of the
scalar field. We will, however, restrict to a class of scalar-
tensor theories in which the dispersion relation remains
unchanged. Hence, in these scalar-tensor theories distance
to an astronomical source inferred from gravitational-wave
observation will be different from that inferred using
electromagnetic radiation.

The presence of a scalar field is also motivated by the
low energy effective field theories of loop quantum gravity
[13,14] and string theory [15-20]. Furthermore, dark
energy [21-23], inflation [24-27], and variations of the
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fundamental constants are often modeled using a scalar
field [28-32]. In fact, it has been claimed that the require-
ment of gauge and diffeomorphism invariances would
invariably lead to scalar-tensor theories with minimal/
nonminimal coupling to the matter sector [33]. The
coupling of the scalar field to the gravitational sector in
such theories has been tightly constrained in the weak-field
limit using solar system tests [34—38]. If the scalar field
couples nonminimally to the matter sector, the Einstein
equivalence principle is broken. The equivalence principle,
likewise, has been tested to a very high accuracy within
the solar system [36,38—40]. A variety of decoupling
[18,20,41-45] or screening [46-51] mechanisms have,
therefore, been proposed to keep these theories viable
for cosmological evolution.

The propagation of waves on a modified background
allows one to test for the presence of a scalar field on
cosmological scales. High redshift quasar absorption spec-
tra [52-54], galaxy clustering data [55], and 21 cm neu-
tral hydrogen intensity mapping [56] have been used to
place limits on the spatiotemporal evolution of the fine
structure constant which can be modeled using a scalar
field. Type la supernova (SNela) data is used to fit the EM
luminosity distance-redshift relation and constrain models
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of dynamical dark energy [57]. Other studies use the EM
luminosity distance estimates from SNela in parallel with
the EM angular diameter distance measurements from
x-ray and Sunyaev-Zel’dovich observations of galaxy
clusters to directly constrain the violation of the distance-
duality relation in the EM sector [58,59].

Gravitational wave astronomy has opened a new means
of revealing the presence of a scalar degree of freedom.
Coincident measurements of the luminosity distance from
GW observations and the redshift from follow-up EM
observations of “bright” sirens, such as the first observation
of gravitational waves from a binary neutron star merger,
GW170817 [60,61], have been used to put limits on the
modified friction term in f(R) and scalar-tensor theories of
gravity [62,63]. The luminosity distance-redshift relation
has also been constrained for “dark™ sirens (GW observa-
tions without an EM counterpart) by cross-correlations with
galaxy catalogs [63,64]. In these methods, the modified
friction term is constrained together with the standard
cosmological parameters, however, the two sets of param-
eters are strongly correlated with each other. Mukherjee
et al. [64] propose the use of baryon acoustic oscillation
(BAO) data together with luminosity-distance measure-
ments from GW observations and redshifts from galaxy
catalog cross-correlations to directly constrain the ratio
between the GW luminosity distance and EM luminosity
distance in terms of the modified friction parameter.

In this study, we propose the direct use of the EM
luminosity distance from SNela/kilonova concurrently with
the GW luminosity distance from “bright” sirens and the
redshift obtained from photometric/spectroscopic studies of
the identified galaxy or galaxy cluster to directly constrain the
ratio of the two luminosity distances for a class of scalar-
tensor theories with a nonminimal multiplicative coupling
between the scalar field and the matter sector. The crucial
distinction with the method described in Mukherjee et al. [64]
is their use of the BAO data to convert the angular diameter
distance to EM luminosity distance via the distance-duality
relation, which is broken for us due to the nonminimal
coupling of the scalar field to the matter sector. In other words,
their procedure is valid for alternative theories of gravity in
which gravity is minimally coupled to the matter sector
whereas our method applies to more general theories.
Furthermore, they infer the redshifts to GW sources using
galaxy correlation and as a result also measure some
cosmological parameters. We restrict ourselves to “bright”
sirens and, therefore, have a direct measurement of the
redshift. In this way, our parameter constraints do not suffer
from degeneracies with the other cosmological parameters.
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The class of scalar-tensor theories considered in this
study arise as low energy action of string theories and
satisfy the solar system tests for both the modifications to
the gravitational sector and the breakage of the equivalence
principle. This class of theories, known as the Einstein-
dilaton models [19,43,59,65], has a Brans-Dicke type
gravitational interaction and a universal multiplicative
coupling between the scalar field and the matter sector
which breaks the equivalence principle. The unequal
coupling of the scalar field to the metric and the matter
sector leads to (distinct) modified propagation equations for
gravitational waves and electromagnetic waves.

We parametrize the ratio of the electromagnetic and
gravitational-wave luminosity distance using a parameter
no. We find that the planned upgrades to the second-
generation of advanced gravitational-wave detector networks
(e.g., the A+ upgrade [66,67] of Advanced LIGO and similar
upgrades to Advanced Virgo [68], KAGRA [69,70], and
LIGO-India [71,72]) constrains 7 to |17o| < 0.2, while the
proposed improvement of the network to Voyager sensitivity
[73] refines the constraint to |r7y| < 0.05. The proposed
third-generation of ground-based gravitational-wave detector
network (Cosmic Explorer [66,74] and Einstein Telescope
[75-77]) will place the best limits on 7 at || < 0.01.

In Sec. II, we briefly describe Einstein-dilaton models
and their EM and GW propagation equations. We also
describe how the ratio of the luminosity distance of each
sector can be related to the variation of the fundamental
constants. In Sec. III we discuss the gravitational-wave
detectors considered in this study, the simulations we
performed, and the electromagnetic data that we used.
We outline our main results and forecasts in Sec. IV and the
constraints that can be placed using GW170817 in Sec. V.
Section VI concludes the paper.

II. BACKGROUND

In this section we briefly review the equations of motion
for Einstein-dilaton models, derive the propagation equa-
tions for electromagnetic and gravitational waves on a
homogeneous and isotropic background, parametrize the
ratio of the luminosity distances as a function of redshift, and
relate it to the redshift variation of the fundamental constants.

A. Einstein-dilaton models

The action for Einstein-dilaton models [19,43,59,65], a
class of scalar-tensor theories with a generic multiplicative
coupling h(¢) between a scalar field ¢ and the matter
Lagrangian L,,[g,, |, is given by

(2.1)
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where k¥ = 8zG with G being the gravitational coupling
constant, R is the Ricci scalar, and W consists of all the
Standard Model fields.

The gravitational equations of motion, given by the
variation of the action with respect to the metric, takes the
form,

1 h 1
Ruzx - Eg/wR =K ((Z)) T;w + a (vuvv - g;wD)¢
1
+ w;f) <vﬂ¢vb¢ - Eg;wva¢va¢>
Vv
g _2(;5) (2.2)

Similarly, one can obtain the equation of motion for the
scalar field by varying the action with respect to it. Upon
replacing the Ricci scalar in the resulting equation with the
trace of the gravitational equations of motion Eq. (2.2), one
finds that the Klein-Gordon equation for the scalar field is
given by

20) +3 ()
220 ( D 2h<¢>cm)
) wy) VaVid+ V() - 2%,
(2.3)

where a prime denotes the derivative with respect to ¢.
The stress-energy tensor 7, in the above equations can be
defined by the variation of the matter Lagrangian with the
metric g,,,

;o200
#U_\/_—gég/w

We will consider the background to be a homogeneous,
isotropic, and spatially flat Universe described by the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,

(V=5Lw)- (2.4)

ds* = —di* + a(t)*8;;dx'dx/, (2.5)
where the size of the homogeneous, isotropic, and spatially
flat 3-surface is given by the scale factor a(z). The back-
ground spacetime is considered to be sourced by a perfect
fluid with its stress-energy tensor given by

™" = (p + p)u'u’ + pg”, (2.6)
where p is the total energy density and p is the pressure of
the fluid in its rest frame, and u* is the 4-velocity of the
fluid with respect to an observer.

The Friedmann equations that describe the evolution
of the background spacetime are obtained by substituting
Egs. (2.5) and (2.6) in to the gravitational field equa-
tions (2.2),

H2

), V@), o) @2—1{?, 27)

"3 "6 6 \g ¢

(2.8)

where H(t) is the Hubble parameter defined as H(t) =
a(t)/a(r) and dots denote derivatives with respect to the
time coordinate ¢. In Egs. (2.7) and (2.8), if the scalar field
¢ is a constant, only the first two terms on the right-hand
side are nonzero and we recover the standard Friedmann
equations for ACDM cosmology up to the normalization of
the field ¢.

B. Propagation of gravitational waves

In this and the following subsection, we will derive the
equations describing the propagation of gravitational and
electromagnetic waves, respectively, on the background
spacetime.

Gravitational waves are propagating tensor perturbations
of the background spacetime. To get the equations of
motion for tensor perturbations, we perturb our FLRW
metric as

ds* = —di* + a(t)*(5;; + h;j)dx'dx/, (2.9)
where £;; is a small perturbation of the background geometry
and is transverse (0;h"/ =0) and traceless (hi = 0) in the
chosen coordinate system. Note that this is not a generic
perturbation of the background. A generic perturbation can
be decomposed in to scalar, vector, and tensor components
that do not mix under diffeomorphisms. Furthermore, at the
leading order, the equations of motion for these components
are decoupled. Here, since we are only interested in GWs,
it is sufficient to perturb the background with the tensor
component which is transverse and traceless. We note that
in the class of theories considered here, there are scalar
modes of gravitational waves, in addition to the two
tensor polarizations, which we ignore for the following
reasons. The dilaton field perturbation would lead to a
dipolar contribution in the tensor polarizations which are
severely constrained by current observations of transient
gravitational waves [78]. This puts an upper limit on
the amplitude of scalar modes generated during the
coalescence of a compact binary. Furthermore, a direct
detection of the scalar modes is also made difficult by
the smaller response of gravitational-wave detectors to
breathing modes: the sky-averaged response of an
L-shaped detector is lower by a factor of v/6 for the
scalar modes. To date, we do not have a direct detection of
the scalar mode of gravitational waves [78].

The equations of motion for gravitational-wave pro-
pagation can be obtained by substituting Eq. (2.9) into
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Eq. (2.2) and using the second Friedmann equation and are
then given by1

hij+ <3H + g) hij—

a(r)?

where ¢ /¢ is the modified friction term that would change
the observed GW amplitude and as a result the luminosity
distance with respect to GR. We note that the luminosity
distance is additionally modified since the Friedmann
equations get altered due to the presence of the scalar
field. In other words, the evolution of the scale factor a(t)
is different from that in GR. Note, however, that the
dispersion relation is unchanged with respect to GR and,
hence, GWs travel at the speed of light.

Throughout this study, we are interested in solutions of
the wave equations under geometric optics approximation.
This is because the length scales of the signals of interest to
us (stellar-mass compact binary mergers and SNela) are
much smaller than the Hubble scale. In this limit, the metric
perturbations can be written as

=0,  (2.10)

hij :R{(bij+€Cij+0(€2))€[0/6}, (211)
where 0 is the phase of the plane wave and € is an order-
counting parameter, which can be set to 1 at the end of the
calculation. Substituting Eq. (2.11) into Eq. (2.10) and
collecting terms of the same order, we get

Kk =0,
KV, k= 0, (2.12)
at the O(e?) and
V,(bk) = —bK*V, In b, (2.13)

at the O(e), where k, = V0, the wave vector, is null and
follows null geodesics and b = ||b;;|| is the Euclidean norm
of the leading-order amplitude. The latter equation is the
one which is modified with respect to GR and represents
the nonconservation of the graviton number as it propagates
on the background spacetime.

The luminosity distance can then be calculated following
Minazzoli and Hees [65]* and is given by

2 d
-0y [

'Since we are interested in propagation equations in free space,
there are no source terms arising from local matter inhomoge-
neities and anisotropies on the right-hand side of this equation.

*The derivation of the luminosity distance is carried out for
EM waves but the procedure is the same for GWs.

(2.14)

where ¢ is the value of the field in the present epoch and
H(z) is the modified Hubble relation [Eq. (2.7)].

C. Propagation of electromagnetic waves

The field equations that govern the propagation of
electromagnetic waves can be obtained by the variation
of the action Eq. (2.1) with respect to the EM 4-potential A#
and are given by

V. (h(g)F*) =0, (2.15)
where F,, =V,A, —V,A, is the electromagnetic field
tensor.

Solving the above equation in the geometric optics
limit, as for metric perturbations, yields similar equations
for photons, namely, they travel on null geodesics. The
equation for photon number ‘nonconservation’ is given by

V., (b*k*) = =b*k*V, Inh(¢), (2.16)
where the electromagnetic potential in the geometric optics
limit is given by

A = R{(b* + ect + O(?))e'/¢}, (2.17)
with b = ||b*|| being the norm taken with respect to the

background FLRW metric.
The luminosity distance is then given by [65]

dEM:(lJrZ)’/};(((ﬁ;)))/OZ;(ZZ)’ (2.18)

where ¢ is the value of the field at the present epoch and
H(z) is given by the modified Friedman equations. Of note
here is that the two luminosity distances differ only if
h(¢) # ¢ which is the premise we are working under.

D. Parametrizing the modified luminosity distances

Now that we have obtained the luminosity distance-
redshift relation for both electromagnetic and gravitational
waves, we can parametrize the scalar field dependence of
their ratio. We choose to do this parametrization in terms
of the violation of the distance-duality relation for both the
sectors. This choice helps connect our results to those of the
numerous experiments in the electromagnetic sector that
parametrize this deviation [59]. The distance-duality rela-
tion connects the luminosity distance to the angular-
diameter distance. The latter is defined by

1 2 dz

da(z) “Ti:)o HG)

(2.19)

This is a geometric quantity that can be derived by
integrating the geodesic equation. For the class of theories
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considered in this study, both gravitational and electro-
magnetic waves travel on null geodesics and, therefore,
their angular diameter distances are unchanged from that
of GR, apart from a modification to the Friedmann
equations. We can, then, write the parametrization as

d(z)

(G

(2.20)

In GR, the distance-duality relation implies #(z) = 1.
We consider 7(z) to have the functional form

o bo o <
nV(z) = $—1+11+ )
_ h(ey) <
n™(z) = e 1+, T (2.21)

parameterizing the deviation from the gravitational
(electromagnetic) distance-duality relation by #; (17,).
Additionally, we parametrize the ratio of the luminosity
distances as

asw _ GV (2) _ $o/h(d) g
dEM M (2) &/ h() o 1+2z°

from which one can deduce that 5y ~ 1, —#,. The above
form of the parametrization was introduced in Holanda
et al. [79] with the advantage being that it avoids diver-
gence at large redshifts which the linear expansions suffer
from. Given a simultaneous measurement of the GW and
EM luminosity distances, either from the same source or
the same galaxy or the same galaxy cluster (see Secs. III B 3
and VI for a discussion), one can place constraints on the
parameter 7.

At this point, we note that studies in [62—-64] have
constrained the ratio of the two luminosity distances, albeit
in the context of modifying the frictional term in the
gravitational sector alone, through the parametrization,

(2.22)

oW -2
i (2) _g 4 1% (2.23)

dM(z) 0T (o)

where Zj = 1 in GR and n gives the rate at which the ratio
saturates to its asymptotic value =Z,. Our parameter 7, is
related to (Ey, n) as
No = 1- EO for n = 1, (224)
i.e., our parametrization is a subclass of the (Eg,n)
parameterization for a fixed saturation rate.
The errors on 7 can be calculated from the errors on the
GW and EM luminosity distances, assuming the redshift to
the source is known, using the standard error propagation

formula for independent variables (d$V and d™ in this

case) as
oo \? ano \?
2 _ 2 2
O = (adgw> Ogow T oM O gem>

where oy denotes 1o error in the quantity X. Simplifying
the above equation by evaluating the derivative expressions
leads to

1 +zdfV [ [Oav\2 (Ogen\2
Oy = z dM a5V + M )

E. Redshift variation of fundamental constants

(2.25)

(2.26)

The nonminimal coupling of the scalar field to the matter
and gravitational sectors leads to the dependence of the
fundamental constants on the scalar field and they, there-
fore, evolve with the evolution of the scalar field [80-82].
From the action given by Eq. (2.1), it can be read out that
the fine structure constant a and the gravitational constant
G depend on the scalar field via

a~h' (),

G~¢, (2.27)

and, hence, their redshift variation can be written as

Aa(z) _a(z)—ay _ h(do) . gv/va
Q - 2] B h(¢) b (Z>2 -
AG(z) G(z)-Gy ¢ _Gw
G, Gy O_EO_I_”G @ -1 (228)

where ay and G are the values of a and G at the current
epoch, respectively.

Given the experimental constraints on the ratio of the
two luminosity distances, one can constrain the temporal
variation of < (z) in the current epoch as

(2.29)

where 7(z) = 79V (z)/n"™(z) and H,, is the present value
of the Hubble parameter. If one uses constraints from other
electromagnetic probes [59], the temporal variations of
both @ and G can be separately constrained.

We point out here that G, is not the effective gravita-
tional constant G that enters the Poisson equation at the
Newtonian order and should not be interpreted as the
strength of the gravitational force between two test masses
separated by a unit distance. The two are related by
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1 =24 }/f((ff))) h(¢o) (2.30)

Getr = Go <1 * 20(p) +3 ) o

In the absence of the scalar field, G, and G coincide, as
expected.

III. METHOD

In this section we describe the different gravitational
wave detector networks considered in this study, outline
our procedure for simulating gravitational-wave sources,
calculate the rate of spatially coincident EM and GW
signals, and estimate the distribution of luminosity distance
errors for the coincidentally observed population of
sources.

A. Gravitational-wave detector networks

We consider three GW detector networks across three
technology generations. The 2G+ network consists of the
five second-generation GW detectors with three LIGO
detectors [83] (LIGO-Hanford, LIGO-Livingston, LIGO-
India) operating at A+ sensitivity, the Virgo [84] and the
KAGRA [85] detectors at AdV+ and KAGRA+ sensitivities,
respectively. The Voy+ network includes the same five
second generation detectors but with the LIGO detectors
upgraded to a proposed ‘Voyager’ [86] technology. The final
network, ECC, consists of three proposed third generation
detectors, specifically, two Cosmic Explorer [66] detectors
and an Einstein Telescope [76]. We show the noise power
spectral densities (PSDs) for the individual detectors in
Fig. 1. The locations of these detectors and the technologies
used in a network are given in Table I.

LIGO (A+)

Virgo (AdV+)
KAGRA (KAGRA+)
Voyager (Voy)

Einstein Telescope
(ET-D)

Cosmic Explorer
(CE1 _cb; 40km)

TTTW T T TTTTTW T T TTTTTW T

10! 10? 103
Sf[Hz]

T TT

FIG. 1. The noise power spectral density (PSD) estimates used
for the individual detectors considered in this study. We use a low
frequency cutoff of 5 Hz for all but the advanced Virgo detector
for which the PSD starts at 10 Hz.

TABLE L. An overview of the three networks used in the study.
The location determines the detector antenna patterns, while
the technology indicates the used power spectral density. The
Voyager and Cosmic Explorer power spectral densities are
chosen to be low-frequency optimized and in the case of the
latter for a detector arm length of 40 km.

Network
label Detector location (technology)
2G+ Hanford WA (A+), Livingston LA (A+),

Cascina Italy (AdV+), Kamioka Japan (KAGRA+),
Hingoli India (A+)

Voy+  Hanford WA (Voyager), Livingston LA (Voyager),
Cascina Italy (AdV+), Kamioka Japan (KAGRA+),
Hingoli India (Voyager)

ECC Cascina Italy (ET-D), fiducial US site (CE1_cb),

fiducial Australian site (CE1_cb)

B. Rates

1. Binary neutron star merger rates

We simulate a population of binary neutron star (BNS)
merger events up to a redshift of z =1.5 assuming a
uniform mass distribution between 1 My and 2.5 M, for
the individual NSs [87]. The other parameters, cosine of the
inclination angle cos 1, location of the source on the plane of
the sky Q (cosine of the declination angle cosé and right
ascension ), polarization angle y, and the phase of the
signal at coalescence ¢, of the fiducial BNS population are
drawn from a uniform distribution across their domains. We
assume 10 years of observing time for each network with
an 80% duty cycle for each detector [88]. The redshift
distribution for our BNS population is given by the
following probability distribution,

R.(2)

" OR,(2)dz’ G-

p(z)

where an upper limit of z =10 is justified since the
contribution to the integral from redshifts larger than 10
is negligible. R (z), the merger rate density in the observer
frame, can be expressed as

3.2
14+z dz (32)

Here R, (z) is the merger rate per comoving volume in the
source frame and dV/dz is the comoving volume element.
The former is given by

Ra(@) = [ Rl + P (33)
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where R(t) is the binary star formation rate (SFR) which
we assume follows the Vangioni cosmic SFR [89]. The
delay time (the time it takes for a binary to coalesce after
formation) distribution is taken to be P(t;) « 1/t; with
Imin = 20 Myr and t,,,, set to the Hubble time 1/H,,. The
value of R, at z =0 is estimated from the population
properties of the third LIGO-Virgo Gravitational-Wave
Transient Catalog, GWTC-3 [90] to be between

R,,(z=0) = 13-1900 Gpc > yr~!. (3.4)
We present results for both the optimsitic and pessimistic
local merger rates.

2. Electromagnetic counterpart

The Voy+ and the ECC network of GW detectors have a
reach beyond the horizon distance of the current and future
EM telescopes for kilonova which can be observed up to a
redshift of about z = 0.5 (see, e.g., Table 2.2 in Ref. [91]).
Hence, BNS events beyond a redshift of z=0.5 is
electromagnetically observable only through short gamma
ray burst events. Therefore, in this study, we assume that
10% of the BNS events up to a redshift of 0.5 will have a
dedicated EM followup search to detect their kilonova
emissions (we assume this to be in addition to possible
GRB detection, which do not need a dedicated search
owing to the near all-sky sensitivity of GRB detectors)
and for BNS observations beyond a redshift of 0.5, we
assume a coincident electromagnetic detection to consist of
only GRBs.

We calculate the rate of a coincident GRB detection
following the procedure outlined in Belgacem et al. [88]
and sketched it out here for completeness. We assume a
Gaussian structured jet profile [92] for a GRB burst and the
luminosity L(6y) is given by

i
L(6y) =L, exp (— 293) . (3.5)
where 0y, is the viewing angle and 6. = 4.7° represents the
variation in the GRB jet opening angle. L, is the peak
luminosity of each burst assuming isotropic emission in the

rest frame in the 1 — 10* keV energy range and can be
sampled from the probability distribution

(L,/L.)*, L,<L,,

PlLp) { (Lp/L), L,>L,, (36)
where the parameters of the broken power-law distribution
are L, =2x10°% erg/s, a = —1.95, and B = -3 [93].
A GRB is assumed to be detected if the observed peak
flux Fp(6y) = L(0y)/4rnd?, given the GW luminosity
distance and inclination angle, is greater than the flux
limit of 1.1 phs~! cm~2 [88] in the 50-300 keV band for

Fermi-GBM. The total time-averaged observable sky frac-
tion for the Fermi-GBM is taken to be 0.6 [94].

3. Rates for spatially-coincident SNela

Following the arguments presented in Sec. III of Gupta
et al. [95], we now estimate the rates for a spatial
coincidence of SNela and BNSs in a galaxy cluster.
Gupta et al. [95] concluded that the rate of spatial
coincidence of SNela and BNS mergers in a galaxy given
their rates [96,97] is extremely small. Moreover, in their
Sec. V Gupta et al. [95] showed that there is O(1%) error in
the distance estimation of SNela if calibrated through a
BNS in the same galaxy cluster instead of the same galaxy.
Therefore, coincident of SNela with a BNS in the same
galaxy cluster is sufficient to obtain the redshift information
of BNSs.

The current volumetric merger rate of BNSs is
13 — 1900 Gpc3yr~! [90] and that of local SNela is
3.0708 x 10* Gpc3 yr~! [96]. Considering the median
of local SNela rates, it implies that there will be roughly
15 to 2300 SNela for a BNS merger in a galaxy. As in [95],
we assume that the ratio of the SNela and BNS rates will be
similar in rich galaxy clusters as well since both types of
populations involve compact object mergers. For sources
up to the redshift of z = 1.5, we use SNela rate to be
0.6570% x 10712 Lg' yr™! in rich galaxy clusters [98],
where Ly is the bolometric luminosity in solar units.
Consequently, these numbers suggest that every year there
will be ~3 SNela in a Coma-like cluster with bolometric
luminosity of Ly ~5.0 x 1012Ly o [99] which is sufficient
to confirm the association with BNSs and derive their
redshifts.

C. Luminosity distance errors

1. Errors from gravitational-wave observations

We simulate a population of neutron star binaries using
the procedure outlined in Sec. III B. The redshift of a source
is converted to its luminosity distance, the GW observable,
using Planckl8 [100] cosmology. For a BNS merger to
be detectable, we require a network signal-to-noise ratio
(SNR) threshold of 12 for each binary in the population but
do not demand a minimum SNR for individual detectors.
Note that the probability of having just one detector online
in a five-detector network with a duty cycle of 80% for each
detector is less than a percent [88]. For a three-detector
network, such as ECC, this is ~10%. However, for the
redshifts considered in this paper, a majority of these events
would not be marginal and, therefore, even with a single
detector we can assign a high astrophysical probability to
the triggers. We calculate the errors in the estimation of
the binary parameters using the publicly available code,
GWBENCH [101], which implements a Fisher-matrix
formalism [102,103] for error calculation. We use the
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FIG. 2. Number of GW (left panel) and GW + GRB (right panel) detections as a function of redshift for different detector networks
considered in this study. The optimistic case (solid lines) represents the upper limit on the local BNS merger rate and the pessimistic case
(dashed lines) the lower limit. The range of values for the local BNS merger rate is given in Eq. (3.4). The lifetime of a network is
assumed to be 10 years with an 80% duty cycle for each detector.

IMRPhenomPv2_NRTidal waveform model in our Fisher analy-
sis, with a fixed effective tidal parameter A = 100. We do
not compute the error on the A measurement because this
parameter is not expected to appreciably affect the lumi-
nosity distance estimate. We assume that the electromag-
netic counterpart accurately provides the sky location, so
we do not compute an error on it. We further take the chirp
mass to be given because it is well estimated and mostly not
degenerate with the luminosity distance. This slightly under-
estimates the distance errors but it would not affect our
results significantly. From a technical perspective, this
renders some of the otherwise ill-conditioned Fisher matrices
of the 3G network to behave well. We are then left with a
seven dimensional Fisher matrix consisting of the symmetric
mass ratio #, the luminosity distance d$%, the inclination
angle 1, the polarization angle v, the time of coalescence 7.,
and the phase of coalescence ¢.. We subsequently extract
the errors in the measurement of the luminosity distance
which is the parameter of interest here.

Figure 2 shows the redshift distribution of the detected
GW events in our population (left panel), together with
those that have an observable GRB counterpart in the
Fermi-GBM detector (right panel) for the three different
networks considered. The distribution is shown for both
the optimistic case (solid lines) and the pessimistic case

TABLE I

(dashed lines) corresponding to the range of the local BNS
merger rates given in Eq. (3.4). We note that only the 3G
network can observe BNS coalescences from the furthest
redshifts considered. In Table II we quote the figures for
the expected number of GW events, the corresponding
number whose redshift is less than 0.5, the total number of
events with a GRB counterpart, the number of events with
a GRB counterpart above redshift z > 0.5, and the
cumulative number of events expected to contribute to
the measurement of 7, according to our assumptions in
Sec. III B 2. The numbers in parenthesis correspond to the
pessimistic case.

We see that the 2G+ network has a horizon reach of less
than z < 0.3 and the total number of coincident electro-
magnetic detections for the optimistic case are ~1330
(304 + 10% of 10,259). The corresponding numbers for
the Voy+ and ECC networks are ~8,970 and ~53,320,
respectively, as given in the last column of Table IL

In Fig. 3 we show the fractional error in the measurement
of GW luminosity distance as a function of redshift for the
three detector networks for our detected population. To get
the average behavior, we distribute the sources into redshift
bins and calculate the median of the fractional errors of
the sources in each redshift bin. We model the fractional
luminosity distance errors as a function of redshift as a

Number of GW events detected by the three networks in 10 years, together with the coincident GRB detection rate and the

same for sources with z > 0.5, assuming the detector characteristics of Fermi-GBM.

Network GW events GW events (z < 0.5) GW + GRB events GW + GRB events (z > 0.5) GW + EM counterpart
2G+ 12,894 (95) 12,894 (95) 385 (3) 0 (0) 1,674 (13)

Voy+ 104,788 (740) 101,912 (723) 1014 (6) 28 (0) 11,205 (78)

ECC 6,609,649 (45,195) 631,294 (4,312) 3,463 (15) 2,090 (10) 66,592 (446)
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FIG. 3. Fractional error in the measurement of gravitational

luminosity distance as a function of redshift for simulated the
BNS population. We see that only the third-generation detector
network detects sources from the highest redshift (z = 1.5)
considered in this study.

series of Heaviside step functions, which entails taking the
errors in each redshift bin to be a constant.

We note that a fit for the fractional error in luminosity
distance as a function of redshift can be found in Belgacem
et al. [88]. The reason we do not directly use their fits in our
study is because the only parameter in their Fisher matrix
is the luminosity distance and, therefore, their errors are
unrealistic. Crucially, they ignore the correlations between
the luminosity distance and inclination angle, which is
known to increase the errors significantly [102,104].

As can be seen from Fig. 3, the horizon distance for the
2G+ network is z ~0.3 and hence we consider the full
detectable population to have a possible kilonova counter-
part detection. Another point of note from the figure is that
the largest redshift considered in this study (z = 1.5) is
within the horizon distance for the ECC network. We do not
consider higher redshift sources because we are limited
by the farthest observed SNela in the Union2 dataset (see
Sec. [IIC2).

2. Errors from electromagnetic observations

We model the EM luminosity distance errors using the
Union2 [105] SNela compilation. Supernovae distances are
measured in units of distance modulus y, which is related to
luminosity distance by

105dL
=51 .
H 0810( Mpc )

(3.7)

It can be easily seen from the above expression that the
fractional error in the luminosity distance is given by

Ad, 5

=2 _Ap 3.8
4, log,(10) X (38)

data
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1.5
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FIG. 4. Fractional errors on SNe luminosity distances as a
function of redshift. The red steps denote the median error for the
corresponding redshift bin.

Figure 4 shows the fractional errors in the EM luminosity
distance in the Union2 dataset as a function of redshift. We
do not see any functional behavior in the luminosity
distance errors across redshift bins (with the errors approx-
imately constant across bins) and, therefore, do not attempt
at a fit, instead treating the redshift behavior of the errors as
a piece-wise step function.

We also note that for the low redshift events of 2G+ and
Voy+ networks, we are limited by the SNela luminosity
distance errors and the median errors for the ECC network
is always less than their SNela counterpart except around
the redshift limit of z = 1.5.

The median errors in the distance modulus for the Union2
dataset is 0.19. The Rubin Observatory Legacy Survey of
Space and Time is expected to observe about half a million
supernovae in its survey life cycle of 10 years with a large
fraction of them expected to have distance modulus errors of
order 0.12 which is a ~40% improvement over the Union2
dataset [106], which would further improve our estimates.

IV. RESULTS

We calculate the errors on 7, for our simulation as
follows. From our subpopulation of observed sources of
GWs and their EM counterparts, we randomly select N
binaries. Given that we know the redshift to each of our
sources, we get the median fractional error in the GW and
EM luminosity distances for each of the N detections
from our modeling of the same as described in Sec. III C.
Assuming that the central value for both the luminosity
distances are the same, we use Eq. (2.26) to calculate the
errors on 7, for each source. The combined error for N
independent observations is given by

1 1

i—-1 %i
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0 Cno

function of the number of observations for the three detector
networks examined in this study. The axis on the right enumerates
the same errors in terms of the temporal variation of the ratio
of the gravitational and fine structure constant at the present
epoch, A. The maximum number of events for each network
denotes the expected number of total observations for the
optimistic case. The corresponding number for the pessimistic
case (rounded to the nearest multiple of 5) is shown by the
vertical dashed lines.

where o; is the error for each event. We show the resultant
errors on 7, in Fig. 5 as a function of the number of
observed events, in increments of 5 up to the expected
number of observations for the optimistic case, for the three
networks under consideration. The dashed vertical lines
show the expected number of observations for the pessi-
mistic case rounded to the nearest multiple of 5 for easy
reading of the associated error. Also depicted in the figure
on the right axis is the same error converted to the temporal
variation of the ratio of the gravitational and fine structure
constant at the current epoch [see Eq. (2.29)] where
Hy = 73.04 + 1.04 km/s/Mpc [107]. We fit the 1//N
asymptotic behavior of the errors and quote the typical error
for an observation in each network in Table III.

We note that the constraints from the violation of the
distance-duality relation directly translates to constraints on
the variation of fundamental constants. We now compare
our results to complimentary EM experiments that look for
the variation of the fine structure constant from cosmo-
logical data. We stress that this comparison can only be
done for a restricted class of models that do not modify the

TABLE III.  Typical value of the error in the measurement of 7,
and the same in terms of the temporal variation of G/a(z = 0) for
a single GW detection for the three networks considered in this
study.

Network O o5 (1072 yr!)
2G+ 7.3 1.1

Voy+ 4.1 0.61

ECC 1.6 0.24

gravitational sector as the relevant EM experiments are
oblivious to these modifications. Hees et al. [59] briefly
reviewed such EM probes and the constraints from various
probes are quoted in Table 1 of their paper. Holanda et al.
[79] and Cao and Liang [58] use the same parametrization
of 5(z) as ours and quote average 1o errors of 0.12 and 0.22
on 1)y, respectively. The latter is on par with the capability
of the 2G+ network at the end of its observing cycle in the
optimistic case.

Other studies use different parametrizations but one can
deduce that although the constraints using 2G+ network’s
forecast to be of the same order or slightly more than the
electromagnetic ones, Voy+ network would be able to place
limits that are a few times better than most of the EM
experiments—except constraints from high redshift quasar
absorption spectra [52—-54]—for the optimistic case. The
ECC network improves the Voy+ network constraints by an
additional factor of 5. The pessimistic case yields con-
straints that are an order of magnitude poorer than the
optimistic case for all the three networks studied here,
which is in line with the 1/ /N behavior of errors; the
optimistic case has two orders of magnitude more events
than the pessimistic case. Furthermore, observations of
quasars from high redshifts suggest a possible spatial
variation of the fine structure constant [53,54]. The large
number of gravitational wave observations, albeit from
smaller redshifts, would allow for local constraints on the
spatial variation of the fine structure constant too.

V. CONSTRAINTS BASED ON GW170817

In the previous sections we focused on the detection of a
spatially coincident SNela to provide the EM luminosity
distance. This is because a SNela is a standard candle
and, hence, has constant absolute luminosity in the source
frame. In addition, the systematic uncertainties of modeling
SNela as a standard candles is well understood and,
therefore, provides an unbiased estimate for the luminosity
distance to the source.

Recently, there have been efforts to model the kilonova
emissions following a BNS merger as a standard candle
[108,109]. This would provide another independent mea-
sure of the EM luminosity distance for low redshift sources
with the added benefit of not having to search for a spatially
coincident supernova. We, however, do not forecast the
constraints that can be placed on 7, for a population of
joint GW-kilonova sources using standardized kilonova
emissions since these models are at a very nascent stage
of development with large systematic uncertainties.
Nevertheless, we use the EM luminosity distance estimates
of Coughlin et al. [109] for GW170817 [60] to place
the first constraints on our deviation parameter #,. The
gravitational-wave luminosity distance for GW170817 was
estimated to be d$V = 43.8"2) Mpc [110]. Coughlin et al.
[109] give three measurements of the EM luminosity
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distance. The first value, dP™ = 317! Mpc, is a direct
measurement from the light curve based on the analysis of
Kasen et al. [111]. The other two are inferred from ejecta
parameters based on the analyses of Kasen et al. [111]
and Bulla [112] and are given by d"™ = 37°% Mpc and
d™ = 4079 Mpc, respectively. These three luminosity
distance measurements correspond to 77, = 42f;2 , 1872,
and IOJ_“%S, respectively. Unsurprisingly, the estimate of #,
is consistent with 0.

The above measurements of 7, give the temporal
variation of G/a(z) [see Eq. (2.29)]—in units of
[x107 yr~!']—at the current epoch to be

,B — _6+8 _3+4 _1+4

12 704> T4 (5.1)

respectively. A Hubble constant value of Hy = 73.04 £
1.04 km/s/Mpc as reported by Riess et al. [107] is used for
this calculation.

VI. CONCLUSION

In this paper, we focused on constraining the ratio of
gravitational-wave and electromagnetic-wave luminosity dis-
tances and, consequently, the variation in the ratio of the
gravitational and fine structure constant, using coincident
gravitational and electromagnetic wave observations for a
class of scalar-tensor theories known as Einstein-dilaton
models. These theories have multiplicative couplings of
generic scalar fields to gravitational and electromagnetic
sectors. To constrain the modified propagation in such
theories without having to fit for other cosmological param-
eters, as is done while using a luminosity distance-redshift
relation, a second distance measure is necessary. We used a
spatially coincident supernova as the EM probe to provide the
complimentary EM luminosity distance estimate.

We find that the planned upgrade to the current second-
generation ground-based detector network (2G+) can
constrain the parameter modeling the ratio of the EM

and GW luminosity distance to below |r9] < 0.2, while the
proposed improvement of the 2G+ network to Voy+
sensitivity would be able to place an upper limit of
70| < 0.05, at the end of an eight-year effective observing
cycle if no deviation from the GR value of ny =0 is
measured. The proposed next-generation ground-based
detector network (ECC) can further improve the constraints
to || < 0.01. We see that the constraints using this method
for the subclass of theories that modify the EM sector alone
would be competitive with most of the current EM probes
in the literature [59] for the 2G+ network. The Voy+
network would improve these estimates by a factor of 4 and
the ECC network improves the Voy+ network constraints
by a factor of 5. We also showed how these numbers
translate in to the temporal variation of the fundamental
constants. On a side note, in this paper, we focused on the
constraints that can be placed in the absence of a deviation
from GR. One can also simulate a GR violation and try to
constrain the deviation parameter at a nonzero value. We
leave that for future work.

We, further, make use of recent progress in kilonova
light-curve modeling and, consequently, the EM luminosity
distance estimates from them to place the first constraints
on our 7, parameter for GW170817. As expected, we find
consistency with GR.

We expect a number of BNS merger observations with
counterpart in the fourth observing run of aLIGO/aVirgo/
KAGRA and plan to use them to constrain this class of
theories. We also plan on investigating the impact of the
excitation of the scalar mode during binary merger on the
main conclusions of this paper and will be taken up in
future work.
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