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Abstract

Generalized permutahedra are polytopes that arise in combinatorics, algebraic
geometry, representation theory, topology, and optimization. They possess a rich
combinatorial structure. Out of this structure we build a Hopf monoid in the
category of species.

Species provide a unifying framework for organizing families of combinatorial
objects. Many species carry a Hopf monoid structure and are related to generalized
permutahedra by means of morphisms of Hopf monoids. This includes the species
of graphs, matroids, posets, set partitions, linear graphs, hypergraphs, simplicial
complexes, and building sets, among others. We employ this algebraic structure to
define and study polynomial invariants of the various combinatorial structures.

We pay special attention to the antipode of each Hopf monoid. This map is
central to the structure of a Hopf monoid, and it interacts well with its characters
and polynomial invariants. It also carries information on the values of the invariants
on negative integers. For our Hopf monoid of generalized permutahedra, we show
that the antipode maps each polytope to the alternating sum of its faces. This fact
has numerous combinatorial consequences.

We highlight some main applications:

e We obtain uniform proofs of numerous old and new results about the Hopf
algebraic and combinatorial structures of these families. In particular,
we give optimal formulas for the antipode of graphs, posets, matroids,
hypergraphs, and building sets. They are optimal in the sense that they
provide explicit descriptions for the integers entering in the expansion of
the antipode, after all coefficients have been collected and all cancellations
have been taken into account.

e We show that reciprocity theorems of Stanley and Billera—Jia—Reiner
(BJR) on chromatic polynomials of graphs, order polynomials of posets,
and BJR-polynomials of matroids are instances of one such result for gen-
eralized permutahedra.
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vi ABSTRACT

e We explain why the formulas for the multiplicative and compositional
inverses of power series are governed by the face structure of permutahedra
and associahedra, respectively, providing an answer to a question of Loday.

e We answer a question of Humpert and Martin on certain invariants of
graphs and another of Rota on a certain class of submodular functions.

We hope our work serves as a quick introduction to the theory of Hopf monoids
in species, particularly to the reader interested in combinatorial applications. It
may be supplemented with Marcelo Aguiar and Swapneel Mahajan’s 2010 and
2013 works, which provide longer accounts with a more algebraic focus.
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Introduction

Hopf monoids and generalized permutahedra

Joyal [16], Joni and Rota [60], Schmitt [84], Stanley [93], and others, taught us
that to study combinatorial objects, it is often useful to endow them with algebraic
structures. Aguiar and Mahajan’s Hopf monoids in species [2] provide an algebraic
framework that supports many familiar combinatorial structures.

Edmonds [36], Lovész [67], Postnikov [77], Stanley [89], and others, taught us
that to study combinatorial objects, it is often useful to build a polyhedral model
for them. Generalized permutahedra constitute an ubiquitous family of polytopes
which models many combinatorial structures. Generalized permutahedra arose in
the theory of combinatorial optimization as polymatroids. Each such polytope is
defined by a unique submodular function.

Our work brings together these two points of view. We endow the family of
generalized permutahedra with the structure of a Hopf monoid GP and show that
many other Hopf monoids built out of combinatorial structures find natural models
therein, in the sense that they map into GP (or certain quotients of GP) by means
of morphisms of Hopf monoids.

b
C@éﬁ @ JAVS 9 @ - / ®/ Hadbe
d

We deal with Hopf monoid structures on (the species of) graphs, matroids,
posets, set partitions, simplicial complexes, building sets, and (an additional struc-
ture on) simple graphs, to name a few. On these and many other families of combi-
natorial objects, it is possible to carry out constructions of merging and breaking:
procedures for building a new object out of two, or for decomposing a given object
into two. When these procedures obey certain simple rules, the structure can be
organized into that of a Hopf monoid in the category of species. The combinatorial
objects constitute the elements of the species, merging gives rise to the product,
and breaking to the coproduct of the Hopf monoid. A Hopf monoid is a structure
akin to that of a Hopf algebra, but better suited to handle these examples rooted
in combinatorics.

We use this framework to unify known results, obtain new ones, and answer
questions of a combinatorial nature. We discuss some of these applications next.

Application A. Antipode formulas

Hopf monoids in species, Hopf algebras, and groups, may all be seen as instances
of the general notion of Hopf monoid in a braided (or symmetric) monoidal category.

1
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2 INTRODUCTION

A Hopf monoid H carries an antipode s : H — H, a map which is analogous to
inversion in a group. For the Hopf monoids in species we consider, the existence of
the antipode is guaranteed, much as is the existence of the reciprocal of a formal
power series of the form 1+ xF(x). The antipode maps a combinatorial structure
to a formal sum of structures of the same kind. It is given by a large alternating
sum, usually involving lots of cancellation. A fundamental task is to obtain a
cancellation-free formula for the antipode.

Figure 1 gathers a few examples showing the final result of the calculation, after
all cancellations have been taken into account. The combinatorial structures are
represented by pictures whose meaning is explained in later sections. The formulas
arise from alternating sums of 13, 75, and 541 terms, depending on whether the
cardinality of the ground set is 3, 4, or 5. One of our main goals is to provide a
uniform explanation for these formulas. It turns out that in each case the result
is dictated by a polyhedron that models the given combinatorial structure. We
explain this in more detail.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



APPLICATION A. ANTIPODE FORMULAS

w

Graphs G (Section 3.2):
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FIGURE 1. Antipode calculations in Hopf monoids
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4 INTRODUCTION

First, we address the antipode problem at the level of generalized permuta-
hedra, where the inherent geometry and topology enable us to understand the
cancellation completely. The following is one of our main results.

THEOREM (Theorem 1.6.1). The antipode for the Hopf monoid of generalized
permutahedra GP is given by
Z (_1)dimq q

s7(p) = (1)
q face of p

for each generalized permutahedron p C RL.

Then, we relate the Hopf monoids G, M, P, II. F to the Hopf monoid GP of
generalized permutahedra by means of morphisms of Hopf monoids. Such mor-
phisms preserve antipodes. For example, the graphic zonotope Z, of a graph g is a
generalized permutahedron, and the map g — Z, is a morphism of Hopf monoids
G — GP. To calculate s(g) in G, we calculate $(Z,) in GP using Theorem 1.6.1.
The faces of Z,; are themselves graphic zonotopes associated to certain quotients of
g (Lemma 3.2.4). From here, an explicit formula for s(g) emerges (Corollary 3.2.7).
In general, combining Theorem 1.6.1 with an understanding of the combinatorial
structure of a given generalized permutahedron, yields a formula generalizing those
in Figure 1. The coefficients in the formula of Theorem 1.6.1 are 1 (or 0). The
larger coefficients in some of the formulas in Figure 1 occur when the morphism to
GP is not injective.

We have gathered the main combinatorial structures that we deal with in the
table below. Each one gives rise to a Hopf monoid in species. The Hopf monoids
are interrelated by means of morphisms; the table is loosely organized and does not
reflect the various connections. The table shows the corresponding class of gener-
alized permutahedra in each case. It is worth mentioning at this point that we deal
with possibly unbounded generalized permutahedra. These polyhedra include cer-
tain cones associated to posets. The remaining classes of generalized permutahedra
in the table are bounded polytopes.

combinatorial structure polyhedral model Hopf monoid

extended submodular function

extended generalized permutahedra

(partitions into disjoint) sets (products of) permutahedra =11
(partitions into disjoint) paths | (products of) associahedra Fx~A

graphs graphic zonotopes G, SG
hypergraphs hypergraphic polytopes HG

simplicial complexes simplicial complex polytopes SC

matroids matroid polytopes M

graphic matroids graphic matroid polytopes r

building sets nestohedra BS

simple graphs graph associahedra W

submodular function generalized permutahedra SF =~ GP, GP

SFt ~ GPt, GP*

partial orders (posets)

preorders (preposets)

top-cones in the braid arrangement

cones in the braid arrangement

P
Q = SFO,oo = GPcone

Some of these Hopf monoids are defined for the first time here, others come from
[2]. In many cases, the constructions have roots in earlier literature going back to

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



APPLICATION B. CHARACTER THEORY AND RECIPROCITY THEOREMS 5

Joni and Rota [60], Schmitt [84-86], and others. The paper by Haiman and Schmitt
[63] stands out as the first one to derive an antipode formula of combinatorial
significance. Another important landmark is the paper of Billera, Jia, and Reiner
[17] where Hopf algebraic and polyhedral considerations on matroids were analyzed
together for the first time.

These earlier sources deal with a Hopf algebra which we now regard as derived
from the Hopf monoid by means of the constructions of [2, Chapter 15]. (See
Section 1.1.10 for more on this point.) For example, the Hopf monoid of paths
gives rise to the Fad di Bruno Hopf algebra, an object introduced in [60] and
with roots in classical work on the composition of two power series. On a few
additional occasions, these associated Hopf algebras have been considered in the
recent literature, without consideration of Hopf monoids and independently of our
work. These include the cases of building sets [49], simplicial complexes [14], and
polymatroids [32].

Our results on the antipode encompass new and existing results in a unified
manner. The original result of Haiman and Schmitt is on the antipode of the
Faa di Bruno Hopf algebra [53, Theorem 4]. More recent results are by Humpert
and Martin [58, Theorem 3.1] (on the antipode for graphs), by Benedetti, Hallam,
and Machacek [14, Theorem 4] (on the antipode for simplicial complexes), and by
Bucher, Eppolito, Jun, and Matherne [24,25] (on the antipode for matroids).

Application B. Character theory and reciprocity theorems

Consider the following combinatorial invariants: Whitney’s chromatic polyno-
mial x4 of a graph g, Stanley’s strict order polynomial X, of a poset p, and the
Billera—Jia—Reiner polynomial x,, of a matroid m. These polynomials are deter-
mined by the following properties which hold for n € N:
® x¢(n) = number of proper vertex n-colorings of g.
¢ xp(n) = number of strictly order preserving n-labelings of p.

e Xm(n) = number of n-weightings of m under which m has a unique maximum
basis.

Billera, Jia, and Reiner were the first to consider the matroid assignment m +— X,
and to understand it as a Hopf morphism. They compared it with the graph as-
signment g — x4(n), which also arises Hopf algebraically, writing:

“As far as we know, this [Hopf] morphism is of a different nature.”
We show that in fact these two morphisms — as well as the poset morphism p —
Xp(n) — are of exactly the same nature. To see this, one needs to view them inside
the Hopf monoid of extended generalized permutahedra; something that their work
helped us foresee.

One may wonder about a combinatorial description for the quantities obtained
by plugging in negative integer values into these polynomials. The answer is pro-
vided by the following combinatorial reciprocity theorems. For n € N:
¢ |x4(—n)| = number of compatible pairs of an n-coloring and an acyclic orientation
of g.

1

1 They wrote this about the assignment of a quasisymmetric function to a matroid m and a
graph g, but there is no essential difference with the assignment of a polynomial. As they explain
in [17], a character on a Hopf algebra or monoid gives rise to a polynomial and a quasisym-
metric function. For graphs and matroids, this gives rise to the polynomials we discuss and the
quasisymmetric functions they discuss.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 INTRODUCTION

¢ |xp(—n)| = number of weakly order preserving n-labelings of p.
e |Xm(—n)| = number of pairs of an n-weighting w of m and a w-maximum basis.

The first two are due to Stanley [90, Theorem 1.2], [88, Theorem 3] and the
third to Billera, Jia, and Reiner [17, Theorem 6.3]. In Chapter 4, we cast these
results in a unified setting, showing that they are all instances of the same general
fact that holds for extended generalized permutahedra. We explain this general
fact employing the notion of a character on a Hopf monoid.

The choice of a character on a Hopf monoid gives rise to a polynomial x,(n) for
each element = of the monoid. This is an invariant of the structure x, in the sense
that isomorphic structures yield the same polynomial. Furthermore, this polyno-
mial satisfies a reciprocity rule as follows: up to a sign, x.(—n) equals xs)(n).
This is Proposition 4.1.5. It relates values of the invariant on negative integers
to values on positive integers, with the antipode bridging between the two. A
combinatorial understanding of the antipode may thus be exploited to answer the
question at hand.

As before, we first construct and analyze the invariant at the level of general-
ized permutahedra. The starting point is a character which sends points to 1 and
all other generalized permutahedra to 0. We then specialize by employing the mor-
phisms from G, M, and P to GP. This gives the three combinatorial reciprocity
theorems above.

In Chapter 4 we employ the heavier but more precise notation x;(z)(n), where
I is the ground set, z € H[I] is the given combinatorial structure, and n is the
polynomial variable.

Application C. Inversion of formal power series

Figure 2 shows the first few (standard) permutahedra m, and (Loday) asso-
ctahedra a,. Both m and a; are points, w2 and as are segments. While 73 is a
hexagon, as is a pentagon. Next come 74, a truncated octahedron, and a4, the
three-dimensional associahedron. There is one permutahedron in each dimension,
and every face of a permutahedron is a product of permutahedra. There is one
associahedron in each dimension, and every face of an associahedron is a product
of associahedra.

FIGURE 2. The permutahedra 1, 7o, 73, 14 (left) and associahedra
ai, ag, ag, a4 (right).

Multiplicative Inversion. Consider formal power series

(1) A(x):Zani—T and B(@:ani—? such that  A(z)B(z) =1,

n>0 ’ n>0

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



APPLICATION C. INVERSION OF FORMAL POWER SERIES 7

assuming for simplicity ag = 1. The first few coefficients of B(z) = 1/A(x) are:

by = -

by = —ap+2a}

by = —asg+6asa; — 6a‘r{’

by = —aq+8asza; + 6a§ — 36a2a% + 24a‘1l

What do these numbers count? The face structure of permutahedra tells the full
story. For example, the formula for by accounts for the faces of the permutahedron
my: 1 truncated octahedron 74, 8 hexagons w3 X 71, 6 squares 7y X 7o, 36 segments
o X1 X 71, and 24 points 7w X w1 X w1 X 7. The signs in the formula are determined
by the parity of the face dimensions.

Compositional Inversion. The problem of inverting power series with respect
to composition is classical and falls under the heading of Lagrange inversion. There
exists a variety of approaches to the subject and vast work on variants and gener-
alizations. See [92, Chapter 5] for an introduction, and [46] for a recent survey.

Consider formal power series

(2) C(x)= Z en—12” and D(x) = Zdn_lm" such that C(D(x)) = =z,

n>1 n>1

assuming for simplicity ¢ = 1. The first few coefficients of D(x) = C(x)(~") are:

di = -

do = —co+ 20?

d3 = —c3+beacy — 50513

dy = —c4+6c3c1 + 30% - 21020? + 140‘1l

Now it is the face structure of associahedra that tells us what these numbers
count. For example, the formula for ds accounts for the faces of the associahedron
ay: 1 three-dimensional associahedron a4, 6 pentagons az X a; and 3 squares as X dg,
21 segments as X a; X a7, and 14 points a; X a3 X a; X a;. The signs are again
determined by the parity of the face dimensions. This description is a form of
combinatorial Lagrange inversion.

Combinatorial formulas for the coefficients of b,, and d,, above and combina-
torial formulas for the face enumeration of permutahedra and associahedra have
been known for a long time; and these formulas do coincide. However, our treat-
ment seems to be the first to truly explain the geometric connection. We derive
these inversion formulas in a unified fashion, exploiting the fact that both permu-
tahedra and associahedra are particular generalized permutahedra. In the case of
compositional inversion and associahedra, this answers a 2005 question of Loday
[66].

Our approach is again Hopf algebraic. The set of characters on a Hopf monoid
is endowed with a group structure. The product is convolution and the inversion
is precomposition with the antipode. For the Hopf monoid II, characters may
be identified with power series A(x) as in (1), with convolution corresponding to
multiplication. It follows that to understand the coefficients of B(x), it suffices
to understand the antipode of II. The Hopf monoid F and its antipode may be
similarly employed to deal with compositional inversion. We carry this work out in
Sections 2.2, 2.4, 5.6 and 5.7.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



8 INTRODUCTION

Outline

The material is organized into five chapters. Chapter 1 sets the foundations
and must be read first. The remaining chapters, while interconnected in various
ways, may be approached independently of each other. Section 4.3 depends on
Chapter 3, Sections 5.6 and 5.7 depend on Chapter 2.

Chapter 1: The Hopf monoid GP and its antipode. This chapter con-
tains the essential background on Hopf monoids in species (Section 1.1), introduces
a number of examples (Section 1.2) and goes on to discuss the central object in this
work, the Hopf monoid of generalized permutahedra (Sections 1.3-1.5). Normal
equivalence is a relation among polytopes. The quotient GP of the Hopf monoid
GP under this relation is defined in Section 1.4.3. In Section 1.6 we prove Theorem
1.6.1: this main result establishes that the antipode of GP maps a polytope to the
alternating sum of its faces. The Hopf monoids defined in Section 1.2 are those of
graphs G, matroids M, posets P, set partitions II, and partitions into paths F.
The chapter may serve as a quick introduction to Hopf monoids in species and to
illustrate their ubiquity in combinatorics.

Chapter 2: Permutahedra, associahedra, and inversion. This chapter
connects two particular Hopf monoids to operations on power series. This necessi-
tates one more ingredient from the general theory of Hopf monoids: the notion of
character and the group structure on the set of characters on a Hopf monoid. This
is discussed in the opening Section 2.1. The connection to power series is covered in
Sections 2.2 and 2.3. Restricting generalized permutahedra to products of standard
permutahedra yields a Hopf submonoid IT of GP. The group of characters on II is
isomorphic to the group of invertible power series under multiplication (normalized
by ag = 1). Interestingly, a parallel story unfolds replacing standard permutahedra
by associahedra. This results in a Hopf submonoid A and a group of characters
isomorphic to the group of invertible power series under composition (normalized
by ¢o = 1). Section 2.4 then uses these results and the antipode of GP to derive
Application C and obtain a unified explanation for the formulas computing the
inverse of a power series with respect to either multiplication or composition. This
material is complemented later in Sections 5.6 and 5.7, where it is shown that IT is
isomorphic to IT, and A to F.

Chapter 3: Submodular functions arising from combinatorial struc-
tures. This chapter centers around the notion of submodular function. Each gen-
eralized permutahedron in R’ is determined by a unique submodular function on
the Boolean poset 2! with values in R. Generalized permutahedra and submodular
functions thus constitute cryptomorphic notions. We review this fact in Section
3.1. Several combinatorial structures give rise to submodular functions (and hence
to generalized permutahedra). The notion of diminishing returns offers a useful
alternative characterization for these functions. Submodular functions associated
to graphs, matroids, and posets are discussed in Sections 3.2, 3.3, and 3.4. These
are the cut function of a graph, the rank function of a matroid, and the order
ideal indicator function of a poset. To cover the latter case, we consider extended
submodular functions, which take values in R U {oco}. They correspond to certain
unbounded polyhedra which we call extended generalized permutahedra. They give
rise to the Hopf monoid GP™.
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OUTLINE 9

In this manner these combinatorial structures are modeled by particular classes
of (extended) generalized permutahedra: graphic zonotopes, matroid polytopes,
and poset cones. From our perspective, this allows us to view G and M as Hopf
submonoids of GP (and P as a Hopf submonoid of GP') and then to obtain
antipode formulas for each of these Hopf monoids as corollaries to Theorem 1.6.1.
This accomplishes Application A. In the case of graphs, a closely related result was
obtained independently by Humpert and Martin [58, Theorem 3.1]. These authors
obtained the corresponding result for the Hopf algebra associated to G. In Section
3.2 we also answer some questions from [58, Section 5] on characters of complete
graphs. In the case of matroids, a formula for the antipode of the associated Hopf
algebra was obtained by Bucher, Eppolito, Jun, and Matherne in [24, Theorem
4.7].

Chapter 4: Characters, polynomial invariants, and reciprocity. This
chapters turns to Application B. The opening Section 4.1 discusses the construction
of polynomial invariants of combinatorial structures out of the choice of a character
on the corresponding Hopf monoid. We derive general properties of these invariants
in Propositions 4.1.1-4.1.3, and obtain a general reciprocity theorem in Proposition
4.1.5. Section 4.2 carries out this construction for a particular character of GP. In
Section 4.3 we derive the reciprocity theorems of Stanley on graphs and posets and
of Billera-Jia-Reiner on matroids as consequences.

Chapter 5: Hypergraphs, building sets, and related combinatorial
structures. The final chapter focuses on a particular family of generalized permu-
tahedra, the hypergraphic polytopes. In Section 5.1, we provide a characterization
of these objects answering a question of Rota. These polytopes give rise to a Hopf
submonoid HGP of GP. Section 5.2 introduces a Hopf monoid HG of hyper-
graphs. It is isomorphic to HGP and contains G. We study other interesting Hopf
submonoids of HG. One of them is the Hopf monoid SC of simplicial complexes.
We employ once again Theorem 1.6.1 to derive an antipode formula for SC. This
offers a geometric explanation for the antipode formula for the associated Hopf
algebra, which was obtained earlier by Benedetti, Hallam, and Machacek [14]. An-
other family of combinatorial objects (building sets) and their associated polytopes
(nestohedra) are considered in Section 5.4, together with the Hopf monoids they
give rise to. A third Hopf monoid of graphs, with operations of ripping and sewing,
is introduced in Section 5.5. It is denoted W and it maps to the Hopf monoid of
building sets. Sections 5.6 and 5.7 discuss how W contains both the Hopf monoid
IT of set partitions, and the Hopf monoid F of paths, giving rise to some interesting
enumerative consequences.

Conventions. We work over a field k of characteristic 0. We use H for Hopf
monoids in set species, H for Hopf monoids in vector species, and H for Hopf
algebras.
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10 INTRODUCTION

Future directions

The Hopf monoid structure on generalized permutahedra has an interesting
connection with McMullen’s polytope algebra [70]. This structure descends to the
quotient Hopf monoid I(GP) = GP/ie, where ie is generated by the inclusion-
exclusion relations P = ZQeP(—l)dim P=dim Q@) for any polyhedral subdivision P
of a generalized permutahedron P into generalized permutahedra. In particular,
the antipode now takes the elegant form s;(p) = (—1)/1=4imPp° where p° denotes
the relative interior of p. This was shown by Ardila and Sanchez in [12,82], and by
Bastidas in [13]. Ardila and Sanchez further show that this Hopf theoretic frame-
work offers a simple, unified explanation for many new and old valuative invariants
on matroids, graphs, and posets that have recently arisen in combinatorics and
algebraic geometry. They also prove that I(GP™") satisfies a natural universality
property, which partially explains the ubiquity of generalized permutahedra and
valuative invariants in the theory of Hopf monoids. Bastidas further shows that
this polytope algebra is a module over the Tits algebra of the braid arrangement,
and describes its composition factors combinatorially in terms of permutation sta-
tistics. He also obtains analogous results for the signed braid arrangement and
signed permutations.

Another main direction in which this work may be continued consists in ex-
tending its constructions to the setting of deformations of Coxeter permutahedra.
The latter are polytopal deformations of the Coxeter permutahedron 7y corre-
sponding to a finite Coxeter group W. The polyhedral foundations of this theory
have been laid out by Ardila, Castllo, Eur, and Postnikov [8]. They include con-
nections to Fomin-Zelevinsky and Hohlweg-Lange-Thomas’s Cozeter associahedra
[40,55], Fujishige’s bisubmodular functions [41], Gelfand and Serganova’s Cozeter
matroids [21,22], Reiner’s signed posets [78], Stembridge’s Cozeter root cones [96],
Zaslavsky’s signed graphs [102], and the weight polytopes describing the represen-
tations of semisimple Lie algebras [42]. An extension of the theory of Hopf monoids
that admits a real hyperplane arrangement as an input has been developed in recent
years by Aguiar and Mahajan [4,5]. A theory that incorporates aspects specific to
Coxeter arrangements is being developed by those authors and by Rodriguez [79].

We list other aspects that appear worth pursuing.

e There is a morphism of Hopf monoids GP — P which maps a generalized
permutahedron to the sum over its vertices of the normal cones at those
vertices. There is a similar map that sums normal cones over all faces.
These and related maps deserve study.

e The primitive part of the Hopf monoid G is described by Aguiar and
Mahajan in [3, Section 9.4]. The primitive part of several other Hopf
submonoids of GP are given by Sanchez in [81,82].
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CHAPTER 1

The Hopf monoid of generalized permutahedra

1.1. A brief guide to Hopf monoids in species

The theory of Hopf monoids in species developed in [2] constitutes a useful
algebraic tool to study many families of combinatorial objects of interest. The
structure captures procedures for merging two disjoint objects into one, and for
breaking an object into two disjoint parts. When certain simple axioms are satisfied,
these procedures define the product and coproduct in a Hopf monoid. One can then
use the general theory to obtain numerous combinatorial consequences. In Sections
1.1, 2.1, and 4.1 we outline the most relevant combinatorial features of this theory.
Our exposition is self-contained; the interested reader may find more details on
some of these constructions in [2].

1.1.1. Set species. We begin by reviewing Joyal’s notion of set species [15,
61]. This is a framework, rooted in category theory, used to systematically study
combinatorial families and the relationships between them.

DEFINITION 1.1.1. A set species P consists of the following data.

e For each finite set I, a set P[I].
e For each bijection ¢ : I — J, a map P[o] : P[I] — P[J]. These should be
such that P[o o 7] = P[o] o P[r] and P[id] = id.

It follows that each map Po] is invertible, with inverse P[o~!]. Sometimes we refer
to an element x € P[I] as a structure (of species P) on the set I.

Let [n] := {1,...,n}. It also follows that, for each for n € N, the symmetric
group S, acts on the set P[n] = P[{1,...,n}|. The action of ¢ € S, is the map
Plo] : P[n] — P[n].

In the examples that interest us, P[I] is the set of all combinatorial structures
of a certain kind that can be constructed on the ground set I. For each bijection
o : I — J, the map P[o] takes each structure on I and relabels its ground set to J
according to o.

EXAMPLE 1.1.2. Define a set species L as follows. For any finite set I, L[I]
is the set of all linear orders on I. If ¢ is a linear order on / and ¢ : I — J is a
bijection, then L[o](¢) is the linear order on J for which j; < ja if = 2(j1) < o 1(j2)
in £. If we regard ¢ as a list of the elements of I, then L[o](¢) is the list obtained
by replacing each i € I for (i) € J.

For instance, L[{a,b, c}] = {abc, bac, acb, bea, cab, cba} and if o : {a,b,c} —
{1,2,3} is given by o(a) = 1,0(b) = 2,0(c) = 3, then L[o] : L[{a,b,c}] —
L[{1,2,3}] is given by o(abc) = 123, o (ach) = 132, o(bac) = 213, o(bca) = 231, o(cab)
= 312, o(cha) = 321.

13
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14 1. THE HOPF MONOID OF GENERALIZED PERMUTAHEDRA

DEFINITION 1.1.3. A morphism f : P — Q between set species P and Q is a

collection of maps fr : P[I] — Q[I] which satisfy the following naturality axiom:
for each bijection o : I — J, f; o Plo] = Qo] o fr.

EXAMPLE 1.1.4. An automorphism of the set species L of linear orders is given
by the reversal maps revy : L[I] — L[I] defined by revr(ajas . ..a;) = a;...azaq for
each linear order on I written as a list aias ... a;.

1.1.2. Hopf monoids in set species. A set species P is connected if the
set P[] is a singleton. We make the assumption that all species are connected
throughout this work; occasionally we do this explicitly. This will let us state
the Hopf monoid axioms more briefly. In particular, the existence of an antipode
will not be required in the definition, as this is guaranteed by connectedness. The
antipode of a Hopf monoid is discussed later in Section 1.1.8.

A decomposition of a finite set I is a finite sequence (Sy,...,Sk) of pairwise
disjoint subsets of I whose union is I. In this situation, we write

I=S8U---US.

Note that I = SUT and I = T U S are distinct decompositions of I (unless
I=5S=T=0).

DEFINITION 1.1.5. A connected Hopf monoid in set species consists of the fol-

lowing data.

e A connected set species H.

e For each finite set I and each decomposition I = S LU T, product and

coproduct maps
A
H[S] x H[T] 225 H[I] and  H[I] =25 H[S] x H[T]

satisfying the naturality, unitality, associativity, and compatibility axioms below.

Before stating the axioms of a Hopf monoid, we discuss some terminology
and notation. The collection of maps u (resp. A) is called the product (resp. the
coproduct) of the Hopf monoid H. Fix a decomposition I = SUT. For z € H[S5],
y € H[T], and z € H[I] we write

A
(z.y) =5 2oy and 2 =25 (2]s,2/s).

We call z -y € H[I] the product of x and y, z|s € H[S] the restriction of z to S and
z/s € H[T|] the contraction of S from z. Finally, we call the element 1 € H[f)] the
unit of H.

The product keeps track of how we merge two disjoint structures z on S and y
on T into a single structure x - y on I, according to a suitable combinatorial rule.
The coproduct keeps track of how we break up a structure z on I into a structure
z|s on S and a structure z/g on T. Section 1.2 features five important examples.

The axioms are as follows. We note that each axiom can be rephrased in terms
of a commutative diagram; we invite the reader to draw those diagrams or to see
[2, Sections 8.2-8.3] for details.

NATURALITY. For each decomposition I = S U T, each bijection o : I — J,
and any choice of € H[S], y € H[T], and z € H[I], we have

Hlo](z - y) = Hlo[s](x) - H[o|7](y),
Hlo|(2)|s = Hols](zls),  Hlo](2)/s = Hol|r](2/s).
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1.1. A BRIEF GUIDE TO HOPF MONOIDS IN SPECIES 15

This says that relabeling may be performed either before or after merging and
breaking, without altering the result.

UNITALITY. For each I and = € H[I|, we must have
z-l=x=1- x|l =z =u1x/p.

This says that merging and breaking are trivial when the decomposition of the
underlying set I is trivial; here 1 represents the unique structure (of species H) on
the empty set.

ASSOCIATIVITY AND COASSOCIATIVITY. For each decomposition I = RUSUT,
and any « € H[R], y € H[S], z € H[T], and w € H[I], we must have

- (y-2)=(x-y) -z,
(w|pus)|r = wlr, (wlrus)/r = (w/r)|s, w/prus = (w/R)/s-

This says that successively merging three combinatorial structures on R, S,T into
one structure on I produces a coherent result (associativity) — namely Ag s (z,y, 2)
=z -y -z — and similarly for breaking a single structure on I into three structures
on R, S,T (coassociativity) — namely Ag sr(w) = (w|r, (w/r)|s, w/rus). By in-
duction, merging and breaking are then also well-defined for decompositions of I
into more than three parts (higher (co)associativity).

COMPATIBILITY. Fix decompositions SUT = I = S’ UT’, and consider the
pairwise intersections A :== SNS', B:=SNT', C:=TNS, D:=TNT as
illustrated below. In this situation, for any « € H[S] and y € H[T], we must have

(- y)lss =x|a-ylc and (z-y)/sr =x/a y/c.

This says that “merging then breaking” is the same as “breaking then merging”. If
we start with structures = and y on S and T', we can merge them into a structure
z -y on I, and then break the result into structures on S’ and 7’. We can also
break x (resp. y) into two structures on A and B (resp. C and D), and merge the
resulting pieces into structures on S’ and T". These two procedures should give the
same answer.

This completes the definition of connected Hopf monoid in set species. In the
cases that interest us, naturality and unitality are immediate and associativity is
very easy; usually the only non-trivial condition to be checked is compatibility.

We remark that in more general contexts, the definition of a Hopf monoid also
requires the existence of an antipode map, which we introduce in Section 1.1.8. In
the connected case, which is the one that interests us, this map always exists; see
also Remark 1.1.12.
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16 1. THE HOPF MONOID OF GENERALIZED PERMUTAHEDRA

Note also that the unitality axiom determines the maps psr and Agr uniquely
when one of the subsets S or T is empty. Thus, when specifying a Hopf monoid
structure, one may restrict attention to the case when both are proper and nonempty.

DEFINITION 1.1.6. A morphism f : H — K between Hopf monoids H and K is
a morphism of species which preserves products, restrictions and contractions; that

is, we have
f7(H[o](z)) = K[o](f1(x)) for all bijections o : I — J and all € H[I],
fr(x-y) = fs(x) - fr(y) for all I = SUT and all x € H[S], y € H[T],
fs(zls) = f1(2)ls, fr(z/s)=fi(z)/s foralll=SUT andall z € H[I].

Units are preserved by connectedness.

Suppose H is a Hopf monoid. Note that if I = S U T is a decomposition, then
I = TUS is another. Therefore, any x € H[S] and y € H[T] give rise to two
structures = - y and y - « on I. Similarly, any z € H[I] gives rise to two pairs of
structures (z|s, z/s) and (z/1, z|7) on (S,T).

DEFINITION 1.1.7. A Hopf monoid H is commutative if x -y = y - x for any
I=8SUT,x € H[S] and y € H[T]. It is cocommutative if (z|s, z/s) = (z/1, z|T) for
any I = SUT and z € H[I]; it is enough to check that z/g = z|p for any I = SUT
and z € H[I].

ExAMPLE 1.1.8. We now define a Hopf monoid structure on the species L of
linear orders of Example 1.1.2. To this end, we define the operations of concate-
nation and restriction. Let I = SUT. If /1 = s1...s; is a linear order on S and
¢y =11 ...t is a linear order on T, their concatenation is the following linear order
on I:

él '42 = 51...Sit1...tj.
Given a linear order £ on I, the restriction £ |g is the list consisting of the elements
of S written in the order in which they appear in ¢.

The product (merging) and coproduct (breaking) of the Hopf monoid L are
defined by

L[S] x L[T] 252 L[] L[1] 257 L[S] x L[T]
(01, 02) —— €1 - o 0 (U, blr).

Given linear orders ¢; on S and ¢5 on T, the compatibility axiom in Defini-
tion 1.1.5 boils down to the fact that the concatenation of ¢1]|4 and ¢3|c agrees with
the restriction to S’ of ¢1 - £5. The verification of the remaining axioms is similar.

By definition, /s = ¢|r, so L is cocommutative.

Many Hopf monoids are presented in this monograph, revolving around the
main example of the Hopf monoid of generalized permutahedra (Section 1.4). Ad-
ditional examples are given in [2, Chapters 11-13].

1.1.3. Opposite and co-opposite. Given a Hopf monoid H, the opposite
Hopf monoid H°? has the same coproduct as H, while the product is reversed:
wsr(z,y) in HP is pp s(y, ) in H. For example, for ¢1 and ¢5 as in Example 1.1.8,
the product in L°P is

61 'fg :t1...fj81...82‘.
The co-opposite Hopf monoid HP is defined by keeping the product and reversing
the coproduct: if Agr(z) = (z|s,2/s) in H, then Agr(z) = (2/r1, z|r) in HP.
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One easily verifies that H°P and HP are Hopf monoids. H is (co)commutative
if and only if H = H°P (H = H®P).

The reader may verify that the automorphism of the species L of Example 1.1.4
is an isomorphism of Hopf monoids L — L°P.

1.1.4. Vector species. All vector spaces and tensor products below are over
a fixed field k.
A wector species P consists of the following data.

e For each finite set I, a vector space P[I].

e For each bijection o : I — J, a linear map P[o] : P[I] — P[J].
These are subject to the same axioms as in Definition 1.1.1. Again, these axioms
imply that every such map P[o] is invertible. A morphism of vector species f :
P — Q is a collection of linear maps fr : P[I] — Q[I] satisfying the naturality
axiom of Definition 1.1.3.

1.1.5. Hopf monoids in vector species.

DEFINITION 1.1.9. A connected Hopf monoid in vector species is a vector species
H with H[()] = k that is equipped with linear maps
A
H[S| @ H[T] 225 H[I] and H[I] =25 H[S] @ H[T]
for each decomposition I = SUT, subject to axioms that naturally generalize those
in Definition 1.1.5. The axioms require the commutativity of certain diagrams;
see [2, Sections 8.2-8.3] for details.

We employ similar notations as for Hopf monoids in set species; namely,

pusr(z®y)=x-y and Agr(z)= Z z|ls ® z/s,

the latter being a variant of Sweedler’s notation for Hopf algebras. In general,
> z|s ® z/g stands for a tensor in H[S] @ H[T]; individual elements z|s and z/g
may not be defined.

A morphism of Hopf monoids in vector species is a morphism of vector species
which preserves products, coproducts, and the unit, as in Definition 1.1.6.

1.1.6. Linearization. Consider the linearization functor
Set —» Vec,

which sends a set to the vector space with basis the given set. Composing a set
species P with the linearization functor gives a vector species, which we denote P. If
H is a Hopf monoid in set species, then its linearization H is a Hopf monoid in vector
species. In this situation, the coproduct of H is of the form Agr(z) = z|s ® z/s,
where z € H[I] is a basis element of H[I], and the right-hand side is a pure tensor.

Most, but not all, of the Hopf monoids considered in this monograph are in
set species. The linearization functor allows us to regard them as Hopf monoids in
vector species also.

REMARK 1.1.10. The category of vector species carries a symmetric monoidal
structure. In any symmetric monoidal category one may consider the notion of Hopf
monoid. A Hopf monoid in the category of sets under cartesian product is precisely
a group. A Hopf monoid in vector species is a Hopf monoid in this categorical
sense. For more details about this point of view, and a discussion of set species
versus vector species, see [2, Chapter 8§].

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



18 1. THE HOPF MONOID OF GENERALIZED PERMUTAHEDRA

1.1.7. Higher products and coproducts. Let H be a Hopf monoid in vec-
tor species. The following is a consequence of the associativity axiom. For any
decomposition I = Sy L --- .S, with k > 2, there are unique maps

(4) HSi] oo HS) S v, HI) SR HS @ 0 HIS)
obtained by respectively iterating the product maps g or the coproduct maps A
in any meaningful way. As mentioned when discussing the associativity axiom in
Section 1.1.2, these maps are well-defined; we refer to them as the higher products
and coproducts of H.

For k = 1, we define p; and Ay to be the identity map id : H[I] — HJ[I]. For
k = 0, the only set with a decomposition into 0 parts is the empty set, and in that
case we let () : k — H[] and Ay : H[})] — k be the linear maps that send 1 to 1.

When H is the linearization of a Hopf monoid H in set species, we have higher
(co)products

sy, 5 (X1, xp) =x1 - ... - € H[T), Ag, . . s5.(2) = (z1,...,21)
whenever z; € H[S;] for i = 1,...,k, and z € H[I], respectively. We refer to z; €
H[S;] as the i-th minor of z corresponding to the decomposition I = S7 U - - - Sk;
it is obtained from z by combining restrictions and contractions in any meaningful
way.

1.1.8. The antipode and the antipode problem. A composition of a finite
set I is a decomposition I = S7 LI --- LISk in which each subset .S; is nonempty; we
write

(S1,...,5) E I
There is a unique composition of the empty set. It has no parts (k = 0).
If F=(5,...,Sk), we write

pE = fts,,....s, and Ap=Ag g,
for the higher (co)products (4). Each composite prApr maps H[I] to itself.
We let ¢(F) = k denote the number of parts of F.

DEFINITION 1.1.11. Let H be a (connected) Hopf monoid in vector species.
The antipode of H is the collection of maps

sy : H[I] — H[I],
one for each finite set I, given by
(5) S = Z(_l)E(F)MFAF = Z (_1)k/’651;~'~7SkASI;-~7Sk
FEI (S1,e,S1)ET
k>0

Note that sy = id and when [ is nonempty, the sum effectively starts at k =
1. The right hand side of (5) involves the higher (co)products of (4). Since a
composition of I can have at most |I| parts, the sum is finite. We refer to (5) as
Takeuchi’s formula. For alternate formulas and axioms defining the antipode of a
Hopf monoid, see [2, Section 8.4].

REMARK 1.1.12. In the general context of Remark 1.1.10, the antipode is part
of the definition of a Hopf monoid in a symmetric monoidal category. A Hopf
monoid is a bimonoid H for which the identity map is invertible in the convolution
monoid Hom(H, H); its inverse is called the antipode. For example, when a group
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1.1. A BRIEF GUIDE TO HOPF MONOIDS IN SPECIES 19

is regarded as a Hopf monoid (in the category of sets), the antipode is the function
that sends each element of the group to its inverse. In the connected situation,
Takeuchi’s formula (5) automatically guarantees the existence of the antipode.

The antipode is a central part of the structure of a Hopf monoid, and the
following is a fundamental problem.

ANTIPODE PROBLEM 1.1.13 ([2, Section 8.4.2]). Find an explicit, cancellation-
free formula for the antipode of a given Hopf monoid.

If H is the linearization of a Hopf monoid in set species H, the sum in (5) takes
place in the vector space H[I| with basis H[I]. The antipode problem asks for an
understanding of the coefficients of sy(h) for each basis element h in H[I].

REMARK 1.1.14. The number of terms in Takeuchi’s formula (5) is the or-
dered Bell number w(n) ~ n!/2(log2)"*!; the first few terms in this sequence are
1,1,3,13,75,541,4683,47293, 545835 [47]. Their rapid growth makes this equation
impractical, even for moderate values of n. To solve the Antipode Problem 1.1.13,
one needs further insight into the Hopf monoid in question.

1.1.9. Properties of the antipode. The following properties of the antipode
follow from general results for Hopf monoids in monoidal categories. The first result
states that the antipode reverses products and coproducts.

ProprosITION 1.1.15. Let H be a Hopf monoid and I = SUT a decomposition.
Then

(6) sr(z-y) = sr(y) - Ss(z) whenever x € H[S] and y € H[T),

(7) Asr(s1(2)) = ss(z/r) @ sr(z|r) whenever = € H[I].
PROOF. See [2, Proposition 1.22.(iii)]. O
More generally, let F' = (S1,...,S5%) be a composition of I. Denote the reverse

composition by F = (Sk,...,S1). Let the switch map
swr:H[S]]® - @ H[S,] — H[S] ® - - - @ H[S]]
reverse the tensor factors; that is,
SWE(T1 ® - Qug) =2 ® - Qa1
whenever x; € H[S;] for 1 <i < k. Let
Sp =85, ® - ®8g, : H[S1]®--- @H[S] - H[S1] @ --- @ H[Sk].

PRrROPOSITION 1.1.16. Let H be a Hopf monoid. For any composition F =
(S1,...,5%) of I,

(8) ST UF = HWFSWF SF, AFS]:SFSWFAF

PROOF. For k = 2, this is a restatement of Proposition 1.1.15. For k > 2, this
is the result of iterating Proposition 1.1.15. ]

ProPOSITION 1.1.17. Let H be a Hopf monoid that is either commutative or
cocommutative. For any finite set I,

(9) s? = id.

If H is commutative, then H and its co-opposite HP share the same antipode.
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If f :H — K is a morphism of Hopf monoids, then
(10) frsr=srfr.
PROOF. See [2, Propositions 1.16 and 1.22, Corollary 1.24]. (]

REMARK 1.1.18. A more general result than Propositions 1.1.15 and 1.1.16 is
given in [5, Lemma 12.12]. More general results than those in Proposition 1.1.17
are given in [5, Lemmas 12.2, 12.15, 12.17].

ExaMPLE 1.1.19. Consider the Hopf monoid L of linear orders in vector species.
Problem 1.1.13 asks for an explicit expression for s;(¢), where £ is a linear order on
a finite set I. Takeuchi’s formula (5) yields a very large alternating sum of linear
orders, but many cancellations take place. It turns out that only one term survives:

S](ilig .. Zn) = (—1)” Ip---1207.
In other words, up to a sign, the antipode simply reverses the linear order.

Here is a simple proof. When [ is a singleton, this follows readily from (5).
When |I| > 2, Proposition 1.1.16 tells us that the antipode reverses products,
which implies that Sp(i1ia...in) = S(i,1(in) - - - Sgi (1) = (=in) -+ (—01) =
(=1)™ 4y . . .i201, as desired.

For more complicated Hopf monoids, obtaining such an explicit description
for the antipode is often difficult. It requires understanding the cancellations that
occur in a large alternating sum indexed by combinatorial objects; the antipode
problem is therefore of a clear combinatorial nature.

Several instances of the antipode problem are solved in [2, Chapters 11-12]. In
Section 1.6 of this monograph we offer a unified framework that solves this problem
for many other Hopf monoids of interest, as outlined in the table in the introduction.
We describe a few consequences of these formulas in Sections 2.4, 4.1, 4.3, and 5.7.

1.1.10. From Hopf monoids to Hopf algebras. Our results on Hopf mon-
oids have counterparts for Hopf algebras, thanks to the Fock functor' K that takes
Hopf monoids in species to graded Hopf algebras. We only employ Hopf algebras
briefly in this monograph, but we provide this brief discussion for the benefit of the
interested reader. See [2, Section 15.1.1] for further details.

First let us see how a connected Hopf monoid on set species H gives rise to a
graded Hopf algebra K(H). Let H[n] = H[{1,...,n}] for n € N. Say hy, hy € H|n]
are isomorphic if they are in the same S,,-orbit; that is, if there exists a bijection
o : [n] = [n] such that o(h1) = ha. Let

K(H) := @ H, where H, :=span{isomorphism classes of elements of H[n]}

n>0

The operations of the Hopf algebra KC(H) are induced from those of the Hopf monoid
H by means of the processes of shifting and standardization:

e The product of [hi] € Hy, and [he] € Hy, is
[h1] - [he] = [Py - h3™] € Hi,sro,

where h;rkl is the image of hg under the order-preserving bijection from [ks] to
{k14+1,..., k1 + ko}.

Mn fact this is only one of four Fock functors; see [2, Sections 15.2, 17].

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1.2. GRAPHS, MATROIDS, POSETS, SET PARTITIONS, PARTITIONS INTO PATH 21

e The coproduct of [h] € Hy, is

A(r) = Y [std(hls)] @ [std(h/s)] € éHkQ@Hn—kv
[n]=SuUT k=0

where std(h|s) and std(h/g) are the images of h|g and h/g under the unique order
preserving bijections from S to [|S]] and from T to [|T'|], respectively.

More generally, a connected Hopf monoid in vector species H gives rise to a
graded Hopf algebra IC(H). The symmetric group S,, acts on H[n], and we define

K(H) := @Hn where H, :=H[n]/ span{w-h —h|w e S,,h € Hn|}.
n>0

The graded component H,, is known as the space of S,,-coinvariants of H[n|.

A morphism of species commutes with the symmetric group actions and hence
descends to coinvariants. In this manner, K acts on morphisms.

THEOREM 1.1.20 ([2, Proposition 3.50, Theorem 15.12]). IfH is a Hopf monoid
in species, ﬁten K(H) is a graded ilopf algebra. Furthermore, if S is the antipode
of H, then K(8) is the antipode of IC(H).

EXAMPLE 1.1.21. We invite the reader to verify that (L) = k[x], the polyno-
mial Hopf algebra on one generator, with ™ corresponding to the unique S,,-orbit
on L[n]. We have

n
A(z™) = Z <n> r'®@z"" and s(z") = (—1)"z".
im0 \!

Figure 1 shows antipode formulas for the Hopf algebras associated to some of
the Hopf monoids treated later in this work. They are to be compared with the
formulas in Figure 1, from which these formulas are derived. Isomorphic struc-
tures in H represent the same basis element in C(H), so their coefficients in Figure
1 combine into one coefficient in Figure 1. According to Theorem 1.6.1, the signs
appearing in the former figure only depend on the dimension of the polytope model-
ing the combinatorial structure. Hence, isomorphic structures occur with the same
sign, and cancellations do not take place in this passage. For other Hopf monoids
not related to generalized permutahedra, cancellations may occur.

1.2. G,M,P,II,F: Graphs, matroids, posets, set partitions, partitions
into paths

In this section, we illustrate the previous definitions with five examples of Hopf
monoids built from combinatorial structures. Some of these and many others appear
in [2, Chapter 13]. Important ideas leading to these constructions are due to Joni
and Rota [60], Schmitt [84], and many others; additional references are given below.

1.2.1. G: Graphs. A graph with vertex set I consists of a multiset of edges.
Each edge is a subset of I of cardinality 1 or 2; in the former case we call it a
half-edge.

Let G[I] denote the set of all graphs with vertex set I. One may use a bijection
o : I — J to relabel the vertices of a graph g € G[I] and turn it into a graph
Glo](g) € G[J]. Thus, G is a species, which we now turn into a Hopf monoid. Fix
I and a decomposition I = SUT.
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Graphs K(G):
S(o—o—$)=_o—o—$+2‘ o6 teo &b tooW—64bdéd-3eVié

o O

_0—0—3+20—2—o+‘ g+ 20 !_8008"'5. °

Matroids K(M):
s(e—e—8)

Posets K(P):

s(I><I):—I><I Y ACETAVEEYE PRETPRE

Partitions KC(IT):
[ ] [ ]
A’=A—6°\—2A+18° °_qpe °
o—O0 o—O0 o o

*—e e ©

S
o—o0

Paths K(F):
o—o—0

*—o
S(e—e—e—e)= —e—o—o—o+6 +3 -21 +14
[ J *—o o o o o

FicURE 1. Antipode calculations in Hopf algebras

e The product of two graphs g1 € G[S] and g € G[T] is the graph ¢; - g with
vertex set I and edge set the union of the edge sets of g; and those of g». Since the
vertex sets of g; and go are disjoint, so are the edge sets. Thus, an edge of g1 - g2
is an edge of exactly one of g or gs.

e The coproduct of a graph g € G[I] is Asr(g9) = (9ls,g/s) defined as follows. We
let g|ls € G[S] be the graph with vertex set S consisting of the edges and half-edges
of g which are incident to S only. The edges incident to T' (on at least one vertex)
are removed. By contrast, g/s € G[T] is the graph with vertex set T' consisting of
all edges and half-edges of g incident to T on at least one vertex: an edge {¢, s} in
g joining t € T and s € S becomes a half-edge at ¢ in g/g.

An example follows. Let I = {a,b,c,z,y}, S = {z,y}, and T = {a, b, c}.

X
a Yy X fo—
If ¢g= then g|g = y and g/s = .
b c _\ b{—oc

The Hopf monoid axioms are easily verified.
A simpler version of this Hopf monoid (disallowing half-edges) is discussed
in [2, Section 13.2]; this in turn elaborates on work of Schmitt [84].

ExaMPLE 1.2.1. Consider the antipode § for the linearization G of the Hopf
monoid of graphs. For a graph on 3 vertices, Takeuchi’s formula (5) returns an
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alternating sum of 13 graphs on the same vertex set, corresponding to the 13
compositions of a 3-element set. An explicit calculation yields

S(o—o—‘):_ + 6 oot b &1 0 646+ oo V¥V
a b c a b c a b c a b c a b c a b c
— b b b e Weé— e bV b eV
a b c a b c a b c a b c

Cancellations took place which resulted in a cancellation-free and combination-free
sum of only 9 graphs. The antipode problem 1.1.13 for the Hopf monoid G asks
for an understanding of this phenomenon. This problem is solved in Section 3.2.

1.2.2. M: Matroids. Let I be a finite set. A matroid on ground set I is a
nonempty collection m of subsets of I which is closed under inclusion and satisfies
the following axiom: if A and B are in m and |A| = |B| + 1, there exists a € A— B
such that BU {a} is in m.

The sets in the collection are called independent; the remaining subsets of I are
called dependent. The maximal independent sets are called bases. Matroids abstract
the notion of independence, and arise naturally in many fields of mathematics.
Three key examples are the following.

(1) Linear matroids: If I is a set of vectors linearly spanning a vector space V,
the collection of subsets of I which are linearly independent is a matroid.
The bases are the subsets of I which are linear bases of V.

(2) Graphical matroids: If T is the set of edges of a graph g, the collection of
subsets of I containing no cycles is a matroid. The bases are the subsets
of I which constitute a spanning forest of g.

(3) Algebraic matroids: If I is a set of elements which generate a field exten-
sion K of I, the collection of subsets of I which are algebraically indepen-
dent over F is a matroid. The bases are the subsets of I which constitute
a transcendence basis for K over F.

We review a number of basic operations on matroids; for more details on these
and other notions related to matroids, we refer the reader to [72,100].

Consider a matroid m on I and a decomposition I = SUT. The restriction of
m to S is the matroid on ground set .S defined as

mls={ACS|Aem}.
The contraction of S from m is the matroid on ground set 1" defined as
m/s ={B C T | there is a basis A of m|g such that AU B € m}.

Let m, and ms be matroids on ground set S and T, respectively, and I = SUT.
Their direct sum is the matroid on ground set I defined as

mq @mgz{A1UA2|A1 € my, A Gmg}.

Let M[I] be the set of matroids on ground set I. Again, M is a species, which
we now turn into a Hopf monoid. Fix I, S and T as above.
e The product of my € M[S] and mg € M[T] is their direct sum my ® ma.
e The coproduct of m € M[I] is Agr(m) = (m|s,m/g).

The Hopf monoid axioms boil down to familiar properties relating direct sums,
restriction, and contraction of matroids.
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The (linearization M of the) Hopf monoid M is discussed in [2, Section 13.8].
The crucial idea of assembling these matroid operations into an algebraic structure
goes back to Joni and Rota [60, Section XVII] and Schmitt [85, Section 15]. In
fact the terms restriction, contraction, and minor, which we employ for an arbitrary
Hopf monoid in set species, originate in this example.

EXAMPLE 1.2.2. We consider the antipode of the Hopf algebra IC(M), where
isomorphic matroids are identified. Let m be the matroid on {a, b, ¢, d} whose bases
are ab, ac, ad, be, and bd. Takeuchi’s formula (5) expresses the antipode s(m) as an
alternating sum of 73 matroids, but after extensive cancellation, one obtains:

o O

S(H—l):—H—l+2._2_.+8 $+2e !—8.°3+5. o

where we are representing isomorphism classes of matroids by affine diagrams [94];
points represent elements and the following represent dependent sets: any four
points, three points on a line, two points above each other, and one hollow point.
In particular, hollow points represent loops. The antipode problem 1.1.13 for the
Hopf monoid M asks for an understanding of this cancellation. This problem is
solved in Section 3.3.

1.2.3. P: Posets. A poset p on a finite set I is a relation p C I x I, denoted
<, which is reflexive, antisymmetric and transitive.

Let P[I] denote the set of all posets on I and P[I] its linearization; that is, the
vector space with basis P[I]. Then P is a set species and P is a vector species. We
turn P into a Hopf monoid in vector species as follows. Fix I = SUT.

e The product of p; € P[S] and ps € P[T] is the poset p; - pa on I which as a subset
of I x I is simply the (disjoint) union of the sets p; C .S x S and po CT xT. In
p1 - p2 there are no relations between elements of S and elements of T'.

e The coproduct Agr : P[I] = P[S] ® P[T] is the linear map determined by

Agr(p) = pls @ plr if S is a lower set of p,
ST 0 otherwise.

We say S is a lower set or order ideal of p if no element of T is less than an element
of S, and we let
pls =pN (S xS)

be the induced poset on S.

The Hopf monoid axioms are easily verified.

The Hopf monoid P is commutative but not cocommutative. It is discussed
in [2, Section 13.1]. Work of Malvenuto [69] and of Schmitt [85, Section 16] is at
the root of this construction. Work of Gessel [45] is also relevant.

WARNING. The vector species P is the linearization of the set species P, so
each space P[I] carries the canonical basis P[I]. Note, however, that Agr : P[I] —
P[S] ® P[T] does not always send a basis element in P[I] to a basis element in
P[S]xP[T]. In other words, the Hopf monoid structure on P is not the linearization
of a Hopf monoid structure on P.

EXAMPLE 1.2.3. We consider the antipode of the Hopf algebra of posets K(P),
where isomorphic posets are identified, and represent isomorphism classes by means
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S(M) = —M +2/\o +2v. —4Ioo+oooo

of unlabeled Hasse diagrams. For the class shown below (of a poset on four ele-
ments), Takeuchi’s alternating sum of 73 posets simplifies to:
The antipode problem 1.1.13 for posets is solved in Section 3.4.

1.2.4. II: Set partitions. A partition m of a finite set I is a covering of I by
nonempty and pairwise disjoint subsets: |_| B = 1. The sets B € 7 are called the

Berm
parts or blocks of .

Neither the blocks nor the elements within each block come in any specified
order. To display a set partition we arrange the blocks and the elements within
each block in an arbitrary order. For instance, {ab,cde} denotes the partition
m = {B,C} with blocks B = {a,b} and C = {¢,d, e}.

Let II[I] denote the set of all set partitions on I. Then IT is a set species. We
turn it into a Hopf monoid. Let I = ST be a decomposition.
e The product 7 - p € II[I] of # € II[S] and p € II[T] is the union of the two
collections. Thus, a block of 7 - p is either a block of 7 or of p.
e The coproduct of m € II[I] is Agr(m) = (w|s, 7|r) where 7|g is the collection of
nonempty intersections BN S for B € 7.

For example, if I = {a,b,c,d, e}, S = {a,b,d}, T = {c,e} and

m = {ab,cde} then 7|g={ab,d} and w/5=7|r = {ce}.

The Hopf monoid axioms are easily verified. The Hopf monoid II is both com-
mutative and cocommutative. The associated Hopf algebra /C(II) is the classical
Hopf algebra of symmetric functions. See [2, Sections 12.6 and 17.4] and [3, Section
9.3].

EXAMPLE 1.2.4. For the antipode s({ab, cde}), Takeuchi’s formula (5) returns
an alternating sum of 530 set partitions, which simplifies as shown below.

d d d d d d
®

rza I Zae SN T P S U S Zaa
be—ea be—ea be—ea be—ea be—ea be ea

g e o9, o3 g
c e c e c e c e c €
+6° “+4° +4% %44 °-12° ¢
be—ea be ea be ea be ea be ea

Here we represent a partition of I by a graph on I whose edges are the pairs of
elements in the same block. This graph is a union of complete graphs, one for each
block of the partition.

The antipode of II is fully described in [2, Theorem 12.47]. The result is
rederived here in Section 5.6. In Section 2.4 we apply this result to the calculation
of the multiplicative inverse of a formal power series.
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1.2.5. F: Paths and partitions into paths. Let I be a finite set. A path
on [ is an equivalence class of linear orders on I under reversal. For example, the
linear orders abc and cba represent the same path p on {a,b,c}.

A partition of I into paths is a partition of the set I together with a path pg on
each block B of the partition. We display partitions into paths in the same manner
as set partitions, but the elements within each block B are now listed by employing
one of the two linear orders that represent the path pg. For example, {ac, bde},
{ca,bde}, {ac,edb}, and {ca,edb} all represent the same partition into paths.

Let C[I] denote the set of paths on I and F[I] denote the set of partitions of T
into paths. They define set species C and F.

Let I = SUT be a decomposition. Given a path p € C[I], we define a path
pls € C[S] by erasing the elements of T' from p and splicing the resulting pieces
together into one path, so that elements of S that bound a run of consecutive
elements of T' in p become consecutive in p|g. We also define a partition into paths
p/s € F[T] by simply erasing the elements of S from p, so that the path p breaks
into the partition of T" whose paths are the maximal runs of elements of T in p.
For example, if I = {a,b,c,d,e, f}, S ={b,c, f}, T = {a,d, e}, and

p=abcdef, then p|lg=bcf and p/s={a,de}.

Both operations extend to partitions « into paths, by applying them to each path
p in a. Thus, if a € F[I], we obtain two partitions «|s € F[S] and a/s € F[T].
We employ these constructions to turn the species F into a Hopf monoid.
e The product a - 5 € F[I] of o € F[S] and € F[T] is the union of the two
collections of paths. Thus, a path of « - 3 is either a path of « or of 5.
e The coproduct of o € F[I] is Ag () = (s, a/s) defined as above.
The Hopf monoid axioms are easily verified.
We may embed C[I] into F[I] by viewing each path as a partition into a single
path. In this manner, the commutative monoid F is freely generated by the species

C.

EXAMPLE 1.2.5. Consider the single path abed € F[{a,b,c,d}]. For the an-
tipode s(abcd), Takeuchi’s formula (5) returns an alternating sum of 73 partitions
into paths which simplifies as shown below.

—eo—o —eo—o —eo—o —eo—o —e
S(e—e—e—o)= -o9 e e+22a bctabdiacdi2bcdy2abiad
a b c d a b c d (] [] [] ° *—e
d c b a c d b ¢
—e o—e —e —e —e o o
-5ab-5bc-5c¢cd-2ac-2bd-2adg414a b
o o o o ) [ ) o o [ 2 ) o e
c d a d a b b d a ¢ b ¢ c d

Here paths are represented by graphs, so that each pair of consecutive elements are
joined by an edge.

In Section 5.7 we solve the antipode problem 1.1.13 for F. In particular, we
explain why every coefficient in this formula is a Catalan number, and the number
of terms is also a Catalan number. We will also discuss how F is closely related to
the associahedron, the Faa di Bruno Hopf algebra, and the calculation the compo-
sitional inverse of a formal power series.

1.3. Generalized permutahedra

The permutahedron is a ubiquitous polytope. Its vertices are in bijection with
the set of permutations of a finite set. We are interested in its deformations, known
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as generalized permutahedra. This family of polytopes is special enough to welcome
combinatorial analysis, and general enough to model many combinatorial families
of interest. It is also precisely the family of polytopes which are amenable to the
algebraic techniques of this monograph, as Section 1.5 will show.

We now recall some basic facts about permutahedra and their deformations.
These results and other background on polyhedra may be found in [36,41,77,87,
98,103].

1.3.1. Normal fans of polyhedra. Let V be a Fuclidean space. Thus, V is
a finite dimensional real vector space endowed with an inner product (—, —).

Let p be a polytope (bounded polyhedron) in V and v € V' a vector. We refer
to the set

po={pe€p|(p,v) > (q,v) for all ¢ € p}

as the v-mazimum face of p. The set p, is then a face of p, the functional (—,v) is
constant on it, and greater than on the rest of p. In other words, the face p,, is the
locus of p where the functional (—,v) achieves its maximum.

N

FIGURE 2. a) A generalized permutahedron p. b) Two directions
v and w and the corresponding maximal faces p, and p,,.

The face p, only depends on the direction of v: dilating v by a positive scalar
results on the same face. If we intersect p with affine hyperplanes orthogonal to
v, P, is the last nonempty intersection we encounter as we travel outward in the
direction of v.

The same definition applies more generally when p is a (possibly unbounded)
polyhedron. In this case, the functional (—, v) may not achieve a maximum on it;
equivalently, the set p, may be empty.

We define the (open and closed) normal cones of a face q of a polyhedron p by

Ny(a) ={veV|p,=a},
Np(q) = {v eV |qis a face of p,},

respectively. They are polyhedral cones (open and closed, respectively), N,(q) is
the closure of Ny (q), dim N, (q) = dim V' — dim g, and q; is a face of gz if and only
if Ny (q2) is a face of Ny(qq).

The normal fan N, of p CV consists of the normal cones N, (q) for all faces q
of p. Its support is the cone of directions with respect to which p is bounded above.
In particular, it is a convex subset of V. If p is a polytope, the support is the whole
of V, and the fan N, is complete.
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Two polyhedra p and p’ in V are normally equivalent if they have the same

normal fan:

p=p = Ny =Ny;
that is, if N, and N, consist of exactly the same cones. A polyhedron is normally
equivalent to any of its translates or nonzero dilations.

We say a polyhedron q is a deformation of a polyhedron p if the normal fan
Ny is a coarsening of the normal fan N,; that is, every cone of N, is a subset of
a cone of Ny. We say q is an extended deformation of p if the normal fan N is a
coarsening of a convex subfan of the normal fan N,,.

When p is a simple polytope, it is shown in [76, Theorem 15.3] that we may
think of the deformations of p equivalently as being obtained by any of the following
three procedures:

e moving the vertices of p while preserving the direction of each edge, or

e changing the edge lengths of p while preserving the direction of each edge, or

e moving the facets of p while preserving their directions, without allowing a
facet to move past a vertex.

The Minkowski sum of polyhedra p and ¢ in V is

p+a={p+tqlpep, qgeqt V.

The normal fan N4 is the coarsest common refinement of the normal fans N,
and N;. Its cones are the nonempty intersections between cones in N, and cones
in NVj.

A zonotope is a Minkowski sum Z(A) = . 4 a of a finite set of segments A.
The deformations of zonotopes can be described more simply as follows.

PROPOSITION 1.3.1. [8, Prop. 2.6] Let A be a finite set of vectors in a vector
space V and Z(A) the corresponding zonotope. A polytope is a deformation of the
zonotope Z(A) if and only if every edge is parallel to some vector in A. More
generally, a polyhedron P in V is an extended deformation of Z(A) if and only if
every face affinely spans a parallel translate of span(S) for some S C A.

1.3.2. Lemmas from polyhedral geometry. For proofs of the results col-
lected here we refer to [103, Chapter 7).
Let V and W be Euclidean spaces and endow V' x W with the inner product
((v,w), (v, w)) = (v,0') + (w,w').
Given polyhedra p CV and q C W, let p x ¢ C V x W be their Cartesian product.
Maximum faces of a product are products of maximum faces, as follows.

LEMMA 1.3.2. Let p and q be polytopes in V' and W, respectively. Let v € V
and w € W. Then

(11) (p X q)(v,w) = Puv X qu-
In particular,
(12) (P X )00 =P xq and (P X q)0,w) =P X Gu-

Lemma 1.3.2 holds as well for polyhedra, assuming that v and w lie in the
support of N, and N, respectively. This is equivalent to assuming that (v, w) lies
in the support of Ny .

The following describes the result of computing maximum faces iteratively.
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LEMMA 1.3.3. Let p be a polytope in V. Let vy and vo € V. There exist
A1, Ao > 0 such that

(13) (pvl)v2 = Privi+Aovs-
In fact, there exists r > 0 such that (13) holds for all A1, Ao > 0 with Ay /Xy > r.

We abbreviate the above conditions on A1 and Ay by writing Ay >> Ao > 0.
Lemma 1.3.3 holds as well for polyhedra, assuming that v; and wvs lie in the
support of NV, which implies that A\jv; + Agvs also does.

The following is a consequence of Lemma 1.3.2.
LEMMA 1.3.4. We have
(14) Npxqg =Np X Ny.
More precisely, the faces of p x q are products of faces p; of p and q; of q, and
Noxa(p1 x g1) = Np(p1) x Ng(ar),

so that the cones in the normal fan of the product p x q identify with pairs of cones
in the normal fans of p and q.

LEMMA 1.3.5. Let p,p’ be polyhedra in V and q,q" be polyhedra in W. Then
(15) p=p and q=q <= pxq=p xq.
This follows from (14).

LEMMA 1.3.6. Let p = p’ be normally equivalent polyhedra in V. Let v be a
vector in the support of Ny = Nyr. Then

(16) Py =P,

1.3.3. Standard Euclidean spaces. Let I be a finite set I and R! the real
vector space whose vectors are I-tuples of real numbers:

R = {(ai)ief ‘ a; € R}
Let {e; | i € I'} be the standard basis of R!. For any subset S of I, let
€g = Z €;.
€S
We endow R’ with the standard inner product
iel
The standard basis {e;};cs is then orthonormal, and for all x € Rf,
(x,es) = Z ;.
€S
Let I =S UT a decomposition. Then
RY x RT =R/
as Euclidean spaces. Indeed, the coordinates of a vector x € R’ split into a pair
(y, z) where the coordinates of y are indexed by S and those of z by T.
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1.3.4. Standard permutahedra. Let I be a nonempty finite set and n =
|I|. The standard permutahedron wr is the convex hull of the points in R! whose
coordinates consist precisely of the elements 1,...,n, listed in any order:

mr = conv { (a;)ier | {ai}ier = [n]} C R

It is a convex polytope of dimension n — 1. We let m, = m[,) denote the standard
permutahedron in R”™.

For example, 745} is a regular hexagon lying on the plane z, + zp + z. = 6,
while ¢, 5.4} is a truncated octahedron on the hyperplane x4+ + . + x4 = 10
in R{a:b:ed}k - These polytopes are shown below, in each case next to the standard
simplex in R’ .

231) (13.2)

3,2,1) (1.2.3)

(31.2) (2.1.3)

Ra

The permutahedron 7; may also be described as the set of solutions (z;)ier €
R’ to the following system of (in)equalities:

() Sa= ("3,
(18) Z@g(n;l)_(t;l),

for all compositions (S,T) of I, where t = |T| =n — |S].

The facial structure of the permutahedron admits a simple description.
o (Dimension 0.) The vertices of 7y are in bijection with the linear orders on I.
The vertex corresponding to the order ¢ has ¢ coordinate equal to the position of i
in the reversal of ¢. For example, the linear order abc corresponds to the vertex in
the hexagon with coordinates z, = 3, x, = 2, . = 1. More plainly, the vertices of
7, are the n! permutations of (1,2,...,n).
e (Dimension 1.) There is an edge between two vertices « and y if and only if their
coordinates can be obtained from each other by swapping two consecutive values.
Thus z; =r and ; = r+1 become y; = r+1 and y; = r for some ¢ and j in I, 7 in
[n], while yx, = xy for k # i, 5. The edge joining  and y is then a parallel translate
of the vector e; — e;.
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e (Dimension n — 2.) The 2™ — 2 facets of 7y are in bijection with the compositions
of I into 2 parts. The facet corresponding to (T, S) is obtained by turning (18) into
an equality, and keeping the remaining (in)equalities.
o (Arbitrary dimension.) The (n — k)-dimensional faces of 7y are in bijection with
the compositions of I into k parts. For each composition F = (Sy,...,Sk) E I,
the corresponding face 7r has as vertices the permutations = € R such that the
coordinates {x; | ¢ € S1} are the largest |S1| numbers in [n], the coordinates {z; |
i € S} are the next largest |S2| numbers in [n], and so on. This description shows
that the face 7 is a parallel translate of the product of permutahedra 7g, x- - - x7g,
in RS x ... x R% =R,
e (Face containment.) Given compositions F' = (Sy,...,Sk) and G = (T1,...,T}),
we say that I refines G if each T; is a union of consecutive S;’s. It follows from
the preceding discussion that 7wg is contained in mg if and only if F' refines G.
There is another convenient representation of the permutahedron. If we let A;;
be the segment connecting e; and e; in R!, then we can represent the standard
permutahedron as the zonotope

(19) T = Z Aij-l-(i[.
itjel
Note that the summand e; simply affords a translation by the vector (1,...,1).

1.3.5. The braid arrangement. The braid arrangement B; consists of the
(g) hyperplanes in R? with equations
Yi =Yy, 1736172#]
If n =1, the arrangement is empty.

The faces of the braid arrangement are in bijection with compositions of I,
with F' = (Sy,..., Sk) labeling the face defined by the inequalities

yi =y ifi,5 €8, and y; > y;if i € Sy, j € Sp, a <b.

The vectors y lying in the relative interior of this face of By are precisely those for
which the y-maximum face of the standard permutahedron 7y is 7p.

In other words, the faces of the braid arrangement B; are precisely the cones
Nz, (7F) in the normal fan of the permutahedron m;. We call this fan the braid fan.

The vector ey = (1,...,1) is orthogonal to 7; and the line it spans is the
lineality space of the braid fan A, (the minimum cone in the fan). Two vectors
congruent modulo ey lie in the same cone of the fan.

Assume S and T are proper and nonempty. Then the vector eg lies in the open
face of By labeled by the composition (S,T). More generally, for F' as above and
any positive scalars \;, the vector
(20) Ares, + Ases us, + 0+ Ages uus;,
lies in the open face labeled by F. Among these there is the vector

(21) eF = 651 + esluSQ + e + eSIumuSk
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Note that egr = es + ey and
(22) erus,T + er,suT = er,s,r mod ej.

1.3.6. Generalized permutahedra. Recall that a fan G coarsens another
fan F (or F refines G) if every cone of F is contained in a cone of G or, equivalently,
if every cone of G is a union of cones of F. We are now ready to define our main
object of study.

DEFINITION 1.3.7. A generalized permutahedron on I is a deformation of the
permutahedron 7;7; that is, a polytope p € R whose normal fan N, coarsens the
braid fan N, .

Let p be a generalized permutahedron in R!. To a composition F of I, one
may attach a face of p, as follows. Recall that F' determines a face 7p of w;. By
assumption, the open cone ./V;SI (7r) is contained in a unique open cone of the form
Ny (q), where q is a face of p. We denote this face q by pr. Thus,

No@ = || Mg ().
Fipr=q
Equivalently, pr is the y-maximum face of p for any y lying in the open face of B;
labeled by F'. In particular,

(23) PF = Per,

where ep is as in (21) Every face of p arises in this manner, in general for several
compositions F'.

We wish to consider more general (unbounded) polyhedra. For this we allow
the support of the normal fan to be smaller than the ambient space R.

DEFINITION 1.3.8. An extended generalized permutahedron on I is an extended
deformation of the permutahedron 7;; that is, a polytope p C R whose normal fan
N, coarsens a subfan of the braid fan N, .

\ b/

The support of such a subfan coincides with the support of N, and hence must
be convex (in fact, a cone).

Since the permutahedron is a simple polytope, a generalized permutahedron is
obtained from it by shifting the facets while preserving their directions, without
letting a facet go past a vertex. To deform a permutahedron into an extended gen-
eralized permutahedron, vertices can be moved off to infinity, and facet hyperplanes
can be erased. The figure below shows the standard permutahedron in R* and four
of its deformations.
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Since the permutahedron 7; is a parallel translate of the zonotope of the root
system A; = {e; —e; : i,j € I}, the following is a special case of Proposition 1.3.1.

COROLLARY 1.3.9. A polytope p is a generalized permutahedron if and only if
every edge is parallel to a vector of the form e; —e; fori,j € I. More generally, a
polyhedron p in R is an extended generalized permutahedron if and only if every face
affinely spans a parallel translate of span(S) for some S C Ay ={e;—e; : i,j € I}.

REMARK 1.3.10. Generalized permutahedra were introduced by Postnikov in
[77], but have emerged in various forms and guises in the work of many authors.

Up to translation, generalized permutahedra are equivalent to base polytopes
of polymatroids, which were defined earlier by Edmonds [36]; see Section 3.1.3.
Generalized permutahedra are also equivalent to submodular functions [36,41,71,
87]; we discuss this further in Section 3.1. We have extended these definitions to
allow for unbounded polyhedra; similar generalizations were considered by Fujishige
[41] and Derksen and Fink [32].

Complete fans coarsening N, appear in [76] as complete fans of posets and in
[71] as convex rank tests. Not every such coarsening is the normal fan of a polytope.
When it is, the polytope is (by Definition 1.3.7) a generalized permutahedron.
Those polytopal fans are the submodular rank tests of [71]. It is shown in [71,
Theorem 9] that convex rank tests are in bijection with semigraphoids, a concept
arising in nonparametric statistics [30,73,97].

1.4. GP: The Hopf monoid of generalized permutahedra

We turn the collection of generalized permutahedra into a Hopf monoid in set
species. We focus on polytopes initially, and treat the unbounded case (extended
generalized permutahedra) in Section 1.4.5.

1.4.1. Cartesian product, restriction, and contraction. We introduce
suitable operations on generalized permutahedra. Let I be a finite set and I = SUT
a decomposition. Recall that

RY x RT =R’.
Assume that S and T are proper and nonempty.

PROPOSITION 1.4.1. Ifp C RS and q C RT are generalized permutahedra, then
p x q CR! is a generalized permutahedron.
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PROOF. By assumption, NV, and N, refine N, and N, respectively. Em-
ploying (14) we deduce that Nigxry, = Nrg X Ny, refines Ny x Ny = Nyxq. In
turn, the braid fan A, which is cut out by the hyperplanes z; = x; for 4,5 € I,
refines the product Ny, x Ny, of the braid fans in R® and R”, which is cut out
by the hyperplanes z; = z; for i,j € S or i,j € T. It follows that N, refines
Npxg- 0

Let F = (S,T). This is a composition of I. Given a generalized permutahedron
p C R!, the face pr of p is defined (Section 1.3.6). It is the eg-maximum face of

p, and more generally the y-maximum face for any y lying in the open face of B;
labeled by F.

PROPOSITION 1.4.2. There exist generalized permutahedra p|s C RS and p/s C
RT such that

(24) ps = Ppls X p/s.

PRrROOF. This result appears in [41, Theorem 3.15]. It may be also derived
from the proof of Theorem 3.1.3. |

We call p|s the restriction of p to S and p/g the contraction of S from p.
The figure below shows a generalized permutahedron p C R%°? and its faces

Pabd,c = Plava X P/apa € R4 x R® and Padpe = Plaa X P/ag C R x R
b
= X .
C a
d

S/

1.4.2. The Hopf monoid GP of generalized permutahedra. For each
finite set I, let GP[I] denote the set of generalized permutahedra on I. We agree
that GP[()] consists of a single polytope, the only polytope (the origin) in the 0-
dimensional space R?. A bijection ¢ : I — J induces a linear isomorphism

(25) R - RY, z—y

where y; = x,-1(;) for each j € J. This sends 7; and its faces bijectively onto s
and its faces. Therefore, it sends a generalized permutahedron on I to another on
J.

In this manner, GP is a connected set species. We turn it into a Hopf monoid
as follows. Let (S,T) be a composition of I.
e The product of p € GP[S] and q € GP[T] is

p-q:=pxqeGP[]
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e The coproduct of p € GP[I] is

AS,T(p) = (p|57p/5)7
where the restriction p|s € GP[S] and contraction p/s € GP[T] are defined in
Proposition 1.4.2.

THEOREM 1.4.3. These operations turn the set species GP into a (connected)
Hopf monoid.

PRrROOF. We verify two of the axioms; the others are straightforward.
Coassociativity. Let p C R! be a generalized permutahedron. We need to show
that for any decomposition I = RUS U T,

(plrus)lr =plr,  (plrus)/r=(p/R)ls,  P/rus = (p/R)/s
We may assume R, S and T are nonempty. We employ (12) and (24) to calculate

(Prus,)r,sur = (PlRUS X P/ RUS)R,SUT
=(plrus)r.s x p/rus = (Plrus)|r x (Plrus)/r X P/RuS,
(Pr,sur)rus,T = (PlrR X P/R)RUS.T
=plr % (p/R)s,r =plr x (p/R)ls % (p/R)/s-
Thus, it suffices to prove the equality of the polytopes (prusr)r.sur and
(pr,sur)rus,r- For this, we employ (13) and (20) to find that for A >> p > 0
and M >> ' >0,
(PrUS,T)R,SUT = (Perus)en = Prerustuen = PR,S,T;
(Pr,sur)RUS,T = (Per)enus = PXentuenns = PRS,T-

The last equations in each step above follow from the fact that Aeg,s + per and
MNer + p'erus lie in the open face of the braid fan labeled by the composition
(R,S,T).

Compatibility. Fix decompositions SUT = I = S"UT" and let A, B,C,D be
the pairwise intersections, as in (3). Let p € R and q C R” be generalized
permutahedra. We need to verify that

(P xq)ls =plaxglec and (pxq)/sr =p/axdq/c.

Ifany of A, B, C, D is empty, these hold trivially. Assume they are not. We calculate
employing (12) and (24), noting that ess = e4 + ec:

(IJ X Cl)|S’ X (P X CI)/S’ = (IJ X q)es/ =Pea X dec
=plaxp/axdle xa/c=(plaxdalc)x (p/axa/c).
The desired equalities follow. O

The Hopf monoid p is commutative but not cocommutative.

Having verified (co)associativity, we are now able to describe higher (co)products
in GP in geometric terms. Recall from (21) that if F = (S1,...,Sk) then ep =
es, +es,us, ++ - +es,L...us, , Where eg is the indicator vector of S in R for S C E.

PROPOSITION 1.4.4. Let F = (S1,...,Sk) be a composition of I. In the Hopf
monoid GP, the higher product and coproduct associated to F are as follows:
e For generalized permutahedra py ..., p, in RS . RS up(pr,...,px) =Pp1-...-
Pk-
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e For a generalized permutahedron p in R, Ap(p) = (p1,...,pxr) where p1,..., Pk

are the generalized permutahedra in RSt ... RS%, respectively, such that the ep-
mazimal face of p ispr =p1 ... Pi.

Consequently, we have
(26) wEAFR(P) =pr.

PrOOF. The expression for the higher product follows readily by associativity.
We prove the expression for the higher coproduct by induction on the number of
parts of F, recalling from (21) and (23) that pr = pe,. When F has one part,
er is orthogonal to p, so pr = p and the result holds. When F' has two or more
parts, let S be the first part, T the union of the remaining parts, and G the
composition of T' consisting of those parts. By the induction hypothesis we have
Ac(p/s) = (p2, ..., pr) for the generalized permutahedra po, ..., py in R%2 ... R
such that (p/s)e¢ = p2 ... pr. Now, ep = keg + eg lies in the same open face
of the braid fan as Aegs + peg when A, p > 0. In light of Lemma 1.3.3 and (12),
whenever A >> p > 0 we have

PP = Prestuce = (Pes)ec = (Pls X P/s)ec = Pls X (P/s)ec =P1 P2 Pk
where p; = p|s € GP[S]. By coassociativity,

AF(p) = (ldu AG)AS,T(F’) = (ldu AG)(p|S7p/S) = (p17p27 cee 7Pk)
as desired.
The descriptions of pupr and Ap imply that upApr(p) = pr. O

REMARK 1.4.5. In the language of polymatroids and submodular functions,
equivalent definitions of restriction and contraction were given by Edmonds in [36].
A similar Hopf algebraic structure on polymatroids was defined independently by
Derksen and Fink [32] at about the same time that our results were announced. In
our work we emphasize the polytopal perspective, which allows us to obtain many
new results.

1.4.3. Normal equivalence: the Hopf monoid GP. Let GP[I] denote the
quotient of the set GP[I] in which normally equivalent generalized permutahedra
in R are identified. This defines a quotient species GP of GP.

PROPOSITION 1.4.6. The Hopf monoid structure of GP descends to GP.

PRrROOF. The product descends to the quotient in view of (15). For the coprod-
uct, consider two normally equivalent generalized permutahedra p = p’ in R? and
let (S,T) be a composition of I. It suffices to show that pg 1 = p's -, again by (15).
This follows from (16) applied to the vector eg. / O

We obtain a quotient Hopf monoid
GP — GP.

The elements of GP|[I] are in one-to-one correspondence with polytopal coars-
enings of the normal fan of 7; (coarser fans which arise as normal fans of a polytope
in RY). There is a finite number of such coarsenings. It follows from the discussion
in [71, Section 4] that for |I| = 1,2, 3,4 there are 1, 2, 22, 22108 elements in GP[I].
Figure 3 shows the 22 classes for |I| = 3, together with the corresponding fans.

One may also define an intermediate quotient Hopf monoid in which generalized
permutahedra are identified only up to translations and dilations.
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FIGURE 3. The pantheon of generalized permutahedra on {a, b, c}.

1.4.4. Central symmetry. Given a polyhedron p, its opposite is
p={-z[zep}

We call p centrally symmetric if p = p.
For any face q of p, we have

(27) N5(@) = N (a).

A fan is centrally symmetric if for each cone in the fan, the opposite cone
belongs to the fan. It follows from (27) that if p is centrally symmetric, so is its
normal fan. Hence the same is true if p is normally equivalent to its opposite.

The standard permutahedron 7; is normally equivalent to its opposite, since
its translate to the origin (by means of —(";1)61) is centrally symmetric. It fol-
lows that the fan Ny, is centrally symmetric, and then that if p is a generalized
permutahedron in R’ so is p. We obtain a bijective map

GP[I] —» GP[I], pr—P,

and then an isomorphism of species GP — GP.
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PROPOSITION 1.4.7. The above map is an isomorphism of Hopf monoids GPP —
GP.

PROOF. The product is preserved since p x ¢ = p x q. To verify that the
coproduct is reversed, pick a generalized permutahedron p in R’ and a composition
(S,T) of I. Note that

er =eg +ejg.
We calculate using (24):

Pls X /s =Peg = Pez =Po,, =Plr X B/7.
The third equality holds since e; is orthogonal to p. This says that Agr(p) =
Ars(p). O

The map p — P is well-defined on classes under normal equivalence by (27), so
it descends to the quotient yielding an isomorphism of Hopf monoids GP™" - GP.

1.4.5. The Hopf monoid GP™" of extended generalized permutahedra.
For each finite set I, let GPT[I] be the set of extended generalized permutahedra
on I. Then GP™ is a set species in the same manner as GP is. Let GP™ denote its
linearization. We proceed to turn the latter into a Hopf monoid in vector species:
certain components of the coproduct are not defined set-theoretically. Let (S,T)
be a composition of I.
e The product of p € GPT[S] and q € GP1[T] is

p-qi=pxqecGPHI.
This operation is set theoretic, and extends linearly to ug 7 : GP1[S|@ GPT[T] —
GP*[I].
e The coproduct is defined on a basis element p € GP[I] by

Agr(p) = pls ®@p/s if eg lies in the support of N,
STWP) = 0 otherwise,

and extended linearly to Agr : GPT[I] = GPT[S] ® GPT[T]. This operation is
not set theoretic.

Propositions 1.4.1 and 1.4.2 hold for extended generalized permutahedra (the
latter in the case that eg lies in the support of the normal fan). This makes the
above operations well-defined.

Proposition 1.4.4 holds in the following form:

if F' lies in the support of Ny,
(28) HrAp(p) = {”F oP '

0 otherwise.

THEOREM 1.4.8. These operations turn the vector species GP™ into a (con-
nected) Hopf monoid.

PROOF. We verify coassociativity. Let (R,S,T) be a composition of I. The
key fact is this:

er,sur and egy g1 lie in the support of Ny <= er g1 does.

The forward implication holds by (22) and the comments following Lemma 1.3.3.
To show the backward implication, recall that the fan N, refines a subfan ¥ of N,.
Since e g, is interior to the cone of the braid fan spanned by er s and egus,r,
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if that subfan ¥ contains er g7, it must contain the generating rays er sy and
€RUS,T-

This fact guarantees that if one encounters 0 in calculating (idxAg 1) A g sur(p),
then one also encounters 0 in calculating (Ag s x id)Agys,7(p). When 0 is not en-
countered, coassociativity holds by the same argument as in Theorem 1.4.3. The
compatibility axiom requires a similar check. (I

The Hopf monoid GP™ contains GP as a Hopf submonoid.

Repeating the construction of Section 1.4.3, we let GP*' denote the Hopf
monoid of extended generalized permutahedra modulo normal equivalence. We
obtain the commutative diagram of Hopf monoids below.

GP_— GP™"

|

GP—— GP™
1.5. Maximality of GP

In Section 1.4 we endowed the family of generalized permutahedra with the
structure of a Hopf monoid in set species. The operations capture natural geometric
features of this family of polytopes. One may wonder if other families of polytopes
may lend themselves to the same treatment. We show here that this is not the case:
generalized permutahedra constitute the largest such family.

Suppose P is a connected Hopf monoid in set species such that for every finite
set I and composition (S, T) of I, the following properties hold.

e The elements of P[I] are polytopes in R7.
e The action of a bijection I — J on polytopes is induced from the map R/ — R
in (25).
e The product pugr(p,q) € P[I] of two polytopes p € P[S] and q € P[T] is their
cartesian product p x ¢ C RS x RT = R/,
o If we write the coproduct of p € P[I] as
Asr(p) = (pls,p/s) € P[S] x P[T],
then the polytope p|s x p/s € R® x RT = R is the maximum face of p in the

direction of eg.

THEOREM 1.5.1. Suppose P is as above. Then every polytope in P[I] is a
generalized permutahedron on I, and P is a Hopf submonoid of GP.

PRrOOF. Connectedness means that P[(}] consists of a single polytope, the only
polytope (the origin) in the 0-dimensional space R?. Denote it 1.
First notice that for any polytope p € P[I] we have, by counitality for P,

ey =plr xp/r=px1=p.
It follows that (—,e;) is constant on p. Therefore p is not full-dimensional, and
the direction e is in the lineality space of its normal fan ./\/p. In other words, ey
belongs to every cone in N,.
Write psr = p|s X p/s when (S,T) is a composition of I. As in the proof of
Theorem 1.4.3, coassociativity for P implies that

(Prus,T)r,suT = (PR,SUT)RUS,T
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when (R, S,T) is a composition of I. Let us denote this polytope pr s 1. Then by
(13) we have
pR,S,T - p)\eRuer,ueR - p)\’eRqL,u’eRus

for A >> p > 0and N >> ' > 0. It follows that Aegus + per and Neg + p'erus
are both in the normal cone Np(pR’S’T). Since that cone is closed, we may take
the limits in which p/\ and p//)\ approach 0 and obtain that e s and eg are in
Ny(pr,s,7). Since the braid cone Ny, (mg,s,r) is spanned by {er, erus, erusur =
er}, it must be contained in the normal cone N, (pr,s,7). We conclude that every
three-dimensional cone of the braid fan M, is contained in a cone of the normal
fan N, of p.

We now use higher coassociativity to carry out the analogous argument for any
composition F = (S, ...,Sg) of I, using Proposition 1.4.4. The higher coproduct
Ag, ... s.(p) = (p1,...,px) may be computed by iterating the coproduct maps Ag ¢
in any meaningful way. Write pp = p1 X - -Xpg. Each way gives rise to an expression
for this face of p. One of them is

pr = (" ((PS1U-USk_1,5k) 81U LSk 2,85 1Sk )...) 1,551 LiSy -

This implies, by (13), that A1eg,...us,_, + A2€syuUS,_s + -+ + Ap—1€s, lies in
the normal cone N, (pp) for any Ay >> Xy >> -+ >> M1 > 0. By sending
Ae—1/Ak—2, -5 A3/A2, A2/A1 — 0 in that order, we obtain eg,..us, , € Np(pr)-
By computing the coproduct in different ways, we similarly obtain eg,...us;, €
Ny(pr) for any 1 < j < k — 1. We already know that eg,;...us, = er € Np(pr)
as well. Therefore, N, (pr) contains the cone spanned by the vectors eg,, es,s,,
.. y€8,u--US,, and this cone is N, (7).

It follows that every cone in the braid fan Ny, is contained in a cone of the
normal fan N,. By definition, this means that p is a generalized permutahedron.

This shows that, for each I, P[I] is a subset of GP[I], and the condition on
the action of bijections guarantees that P is a subspecies of GP. The remaining
conditions state that the operations on P are the restriction of those of GP. It
follows that P is a Hopf submonoid of GP, as desired. O

A similar result holds for Hopf monoids built out of (possibly unbounded)
polyhedra. They are necessarily Hopf submonoids of GP1. We leave the details to
the reader.

1.6. The antipode of GP

In this section we derive a remarkably simple formula for the antipode of the
Hopf monoid of generalized permutahedra. This is the best possible formula in that
it involves no cancellations or repeated terms.

If p € R’ is a generalized permutahedron, then so is every face q of p by
Corollary 1.3.9.

THEOREM 1.6.1. The antipode of the Hopf monoid GP of generalized permuta-
hedra is given by the following cancellation-free and combination-free formula.
If p is a generalized permutahedron on I, then

(29) s1(p) = (=D)'TY_(—1)tmag,

q<p
where the sum is over all faces q of p. The same formula holds for the antipode of
the Hopf monoid GP™ of extended generalized permutahedra.
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PrOOF. Takeuchi’s formula (5) together with (26) give us

si(p) = Y (=) prAp(p) = (=1 pp.

FET FET
This is indeed a linear combination of faces of p. Collecting the coefficient

Qq = Z (=)

FEI: pp=q
of each face q of p, we have
si(p) =Y aqq,
q<p

and we are left with the task of proving that o = (—1)/fI=dima,

Since the fan N refines the fan N7 , we have
pr=1q < N7 (7r) CN;(q).

Define

Co={FFEI|NZ (rr) SNJ(a)} and Cq={FFI|NZ (7r)C Np(a)}.
Noting that £(F) = dim N7 (7r), we have

imN°® (np
ag =y (=1t e,
Fec,

We would like to interpret this sum as an Euler characteristic, but as F' varies in
Cq, the set of cones N (7r) does not constitute a polyhedral complex, since it is
not closed under subfaces. To remedy this, we observe that the cones indexed by
a as well as those indexed by C_q — Cq do constitute polyhedral complexes. We may
then rewrite the previous equation as

ay = Z (_1)dimN;:I(7rF) _ Z (_1)dim./\/,:1(ﬂ'p‘)
FeCq FeC,—Cq
= Y(Cq) - Y(Cq - Cq)a
where Y denotes the reduced Euler characteristic. We employ it since we want to
count the composition (I) which belongs to both complexes.

Let us intersect the cones in N, with the sphere S = {z € Rl | Y x; =
0, 22 = 1}. The resulting cells form a CW-decomposition of S, namely, the
Coxeter complex of type A;. The cells indexed by a form a CW-decomposition
of Np(q) N'S, while the cells indexed by Cq — Cq form a CW-decomposition of
ON,(q) N'S. So we have

ap =XNp(9) N S) = X(ON,(a) N S).

We now observe that if q is a proper face of p, N,(q) NS is a ball of dimension
dim N, (q) — 2, and ON,(q) NS is a sphere of dimension dimN,(q) — 3. Therefore,
in this case,

oy = 0— (_1)dim./\/p(q)73 — (_1)|I|7dimq.

On the other hand, N, (p) NS is a sphere of dimension dim N, (p) —2, and ON, (p)NS
is empty. So in this case

Qy = (_1)dimNp(P)72 0= (_1)|I|7dimp

as well. This completes the proof of (29).
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The formula is cancellation-free and combination-free since distinct polytopes

are linearly independent in GP.
Formula (29) holds for the Hopf monoid GP™, as stated. In the proof, we
employ (28) in place of (26), and the rest of the argument goes through unchanged.
|

REMARK 1.6.2. Let P = kP be any linearized Hopf monoid. The coefficients
of the antipode on the basis P always admit a description in terms of the reduced

Euler characteristic of a pair of complexes. See [4, Section 7.7] and [5, Section
12.9].

The formula also holds for the quotients GP and GP*1. At this level it is
no longer combination-free, since normally equivalent faces may occur. It is still
cancellation-free, since normally equivalent polytopes have the same dimension and
hence only terms of the same sign may combine in (29). For example, the 11 faces
of the pentagon in GP|a, b, | combine in the antipode formula as follows.

(@)= ()2 N2 -5

The Hopf monoid GP is commutative, so by Proposition 1.1.17 the antipode
is involutory. The reader may enjoy verifying from (29) that this boils down to the
fact that in the poset of faces of the polytope p, the Mobius function satisfies

(q p) ( )dlmp dlmq
This holds since the poset of faces of a polytope is Fulerian.
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CHAPTER 2

Permutahedra, associahedra, and inversion

2.1. The group of characters of a Hopf monoid

We return to the general setting of Hopf monoids of Section 1.1. We define
the notion of characters on a Hopf monoid, and discuss how they assemble into a
group. We use this general construction to settle a question of Loday [66] and a
conjecture of Humpert and Martin [58] in Sections 2.4 and 3.2, respectively.

2.1.1. Characters.

DEFINITION 2.1.1. Let H be a connected Hopf monoid in vector species. A
character ¢ on H is a collection of linear maps
¢ H[I = Kk,
one for each finite set I, subject to the following axioms.

NATURALITY. For each bijection o : I — J and & € H[I], we have {; (H[o](z)) =
().

MULTIPLICATIVITY. For each I = SUT, z € H[S] and y € H[T], we have
Cr(z - y) = Cs(@)Cr(y).

UNITALITY. The map (p : H[0)] — k sends 1 € k = H[}] to 1 € k: we have
Gp(1) =1.

In most examples that interest us, naturality and unitality are trivial, and
we can think of characters simply as multiplicative functions. When H is the
linearization of a Hopf monoid H over set species, the characters ( are constructed
easily: one chooses arbitrarily the value (;(h) for each object h € H[I] that is

indecomposable under multiplication, and then extend those values multiplicatively
to all objects.

2.1.2. The character group. The characters of a connected Hopf monoid
H have the structure of a group, called the character group X(H).

THEOREM 2.1.2. Let H be a connected Hopf monoid in vector species. The set
X(H) of characters of H is a group under the convolution product, defined by

(30) (p)i(@) = > ¢slls)vr(z/s)

I1=5uT
for characters ¢ and 1. The identity € is given by e = 0 if I # 0 and ey(1) = 1.
The inverse of a character ¢ is ( oS, its composition with the antipode S of H.

PrOOF. We need to check that the convolution product of characters ¢ and
is indeed a character. Let I = SUT be a decomposition and z = z -y for € H[S]

43
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44 2. PERMUTAHEDRA, ASSOCIAHEDRA, AND INVERSION

and y € H[T|. Then, using the notation of (3) and the compatibility of the product
and coproduct, we get

(p¥)1(z - y)
= > esl@-pls)r(@-v)/s)= Y, es@la-ylo)r(z/a-y/c)
I=s'uT’ I=s'uT’

D> pal@la)ecle)s(@/)bp(y/c) = (gb)s(z) - (e¥)r(y)

S=ALB
T=CuD

as desired. It is easy to check that e is indeed the identity, and the description of
the inverse follows from [2, Definition 1.15]. O

There is a well-known analogous notion for Hopf algebras. If H is a Hopf
algebra, then a character is a function from H to k that is multiplicative and
unital. The characters of H form a group under the convolution ¢y = m(¢ @ ) A.
In this group, the inverse of a character ¢ is ¢ o S, where § is the antipode.

We mentioned in Section 1.1.8 that the antipode of a Hopf monoid plays the role
of the inverse function in a group. The previous theorem is a concrete manifestation
of that analogy. The following is another fundamental question.

PROBLEM 2.1.3. Find an explicit description for the character group of a given
Hopf monoid.

We will now answer Problem 2.1.3 for permutahedra and associahedra, in Sec-
tions 2.2 and 2.3 respectively. This will establish the connection between these
Hopf-theoretic structures on polytopes and the inversion of power series, as de-
scribed in the introduction.

2.2. II: Permutahedra and the multiplication of power series

In this section we consider the Hopf monoid of permutahedra, and show that
its character group is the group of formal power series under multiplication.

Recall that 77 is the standard permutahedron in RY. Let II be the Hopf sub-
monoid of GP generated by the standard permutahedra, where the Hopf monoid
GP is the quotient of GP where we identify generalized permutahedra with the
same normal fan.

LEMMA 2.2.1. The coproduct of 11 is given by
AS,T(ﬂ'I) = (ms, 7).
for each decomposition I = SUT.

PROOF. From the description of the faces of permutahedron 7; C R’ in Section
1.3.4 we know that the maximal face of 7y in the direction of 1g is 7g 1 = 7r|s X
m1/s where 7r|g is a translation of mg and 77 /g is equal to mp. The result follows.

O

This implies, in particular, that the corresponding Hopf monoid in vector
species is given by

(31) II[I] = span{mg, x --- x 7g, | [ = S1U---U Sk}

We can now prove the main result of this section.
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THEOREM 2.2.2. The group of characters X(II) of the Hopf monoid of permu-
tahedra is isomorphic to the group of exponential formal power series

2 3
x T
{1+a1m+a2§+a3§+---|a1,a2,...6k}

under multiplication.

PRrROOF. Since characters are multiplicative and invariant under relabeling, a
character ¢ of II is uniquely determined by the sequence (1, 1, 2o, . ..) of values that
it takes on the standard permutahedra of order 0,1,2,.... Here z, = (;(my) for
|I| = n. (Recall that any character has zg = (y(1) = 1.) We encode this sequence
in the exponential generating function ((t) = 1 + 21t + 22t%/2! + 23t3/3! + -+ -.
Conversely, any such formal power series determines a character of II.

Now suppose that two characters ¢, ¥ and their convolution product @iy give
rise to sequences (1,a1,as,...), (1,b1,b9,...), and (1,cy, ca,...), respectively. Con-
sider any I with |I| = n. By (30) we have

e = (el = Y gslrs)br(nn) =Y (Z>akbnk.

I=SuT k=0
This is equivalent to

" xF x!
eP(x) = chm = Zakﬁ Zblﬁ =: p()Y(v),

n>0 ’ k>0 ’ 1>0

as desired. O

Using Lemma 2.2.1 it is not difficult to see that the Hopf monoid of permu-
tahedra II is isomorphic to the Hopf monoid of set partitions II. Theorem 1.6.1
then gives us a combinatorial formula for the antipode of the Hopf monoid of set
partitions II. We will carry out this computation in Section 5.6, and explain why
the Fock functor K takes the Hopf monoid or permutahedra IT to the Hopf algebra
of symmetric functions A.

2.3. K(A): Associahedra and the composition of power series

In this section we consider the Hopf algebra K(A) of Loday associahedra, and
show that its character group is the group of formal power series under composition.

2.3.1. Loday’s associahedron. The associahedron is “a mythical polytope
whose face structure represents the lattice of partial parenthesizations of a sequence
of variables” [52]. Stasheff [95] constructed it as an abstract cell complex in the
context of homotopy theory and Milnor suggested that it could be realized as a
polytope. There are now many different polytopal realizations due to Tamari,
Stasheff, Haiman, Lee, and others; see [27] for a survey. We will focus on the
following construction due to Loday [65] and, in this formulation, to Postnikov
[77].

DEFINITION 2.3.1. Let I be a finite set and ¢ be a linear order on I. Loday’s
associahedron a, is the Minkowski sum

ar = Z A[iaj]z

i<j
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46 2. PERMUTAHEDRA, ASSOCIAHEDRA, AND INVERSION

where [i,j] ={m € I|i <m <jin ¢} is the interval from ¢ to j for ¢ < j in ¢.

We let a,, denote the Loday associahedron for the natural order of [n]. We
state the following theorem for completeness, but the connection between the asso-
ciahedron and parenthesizations will be irrelevant for now. We will return to this
connection and its combinatorial consequences in Section 5.7.

THEOREM 2.3.2 ([65,77]). Loday’s associahedron a, is a simple polytope whose
face poset is isomorphic to the poset of partial parenthesizations of a sequence of

n + 1 variables ordered by refinement. In particular, the number of vertices is the

Catalan number C,, = n+_1 (2:)

A key property of Loday’s associahedron is the following.

LEMMA 2.3.3. Let I be a finite set and ¢ a linear order on I. Let I = SUT be
a decomposition and let T =Ty L --- U Ty be the decomposition of T into maximal
subintervals of £. Then

ae|55ae|s, az/szﬂemx'“Xﬂem

where = denotes normal equivalence and for each subset U C I, £|U denotes the
restriction of the linear order £ to U.

PROOF. Let us write [i,j] for [i,j]s for simplicity. The maximal face of a
Minkowski sum P + @ in direction v is (P + Q), = P, + @, [51]. Therefore the
1s-maximal face of ay is

(a)sr = ()1 =D (Dug)y, = D Dugnst D Aug,
i<j i< |[i,51NS#0 i<j|[i,4]CT
where the first summand lives in R® and the second lives in R”, so they are (as)|s
and (ay)/s, respectively. In R” we have

k k
(@)/s= D> Dujg=>. D, Auj=> ayn =agp XX gy,
t=1

i<j|[i,51CET t=1 i<j|[i,5]CT

as desired. In R we get

@)ls= > Aujns-
i<j1[i,j]NS#0
Now notice that [i,j] NS is always a subinterval of S with respect to the induced
order ¢S, and every such subinterval equals [i, 5] N S for some choice of i < j in
{. Tt follows that the Minkowski sum above involves the same summands as the
Minkowski sum defining a, |5 — possibly with different coefficients.

We now recall the fact that the normal fan N (P+Q) is the common refinement
of N(P) and N(Q), while N (AP) = N(P) for any A > 0 [51]. Therefore the normal
fan of a Minkowski sum of scaled polytopes Y. A\, P; does not depend on the scaling
factors A; as long as they are all positive. This implies that (a¢)|s = a5 as
desired.

The above description of (ag)sr = (ag)|s x (ar)/s has a nice pictorial de-
scription. It is natural to arrange the summands of a, = Zlgz‘gjgn A, ) into a
staircase of size n, as shown in the left panel of Figure 1 for n = 9. To get the
1s-maximal face (a,)s 7 we replace each summand Ay ;) with (A ;1)15. We can
separate the resulting summands into a staircase above each one of the T;s — which
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FIGURE 1. The Minkowski sum decompositions of ag and (ag)14s 235679-

give the associahedra ay|z,,..., a7, — and a (fattened) staircase above S which
gives a polytope normally equivalent to ay|g. This is illustrated in the right panel
of Figure 1 for the decomposition [9] = {1,4,8} L {2,3,5,6,7,9}.

2.3.2. The Hopf algebra of Loday associahedra and its character
group. We consider the Hopf monoid A generated by associahedra inside the Hopf
monoid GP of generalized permutahedra modulo normal equivalence. We also con-
sider the Hopf algebra of associahedra K(A) obtained by applying the Fock functor
K to the Hopf monoid A. Recall that the Fock functor /C identifies elements of
H[n] in the same S, orbit. Since every linear order ¢ on [n] has a bijection to [n],
every corresponding Loday associahedron a; in R” is identified with the standard
Loday associahedron a,, in the Hopf algebra (A). Lemma 2.3.3 may be restated
algebraically as follows.

COROLLARY 2.3.4. The coproduct of a Loday associahedron in GP is given by

Asr(ag) = (ag)s, agimy, X -+ X g7, )-

for each linear order £ on I and each decomposition I = SUT, whereT = TyU- - -LUTy
is the decomposition of T into mazimal intervals of £.

In particular, it follows that A[I] consists of products of associahedra:
(32)  AlI] ={ay, x -+ xag, | ¢ is a linear order on S; for I = Sy U--- U Si}.

We can now prove the main result of this section.
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THEOREM 2.3.5. The group of characters X(K(A)) of the Hopf algebra of as-
sociahedra is isomorphic to the group of ordinary formal power series

{x+a1x2+a2x3—|—--- | a1,az,... €k}
under composition.

PROOF. A character ¢ of K(A) is uniquely determined by the sequence (1, z1, 29, . . .)
where z, = ([n(an). We encode that character in the formal power series ((t) =
t 4+ 2112 + 29t3 + - - - . Conversely, any such formal power series gives a character of
KA).

Now suppose that two characters ¢, ¥ and their convolution product @i give
sequences (1, a1, as,...), (1,b1,ba,...), and (1, ¢, co,...), respectively. By (30) and
Corollary 2.3.4,

et = (PP)m-y(an-1) = Y ws(ag)dn (an) - vr (an,)-

[n—1]=5uT

where T = Ty U --- U T} is the decomposition of T into maximal subintervals of
[n— 1], and S, T1,..., T} are listed in their standard linear order.

Each (k — 1)-subset S C [n — 1] determines a “gap sequence” 41, ...,%; where
i; = |T}| is the number of elements of [n—1] in the gap between the (j—1)th and the
jth elements of S. These non-negative integers satisfy 41 +---+ip+(k—1) =n—1,
and it is clear how to recover S from them. Since a,_1|s = ax—1 and a,_1/s =
a;, X -+ x a;, by Lemma 2.3.3, we may rewrite the above equation as

n
Cn—1 = g ak—lbil bzk
k=1 i1

i1y i, >0
it drigt(k—1)=n—1

which is equivalent to

GU(t) == cnaa" = ap | Y b = o(v(t),

n>1 k>1 i>0

as desired. O

A similar Hopf-theoretical result, without the connection to associahedra, is
due to Doubilet, Rota, and Stanley [34].

In light of Corollary 2.3.4, Theorem 1.6.1 gives us a combinatorial formula for
the antipode of the Hopf monoid of paths A. We will carry out this computation in
Section 5.7, and relate the Hopf algebra of associahedra K(A) to the Fai di Bruno
Hopf algebra F'.

2.4. Inversion of formal power series and Loday’s question
In this section we will show how the formulas for multiplicative and composi-

tional inverses of formal power series follow directly from the Hopf algebraic struc-
tures II and K(A) on permutahedra and associahedra, respectively.!

IMore symmetrically, and slightly more complicatedly, we could use K(IT) instead of IT here.
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2.4.1. Multiplicative Inversion Formulas. As illustrated in the Introduc-
tion, the multiplicative inversion of power series is precisely given by the facial
structure of permutahedra. We now explain this phenomenon.

THEOREM 2.4.1. (Multiplicative Inversion, Polytopal Version) The multiplica-
tive inverse of
2 1‘3 1 2 3

x , x T
A(z) = 1+a1x+a2§+a3§+- R X @) = B(z) = 1+b1m+b2§+b3§+~ -

where
b, = Z (_1)n—d1m FaF
F face of
and we write ap = ay, - --ay, for each face F' = my X---x 7y, of the permutahedron
T,

PROOF. Theorem 2.2.2 allows us to identify the formal power series A(z) =
dTapz™/n! and 1/A(x) = B(z) = Y bya™/n! with the characters a and 8 of the
Hopf monoid IT determined uniquely by

Uln) (Wn) = Qn, ﬂ[n] (’/Tn) = by,
where m, is the standard permutahedron in R[n]. By Theorem 2.2.2, since B(x) =
1/A(z), these characters are inverses of each other in the character group X(II).
Recall that the inverse in the character group of any Hopf monoid is given by
B = a oS where S is the antipode. For II, this antipode is given by Theorem 1.6.1.
Therefore

b, = ﬂ[n] (7Tn) = (Oé o S)[n] (ﬂ'n) = [y ( Z (_1)nfdim FF)

F face of m,,
— Z (_1)7z—di1mFaF7

F face of m,
using the multiplicativity of the character a. O
THEOREM 2.4.2. (Multiplicative Inversion, Enumerative Version) The multi-

plicative inverse of
2 3 1 2 3

x x , x x
A(z) = 1+a1x+a2§+a3§+' ce s A0 = B(z) = 1+b1x+b25+b3§+~ o
where
n L
b, = _1)lml migme
n >, (1 (1,1,...,2,2,...,...)(ml,mQ,...>a1 “
(1™m12m2... Ybn —_—— ——
ma ma2
summing over all partitions (1™12™2 ...y =11...22...--- of n, where |m| = m; +
mi mao

mo + .-

PROOF. Recall from Section 1.3.4 that the faces of 7, are in bijection with the

compositions (Si,...,Sk) of [n], where the face F' = g, 5, = mg, X -+ X 7g,
corresponds to the composition (S,...,Sk). If we let m; be the number of S;s of
size i, then n —dim F = k = |m| and ap = a]"'a5"? - - -. Therefore the coefficient of

this monomial is the number of compositions leading to block sizes (1™12™2 ...},
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matmate

There are ( s

) ways of assigning these sizes to the parts Si,..., Sk in some
order. Having fixed that order, there are then (1 1 ) ways of partitioning

the elements of I into parts Si,..., Sk of those respective sizes. The desired result
follows. =

2.4.2. Compositional inversion formulas. Just as the facial structure of
permutahedra tells us exactly how to compute the multiplicative inverse of a for-
mal power series, the facial structure of associahedra tell us how to compute the
compositional inverse.

THEOREM 2.4.3. (Lagrange Inversion, polytopal version) The compositional
inverse of

Clx) =z+cz’+ca’+- - is CV(2) = D(z) = a2 +dia +doa® +- - -,

where
d, = Z (_1)n—dim FCF
F face of ay,
and we write cp = cy, -+ - cy, for each face F' = ay, X --- x ay, of the associahedron

ap.

PrOOF. We proceed exactly as in the proof of Theorem 2.4.1. We identify the
formal power series C(z) = . ¢, 12" and C{"Y(z) = D(z) = Y. d,_12™ with the
characters v and d of the Hopf algebra of associahedra K(A) determined uniquely
by

’Y[n](an) = Cn, 5[n](an) =dp

for the standard Loday associahedron a,. By Theorem 2.3.5, since C(z) =

D(z), these characters are inverses in the character group X(IC(A)). Therefore
& = o8, and the result now follows from the antipode formula of Theorem 1.6.1. [

THEOREM 2.4.4. (Lagrange Inversion, enumerative version) The compositional
inverse of

C(x) =z +ciz’+ear® +- - is C(2) = D(z) = 2+ d1a® +doa® +- -,

where

+ |m])!
d, — im0 i gma
<1m12§;~>|—n( ) (n+1)!mylmy!--- 1 72

summing over all partitions (1™2™2 ...} of n, where |m| =my +ma+---.

Proor. This follows from Theorem 2.4.3 and the known correspondence be-
tween faces of associahedra and trees, which we reprove in a more general setting
in Section 5.5. More precisely, the (n — |m|)-dimensional faces of the associahedron
a, of type a™ x a3 x --- are in bijection with the plane rooted trees that have
n—+1 leaves and m; vertices of down-degree i for each ¢ > 1. The result then follows
from the fact [92, Theorem 5.3.10] that there are (n + |m|)!/((n + 1)!mqlmg!--)
such plane rooted trees. ([l
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2.4.3. Loday’s question and Schmitt’s remark. It has long been known
that Lagrange inversion is closely related to the enumeration of trees (or, equiva-
lently, parenthesizings). In turn, this enumeration is related to the associahedron;
see for example [6,92]. However, in 2005, Loday [66] asked for a direct explanation
of the connection between Lagrange inversion and the associahedra:

“There exists a short operadic proof of the [Lagrange inver-
sion] formula which explicitly involves the parenthesizings, but
it would be interesting to find one which involves the topological
structure of the associahedron.”

The associahedral statement and proof of the Lagrange inversion formula in Theo-
rem 2.4.3 may be regarded as an answer to Loday’s question. It is a combinatorics-
free approach. Aside from the basic Hopf monoid architecture, it relies only on two
key ingredients:

e our topological proof for the antipode of the associahedron (Theorem 1.6.1)

e the structure of Loday’s associahedron with respect to the 1g directions

(Lemma 2.3.3)
Interestingly, there are many other realizations of the associahedron as a generalized
permutahedron [28,29,54,56,57,64,74,75]. These have isomorphic face posets,
but they lead to different Hopf structures and different character groups. Surpris-
ingly, to answer Loday’s question within this algebro-polytopal context, Loday’s
realization of the associahedron is precisely the one that we need!

Relatedly, in the closing remarks to his 1987 paper [83], Schmitt wrote about
the cancellation of 1s and —1s that leads to his Hopf algebraic proof of the Lagrange
inversion formula 2:

“We believe that an understanding of exactly how these cancella-

tions take place will not only provide a direct combinatorial proof

of the Lagrange inversion formula, but may well yield analogous

formulas for the antipodes of [...] other [...] Hopf algebras.”
Schmitt’s suggestion is very close to the philosophy of this project, though our
approach is more geometric and topological than combinatorial. Applying the same
point of view to other families of polytopes, we will obtain optimal formulas for the
antipodes of many Hopf monoids throughout this monograph.

2 According to Schmitt [84], the connection between antipodes of Hopf algebras and inversion
of formal power series was foreshadowed by Joni in 1979.
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CHAPTER 3

Submodular functions, graphs, matroids, and
posets

3.1. SF: Submodular functions and generalized permutahedra

Generalized permutahedra arise in a multitude of settings, and can be used
to model many combinatorial objects: graphs, matroids, posets, set partitions,
paths, and many others. In this section we present one reason for the ubiquity
of these polyhedra: generalized permutahedra are equivalent to submodular func-
tions, which are central objects in optimization. These functions occur in numerous
mathematical and real-world contexts, since they are characterized by a diminishing
returns property that is natural in many settings.

3.1.1. Boolean functions. Let 2/ denote the collection of subsets of a finite
set I. A Boolean function on I is an arbitrary function z : 2/ — R such that
z(0) = 0.

Let BF[I] denote the set of Boolean functions on I. To turn the species BF
into a connected Hopf monoid, we first notice that BF[@] is indeed a singleton. Now
fix a decomposition I =S UT. We make the following definitions.

e The product of two Boolean functions u € BF[S] and v € BF[T] is the function
u - v € BF[I] given by

(33) (u-v)(E) =u(ENS)+v(ENT) for ECI.

e The coproduct of a Boolean function z € BF[I] is (z|s,2/s) € BF[S] x BF[T],
where

(34) zlg(E):=2z(F)for ECS and z/g(F):=2z(FEUS)—z(S)for ECT.

The Hopf monoid axioms of Definition 1.1.5 are easily verified. To illustrate
this, we check the compatibility between products and coproducts. Consider two
compositions I = SUT and I =S’ UT’ as described in (3) and illustrated below,
and choose u € BF[S], v € BF[T].

S'=AuC T"=BUD

T

53
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For any E C S’ we have
(u-v)|s/(E)=(u-v)(E)=wENS)+v(ENT)=u(ENA)+v(ENC)
=ula(ENA) +0|c(ENC) = (ula-vle)(B),
and for any F' C T” we have
(u-0)/5:(F) = (u-0)(FUS") = (u-0)(S")
=u((FUS)YNS)+v((FUS)NT) —u(S'NS)—v(S' NT)
=u((FNB)UA) —u(A)+v((FND)uC) —v(C)
= (/)(F N B) + (v/c)(F N D) = (/) (v/c))(F).
Thus (u-v)|sr = (ula) - (v|c) and (u-v)/s = (u/4) - (v/c), as needed.
3.1.2. Submodular functions and diminishing returns. A Boolean func-
tion z on [ is submodular if
(35) 2(AUB)+2z(ANB) < z(A) + z(B)

for every A, B C I. Submodular functions arise in many contexts in mathematics
and applications, partly because submodularity is equivalent to a natural dimin-
ishing returns property that we now describe.

Suppose the Boolean function z measures some quantifiable benefit z(A) asso-
ciated to each subset A C I. Then the contraction z/g has a natural interpretation:
fore¢ S,

z/s(e) = z(S Ue) — z(S) = marginal return of adding e to S.

THEOREM 3.1.1 ([87, Theorem 44.1], Diminishing returns). A Boolean function
z on I is submodular if and only if for every e € I we have

(36)  z/s(e) > z/7(e) forSCTCI—e (diminishing returns)
that is, the marginal return z/g(e) decreases as we add more elements to S.

From the algebraic point of view, submodular functions have a Hopf monoid
structure because they are closed under products and coproducts.

THEOREM 3.1.2. Let SF[I] denote the set of submodular functions on I. Then
SF is a Hopf submonoid of BF, with the product and coproduct given by (33) and
(34).

Proor. It suffices to show that submodular functions are closed under the
product (33) and coproduct (34) of Boolean functions as defined above. This is well
known [72] and follows from Theorem 3.1.1; the details are left to the reader. O

3.1.3. Submodular functions and generalized permutahedra. The base
polytope of a given Boolean function z : 2/ — R is the set!

(37)  P(2):={reR!| sz = z(I) and in < z(A) for all A C I}.
icl €A
Tt is worth remarking that, in Postnikov’s work on generalized permutahedra [77], he writes
the defining inequalities as 7, 4 i > 2’(A). The difference is unimportant thanks to the equality

> icr®i = z(I). Our convention affords a cleaner connection between generalized permutahedra
and submodular functions.
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For € R! and A C I, we denote
€A

We say the inequality x(A4) < z(A) is optimal for P(z) if z(A) is the minimum
value for which this inequality holds; that is, if z(A) equals the maximum value of
x(A) over all z in the polytope P(z).

The following theorem collects several results from the literature, and plays a
central role in this monograph.

THEOREM 3.1.3 ([32,41,71,77,87]). For a polytope p in R, the following
conditions are equivalent.

(1) The polytope p is a generalized permutahedron.

(2) The normal fan N, is a coarsening of the braid arrangement By.
(3) Every edge of p is parallel to the vector e; — e; for somei,j € 1.
(4) There exists a submodular function z : 2 — R such that p = P(2).

Furthermore, when these conditions hold, the submodular function z of part 4 is
unique, and every definining inequality in (37) is optimal.

We will extend this result to possibly unbounded objects in Theorem 3.1.6,
and provide references and a complete proof there. We are now ready to prove an
important result about the Hopf monoid GP.

THEOREM 3.1.4. The collection of maps
SF[I] — GP[I], =z~ P(z)
is an isomorphism of Hopf monoids in set species SF = GP.

PrOOF. Theorem 3.1.3 shows that each one of those maps is bijective. It is
not difficult to check that the products on SF and GP agree. To prove that the
coproducts agree, we now check that restriction and contraction coincide in SF and
GP.

Let p = P(z) be a generalized permutahedron in R! and let I = SUT be a
decomposition. We need to show that the maximal face in direction 1g is ps 7 =
P(z|s) x P(z/s). We prove the two inclusions.

D: First consider any point x = (zg,zr) € P(2|s) x P(z2/s). For any A C I
let As =AnNnSand Ar = ANT, so that A= As U Ar. Then

2(A) = x5(As) + zr(Ar) < 2|s(As) + 2/5(Ar)
=2(Ag) + 2(A7rUS) —2(S) = 2(ANS) + 2(AUS) — 2(S) < z(4)

by submodularity. In particular, for A = I we get
x(I)=x5(S) + 270 (T) = 2|s(S) + 2/s(T) = 2(S) + 2(TUS) — z(5) = z(I).
Therefore x € p. On the other hand, for A = S we get
2(8) = z5(5) + z2(0) = 2[5(5) + 0 = 2(9)

which, in view of (37), implies that z is 1g-maximal in p, that is, « € pg .
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C: In the other direction, let x € psr. By Theorem 3.1.3, x attains the
1g-optimal value 2(S) = 2(S). Letting v = (zg5,r7) € RS x RT, we then have

x5(S) = x(5) = 2(S) = z|s(9),
xr(T)=2(T) =xz(I) —x(S) = z(I) — 2(S5) = z/s(T).
Furthermore, for any A C S and B C T,
z5(A) = 2(4) < 2(A) = 2|s(4),
zr(B)=2(B) =xz(BUS) —x(S) < z2(BUS) — 2(S) = z/5(B).
These observations imply that zg € P(z|g) and zp € P(2/s) as desired. O

A polymatroid is a submodular function f : 2/ — R with f() = 0 that is
non-negative (f(S) > 0 for all ) # S C I) and non-decreasing (f(S) < f(T) for all
S CT C1)[36]. Its base polytope is the corresponding generalized permutahedron
P(f). One can verify that a submodular function f is a polymatroid if and only
if P(f) is in the positive orthant. Therefore, as polytopes modulo translation, the
family of generalized permutahedra is the same as the family of base polytopes of
polymatroids.

Definitions of restriction and contraction for polymatroids are given in [36]
and [32]. They correspond to restriction of contraction of Boolean functions and
of generalized permutahedra from Sections 1.4.1 and 3.1.1.

PROPOSITION 3.1.5. Let PM[I] denote the set of polymatroids on I. Then PM
is a Hopf submonoid of SF.

PROOF. One readily verifies that polymatroids are closed under the product
(33) and coproduct (34) of Boolean functions, from which the result follows. O

3.1.4. GP": Extended generalized permutahedra and extended sub-
modular functions. We now extend the previous constructions to allow for un-
bounded polyhedra. Most of the results of this section may be found in Fujishige
[41].

Let an extended Boolean function be a function z : 2/ — RU{oo} with 2()) =0
and z(I) # oo. We say z is submodular if

z(AUB)+z(ANB) < z(A)4+=z(B) for all A,B C I such that z(A), z(B) are finite.

Extended submodular functions are also called submodular systems [41]. The base

polyhedron of z is

(38)

P(z) :={x € R | Zaji = z(I) and in < z(A) for all A C I with z(A) < oco}.
i€l i€A

Theorem 3.1.3 extends to this setting, providing a bijective correspondence
between extended submodular functions and extended generalized permutahedra.
We now survey this correspondence in Theorem 3.1.6, providing proofs for some
statements which we were not able to find in the literature.

Define a braid cone to be a cone in (RY)* =2 R’ cut out by inequalities of the
form y(i) > y(j) for i, € I. Define a root subspace of R to be a subspace spanned
by vectors of the form e; — e; for 4, € I; these vectors are the roots of the root
system Ar = {e; —e;|i,j € I} in the sense of Lie theory [59]. Define an affine root
subspace of RT to be a translate of a root subspace.
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THEOREM 3.1.6 ([41,77,87]). For a polyhedron p in RY, the following are
equivalent.

(1) The polyhedron p is an extended generalized permutahedron.
(2) The normal fan N, is a coarsening of (Br)|c, the restriction of the braid
arrangement By to some braid cone C'.
(3) The affine span of every face of p is an affine root subspace.
(4) There exists an extended submodular function z : 21 — RU{oo} such that
p="P(2).
Furthermore, when these conditions hold, the extended submodular function z of
part 4 is unique, and every definining inequality in (38) is optimal.

PRrROOF. We proceed in several steps.
1 < 2: This is Definition 1.3.8.

3 < 4: This is anticipated by Fujishige in [41, Thms. 3.15, 3.18, 3.22] and
proved explicitly by Derksen and Fink in [32, Proposition 2.9] for megamatroids,
where the function z is integral; their proof works for general z. In condition 3 they
include the additional hypothesis that the polyhedron p lies on a hyperplane of the
form }7, ;2; = r for some 7 € R, but this follows from the assumption that the
affine span of p is an affine root subspace.

2 = 3: Assume p satisfies 2. Since 1 € R’ is in every braid cone, it is also in
Np(p), so 1(x) = >, ., ; is constant on p.

Now let g be any d-dimensional face of p and write aff (q) = v+ W for a vector
v and a subspace W. We need to show that W is a root subspace. The normal
face Ny(q) contains a face F' of the braid arrangement B; of its same dimension,
so span(N,(q)) = span(F') is the intersection of d independent hyperplanes y(ix) =
y(jr) for 1 < k < d. We claim that W = span{e;, —e;, | 1 <k < d}. Since both
of these vector spaces are d-dimensional, it suffices to show that e;, —e; € W for
each k.

We have the following inequality description of N,(q):

Np(q) = {y € R" | y(q1) = y(g2) for q1,q2 € q, y(q) > y(p) for g € q,p € p}

Since y € N, (q) implies that y(ix) = y(jx), €, — €j, must be a linear combination
of vectors of the form ¢ — g2 for ¢1,q2 € q. But every such vector is in W, so
ei, — €5, € W as desired.

(83+4) = 2: Let p satisfy 3 and 4.
First we show that the support of the normal fan N,

C = supp(N,) = {y e RY | max y(p) is finite },
P

is a braid cone. Let D = N, (q) be a codimension 1 face of NV, on the boundary of
N,. Say q is d-dimensional, and, in light of 3, let the affine span of q be a translate
of the subspace W = span{e;, —e;,,...,€;, —e;,}. We claim that span(D) is the
intersection of the hyperplanes y(ir) = y(ji) for 1 < k < d. Since both subspaces
have codimension d, it is enough to prove one inclusion. To do that, observe that
if y € D, then y(q) is constant for ¢ € q, so y(w) = 0 for w € W and therefore
y(ix) = y(jr). The same statement is then true for any y € span(D). We conclude
that C can be described by inequalities of the form y(i) > y(j), as desired.
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Now that we know that N, is supported on a braid cone C, we need to show
that it is refined by the braid arrangement; that is, that for y € C, the relative
order of the coordinates of y € R’ is enough to determine the maximum face Py
But condition 4 tells us that p = P(z) for an extended submodular function z, and
Fujishige showed that this family of functions may be optimized using the greedy
algorithm, which only pays attention to the relative order of the coordinates of y
[41, Thms. 3.15, 3.18]. The result follows.

Having proved the equivalence of 1, 2, 3, and 4, it remains to remark that
the uniqueness and optimality of the defining equations (38) of p are implicit in
[41, Section 3]. O

REMARK 3.1.7. When p is bounded, Theorem 3.1.6 reduces to Theorem 3.1.3.
Condition 3 looks different in these two statements, but in this setting, the seem-
ingly weaker condition that every edge is parallel to a root e; — e; implies that
every face spans an affine root subspace. The reason for this is that in a bounded
polytope, every face is spanned by its edges. This is not true in general; some
unbounded polytopes do not even have one-dimensional faces.

Let SFT[I] be the set of extended submodular functions on I. To construct a
connected Hopf monoid, we use essentially the same operations as in BF and SF.
The only difference is that the contraction z/g of z € SF*[I] is no longer defined
when z(S) = co. Therefore, we need to modify the coproduct by defining

Bart= {170 LHSLS

for a decomposition I = S UT. This definition forces us to work in the context of
vector species. It is now straightforward to extend Theorem 3.1.4 to this context.

THEOREM 3.1.8. The collection of maps
SFT[I] = GPT[I], 2z~ P(2)

is an isomorphism of Hopf monoids in vector species SF = GP™.

3.2. G: Graphs and graphic zonotopes

In this section we revisit the Hopf monoid of graphs of Section 1.2.1, now taking
a geometric perspective: we realize G as a submonoid of GP. The key idea is that
every graph g is modeled by a generalized permutahedron Z, called its graphic
zonotope, and this model respects the Hopf structure of graphs. This geometric
interpretation of the Hopf monoid G readily gives us the optimal formula for its
antipode — obtained independently by Humpert and Martin [58] — and allows us to
prove their conjecture from [58, Section 5].

3.2.1. Graphic zonotopes. Let g be a graph with vertex set I. Given A C I
and an edge e of g, we say that e is incident to A if either endpoint of e belongs to
A. Consider the incidence function

inc, of 57
incg(A) = number of edges and half-edges of ¢ incident to A.
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X
For example, the incidence function of the graph _xy is given by
incy(P) =0, incy({z}) =3, inc,({y}) =2, and inc,({z,y})=3.
The following result is well-known.

PROPOSITION 3.2.1. For any graph g, the incidence function incy is submodu-
lar.

ProOOF. By Theorem 3.1.1 it suffices to observe that the marginal benefit of
adding e to S:

(incy)/s(e) = # of edges of ¢ incident to e and not to S

diminishes as we add elements to S. O

By Theorem 3.1.3 and (37), the submodular function inc, gives rise to a gen-
eralized permutahedron P(inc(g)) = Z, which is called the graphic zonotope of

g.

EXAMPLE 3.2.2. Revisiting Example 1.2.1, if g is the graph @ b ¢ then
the graphic zonotope Z,; = P(inc,) is given by

TatTp+xe =3, To+xp <2, Tp+x. <3, T,+2.<3, ,<1, 2, <2, z,<2

and is shown in Figure 1. Note that the third and fifth inequalities are optimal but
redundant.

X+ X+ X =3
FIGURE 1. A graphic zonotope.

There is a useful alternative description of the zonotope of a graph.

PROPOSITION 3.2.3. [77, Proposition 6.3] The zonotope Z; C R! of a graph g
on I equals the Minkowski sum

(39) Zy = > At Y Augy

{i} half-edge of g {i,5} edge of g
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In particular, the zonotope of the complete graph K on the set I is a translation
of the standard permutahedron 7y :

ZK] =77 —€g.

Note that the right hand side of (39) may have repeated summands.

The facial structure of graphic zonotopes can be described combinatorially
[77,90] as we now recall. A flat f of a graph g is a set of edges with the property
that for any cycle of g consisting of edges eq, ..., ek, ife1,...,ex_1 € f then e € f.

For each flat f of g and each acyclic orientation o of g/f, let g(f,o0) be the
graph obtained from g by keeping f intact, and replacing each edge {i,;} not in f
by the half-edge {i} where ¢ — j in the orientation o of g/f. The following result
is essentially known [90].

LEMMA 3.2.4. Let g be a graph with vertex set I. The faces of the zonotope
Z, C R are in bijection with the pairs of a flat f of g and an acyclic orientation
o of g/f. The face corresponding to flat f and orientation o is Zgs o), and it is a
translation of Zy.

PROOF. By (39), the maximal face of Z, in the direction of y € R’ is

(40) (Zg)y = Z A+ Z A~{i7j} + Z Ai+ Z Aj.

{iteg {i,j}eg {i.jteg {i.j}eg

y(H)=y(4) y(1)>y(5) y(1)<y(4)

The vector y determines a flat f, consisting of the edges {i,;j} of g such that
y(i) = y(j). It also determines an acyclic orientation o, of g/f obtained by giving
the edge {7, 7} the orientation ¢ — j if y(i) > y(j) or i < j if y(i) < y(j). Clearly
the maximal face (Z,), depends only on f, and o,. Furthermore, different choices
of f, and o, determine different faces of (Z;),, and every choice of a flat f of g and
an acyclic orientation o of g/f can be realized by some vector y. This proves the
desired one-to-one correspondence. It follows from (40) that (Z,), = Zy(y, 0,) and
that this is a translation of Zy , as desired.

3.2.2. Graphs as a submonoid of generalized permutahedra. Recall
that G is the Hopf monoid of graphs, where G[I] is the set of graphs with vertex set
I, where repeated edges and half-edges are allowed. For a decomposition I = SUT,
the product of two graphs ¢1 € G[S] and g2 € G[T] is their disjoint union. The
coproduct of g € G[S] is (g|s,9/s) € G[S] x G[T], where the restriction g|s € G[5]
is the induced subgraph on S, while the contraction g/s € G[T] is obtained by
keeping all edges incident to T', converting each edge from T' to S into a half-edge
onT.

Let G°P be the Hopf monoid co-opposite to G, as defined at the end of Section
1.1.2.

PrOPOSITION 3.2.5. The map inc : G — SF =, GPisan injective morphism
of Hopf monoids.

PRrROOF. We first check that inc is a morphism of Hopf monoids. Let I = SUT.
Choose g1 € G[S] and g2 € G[T]. Since there are no edges connecting S to T in
g1 - g2, an edge of g1 - g2 incident to A C I is either incident to AN S or to ANT,
but not both. Hence,

incg,.g, (A) = incy, (AN S) +incy, (ANT) = (incy, - incy,)(A).
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Thus, inc preserves products.

Let us now show that inc reverses coproducts. Choose g € G[I|. If A C T, then
for any edge e of g incident to A there is a corresponding edge €’ of g/g incident to
A (possibly a half-edge, if the other endpoint of e belongs to S). Since every edge
of g/ arises in this manner from an edge of g, we have

incg/; (A) = incg(A) = (incy)|r(A).
Now, if A C S, notice that an edge of ¢g incident to A U T is either incident to T,

or has both endpoints in S (and at least one endpoint in A), in which case it is an
edge of g|s. Therefore incy(AUT) = incy(T') + incy|, (A), so
incy|s (A) = incy (AU T) —incy(T) = (incy)/7(A).
It follows that inc reverses restrictions and contractions, as desired.
To prove injectivity, note that if ¢ and b are two distinct vertices of a graph g,
then the number of edges of g between a and b is incy({a}) +incy ({b}) —incy ({a, b}).

Also, the number of half-edges at a is incy(I) — incy(I \ {a}). These numbers
determine g entirely. ]

REMARK 3.2.6. In graph theory one also considers the cut function cut, defined

by
cuty(A) = the number of edges of g joining A to I'\ A4,

The map g — cuty is not a morphism of Hopf monoids G — SF: neither restrictions
nor contractions are preserved. However, we do have cuty,(A) = 2 -incy(A4) —
> icadeg,(i), where the degree deg, (i) is the number of edges incident to vertex
i. It follows from this that cut, is submodular (a known result) and its generalized
permutahedron P(cuty) is a scaling of P(incy) = Z, followed by a translation by
the vector —deg, € R!. Therefore the map g ~ cuty does give a morphism of
Hopf monoids G — GP; but since P(inc,) and P(cut,) are normally equivalent,
this morphism does not teach us anything new about the Hopf monoid of graphs.

3.2.3. The antipode of graphs. In view of Proposition 3.2.5 and Theorem
1.6.1, the antipode of G is given by the facial structure of graphic zonotopes, as
described in Lemma 3.2.4.

COROLLARY 3.2.7. The antipode of the Hopf monoid of graphs G is given by
the following cancellation-free and combination-free expression. If g is a graph

on I then
si(9) =Y _(=1)Vg(f,0),
fo
summing over all pairs of a flat f of g and an acyclic orientation o of g/ f, where
c(f) is the number of connected components of f.

Proor. This follows from Theorem 1.6.1 and Lemma 3.2.4, and the observa-
tion that the dimension of the zonotope Zy is |I| — ¢(F). O

ExXaAMPLE 3.2.8. Let us revisit Example 1.2.1. The formula

{
:
1
L
T
|

a b c¢ a b c¢ a b c¢ a b c b c a b
— bbb eWVib— e oV 4oV
a b c a b c a b c a b c
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is the algebraic manifestation of the face structure of the graphic zonotope of Exam-
ple 3.2.2 which consists of one parallelogram, four edges, and four vertices. These
nine faces are the graphic zonotopes of the nine graphs occurring in the expression
above.

3.2.4. Simple graphs. A graph is simple if it has no half-edges or multiple
edges. Let SG[I] denote the set of all simple graphs with vertex set I. Then SG is
a subspecies of G, but it is not a Hopf submonoid because a contraction of a simple
graph need not be simple.

To remedy this situation, consider the simplification map

G[I] —- SG[I], g~d'.

which removes half-edges and edge multiplicities: in ¢’ there is a unique edge joining
two vertices a and b if and only if a # b and there is at least one edge joining a and
b in g. This defines a surjective morphism of species

G — SG.

The Hopf monoid structure of G descends to SG via this map, so that SG is a
quotient Hopf monoid of G. In SG, products and contractions have the same
description as in G, while restrictions now coincide with contractions. Therefore
SG is cocommutative.

The (linearization of the) Hopf monoid SG appears (with different notation)
in [2, Section 13.2]. A closely related structure was first considered by Schmitt [84,
Example 3.3.(3)].

PRrROPOSITION 3.2.9. There is a commutative diagram of morphisms of Hopf
monoids as follows.

Geop QP

|

SG*? —— GP

PRroOOF. Simplification gives the vertical map G®°P — SG®P while the map
GP — GP identifies generalized permutahedra with the same normal fan. The top
map GP — GP is given by Proposition 3.2.5, while the bottom map SG®P — GP
sends a simple graph to the normal equivalence class of its zonotope. To verify
that the diagram commutes, we need to show that if g is a graph and ¢’ is its
simplification, then Z; and Z, are normally equivalent.

By (39), the normal fan N(Z,) is the common refinement of the fans N(Ag;;)
for all half-edges {i} and N'(Ay; ;) for all edges {4,5}. This common refinement is
unaffected by the removal of the former fans (which are trivial) and by the removal
of repetitions of the latter fans. Therefore N'(Z;) = N (Z,/) as desired. O

COROLLARY 3.2.10. The antipode of the Hopf monoid of simple graphs SG is
given by the following cancellation-free and combination-free expression. If g
is a simple graph on I then

siig) = > (=D)Da(g/f) f
J flat of g

where a(g/f) is the number of acyclic orientations of the contraction g/ f and c(f)
is the number of connected components of f.
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Proor. This follows from Corollary 3.2.7 and the observation that when g is
a simple graph, the simplification of g(f,0) is f. |

An equivalent formula for Hopf algebras was also obtained by Humpert and
Martin [58] through a clever inductive argument. In the context of Hopf algebras
isomorphic graphs are identified, so to find the coefficient of a particular graph h
in sy(g) one has to overcome the additional problem of identifying all flats of g
isomorphic to h. This is one reason to prefer working with Hopf monoids instead
of Hopf algebras in combinatorial contexts. See also Remark 3.3.7.

3.2.5. Characters of complete graphs and a conjecture of Humpert
and Martin. For each k € C let & be the character on G given by (£)r(g) = K|
for any graph g on vertex set I. Let ¢ be the character on G where (;(g) equals 1
if g has no edges and 0 otherwise. For each k € C and ¢ € Z let £,(° denote the
convolution product of & and (¢ in G.

Recall that a derangement of I is a permutation of I without fixed points, and
an arrangement is a permutation of a subset of I. The following formulas were
conjectured by Humpert and Martin [58].

THEOREM 3.2.11 ([58, Conjecture (27)]). Let K, be the complete graph on n
vertices. Then

xn

> (6C) K)oy = (14 )"
n>0 ’

for any complex number k and integer c. In particular,

(E¢T)(ER) = (=1)"Dn (62167 )(Kn) = (=1)" Ay

where D,, and A, are the numbers of derangements and arrangements of [n] re-
spectively.

PROOF. Since the graphic zonotope of a complete graph K is a translation
of the standard permutahedron 7; by Proposition 3.2.3, the Hopf submonoid of
G generated by complete graphs is isomorphic to the Hopf submonoid IT of GP
generated by standard permutahedra, considered in Section 2.2. We may then
regard &, and ¢ as characters on II. This allows us to carry out the required
computations in the character group X(IT), where they become straightforward.

By Theorem 2.2.2, convolution of characters of II corresponds to multiplication

of their exponential generating functions; therefore

" "
|

S @ m) = [ Cam) D | [t | = et ayr
n>0 n>0 n>0

as desired. By comparing this with the generating functions

Seurn =3 e (e ) 5] - (25) (v

n>0 ’ n>0 i=0 i>0 j>0

=e(1+x)!
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and
St =X [ (24) 5] (S (Seow
n>0 n>0 i=0 i>0 §>0
=e "(14z)!
we obtain the remaining two formulas. (Il

3.3. M: Matroids and matroid polytopes

Similarly to graphs, matroids also have a polyhedral model called its matroid
polytope, due to Edmonds [36]. This model respects the Hopf-algebraic structure
of matroids, introduced in 1982 by Joni and Rota [60] and further studied by
Schmitt [84]. We now employ the geometric perspective to compute, for the first
time, the optimal formula for the antipode of matroids.

3.3.1. Matroid polytopes. Let m be a matroid on ground set I. The rank
of A C I in m, denoted rank,,(A), is the cardinality of any maximal independent
set of m contained in A. The matroid axioms guarantee that this is well-defined
and moreover, that the function

rank,, : 2/ - N

is submodular [72, Lemma 1.3.1]; indeed, the marginal benefit of adding e to S

(rank,,)/s(e) = {

1 if e is independent of .S,
0 if e is dependent on S

weakly decreases as we add elements to S.

By Theorem 3.1.3 and (37), the submodular function rank,, gives rise to a
generalized permutahedron P(rank,,) = P(m) which is called the matroid polytope
of m. This polytope has an elegant vertex description.

PROPOSITION 3.3.1. [36,44] The matroid polytope P(rank,,) = P(m) of a
matroid m on I is given by

P(m) = conv {ep, +---+ep, | {b1,...,b.} is a basis of m} C RE,

where {e; | i € I} is the standard basis. Furthermore, every basis gives a vertex of

P(m).

This construction goes back to Edmonds [36] in optimization, and later to
Gel'fand, Goresky, MacPherson, and Serganova [44] in algebraic geometry. In
what follows, we will sometimes identify a matroid m with its matroid polytope
P(m).

ExaMPLE 3.3.2. Revisiting Example 1.2.2, let m be the matroid of rank 2 on
{a,b, ¢, d} whose only non-basis is {¢,d}. The matroid polytope P(m), shown in
Figure 3.3.1, is given by the inequalities:

Tq+ Ty +Te+Tqg =2, Tg+ Tp, Ty + Te,Tq+ Tg,Tp + T, Tp + g < 2,

Te+ T4 < ]-a LgyThyLcy Xd < 1

There does not seem to be a simple and purely combinatorial indexing for the
faces of the matroid polytope P(m). For a non-bijective description of these faces,
see [10, Proposition 2] or [22, Problem 1.26].
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b

FIGURE 2. The matroid polytope of the matroid of Example 3.3.2.

3.3.2. Matroids as a submonoid of generalized permutahedra. Recall
that M is the Hopf monoid of matroids, where M[I] is the set of matroids on ground
set I. For a decomposition I = S U T, the product of two matroids m; € M[S]
and mg € M[T] is their direct sum m; @ mg € M[I]. The coproduct of a matroid
m € M[I] is (m|s,m/s), where m|s € M[S] and m/g € M[T] are the restriction
and contraction of m with respect to .S, respectively.

ProposITION 3.3.3. The map rank : M — SF =, GP s an injective morphism
of Hopf monoids.

PROOF. The descriptions for the rank function of the direct sum, restriction
and contraction of matroids in [72, Propositions 3.1.5, 3.1.7, 4.2.17] imply that
rank is a morphism of Hopf monoids. Injectivity holds since the rank function
determines the matroid uniquely. O

More widely, by Proposition 3.1.5, basis polytopes of polymatroids also form a
submonoid of generalized permutahedra.

3.3.3. The antipode of matroids. We now give a formula for the antipode
of matroids in Proposition 3.3.3 and Theorem 1.6.1. The result is expressed in
terms of the facial structure of matroid polytopes.

Every matroid m has a unique maximal decomposition as a direct sum of
smaller matroids. Let ¢(m) be the number of summands, which are called the
connected components of m [72, Section 4].

THEOREM 3.3.4. The antipode of the Hopf monoid of matroids M is given by the
following cancellation-free and combination-free formula. If m is a matroid
on I, then

(41) si(m)= 3 (<) n,

n<m

where we sum over all the nonempty faces n of the matroid polytope of m.

Proor. This is an immediate consequence of Theorem 1.6.1, taking into ac-
count that the dimension of a matroid polytope P(m) on I equals |I|—c(m) [36]. O

As mentioned earlier, there seems to be no simple combinatorial indexing of
the faces of a matroid polytope, and hence no purely combinatorial counterpart of
this formula.

The (discrete and algebraic) geometric point of view on matroids, initiated in
[36] and [44], has evolved into a central component of matroid theory thanks to
the natural appearances of matroid polytopes in various settings in optimization,
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algebraic geometry, and tropical geometry. Theorem 3.3.4 shows that this geometric
point of view also plays an essential role here: if one wishes to fully understand
the Hopf algebraic structure of matroids, it becomes indispensable to view them as
polytopes.

3.3.4. The Hopf algebra of matroids. The Fock functor sends the Hopf
monoid M to the Hopf algebra of (isomorphism classes of) matroids defined by
Joni and Rota [60, Section XVII] and also studied by Schmitt [85, Section 15].
Theorem 3.3.4 answers the open question of determining the optimal formula for
the antipode of a matroid: it is simply the signed sum of the faces of the matroid

polytope.

THEOREM 3.3.5. In the Hopf algebra of (isomorphism classes of ) matroids, the
antipode of a matroid m is

(42) s(m) = _(=1)*™a(m : n)n,

n

where c(n) is the number of components of a matroid n and a(m : n) is the number
of faces of the matroid polytope P(m) which are congruent to P(n).

PROOF. This is an immediate consequence of Theorem 3.3.4. O

EXAMPLE 3.3.6. Let us revisit Example 1.2.2. The formula is the algebraic

o O

S(o—o—‘)=—0—0—3+2._2_.+8 g+ 20 !—8.°3+5. °

manifestation of the face structure of the corresponding matroid polytope, which
is a square pyramid. It has one full-dimensional face, 5 two-dimensional faces (in
matroid isomorphism classes of sizes 2, 1, 2), 8 edges (in one isomorphism class),
and 5 vertices (in one isomorphism class).

REMARK 3.3.7. Theorems 3.3.4 and 3.3.5 illustrate an important advantage of
working with Hopf monoids instead of Hopf algebras.

To try to discover (42), we might compute a few small examples and try to find
a pattern. After witnessing unexpected cancellations and unexplained groupings of
equal terms, we are left with coefficients a(m : n) that are very hard to identify; in
fact, we do not know any enumerative properties of these coefficients.

If, instead, we work in the context of Hopf monoids, a coefficient equal to 5 in
(42) comes from a sum 1+1+1+1+1 in (41) where each 1 is indexed combinatorially;
this additional granularity allows us to identify each term contributing to (41), and
to then combine them to obtain (42).

However, for matroids, the geometric lens is crucial — even in the context of
Hopf monoids. It is not easy to identify the individual terms of (41) if one is not
thinking about the matroid polytope, whose faces have no simple combinatorial
description.

A cancellation-free but not combination-free formula for the antipode of the
Hopf algebra of matroids appears in [24, 25].
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3.3.5. Graphical matroids and another Hopf monoid of graphs. Any
family of matroids which is closed under direct sums, restriction, and contraction
forms a Hopf submonoid of M. Many important families of matroids satisfy these
properties and have the structure of a Hopf monoid; for instance: linear matroids
over a fixed field, graphical matroids, algebraic matroids over a fixed field, gam-
moids, and lattice path matroids [20,72,101]. In particular, the Hopf monoid of
graphical matroids is closely related to a third Hopf monoid of graphs, which we
now describe.

For a finite set I, let T'[] be the set of graphs with edges labeled by I, with
unlabeled vertices, and without isolated vertices. To define a product and coproduct
on T, let I = SUT be a decomposition. The product ~; - v2 € T'[I] is the (disjoint)
union of the graphs v; € I'[S] and 2 € I'[T]. The coproduct Asr(v) = (v]s,V/s)
is given by the standard notions of restriction and contraction from graph theory,
which are defined as follows. The restriction v|s € I'[S] is obtained from « € T'[I]
by removing all edges in 7" and all vertices not incident to S. The contraction
v/s € T'[S] is obtained by contracting each edge e in S from ~ € I'[I] — removing e
and identifying its endpoints — and removing any isolated vertices that remain.

The two Hopf monoids of graphs I and G that we have discussed are not directly
related; in fact, they differ already as species. Instead, we have a morphism of Hopf
monoids

I'—-M

mapping each graph v to its graphical matroid, which is the set of spanning trees
of v [72]. We do not know further properties of the Hopf monoid T, in particular,
because we are not aware of any results on graphical matroid polytopes.

3.4. P: Posets and poset cones

Similarly to graphs and matroids, posets also have a polyhedral model that
respects the Hopf algebra structure introduced by Schmitt in 1994 [85]. We use
this geometric model to give an optimal combinatorial formula for the antipode of
posets.

3.4.1. Poset cones. A {0,00} function on I is a Boolean function z : 2/ —
{0, 00} such that z(@) = z(I) = 0. Its support is supp(z) = {J C I'| 2(J) = 0}. For
a {0,000} function z on I,

(43) =z is submodular <= if A, B € supp(z) then AU B, AN B € supp(z).
For each poset p on I we define the lower set function

0 if J is a lower set of p,

.ol _
low, : 27 = RU{oo},  low,(J) = { oo if J is not a lower set of p.

This is an extended submodular function since the family of lower sets of p is closed
under unions and intersections.

By Theorem 3.1.6 and (38), the submodular function low, gives rise to an
extended generalized permutahedron

P(p) := P(low,) = {x € R" | Zx, =0 and Z xq < 0 for every lower set A of p}
i€l acA

which we call the poset cone of p. This cone has an elegant description in terms of
generators. Dobbertin proved an analogous result for a related polytope in [33].
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PRrROPOSITION 3.4.1. The poset cone of a poset p is given by
P(p) = cone{e; —e; | i > j inp}

where {e; | i € I} is the standard basis of RT. The generating rays of P(p) are
given by the roots e; — e; corresponding to the cover relations i > j of p.

PROOF. Recall the notation
x(A) = Z x;
€A
for € RT and A C I. We prove both containments:

D: Let i > j in p. Every order ideal A that contains ¢ must also contain j, so e; —e;
satisfies 2(A) < 0. This implies that cone{e; —e; | i > j € p} C P(p).

C: We will need the following lemma.

LEMMA 3.4.2. Let x € P(p). Let i be a mazximal element of p such that x; # 0,
and let iq,...,i be the elements covered by i in p. We can write

=1+ e —¢€j)

for some x’ € P(p), some element j < i, and some number X\ > 0 which is a linear
combination of the x;s.

PRrROOF OF LEMMA 15.2. The maximality of ¢ and the fact that p>; := {j €
p|j > i} is an upper set imply that

(44) xr; = Z zj = x(p>i) > 0.

JEP>i
Let 41,...,ix be the elements covered by i in p. We claim that
(45) there exists an index 1 < a < k with x(I,) < 0 for every lower set I, 3 i, .

We prove this claim by contradiction. If that was not the case, then for every
1 < a < k we would have a lower set I, 3 i, such that x(I,) = 0. Now, we observe
that
(46)
if A and B are lower sets with 2(A) = z(B) =0, then 2(AUB) =xz(ANB) =0.
This observation follows from the fact that AU B and AN B are lower sets, so they
satisfy z(AUB) < 0 and (AN B) < 0, while also satisfying z(AUB)+xz(ANB) =
x(A) + x(B) = 0. Applying (46) repeatedly, we see that I; U--- U I} is a lower set
with x(I; U---UIx) = 0. But then we observe that Iy U---U I Ui is also a lower
set, so we get
contradicting (44).

Having proved (44) and (45), let 1 < a < k be as in (45). Then

A:=min({x;} U{—x(I,) | I, is a lower set containing i,}) > 0,
and define ' = & — A(e; — e;,) as required. To conclude, it remains to prove that
y € P(p). To do this, let J be any lower set of p. If J contains both i, and i, or if
it contains neither i, nor 4, then we have z’(J) = 2(J) < 0. On the other hand, if
J contains i, but not ¢, then z/(J) = z(J) + A < 0 by the definition of A, since J
is a lower set containing i,. It follows that 2’ € P(p), concluding the proof of the
lemma. ]
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Now we need to prove that any = € P(p) is a positive linear combination of
vectors of the form e; — e; such that 7 < j in p. Since the rationals are a dense
subset of the reals and the cones we are considering are closed, it suffices to prove
this when all entries of = are rational. We proceed by induction on the number of
positive entries of z.

Let ¢ be a maximal element of p with z; > 0. Write z = 2’ + A(e; —e;) for A > 0
and ¢ > j as in the lemma, and note that z; < x;. If 2} > 0, use the lemma again
to write &’ = 2" + X' (e; — ej/) for X' > 0 and 7 > j’, and note that =} < 2} < ;
. We can continue applying the lemma in this way while x;/'”/ > 0. In each step,
the ith coordinate decreases by a positive linear combination of the original x;s.
Since the z;s are rational, the ith coordinate is decreasing discretely, and must
reach 0 eventually. We will then have written © = y + ¢ for a linear combination
¢ € cone{e; —e; | i > j € p} and a vector y € P(p) with one fewer positive entry,
since y; = 0. The induction hypothesis now gives y € cone{e; —e; | ¢ > j € p},
which implies « € cone{e; —e; | i > j € p} as well. The desired result follows by
induction.

Having proved that P(p) is generated by the vectors e; — e; where i > j, let us
observe that if ¢ > j then there is a sequence of cover relations i >k > --- > k. > 7,
which implies that e; — e; = (e; — ex,) + (ex, — €x,) + -+ + (ex, — €;). Therefore
the vectors e; — e; with ¢ > j generate P(p). By a similar argument one sees that
they generate P(p) irredundantly. O

The faces of poset polytopes were described (for the cones dual to poset cones)
by Postnikov-Reiner-Williams [76, Proposition 3.5] (for order polytopes) by Geissin-
ger [43] and Stanley [91], and (for oriented matroids) by Las Vergnas [Proposition
9.1.2][18]. Our presentation follows Las Vergnas, interpreting his general criterion
in this special case.

Define a circuit of p to be a cyclic sequence i1, ...,%, of elements of p where
every consecutive pair is comparable in p. Circuits consist of up-edges where i; <
ij+1 in p and down-edges where i; > 411 in p. We will say that a subposet ¢ of p
is positive? if the following conditions hold for every circuit X:

(1) if all the down-edges of a circuit X are in ¢, then all the up-edges of X are
in ¢, and

(2) if all the up-edges of a circuit X are in ¢, then all the down-edges of X is
in q.

LEMMA 3.4.3. Let p be a poset on I. The faces of the poset cone P(p) C RI
are precisely the poset cones P(q) as q ranges over the positive subposets of p.

PROOF. In this proof we will assume some basic facts about oriented matroid
theory; see [9,19] for the relevant definitions. Let M be the (acyclic) oriented
matroid of the set of vectors {e; —e; | i > j in p}. The faces of the poset cone P(p)
are the cones generated by the positive flats of the Las Vergnas face lattice of M.
By [19, Proposition 9.1.2], these are the subsets F' of M such that for every signed
circuit X of M, Xt C F implies X~ C F.

The oriented matroid M is isomorphic to the graphical oriented matroid of the
graph of p on I, whose directed edges i — j correspond to the order relations i > j
in p. Therefore the signed circuits of M correspond to the cycles of the graph; they

2this terminology comes from the theory of oriented matroids
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are the sets of the form:
X ={ei, —e€iy | i1,... 0, is a circuit of p}

where 7,41 = 41. Each circuit X comes with two orientations. One of them is given
by X+ ={ei, — €.y | ik > ips1 in p} and X~ = {e;, —e;,,, | ix < irg1 in p} and
the other one is its reverse.

Now let F' = q C p be a subposet of p. In the first orientation of X, the
condition that X+ C F implies X~ C F says that if every down-edge is in ¢ then
every up-edge must be in ¢. In the other orientation, this condition is reversed. It
follows that the positive flats of M are in bijection with the positive subposets of
p, as desired. (Il

EXAMPLE 3.4.4. Let p be the poset on {a,b,c,d} given by the cover relations
a<c b<c a<d, b<d. The poset cone of p is shown in Figure 3. The positive
subposets ¢ # p are those which do not contain both vertical cover relations a < ¢
and b < d, and do not contain both diagonal cover relations a < d and b < ¢. There
are nine such subposets, corresponding to the nine proper faces of P(p).

b

F1GURE 3. The poset cone for the poset of Example 15.4.

REMARK 3.4.5. Let us give some additional intuition for the definition of pos-
itive subposets. We will need preposets; see Section 3.4.4 for a definition.

A poset contraction is a preposet obtained from p by successively contracting
order relations 7 < j of p and replacing them by equivalence relations i ~ j. Since
we need to keep the preposet transitive, contracting the up-edges of a circuit forces
us to also contract the down-edges, and viceversa. For instance, in Example 3.4.4, if
we contract a < ¢ and b < d, we get the contradictory relations a ~ ¢ > b~ d > a;
to remedy this, we are forced to contract b < c and a < d into b ~ ¢ and a ~ d as
well.

In conclusion, the positive subposets of p are precisely the contracted subposets
for the contractions of p.

3.4.2. Posets as a submonoid of extended generalized permutahedra.
Recall that P is the Hopf monoid (in vector species) of posets. For I = SUT, the
product of two posets p; on S and ps on T is their disjoint union p; - po regarded
as a poset on I. The coproduct Agr : P[I] = P[S]® P[T] is

Asr(p) = pls @ plr if S is a lower set of p,
STP) = 0 otherwise.
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PROPOSITION 3.4.6. The map low : P — SF* =, GP" is an injective mor-
phism of Hopf monoids in vector species.

PROOF. To check that low preserves the product, let I = SUT be a decompo-
sition. Let p; and ps be posets on S and T', and p; - po be their product. A subset
J C I is a lower set of p; - po if and only if J NS and JNT are lower sets of p; and
P2, respectively. It follows that

lowp, .p, (J) = lowp, (J NS) + low,, (J NT) = (low,, - low,,)(J),

so low preserves products.

To check that low preserves the coproduct, let I = S UT and let p be a poset
on I. We need to consider two cases:

1. Suppose S is not a lower set of p. Then Agr(p) = 0. In this case we also
have low,(S) = 0o so Ag r(low,) = 0 by the definition of the coproduct in SF.
It follows that low trivially respects the coproduct in this case.

2. Suppose S is a lower set of p. Then the restriction and contraction of p with
respect to S are p|g and p|r, respectively. Also low,(S) = 0. To see that low is
compatible with restriction, notice that for R C S we have (low,)|s(R) = low,(R),
SO

0 if Ris a lower set of p|s

?

oo  otherwise

low,s (R) = {

0 if R is a lower set of p
(low,)[s(R) = :
oo otherwise.

Since R is a lower set of p|g if and only if it is a lower set of p, we have
low,, s = (low,)|s-

On the other hand, to see that low is compatible with contraction, notice
that for R C T we have low,, (R) = low,|,(R) = low,(R) and (low,)/s(R) =
low,(RUS), so

0 if Ris a lower set of p|p

)

oo  otherwise

10Wp/s (R) = {

{O if RUS is a lower set of p

(low,)/s(R) = .
oo  otherwise.

Since R is a lower set of p|r if and only if it RU S is a lower set of p, we have
IOWP/S = (10Wp)/s.

We conclude that low is a morphism of monoids. Injectivity follows from the
fact that we can recover a poset p from its collection of lower sets as follows: two
elements i, j of p satisfy ¢ < j if and only if every lower set containing j also contains
i. |

3.4.3. The antipode of posets. In view of Proposition 3.4.6 and Theorem
1.6.1, the antipode of P is given by the facial structure of poset polytopes, as
described in Lemma 3.4.3. This allows us to give the optimal combinatorial formula
for the antipode of the Hopf monoid of posets.
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Recall that the Hasse diagram of a poset p is the graph whose vertices corre-
spond to the elements of p and whose edges x — y, which are always drawn with x
lower than y, correspond to the cover relations = < y of p.

COROLLARY 3.4.7. The antipode of the Hopf monoid of posets P is given by
the following cancellation-free and combination-free expression. If p is a poset
on I then

summing over all positive subposets q of p, where ¢(q) is the number of connected
components of the Hasse diagram of q.

Proor. This follows from Theorem 1.6.1 and Lemma 3.4.3, and the observa-
tion that the dimension of the poset cone P(p) is |I| — ¢(p). O

EXAMPLE 3.4.8. Let us revisit Example 1.2.3. This example takes place in the
Hopf algebra of posets P, where isomorphic posets are identified. The formula

S(M):—M Y ACETAVEEYE PRETPRE

is the algebraic manifestation of the face structure of the corresponding poset cone,
which is the cone over a square shown in Figure 3. It has one full-dimensional face,
4 two-dimensional faces (in poset isomorphism classes of sizes 2 and 2), 4 rays (in
one isomorphism class), and 1 vertex. Combinatorially, the summands correspond
to the positive subposets of the poset in question, as described in Example 3.4.4.

3.4.4. Preposets and preposet cones. One may wonder whether there are
other interesting submonoids of GP consisting of cones, or (almost equivalently)
submonoids of SF consisting of {0, co} functions. In Theorem 3.4.9 and Proposition
3.4.6 we show that, essentially, there aren’t. We prove that {0,00} submodular
functions are equivalent to the slightly larger class of preposets, which may be
viewed as posets in their own right.

A preposet on I is a binary relation ¢ C I x I, denoted <, which is reflexive
(x <z for all z € ¢) and transitive (z < y and y < z imply = < z for all z,y, z € q).
A preposet is not necessarily antisymmetric, and we define an equivalence relation
by setting

z ~ywhen z <yandy<zx.
Let p = q/~ be the set of equivalence classes of p. The relation < induces a relation
< on ¢/~ which is still reflexive and transitive, and is also antisymmetric; i.e., it
defines a poset.

It follows that we may think of preposets as posets whose elements are labeled
by nonempty and pairwise disjoint sets. More precisely, we may equivalently define
a preposet on I to be a set partition 7 = {I,..., I} of I together with a poset p
on 7.

If p’ is a lower set of the poset p = ¢/~, then we say ¢’ = UKep' K is a lower
set of the preposet ¢q. As before, we define the lower set function of ¢ to be

0 if J is a lower set of g,

low, : 2! » RU {oo}, low,(J) = { oo otherwise.
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THEOREM 3.4.9. A Boolean function z : I — {0, 00} is submodular if and only
if z = low, is the lower set function of a preposet q on I.

PRrROOF. The backward direction is straightforward: If ¢ is a preposet then its
collection of lower sets is closed under union and intersection. It follows from (43)
that low, is submodular.

The forward direction will require more work. Suppose z is a submodular
{0, 00} function on I and let
L := supp(z).
We need to show that L is the collection of lower sets of a preposet ¢ on I.
Thanks to (43) we know that L = supp(z) is a lattice under the operations of
union and intersection. These operations are distributive, so Birkhoff’s fundamental
theorem of distributive lattices [94, Theorem 3.4.1] applies: If L eq is the subposet
of join-irreducible elements of L, and if J(Lireq) is the poset of lower sets of Liyyed
ordered by inclusion, then
L= J(Lirred)-

We reinterpret Lieq as a preposet on I as follows. For each set A € Liyreq let

ess(A) = A — U B.
BE€Ljyyed
B<A
be the essential set of A, consisting of the essential elements which are in no lesser
join-irreducible. Consider the collection of essential sets

q:={ess(A) | A€ Liyrea},

endowed with the partial order inherited from Lj,eq. We will now show that:
1. q is a preposet on I, and
2. L is the collection of lower sets of g.

These two statements will complete the proof.

Before we prove these two statements, let us illustrate this construction with
an example. The left panel of Figure 4 shows a distributive lattice L of subsets of
I ={a,b,c,d,e, f,g,h,i,7}. We only label the join-irreducible elements; the label
of every other set is the union of the join-irreducibles less than it in L. The right
hand side panel shows the subposet Ljeq. For each join-irreducible set A € Lisreq
we have indicated its essential set ess(A) in bold. These essential sets partition I,
allowing us to think of this object ¢ as a preposet on I.

Step 1. q is a preposet on I: We need to show that the sets in g form a set partition
of I. Each essential set ess(A) is nonempty because A is join-irreducible. To prove
that the essential sets are pairwise disjoint, assume contrariwise that = € ess(A)
and x € ess(B) for some A # B € Liyeq. Then ANB € Landz € ANB,sox € C
for some join irreducible C' € Liyeq with C € AN B C A. This contradicts the
assumption that x is an essential element of A.

The following lemma completes the proof of Step 1.

LEMMA 3.4.10. For all A€ L,
A= |_| ess(B).

B€Ljrred

B<A

In particular, {ess(B) | B € Liyrea} s a partition of I.
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abcfhij ‘
abhj '

abcfhij

cdefg

FIGURE 4. A distributive lattice L of subsets of I =
{a,b,c,d,e, f,g,h,i,5} and its poset of join-irreducibles. The es-
sential sets of Ljeq are shown in boldface; they give rise to a
preposet g on I, whose lower sets are precisely the sets in L.

PrOOF OF LEMMA 3.4.10. First we prove that the lemma holds for each join-
irreducible A € Ly eq C L, proceeding by induction. This statement is clearly true
for the minimal elements of Li.eq. Also, if it holds for all elements B < A in Ljyred,
then using the definition of ess(A) and the induction hypothesis,

A=ess(A)U U B =ess(4) U U I_I ess(C) = I_I ess(C)
B€Ljrred B€Ljrred C€Ljrred CELjrred
B<A B<A C<B C<A

so the claim holds for A as well. Therefore the lemma holds for all A € Liyreq-
Now we can prove Lemma 3.4.10 holds for all A € L. The backward inclusion
is clear. To prove the forward inclusion, let € A. Since A is the union of the
join-irreducibles less than it in L, we have = € C for some C' € Ljoq with C' < A.
By the previous paragraph, x € ess(D) for some D € Ljeq with D < C; but then
D < A also, so x is in one of the essential sets on the right hand side. The desired

result follows.

The last statement follows by recalling that z(I) = 0 and applying the lemma
to A = I, which is the maximum element of the lattice L. This completes the proof
of Lemma 3.4.10 and of Step 1 of this proof. |

Step 2. L 1is the collection of lower sets of q: By Birkhoff’s theorem and Lemma
3.4.10, A € L if and only if there is a down set J C Ljoq with

A= U B= I_I ess(B);
BeJ BeJ
that is, if and only if A is a lower set of q. |
We now state an algebraic counterpart of Theorem 3.4.9. Let Q[I] be the set

of preposets on I. Preposets become a Hopf monoid in vector species Q with the
same operations of the Hopf monoid of posets P. Let SF g o} be the submonoid of

SF consisting of {0, co} functions. Let GPone be the submonoid of GP consisting
of cones.
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PROPOSITION 3.4.11. The maps low : Q =, SF (0,00} =N GP one are isomor-
phisms of Hopf monoids in vector species.

ProOOF. The first isomorphism is an immediate consequence of Theorem 3.4.9.
For the second one, notice that every cone ¢ € GP is a translate of a unique cone
¢ that contains the origin. The submodular function z. such that ¢ = P(z.) is a
{0, 0} function, and the correspondence ¢ — z. gives the desired isomorphism. [

In the correspondence between preposets and generalized permutahedra which
are cones, posets on I correspond to cones of the maximum possible dimension
|I|—1. The antipode formula for preposets Q is essentially the same as the antipode
formula for posets P.
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CHAPTER 4

Characters, polynomial invariants, and reciprocity

4.1. Invariants of Hopf monoids and reciprocity

Once again, we set aside the combinatorial examples of earlier sections and
return to the general setting of Hopf monoids of Section 1.1, where we begin to
develop the basics of character theory. Similar results for Hopf algebras can be
found in [1,17].

This section shows that each character on a Hopf monoid gives rise to an asso-
ciated polynomial invariant. There are two main results. Proposition 4.1.1 shows
that the polynomial invariant is indeed polynomial and invariant. Proposition 4.1.5
relates the values of the invariant on an integer and on its negative by means of the
antipode of the Hopf monoid.

This abstract framework has concrete combinatorial consequences. For in-
stance, we will see in Section 4.3 that the simplest non-zero characters on the
Hopf monoids G, P, M give rise to three important combinatorial polynomials: the
chromatic polynomial of a graph, the strict order polynomial of a poset, and the
BJR polynomial of a matroid. Furthermore, this Hopf-theoretic framework shows
that the celebrated reciprocity theorems for these three polynomials, due to Stan-
ley [90, Theorem 1.2], [88, Theorem 3] and Billera, Jia, and Reiner [17, Theorem
6.3], are specific instances of the same general fact about extended generalized
permutahedra.

4.1.1. The polynomial invariant of a character. Recall from Section 2.1
the notion of a character ¢ on a Hopf monoid in vector species H. In the examples
that interest us, H is a Hopf monoid coming from a family of combinatorial objects,
and ( is a multiplicative function on our objects which is invariant under relabelings
of the ground set.

Throughout this section, we fix a connected Hopf monoid H and a character
¢ : H — k. Define, for each element x € H[I] and each natural number n € N, the
scalar

(47) xr(@)(n) = Z (€5, ® - ®(s,) 0 Ag,,..8,(2),

[=5,0--US,,

summing over all decompositions of I into n disjoint subsets which are allowed to
be empty. For fixed I and xz, the function xj(z) is defined for n € N and takes
values on k. Note that

Coz) i I =10,

0 otherwise,

(48) x1(x)(0) = { x1(z)(1) = ¢r ().

s
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PROPOSITION 4.1.1. (Polynomial invariants) Let H be a connected Hopf monoid,
¢ : H — k be a character, and x be defined by (47). Fiz a finite set I and an element
x € H[I].

(1) For each n € N we have
1]

wtt =3 ()

where, for each k =0,...,|I|,

X(Ik)(x) = Z (CTI Q- CTk) © ATlvuka (JJ) ek
(T1,..., TR)EI
summing over all compositions (Th,...,Ty) of I. Therefore, xr(x) is a

polynomial function of n of degree at most |I|.
(2) Let o : I — J be a bijection, x € H[I| and y := H[o|(x) € H[J]. Then
xr(x) = xs(y)-

ProoF. 1. Given a decomposition I = S; U ---U Sy, let (T1,...,Tk) be the
composition of I obtained by removing the empty S;s and keeping the remaining
ones in order. In view of the unitality of A and ¢, we have

(<S1 PR CSn) o ASI7--<7Sn (I) = (CTl & Q CTk) o AT17~--7T7€ (l‘)
Note that k < |I| and the number of decompositions I = S; U --- U .S,, which give

rise to a given composition (71,...,Ty) is (}). It follows that
11 n
X)) = Z( > Gne--@dm)e An,...,w)) (1)
k=0 \(Ty,...Ty)EI

as desired. Since each (Z) is a polynomial function of n of degree k, xr(z) is

polynomial of degree at most |I|.
2. This follows from the naturality of A and (. ]

Let k[t] denote the polynomial algebra. Proposition 4.1.1 states that each char-
acter ¢ gives rise to a family of polynomials x7(x) € k[t] associated to each structure
x € H[I], whose values on nonnegative integers n are given by (47). Furthermore, it
says that two isomorphic structures have the same associated polynomial. Thus, the
function x;(z) is a polynomial invariant of the structure x (canonically associated
to the Hopf monoid H and the character ().

4.1.2. Properties of the polynomial invariant of a character. We now
collect some useful properties of these polynomial invariants.

PROPOSITION 4.1.2. Let H be a connected Hopf monoid, ¢ : H — k be a
character, and x be the associated polynomial invariant, defined by (47). Let I be
a finite set.

(1) xr is a linear map from H[I| to klt].
(ii) Let I = SUT be a decomposition. For any x € H[S] and y € H[T], we
have the equality of polynomials
xr(z-y) = xs(@)xr(y)
(iii) xg(1) =1, the constant polynomial.
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(iv) For any x € H[I] and scalars n and m,

xi@)(n+m)= Y xs(zls)(n)xr(z/s)(m).

I=SuT

PROOF. Property (i) follows from the linearity of A and (.

Property (ii) follows from the compatibility between p and A and the multi-
plicativity of (. We provide the details. First, decompositions I = I U --- U I,
into n parts are in bijection with pairs of decompositions S = S; U--- U S, and
T=T,U---UT,,where S; =L;NSand T; =I,NT.

The compatibility between g and A and the associativity of the latter imply that
if we write

ASl,...,Sn(l‘) :Zl‘1®®xn and AT1,<.-,Tn(y) = Zyl ®®yn;

in Sweedler’s notation, as described in Section 1.1.5, then

Apg,(@y) = (21-9) @+ & (T - Yn)

The above, together with the multiplicativity of ¢, yield that x;(z - y)(n) equals

Yo n®®G,) oA L,z y)

I=IU---UI,

= > S w) G (@ )

S=S1U-USp
T=T]U--UTy,

= > Y Calm)in ) s (@n)Cr (yn)

S=SjU---USp
T=Ty U UTp

> (s, ®-®(s,)0As,, s, (95))

S=S1U---USy

X ( Z Cr, ®--®Cr,) 0o Ary .1, (y))

T=T,U---UT,

= xs(z)(n) xr(y)(n).

Thus xr(x - y) = xs(z)xr(y) as polynomials, since they agree at every natural
number n.

Property (iii) follows from unitality of A and (.

For property (iv), note that decompositions of I into n+m parts are in bijection
with tuples

(S,S1,.., S, T, Ty, ..., Tn)
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where [ = SUT, S = S5,U---US,,and T =T U---UT,,. In addition, associativity
of A implies that

As,.. 8,1, T = (Bs,,..5, @1, _1,,) 0 AsT.

Therefore, x1(z)(n + m) is equal to

> (€, ®++ ©(s, ®Cr, @+ @(p,) 0 As, 5,111, ()

I=S8,U--US, UT U UT,

Yoy 99,000 00,

I=SUT S=S1U---USp
T=T1U---UT,

o (Ag,,..s, ®Ary..1,) © Agr(x)

- > > ((Csl®"'®Csn)

I=SUT S=SjuU---USnp
T=T1U---UTp,

© Bs,...5,(219)) ((Cr @+ @ ¢r,) 0 Ay (@]5))
> xs(als)(n) xr(z/s)(m).

I=5uT

The above yields the desired equality when n and m are nonnegative integers.
Since both sides of the equation are polynomial functions of (n,m) in view of
Proposition 4.1.1, the result then follows for arbitrary scalars n and m. O

The following result states that if two characters are related by a morphism
of Hopf monoids, then the same relation holds for the corresponding polynomial
invariants.

PROPOSITION 4.1.3. Let H and K be two Hopf monoids. Suppose (2 is a
character on H, (¥ is a character on K, and f : H — K is a morphism of Hopf
monotds such that

¢ (f1(=)) = ¢ ()

for every I and x € H[I|. Let X and x¥ be the polynomial invariants correspond-
ing to CH and C¥, respectively. Then

XTI (fr(x)) = X7 ()
for every I and x € H[I].

PROOF. Since f preserves coproducts, we have Ag r(fr(z)) = (fs®fr)(Asr(z))
and a similar fact for iterated coproducts. This and the hypothesis give the re-
sult. |

REMARK 4.1.4. Most of the results in this section hold under weaker hypothe-
ses (different ones for each result). For instance, Proposition 4.1.1 holds for any
collection of linear maps ¢; : H[I] — k which is unital (with the same proof). If n
and m are nonnegative integers, statement (iv) in Proposition 4.1.2 holds for any
collection of linear maps (; : H[I] — k. Proposition 4.1.3 holds for any morphism
of comonoids which preserves the characters.
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4.1.3. From Hopf monoids to reciprocity theorems. For a character  on
a Hopf monoid H, the construction of Section 4.1.1 produces a polynomial invariant
x whose values on natural numbers are well understood in terms of H and (. What
about the values on negative integers? The antipode provides an answer to this
question.

PROPOSITION 4.1.5. (Reciprocity for polynomial invariants) Let H be a con-
nected Hopf monoid, ( : H — k be a character, and x be the associated polynomial
invariant, defined by (47). Let s be the antipode of H. Then

(49) xr(z)(=1) = (r(sr(2)).
More generally, for every scalar n,
(50) x1(x)(=n) = xr(s1(x))(n).

PROOF. Since (') = (—1), Proposition 4.1.1 implies

1]
xr(@)(—1) —Z( > n ®"'®CTk)OAT1,...,Tk(x)> (=),

k=0 \(T1y,...T})FI

Using multiplicativity of ¢ and Takeuchi’s formula (5), this may be rewritten as

1|
xi(z)(-1) = Z( > Gol(pn @ @pn)oAn . m (w)> (1"

k=0 \(T1,..Ty)ET
=0 <Z D" Y wne.moo A, ($)> = (i(s1(2)),
k>0 (T1,...Tw)ET

which proves (49).

To prove (50) one may assume that the scalar n is a nonnegative integer, since
both sides are polynomial functions of n. We make this assumption and proceed
by induction on n € N.

When n = 0 the result holds in view of (48) and the fact that sy = id. When
n = 1 it follows from (48) and (49). For n > 2 we apply Proposition 4.1.2(iv) as
follows:

xi(@)(=n) = xr(@)(-n+1-1)= > xs(als)(=n+1) xr(z/s)(~1).
I1=5uT
Using the induction hypothesis, and then reversing the roles of S and T', this equals

Z xs(ss(zls))(n — 1) xr(sr(z/s))(1)

=S4T

- Z xs(ss(x/7)) (1) xr(sr(z|r))(n— 1).

I=5uT

Applying Proposition 4.1.2(iv) to sy(x), and using the fact (7) that the antipode
reverses coproducts, we see that this equals

xr(s1(@))(1+n—1) = xs(sr(2))(n),
as needed. O
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Formulas (49) and (50) are reciprocity results of a very general nature. They
gives us another reason to be interested in an explicit antipode formula: such a
formula allows for knowledge of the values of all polynomial invariants at negative
integers. The antipode acts as a universal link between the values of the invariants
at positive and negative integers. We now apply this approach to GP in Section 4.2.
This will allow us to unify several important reciprocity results in combinatorics
and to obtain new ones in Section 4.3.

4.2. The basic character and the basic invariant of GP

In this section we return to specifics, focusing on the Hopf monoids of general-
ized permutahedra GP and GP™. We will prove the results in this section for GP
but they also hold in GP™; see Remark 4.2.6.

We introduce the (almost trivial) basic character 8 and its associated basic
invariant x on the Hopf monoid of generalized permutahedra GP. We use the
algebraic structure of GP and § to obtain combinatorial formulas for x(n) and
X(—n) for n € N in Propositions 4.2.3 and 4.2.4; these were also obtained in [17].
In Section 4.3 we will see that several important combinatorial facts about graphs,
posets, and matroids are straightforward consequences of this setup.

DEFINITION 4.2.1. The basic character 3 of GP is given by

1 if pis a point
Br(p) = { P P

0 otherwise.

for a generalized permutahedron p € R!. The basic invariant x of GP is the
polynomial invariant associated to 8 by Proposition 4.1.1 and (47).

Note that S is indeed a character because the product of two polytopes p X g
is a point if and only if both p and q are points.

4.2.1. A lemma on directionally generic faces. Given a generalized per-
mutahedron p C R! and a linear functional y € R, say p is directionally generic
in the direction of y if the y-maximal face p, is a point. If this is the case, we will
also say that y is p-generic and that p is y-generic. See Figure 1.

We will need the following technical lemma about directionally generic faces.

LEMMA 4.2.2. For any generalized permutahedron p C R! and linear functional
y € RY, the following equations hold as formal sums of polytopes.

(1)
D (F)mag, = Y (~1)imag

qsp q<p—y
(2)
Z (=1)dma = () (pumber of vertices of p_,).

q<p:
Y 1S q-generic

PROOF. 1. Let us express both sides of the equation Hopf-theoretically. Let
F' be the face of the braid arrangement that y belongs to, and say it corresponds
to the decomposition I = Sy LI --- LI Sk, as described in Section 1.3.5. Also recall
from Section 1.1.9 that we denote pp = ps, .5, Ar = Ag, .5, and Sp =
Sg, ® - ®8g, -

,,,,,
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// /

FIGURE 1. The y-generic faces of the permutahedron 74 for y =
(0,1,1,0) are shaded.

For any generalized permutahedron v C R! we have v, = tr = purAp(r) by
Proposition 1.4.4. It then follows from the formula for the antipode of GP in
Theorem 1.6.1 that

(—D)MupApsi(p) =Y (~1)"™ 9,
q<p
Now let I be the opposite face of F, corresponding to the decomposition I =
Sk U---US;. Then F contains —y so urAz(p) = p_y, and
(D) spppapp) = Y (~1)dmag,
q<p—y

To prove that these expressions equal each other, recall Proposition 1.1.16, which
holds for any Hopf monoid in vector species:

ST UF = WESEFSWF, AFS[ZSFSWFAF.

where we have rewritten the first equation, using that Sswr = swr Sp. Applying
the second equation to F' and then the first equation to F', we obtain

,LLFAF St = UFSF SWFAF =Sy u7A77
which gives the desired result.

2. This follows by applying the character x; to both sides of the equation of part
1. O

4.2.2. The basic invariant and the basic reciprocity theorem of GP.
Recall that the basic invariant y of GP is the polynomial invariant that Proposition
4.1.1 associates to the basic character 3 of Definition 4.2.1.

PROPOSITION 4.2.3. [17, Def. 2.3, Thm 9.2.(v)] At a natural number n, the
basic invariant x of a generalized permutahedron p C R! is given by

x1(p)(n) = (number of p-generic functions y : I — [n]).
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ProOF. First notice that each summand in (47) comes from a decomposition
I=5,U---US,, which bijectively corresponds to a function y : I — [n] defined
by y(i) = k for each ¢ € S,. The corresponding summand for x;(p)(n) is

(<S1 - Csn) o ASL..A,Sn (p) = CS] (p1> e CSn (pn)

where the y-maximal face p, factors as p, = p1 X --- x p,, for p; € RS;. This term
contributes to the sum if and only if every p; is a point, that is, if and only if p,, is
a point; and in that case, it contributes 1. The desired result follows. O

PROPOSITION 4.2.4. [17, Theorems 6.3 and 9.2.(v)] (Basic invariant reci-
procity.) At a megative integer —n, the basic invariant x of a generalized per-
mutahedron p C R is given by

(—=D)Hx1(p)(—n) = Z (number of vertices of py)

y:I—[n]
where p, is the y-mazimum face of p.

ProoF. Using the general reciprocity formula for characters of Proposition
4.1.5 and the formula for the antipode of Theorem 1.6.1 of GP we obtain

Xt (p)(=n) = xr(s1(p))(n) = (=111 (=1)™ Iy (q) ().

q<p
Proposition 4.2.3 and Lemma 4.2.2 then give
xr(p)(—n) = 1] Z 1)4ma (4 of g-generic functions y : I — [n])
q<p
= 1)l Z Z (—1)dima — Z (number of vertices of p_,).
Y Ii} y is q g,enerlc ylﬁ[n]
This gives the desired result since p_y = P41, nt1)—y, and (n+1,...,n+1) —
maps I to [n] if and only if y maps I to [n]. O

REMARK 4.2.5. Propositions 4.2.3 and 4.2.4 were also obtained by Billera, Jia,
and Reiner in [17]; their proof of the basic invariant reciprocity of Proposition
4.2.4 relies on Stanley’s combinatorial reciprocity theorem for P-partitions. Our
approach is different: we choose to give Hopf-theoretic proofs of these results. This
will allow us to give straightforward derivations of various combinatorial reciprocity
theorems, using only the Hopf-theoretic structure of GP; we do this in the following
section.

REMARK 4.2.6. The results of this section also hold for the Hopf monoid GP™
of possibly unbounded generalized permutahedra. In that setting, we must set
py = 0 whenever the polyhedron p is unbounded above in the direction of y. For
a linear functional y to be p-generic, we must require that the polyhedron p is
bounded above in the direction of y, and that p, is a point.

4.3. Combinatorial reciprocity for graphs, matroids, and posets

We now show how characters on Hopf monoids naturally give rise to numer-
ous reciprocity theorems in combinatorics; some old, some new. We would like
to emphasize one benefit of this approach: this algebraic framework allows us to
discover and prove reciprocity theorems automatically. All we have to do is define
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a character on a Hopf monoid, and the general theory will produce a polynomial
invariant and a reciprocity theorem satisfied by it. In this section we will use some
of the simplest possible characters to obtain several theorems of interest.

The ideas in this section are closely related to those in [1,17] and in [2, Chapters
11 and 13].

4.3.1. The basic invariant of graphs is the chromatic polynomial.
Given a graph g, an n-coloring of the vertices of g is an assignment of a color in [n]
to each vertex of g. A coloring is proper if any two vertices connected by an edge
have different colors.

PROPOSITION 4.3.1. Let ¢ be the character on the Hopf monoid of graphs G
defined by

1 if g has no edges, and
Cr(g) = .
0 otherwise.

The corresponding polynomial invariant is the chromatic polynomial, which equals
x1(g)(n) = number of proper colorings of g with n colors.
forn € N.

Proor. The zonotope Z, is a point if and only if g has no edges. Therefore,
thanks to the inclusion G°°? — GP of Proposition 3.2.5, when we restrict the basic
character 8 of GP to graphic zonotopes, we obtain the character ¢ of graphs. It
follows that x;(g) is the basic invariant of the graphic zonotope Z,, and Proposition
4.2.3 then tells us that x;(g)(n) is the number of Zj-generic functions y : I — [n].
By (40), a function y : I — [n] is Z,-generic if and only if y(i) # y(j) whenever
{i,7} is an edge of g; that is, if and only if y is a proper coloring of g. The result
follows. O

We say that an n-coloring y of g and an acyclic orientation o of the edges of g
are compatible if we have y(i) > y(j) for every directed edge ¢ — j in the orientation
0.

COROLLARY 4.3.2. (Stanley’s reciprocity for graphs [90, Theorem 1.2]) Let g
be a graph on vertex set I, and n € N. Then (—1)Ix;(g)(—n) equals the number
of compatible pairs of an n-coloring and an acyclic orientation of g. In particular,
(=) Ix1(g)(=1) is the number of acyclic orientations of g.

PRrROOF. This result is a special case of Proposition 4.2.4. To see this, regard
an n-coloring y of g as a linear functional y : I — [n] on the zonotope Z,. This
coloring induces a partial orientation o, of the edges of g, assigning an edge {i,j}
the direction ¢ — j whenever y(i) > y(j). By (40), the vertices of (Z,),, correspond
to the acyclic orientations that extend oy; these are precisely the acyclic orientations
of g compatible with y. O

4.3.2. The basic invariant of matroids is the Billera-Jia-Reiner poly-

nomial. Given a matroid m on I, say a function y : I — [n] is m-generic if m has
a unique y-mazimum basis {by, ..., b, } maximizing y(by) + - - + y(b,).
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PRrROPOSITION 4.3.3. Let  be the character on the Hopf monoid of matroids M
defined by

1 if m has only one basis, and
Cr(m) = .
0  otherwise.

The corresponding polynomial invariant is the Billera-Jia-Reiner polynomial of a
matroid, which equals

x1(m)(n) := number of m-generic functions y: I — [n]
forn e N.

PROOF. The matroid polytope of m is a point if and only if m has only one
basis. Therefore, thanks to the inclusion M — GP of Proposition 3.3.3, when we
restrict the basic character § of GP to matroid polytopes, we obtain the character
¢ of matroids. It follows that x(m) The result now follows by applying Proposition
4.2.3 to matroid polytopes. ([l

COROLLARY 4.3.4. (Billera-Jia-Reiner’s reciprocity for matroids [17, Theorem
6.3.]) Let m be a matroid on I and n € N. Then

(=D xr(m)(=n) = Z (number of y-mazimum bases of m).
y:I—[n]

PRrROOF. This is the result of applying Proposition 4.2.4 to matroid polytopes.
|

4.3.3. The basic invariant of posets is the strict order polynomial.
Given a poset p, say a map y : p — [n] is order-preserving if y(i) < y(j) whenever
i < jin p. Say y is strictly order-preserving if y(i) < y(j) whenever i < j in p.

PROPOSITION 4.3.5. Let ¢ be the character on the Hopf monoid of posets P
defined by

1 if p is an antichain, and
C(p) = ‘
0 otherwise.

The corresponding polynomial invariant is the strict order polynomial, which equals
x1(p)(n) = number of strictly order-preserving maps p — [n].
forn e N.

PROOF. The poset cone P(p) is a point if and only if p is an antichain. There-
fore, thanks to the inclusion P < GP™ of Proposition 3.4.6 (see Remark 4.2.6),
when we restrict the basic character 3 of GP™ to poset cones, we obtain the char-
acter ¢ of posets. It follows that x;(p)(n) is the number of P(p)-generic functions
y : p — [n]. Now, thanks to Proposition 3.4.1, the normal fan to P(p) is a single
cone cut out by the inequalities y(i) < y(j) for i > j in p, so the p-generic functions
are precisely the strictly order-reversing maps. It remains to note that there is a
natural bijection between order-reversing maps I — [n] and order-preserving maps
I—[n]. O

COROLLARY 4.3.6. (Stanley’s reciprocity for posets [88, Theorem 3]) Let p be
a poset on I and n € N. Then (—1)!!x;(p)(—n) is the order polynomial of p, that
18,
(=D 1(p)(=n) = number of order-preserving maps p — [n).
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PRrROOF. This is a consequence of Proposition 4.2.4 and the following observa-
tions. The poset cone P(p) only has one vertex, namely, the origin. If y : p — [n] is
order-reversing, then there is a y-maximum face P(p),, and it contains that single
vertex. If y is not order-reversing, then P(p) is not bounded above in the direction
of y. O

4.3.4. The Bergman polynomial of a matroid. A loop in a matroid is an
element which is not contained in any basis.

DEFINITION 4.3.7. The Bergman character v of the Hopf monoid of matroids
M is given by

(m) 1 if m has no loops
m) =
n 0 otherwise.

for a matroid m on I. The Bergman polynomial B(m) of a matroid m is the
invariant associated to v by Proposition 4.1.1 and (47).

Note that ~ is indeed a character, because a direct sum of matroids m ® n is
loopless if and only if m and n are both loopless. To study the Bergman polynomial,
we need some definitions. A flat is a set F' of elements such that r(FU#) > r(F) for
every i ¢ F. When m is the matroid of a collection of vectors A in a vector space
V', the flats correspond to the subspaces of V' spanned by subsets of A. The flats
form a lattice L under inclusion, and the Md&bius number gy, (6, /1\) of this lattice
(see [6], [94, Chapter 3]) is also called the Mdbius number of the matroid p(m).

We call B(m) the Bergman polynomial because it is related to the Bergman
fan

B(m) = {y € R’ | m,, has no loops}
where m,, is the matroid whose bases are the y-maximum bases of m. Notice that
the matroid polytope of m, is the y-maximum face of the matroid polytope of m;
that is, P(my) = P(m),. Therefore B(m) is a polyhedral fan: it is a subfan of the
normal fan of the matroid polytope P(m), consisting of the faces N, (n) normal to
the loopless faces n of m.

Note also that B(m) is invariant under translation by 1 and under scaling by a
positive constant. Therefore, nothing is lost by intersecting it with the hyperplane
>, z; = 0 and the sphere >, 2? = 1, to obtain the Bergman complex B(m).

Bergman fans of matroids are central objects in tropical geometry, because
they are the tropical analog of linear spaces [10,99]. Two central results are the
following combinatorial and topological descriptions.

THEOREM 4.3.8. [10] Let m be a matroid of rank r on I. The Bergman fan
B(m) has a triangulation into cones of the braid arrangement Bj, consisting of the
cones Bg, .....s,. such that Sy U---US; is a flat of m fori=1,...,r.

THEOREM 4.3.9. [10] The Bergman complez of a matroid m of rank r is home-
omorphic to a wedge of (—1)"u(m) spheres of dimension r — 2, where u(m) is the
Mobius number of m.

We now describe some of the combinatorial properties of the Bergman polyno-
mial. The first one is essentially equivalent to [23, Example 4.15]. Define a flag
of flats of m to be an increasing chain of flats under containment ) = Fy C Fy C
FKRC---CF, 1 CF,= 1. We call n the length of the flag. Similarly, a weak flag
of flats to be a weakly increasing chain of flats.
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PROPOSITION 4.3.10. At a natural number n, the Bergman polynomial B(m)
of a matroid m is given by

B(m)(n) = number of weak flags of flats of m of length n = ch (;L),
k=0
where cq is the number of flags of flats of m of length d. Its degree is the rank r of
m.

PrOOF. We use the inclusion M — GP to proceed geometrically. Let p =
P(m) be the matroid polytope of m. The summand of Bj(p)(n) in (47) corre-
sponding to a decomposition I = S7 U---U S, equals

(78, ® -+ ®7s,) 0 As, .5, (P) = s, (p1) -5, (Pn) = v (P13, 7)

where I = T3 Ul --- U T, is the composition obtained by removing all empty parts,
and prp, ... 7, is the y-maximal face of p for any y € By, ... r,. This term contributes
1 to the sum if pr, ... 7, is loopless and O otherwise.

By Theorem 4.3.8, pry ... 1, is loopless if and only if Bz, 7, is in the Bergman
fan of m, and this is the case ifand only if 0 C T} C TYUTL, € --- C T4 U---UTy =1
is a flag of flats. For fixed n and d there are ¢4 choices for that flag of flats, and (Z)
ways to enlarge the resulting composition I = 77 LI --- L Ty into a decomposition
I =5 U---U8, by adding empty parts. This results in a weak flag of flats
fCSCSUSC---CSU---US, =1 of length n.

Since (1) is a polynomial in n of degree d, the degree of B(m) is the largest
possible length of a flag of flats of m, which is the rank r of m. |

,,,,,

PROPOSITION 4.3.11. (Bergman polynomial reciprocity.) The Bergman poly-
nomial of a matroid m of rank r satisfies

B(m)(-1) = (=1)"p(m)
where p(m) is the Mdbius number of m.

ProoF. Using Proposition 4.1.5 and Theorem 1.6.1 we get

B(m)(-1) y(sr(m) = Y (=) (n)
n face of m

=Y (i S () = g(B(m),

n face of m F=Nm (n)
n loopless face of B(m)

the reduced Euler characteristic of the Bergman complex of m. The result now
follows from Theorem 4.3.9. ([l
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CHAPTER 5

Hypergraphs, simplicial complexes, and building
sets

For the remainder of this manuscript, when P and @Q are polytopes, we will
write P + @ for the Minkowski sum of P and ). This is not to be confused with
the formal sum of polytopes entering in earlier formulas such as (29).

5.1. HGP: Minkowski sums of simplices, hypergraphs, Rota’s question

In this section we focus on a large family of generalized permutahedra which we
call hypergraphic polytopes or Minkowski sums of simplices. The polytopes in this
family conserve the Hopf algebraic structure of GP while featuring additional combi-
natorial structure, which makes them very useful for combinatorial applications, as
we will see in Sections 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7. In fact, HGP is a useful source
of old and new Hopf monoids: we start with some important subfamilies of general-
ized permutahedra — namely hypergraphic polytopes, graphic zonotopes, simplicial
complex polytopes, nestohedra, graph associahedra, permutahedra, and associahe-
dra — and we let them give rise to several interesting (and mostly new) Hopf monoids
of a more combinatorial nature, denoted HG, SHG, G, SC, BS, WBS, W, II, F, which
consist of hypergraphs, simple hypergraphs, graphs, simplicial complexes, building
sets, graphical building sets, simple graphs, set partitions, and paths, respectively.
As we will see in the upcoming sections, these Hopf monoids are related to each
other by the following morphisms:

I Qeop LGP = L HGPC s P

Weepr — =5 WBS®P 3 BS®P C—— SHG P

e

F Sgeep

5.1.1. Minkowski sums of simplices. We briefly mentioned in earlier sec-
tions that permutahedra, Loday’s associahedra, and graphic zonotopes may be
expressed as Minkowski sums of simplices. We now place these statements into a
broader context, following Postnikov [77].

Recall that the Minkowski sum of two polytopes P and Q C R is

P+Q:={p+q|peP, ¢gcQ} CR.

89
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For the remainder of this monograph, P + @} will always denote this Minkowski
sum.

Normal fans of polytopes behave well under scaling and Minkowski sums: the
polytopes P and AP have the same normal fan for A\ > 0, while the normal fan
of P+ @ (and hence of AP + u@ for A\, u > 0) is the coarsest common refinement
of the normal fans of P and @ [99]. It follows that if P and @ are generalized
permutahedra, then so is AP 4 u@ for A\, u > 0.

Recalling from Theorem 3.1.3 that every generalized permutahedron p is as-
sociated to a unique submodular function z such that p = P(z), the previous
statement has the following counterpart. If z and z’ are submodular functions,
then so is Az + pz’ for A\, u > 0, and

(51) AP(z) + uP(2') = P(Az + pz').
Let A; = conv{e; | i € I} be the standard simpler in R!. Let
Ay =convie; | i € J} for JC T

be the faces of A;; note that the face Ay is itself the standard simplex in R”. The
following proposition is a consequence of (51).

PROPOSITION 5.1.1 ([77, Proposition 6.3]). Ify : 2L — Rx is a non-negative
Boolean function then the Minkowski sum Y ;- ; y(J)A s of dilations of faces of the

standard simplex in RY is a generalized permutohedron. We have

(52) > u)A; =P(2),

JCI

where z is the submodular function given by

z(J) = Z y(K)  for each J C 1.
KNJ#D

Furthermore, if a polytope can be written in the form (52), then there is a unique
choice of y that makes this equation hold."

DEFINITION 5.1.2. A generalized permutahedron p is y-positive if it is given
by (52) for a non-negative Boolean function y : 2/ — Rxq. If, additionally, y(.J) is
an integer for all J C I, we call p a Minkowski sum of simplices or a hypergraphic

polytope.

We should say a word about this nomenclature. A hypergraph H on I is a collec-
tion of (possibly repeated) subsets of I, called the multiedges of H. Our convention
will be that the empty set appears exactly once in H. Then there is a natural bi-
jection between hypergraphs and hypergraphic polytopes: to a hypergraph H on I
containing y(J) copies of the subset J C I, we associate the hypergraphic polytope
Ay = ZHE?—L Ay = ngj y(J)A,.

REMARK 5.1.3. We saw in Theorem 3.1.3 that there is a one-to-one correspon-
dence between generalized permutahedra in R™ and submodular functions, which
naturally form a polyhedral cone in R?" 1. The y-positive generalized permutahe-
dra form a polyhedral subcone of this submodular cone, which is full-dimensional

Mn fact, every generalized permutahedron can be expressed uniquely as a signed Minkowski

sum Y ;7 y(J)A; where y(J) is allowed to be negative, but the definitions become more subtle.

We will not pursue this point of view here; for more information, see [7, Proposition 2.3].
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since it is parameterized by 2" — 1 independent parameters. The inequalities defin-
ing this subcone will be given in Proposition 5.1.4.2.

Many polytopes of interest are hypergraphic, although that is not always appar-
ent at the outset. For example, graphic zonotopes, permutahedra, and associahedra
turn out to be hypergraphic, but this is not clear from their definitions. We will
see many other examples in the upcoming sections.

5.1.2. Relations, hypergraphic polytopes, and Rota’s question. A re-
lation R C I x J gives rise to a function fg : 2/ — N defined by

fr(A) =|R(A)| = |{b € B|(a,b) € R for some a € A}| for ACT.

Let us call such a function relational. One may verify that every relational function
is submodular, and Rota [63, Problem 2.4.1(d)] asked for a characterization of these
relational submodular functions:

There is an interesting open question which ought to have been
worked out, and that I ought to have worked out, but I haven’t:
Characterize those submodular set functions that come from a
relation in this way [80, Exercise 18.1].

It is likely that Rota knew how to do this, but we have not been able to find a
precise statement in the literature. We offer the following characterizations.

PROPOSITION 5.1.4. A submodular function f : 21 — R is relational if and
only if either of the following conditions hold:

(1) Its associated polytope P(f) is hypergraphic.
(2) f(0) =0 and for all A C I we have f(A) € Z and

Y (=nEAfE) <o

KDA

PrOOF. 1. A relation R C I x J naturally gives rise to a hypergraph Hg on
I whose hyperedges h; = {i | (i,j) € R} for j € J are given by the columns of
R. Clearly any hypergraph on I arises in this way from a relation. If yr(K) is the
multiplicity of hyperedge K in Hpg then

(53) fr(A) = Z yr(K)
KNA#)
for all A C I. Proposition 5.1.1 then gives
P(fr) =Y yr(K)Ak.
JCI

which is a Minkowski sum of simplices. Conversely, given such a Minkowski sum,
we can use its coefficients as the multiplicities of a hypergraph which gives rise to
the desired relation.

2. The submodular function of a relation R clearly satisfies fr(0)) = 0. We rewrite
(63) as fr(A) = |J| — > xcs_a yr(K) and use the inclusion-exclusion formula to
obtain -

yr(B) = Y (~D)EK(|J| = fr(I - K)) == > (-)IP Kl fp(I - K)

KCB KCB
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for B # (). Therefore

(54) yr(I = A) == > (1)K fp(K) > 0
KDA
Conversely, for any integral function f satisfying the given inequalities, (54) gives
us a non-negative function y : 2/ — Z. We then construct the desired relation
R C I x J asin part 1: for each K C I we include y(K) elements j in J such that
hj =K. |
We wish to study these objects further, following the philosophy of Joni and

Rota’s paper [60]: we will describe their Hopf algebraic structure in Sections 5.1.3
and 5.2. This will turn out to be a crucial ingredient for the rest of this monograph.

5.1.3. The Hopf monoid of hypergraphic polytopes.

PROPOSITION 5.1.5. The hypergraphic polytopes form a submonoid HGP of the
Hopf monoid of generalized permutahedra GP.

ProoF. Let I = S UT be a decomposition. To prove HGP is a submonoid of
GP we need to prove two things:
e If polytopes p and q are hypergraphic in R® and R”, then p x q is hypergraphic
in RY.
e If p is hypergraphic in R, then p|s and p/g are hypergraphic in R and R,
respectively.

For the first statement, ifp = > ;g y1(J)A; C RS and q = Yorcry2(K)Ak C
R”T are Minkowski sums of simplices, then
(55) pxa=p+a=Y n()As+ Y ypa(K)Ax CR

Jcs KCT

is also a Minkowski sum of simplices.

For the second one, we use that (P+Q), = P,+Q, for any polytopes P, Q C R!
and any linear functional v € R!. Now, the maximal face of the simplex Ay in
direction 1g is

(A) . Ajns ifJﬁS?é[Z)
AN, iINnS=0.
Therefore if p = ZJgI y(J)A; C R! is a hypergraphic polytope, then its 1g-
maximal face is psr = p|s + p/s where
(56) Pls= > y()Ars SRS, p/o= > y()A, CR”.
JNS#D JNS=0
Therefore p|g and p/g are hypergraphic, as desired. a

Since HGP is a Hopf submonoid of GP, Theorem 1.6.1 gives us a formula for
the antipode of HGP. We write it down in Theorem 5.2.5 in terms of hypergraphs.

5.2. HG: Hypergraphs

Recall that a hypergraph with vertex set I is a collection H of (possibly re-
peated) subsets of I. We will use the convention that there is always a single copy
of § in H.2 We can think of each subset H in H as a multiedge which can now
connect any number of vertices.

2This is the opposite of the usual convention that ) ¢ H.
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5.2.1. The Hopf monoid of hypergraphs. Let HG[I] be the set of all
hypergraphs with vertex set I. Clearly HG is a species, which we now turn into a
Hopf monoid.

Let I =S UT be a decomposition.

e For H, € HGIS] and Hs € HG[T), define their product Hy - H2 € HG[I] to be
the disjoint union H; U Hy as a hypergraph on I.

e The coproduct of H € HG[I] is (H|s,H/s), where the restriction and contraction
of H with respect to S are the multisets

Hs = {H|HEcH, HCS}
H/s = {HNT|HeH, HZS}U{b}.

Each multiedge Hg of H|s has the same multiplicity that it had in H, while the
multiplicity of a nonempty multiedge Hp of H /g is the sum of the multiplicities of
the edges H € H such that HNT = Hy.

The Hopf monoid axioms are easily verified.

EXAMPLE 5.2.1. For the hypergraph H = {0, 1,2,3,12,23,123} on I = [3], we
have

Hll?) = {®7153}a H/l?) = {®72a25272}7
IH‘Q = {(2)32}3 H/Q = {®a1,173a3a13}'
We omit the brackets from the individual multiedges in H for clarity.

5.2.2. Hypergraphs as a submonoid of generalized permutahedra.
Recall that the hypergraphic polytope of a hypergraph H on I is the Minkowski

sum
Ay=> Ap
HeH
where Ap is the standard simplex in RH C RL.

ExXAMPLE 5.2.2. The hypergraphic polytope for the hypergraph
" ={0,1,2,3,12,23,123}
is
Ag = Ay + Ag + Az + Agg + Aoz + Ajag,
as shown in Figure 1.

2

A
AN AN A

FIGURE 1. The hypergraphic polytope of the hypergraph H =
{0,1,2,3,12,23,123}.

Let HG? be co-opposite to the Hopf monoid of hypergraphs HG, as defined in
Section 1.1.2; it has the same product and the reverse coproduct of HG.
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PROPOSITION 5.2.3. The map H — Ay gives an isomorphism HG? = HGP
between HG? and the Hopf monoid of hypergraphic polytopes HGP.

PRrROOF. We know that the map is bijective. The equation (55) says that the
map preserves the product and (56), which may be rewritten as (Ay)|s = Ay,
and (Ay)/s = Ay, says that the map reverses the coproduct. a

ExaMPLE 5.2.4. For the hypergraphic polytope of Example 5.2.2 and Figure
1, the northwest edge and southwest vertex are described by

(Ay)iz e = (A1 +Ax+ Ag + Ay + Ag + Aqg)
= A{0),1,1,3,3,13} X A{@,z} = A?—l/2 X Amg

(Ag)2,13 = (A1 + Ag + Az + Ay + Ag + Ay)
=Ag2222) X A01,3) = Dayyys X Ayyygs
in (co-opposite) agreement with Example 5.2.2.

THEOREM 5.2.5. The antipode of the Hopf monoid of hypergraphs HG is given
by the following cancellation-free and combination-free expression. If H is a
hypergraph on I then
si(H)= Y (-1)9g,
Ag<Ayn
summing over all faces Ag of the hypergraphic polytope Ay of H, where ¢(G) is the
number of connected components of the hypergraph G.

ProoF. This is the result of applying Theorem 1.6.1 to the submonoid HGP
of GP, taking into account the identification of HGP and HG of Proposition 5.2.3
and the observation that dim Ag = |I| — ¢(G). There is no cancellation or grouping
in the right hand side of this equation because Ag = Ag/ implies G = G’. |

EXAMPLE 5.2.6. The antipode of the hypergraph H = {0, 1,2,3,12,23,123} in
HG is given by the hypergraphic polytope of Figure 1, namely:

s (H) = {0,1,2,3,12,23,123} — {0,1,2,3,1,23,1} — {0,1,2,3,1,3,13}
—{0,1,2,3,12,3,3} — {0,1,2,3,2,23,23} — {0,1,2,3,12,2,12}
+{0,1,2,3,1,2,1} +{0,1,2,3,1,3,1} + {0,1,2,3,1, 3, 3}
+{0,1,2,3,2,3,3} +{0,1,2,3,2,2,2}.

5.2.3. Graphs, revisited. We now give another explanation of the inclusion
of G°P into GP shown in Proposition 3.2.5.

PROPOSITION 5.2.7. The map g — Zg4 is an injective morphism of Hopf monoids
GP — GP.

PrROOF. Since the graph operations of G defined in Section 1.2.1 are special
cases of the hypergraph operations of HG defined in Section 5.2.4, we have an
inclusion of Hopf monoids, G < HG, which gives an inclusion G®P —» HG®P.
Proposition 5.2.3 tells us that the map H — Ay is an isomorphism HG®P = HGP.
By Proposition 3.2.3, the composition of these maps is the map G*°? — HGP — GP
given by g — Z,. O
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5.2.4. Simple hypergraphs and simplification. A hypergraph is simple if
it has no repeated multiedges.® In the applications we have in mind, we are only
interested in simple hypergraphs. Unfortunately, simple hypergraphs are not closed
under the contraction map of HG, so the Hopf structure that we define on them
requires a slightly different contraction map. Let SHG[I] be the set of all simple
hypergraphs with vertex set I.

Let I =S UT be a decomposition.

e The product of H; € SHG[S] and He € SHG[T] is their disjoint union H; U Hs.
e The coproduct of H € SHG[I] is (H|s, H/s), where the restriction and contraction
of ‘H with respect to .S are:
Hls = {H|HeH, HCS}
H/s = {HNT|HeH, HZS}U{0}={BCT|AUB € H for some A C S},
now regarded as sets without repetition.

One easily verifies that the simplification maps, which remove any repetitions of
multiedges in a hypergraph, give a morphism of Hopf monoids s : HG - SHG. We
now show that this map behaves reasonably well with respect to the corresponding

polytopes. Define HGP C GP to be the quotient of HGP obtained by identifying
hypergraphic polytopes with the same normal fan.

PROPOSITION 5.2.8. We have a commutative diagram of Hopf monoids as fol-
lows.

HG®™P « = L HGP

|

SHG®*? —» HGP

PROOF. The two vertical maps are defined in the previous paragraph, while
the top map is H — Ag. It remains to verify that the bottom map that makes
this diagram commute is well-defined: if H is a hypergraph, the normal fan Na,,
is the common refinement of Ma,, as we range over all H € H; this only depends
on the simplification of H. O

REMARK 5.2.9. The bottom map SHG®P — HGP of Proposition 5.2.8 is not
an isomorphism. For example, Ap 12,1323} and Agg 12,13,23,123} are hexagons with
the same normal fan. More generally, for any simple hypergraph H on I containing
all pairs {i.j} with ¢,5 € I, the hypergraphic polytope Ay is normally equivalent
to the standard permutahedron 7;. To see this, notice that the normal fan of Ay
coarsens the braid arrangement (since Ay is a generalized permutahedron) and
refines the braid arrangement (since it has 7y = 3 Gijycr Diigy as a Minkowski
summand).

5.2.5. The support maps. The support maps supp; : HGP[I| — SHGI!]
will be an important tool in what follows; they take a hypergraphic polytope p =
Ay = ;c;y(J)A; CR! to the simple hypergraph supporting it:

supp(p) == {J C I | y(J) > 0} U {0}.

3We allow simple hypergraphs to contain singletons, slightly against the usual convention.
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Under the isomorphism HGP = HG®® of Proposition 5.2.3 which identifies p with
its corresponding hypergraph H, the support supp;(p) is the simplification of H.

THEOREM 5.2.10. The support maps supp; : HGP[I]| — SHGII] give a surjec-
tive morphism of Hopf monoids supp : HGP — SHG®P.

PRrROOF. This morphism is the composition of the top isomorphism with the
simplification map s in Proposition 5.2.8. (]

THEOREM 5.2.11. The antipode of the Hopf monoid of simple hypergraphs SHG
is given by the following cancellation-free expression. If H is a simple hypergraph
on I then

si(H) = > (=1)*Psupp,(F),

F<Ay

summing over all faces F of the hypergraphic polytope Ay of H, where c¢(F) =
|I| — dim F is the number of connected components of the hypergraph supp;(F).

Proor. Thanks to Proposition 1.1.17, the surjective maps supp turn Theo-
rem 5.2.5, our formula for the antipode of HG®Y =~ HGP, into a formula for
the antipode of SHG. The formula is cancellation free because faces of different
dimension must have different support. O

EXAMPLE 5.2.12. The antipode of the hypergraph H = {0, 1,2,3,12,23,123}
in SHG is also given by the hypergraphic polytope of Figure 1, but the result is
now the simplification of the one in Example 5.2.6:

Si(H) = H-— 2{0,1,2,3,23} — 2{0,1,2,3,12} — {0,1,2,3,12} + 5{0, 1,2, 3}

As in the case of matroids, we have no simple combinatorial labeling of the faces
of a general hypergraphic polytope, so we do not have a way of simplifying the for-
mula of Theorem 5.2.11. This shows that hypergraphic polytopes are fundamental
in the Hopf structure of hypergraphs.

However, we do know a few families of hypergraphic polytopes whose com-
binatorial structure we can describe more explicitly; they give rise to interesting
combinatorial families which inherit Hopf monoid structures from their polytopes.
In the remaining sections of this monograph, we will describe the resulting Hopf
monoids and use Theorem 5.2.11 to describe their antipodes.

5.3. SC: Simplicial complexes, graphs, and Benedetti et al.’s formula

Benedetti, Hallam, and Machacek [14] constructed a combinatorial Hopf alge-
bra of simplicial complexes, and obtained a formula for its antipode through a clever
combinatorial argument. Surprisingly, the formula is almost identical to Humpert
and Martin’s formula for the antipode of the Hopf algebra of graphs [58]. In this
section, by modeling simplicial complexes polytopally, we are able to offer a simple
geometric explanation of this phenomenon.

A(n abstract) simplicial complex on a finite set I is a collection C of subsets of
1, called faces, such that any subset of a face is a face; that is, if J € C and K C J
then J € C. For a subset J C I, the induced simplicial complex C|; consists of the
faces of C which are subsets of J.
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5.3.1. The Hopf monoid of simplicial complexes. Let SC[I] denote the
set of all simplicial complexes on I. We turn the set species SC into a commutative
and cocommutative Hopf monoid with the following structure.

Let I =S UT be a decomposition.

e The product of two simplicial complexes C; € SC[S] and C2 € SC[T] is their
disjoint union.
e The coproduct of a simplicial complex C € SC[I] is (C|s,C|r).

The Hopf monoid axioms are easily verified.

At first sight, this Hopf monoid — which is cocommutative — does not seem
related to the Hopf monoids of hypergraphs — which are not cocommutative. How-
ever, it turns out that SC lives inside the cocommutative part of SHG.

ProroSITION 5.3.1. The Hopf monoid of simplicial complexes SC is a sub-
monoid of the Hopf monoid of simple hypergraphs SHG.

PROOF. Simplicial complexes are simple hypergraphs, and the product and
restriction operations for these two families coincide. The contraction operations
are defined slightly differently. However, if C is a simplicial complex and I =
S UT is a decomposition, one may verify that the contraction C/g in the sense
of simple hypergraphs coincides with the restriction C|7 in the sense of simplicial
complexes. ([l

5.3.2. Simplicial complex polytopes. Each simplicial complex C, being a
hypergraph, has a corresponding hypergraphic polytope Ac := » .- Ac. Unlike
general hypergraphic polytopes, this family of polytopes have a simple combinato-
rial facial structure.

Recall that the one-skeleton C™V) of a simplicial complex on I is the graph on
I whose edges are the sets in C of size 2.

LEMMA 5.3.2. For any simplicial complex C, the hypergraphic polytope Ac is
normally equivalent to the graphic zonotope Zo of its one-skeleton C™V).

PROOF. We use the central fact from Proposition 5.2.8 that the normal equiva-
lence class of a hypergraphic polytope Ay depends only on the support supp(Ay).
Let C be a simplicial complex on I. Since they have the same support, the
simplicial complex polytope A¢ =} e Ap is normally equivalent to the polytope

Pl:z ZAF:Z’]T/G
GeC FC@G GeC

where we define mg; = } -5 Ar for each set G € C. By Remark 5.2.9, 7g

is normally equivalent to the standard permutahedron 7g in R’. Therefore the
polytope P is normally equivalent to

P=> ma= > Aup
Gec Gec {i,j}1CG
using (19). In turn, P, is normally equivalent to Z,) = Z{i,j}ec Ay jy since they

have the same support. O

As a consequence, the simplicial complex polytope A¢ has the same facial
structure as the zonotope Z, for g = CM, as described by Lemma 3.2.4. It would
be interesting to further study these simplicial complex polytopes.
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5.3.3. The antipode of simplicial complexes. Since simplicial complexes
form a submonoid of simple hypergraphs by Proposition 5.3.1, we may use Theorem
5.2.11 to compute the antipode of SC, thus recovering the formula of Benedetti,
Hallam, and Machacek [14]. We now carry this out.

Let C be a simplicial complex C on I and let f be a flat of the 1-skeleton CV) of
C. The flat f is a subgraph of C("), and its connected components form a partition
7w ={m,...,m} of its vertex set I. As before, we let ¢(f) = k denote the number of
connected components of f. We define C(f) = C|x, U- - -LC|, to be the subcomplex
of C consisting of the faces which are contained in a connected component of f.

COROLLARY 5.3.3 ([14]). The antipode of the Hopf monoid of simplicial com-
plexes SC is given by the following cancellation-free and combination-free ez-
pression. If C is a simplicial complex on I then

sr(C) =Y _(-=1)Wa(g/f)C(f),

f

summing over all flats f of the 1-skeleton g = C™Y) of C, where a(g/f) is the number
of acyclic orientations of the contraction g/ f.

PROOF. By Theorem 5.2.11, the antipode of C is given by the face structure
of the polytope Ac¢, which is equivalent to the face structure of the zonotope Z; by
Lemma 5.3.2. Lemma 3.2.4 tells us that the faces of these polytopes are in bijection
with the pairs of a flat f of g and an acyclic orientation o of g/f. Recall from that
proof that the maximal face (A¢), in a direction y € R’ depends only on a flat
f = fy of g and an orientation o = o, of g/f determined by y. The flat f of ¢
consists of the edges ij such that y(i) = y(j); the acyclic orientation o of g/ f will
be irrelevant here.

The corollary will now follow from the claim that the support of the (|| — ¢)-
dimensional face (A¢), equals C(f), independently of the choice of 0. To prove this
claim, we will use the following expressions:

(57) (Ac)y = Z(Ac)@n Acipy = Z Ac.

ceC cec:

y is constant on C

We will show that they have the same summands, possibly with different multiplic-
ities.

—: For each C € C we have (A¢), = Ac,,,, where Chae = {c € Clyl(c) is
maximum. Clearly y is constant on Cyqq, so this is a summand of Agy).

+—: For any summand Ac¢ of A¢(y), C is a face of the simplicial complex C where
y is constant, so Ac = A¢,,.. = (Ac)y is a summand of (A¢),.

This proves the claim that supp(Ac)y = C(f), and the desired result follows. O

The proof above gives a simple geometric explanation for the striking similarity
between the antipode formulas for the Hopf algebra of graphs G and the Hopf
algebra of simplicial complexes SC: these formulas have the same combinatorial
structure because they are controlled by polytopes that are normally equivalent.

5.4. BS: Building sets and nestohedra

In this section we study building sets, a second family of hypergraphs whose
hypergraphic polytope has an elegant combinatorial structure. This allows us to
describe the Hopf theoretic structure of building sets very explicitly.
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Building sets were introduced independently and almost simultaneously in two
very different contexts by De Concini and Procesi [31] in their construction of the
wonderful compactification of a hyperplane arrangement, and by Schmitt [86] (who
called them Whitney systems) in an effort to abstract the notion of connectedness.
We follow [77]; see also [37,38,49].

DEFINITION 5.4.1. A collection B of subsets of a set I is a building set on I if
it satisfies the following conditions:
elf JKeBand JNK #( then JUK € B
e Forallie I, {i} € B.
We call the sets in B connected.

We call the maximal sets of a building set B its connected components; one may
show that they form a partition of I. If I € B then we say B is connected.

One prototypical example of a building set comes from a graph w on vertex set
I. The connected sets are the subsets J C I for which the induced subgraph of w
on J is connected. This family of graphical building sets is the subject of Section
5.5.

EXAMPLE 5.4.2. The graphical building set for the path £~ 3% on [3]
is the hypergraph {0, 1,2, 3,12, 23,123} of Example 5.2.2.

Another example of a building set comes from a matroid m on I. The connected
sets of m form a building set on I. We recall that a subset J C I of a matroid is

connected if for every pair of elements z,y € J there exists a circuit C' (a minimal
set with (C') < |C]) such that {z,y} CC C J.

5.4.1. The Hopf monoid of building sets. Let BS[I] denote the species
of building sets on I. The species BS becomes a Hopf monoid with the following
additional structure.

Let I =S UT be a decomposition.

e The product of two building sets B; € BS[S] and By € BS[T] is their disjoint
union.
e The coproduct of a building set B € BS[I] is (B|s,B/s) € BS[S] x BS[T], where
the restriction and contraction of B with respect to S are defined as

Bls = {B|BeB,BCS}

B/s = {BCT|AUB e B for some AC S}.

One may check that these two collections are indeed building sets, and that the

operations defined above satisfy the axioms of Hopf monoid.

PRrROPOSITION 5.4.3. The Hopf monoid of building sets BS is a submonoid of
the Hopf monoid of simple hypergraphs SHG.

PRrROOF. Building sets are simple hypergraphs, and the product, restriction,
and contraction operations for these two families are defined identically. (]

Note that this Hopf structure is essentially the same as the one defined by Gruji¢
in [48,50], but different from the (cocommutative) Hopf algebras of building sets
defined in [49, 86].
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5.4.2. Nestohedra. Since each building set B is a hypergraph, we can model
it polytopally using its hypergraphic polytope, which is called the nestohedron

Ag = Z Ay

JeB
Unlike general hypergraphic polytopes, there is an explicit combinatorial descrip-
tion of the faces of the nestohedron Apg; they are in bijection with the nested sets
for B and with the B-forests, two equivalent families of objects which we now define.

DEFINITION 5.4.4. [38,77] A nested set N for a building set B is a subset
N C B such that:
(N)IJ KeNthenJCKor KCJor JNK =0.
(N2) If Jy,...,Jy € N are pairwise incomparable and k > 2 then J; U---U Jy ¢ B.
(N3) All connected components of B are in AV.
The nested sets of B form a simplicial complex, called the nested set complex of B.

EXAMPLE 5.4.5. The collection N' = {3,4,6,7,379,48,135679, 123456789} is a
nested set for the graphical building set of the graph shown in Figure 2(a); see also
Figure 4.

6 1
4
5
7 2
8
3 9
2 2
125 8 15 8
—>
9 6 14 9 6 L4
3 7 3 7

FIGURE 2. (a) A graph w. (b) A nested set for the graphical
building set B of w and the corresponding B-forest.

As shown in [38,77] and illustrated in Figure 2(b), nested sets for B are in
bijection with a family of objects called B-forests, as follows. We may regard a
nested set A as a poset ordered by containment. We then relabel each node by
removing all elements which appear in nodes below it; the result is the corresponding
B-forest. We now define these objects more precisely.

DEFINITION 5.4.6. [38,77] Given a building set B on I, a B-forest N is a rooted
forest whose vertices are labeled with nonempty sets partitioning I such that:
(F1) For any node S, N<g € B.

(F2) If Sy, ..., Sk are pairwise incomparable and k > 2, Ule Ncs, ¢ B.
(F3) If Ry,..., R, are the roots of NV, then the sets N<g,,...,N<g, are precisely
the connected components of B.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



5.4. BS: BUILDING SETS AND NESTOHEDRA 101

Here < denotes the partial order on the nodes of the forest where all branches
are directed up towards the roots. Also we denote N<g :=| |- o7

PROPOSITION 5.4.7. [38,77] For any building set B on I, there is a bijection
between the nested sets for B and the B-forests.

As the notation suggests, we will make no distinction between a nested set and
its corresponding B-forest.
Each B-forest A gives rise to a building set

(58) BWN)= || BINcs Nes]
S node of N
where for X CY C I we define B[X,Y] := (B|y)/X = (B/X)|ly-x on Y — X.
THEOREM 5.4.8. [38,77] Let B be a building set. There is an order-reversing
bijection between the faces of the nestohedron Apg and the nested sets of B. If N is

a nested set of B and Fy is the corresponding face of Ag, then dim Fy = |I]| — |N|
and supp;(Fy) = B(N).

PRrROOF. This is implicit in the proofs of [11, Proposition 3.5] and [77, Theorem
7.4, 7.5]. O

In other words, the nestohedron Ag is a simple polytope whose dual simplicial
complex is isomorphic to the nested set complex of B. An example is illustrated in
Figure 3.

2 2

VAN X

I12 ZSI
3 1

2 &
3\ § A/ ¢
2
1 3
3
2 2

F1GURE 3. The hypergraphic polytope of Figure 1 is the nestohe-
dron for the building set B = {0,1,2,3,12,23,123}; its faces are
labeled by the B-forests.

5.4.3. The antipode of building sets. Since building sets form a submonoid
of simple hypergraphs by Proposition 5.4.3, we may use Theorem 5.2.11 to compute
the antipode of BS.
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COROLLARY 5.4.9. The antipode of the Hopf monoid of building sets BS is
given by the following cancellation-free expression. If B is a building set on I
then

siB)= Y (—)VBW)
B—forests N
where for each B-forest N, |N| is the number of vertices of N and B(N') is defined
in (58).

PRrROOF. By Theorem 5.2.11, the antipode of BS is given by the face struc-
ture of the nestohedron Ag. It remains to invoke Theorem 5.4.8 which tells us
the dimension and the building set supporting each face of Ag. The formula is
cancellation-free since faces of different dimensions have different supports. O

Note that the formula of Corollary 5.4.9 is not combination-free. For example,
all vertices of Ag map to the trivial building set {{i},7 € I} U {0}.

EXAMPLE 5.4.10. Let us return to the building set {0,1,2,3,12,23,123} of
Example 5.4.2. We computed its antipode in Example 5.2.12:

s (H) = H—2{0,1,2,3,23} — 2{0,1,2,3,12} — {0,1,2,3,12} +5{0, 1,2, 3}

and we now encourage the reader to compare this with the expression in Corollary
5.4.9.

5.5. W: Simple graphs, ripping and sewing, and graph associahedra

In Section 5.4 we briefly mentioned how connectivity in graphs was one of the
motivations to study building sets. In this section we focus on the graphical building
sets that arise in this way, which give rise to a new Hopf monoid W on graphs.
This ripping and sewing Hopf monoid should not be confused with the monoids G,
SG, and I'" of Sections 3.2 and 3.3.5.

DEFINITION 5.5.1. Let w be a simple graph whose vertex set is I. A subset
J C I is a tube if the induced subgraph of w on J is connected. The set of tubes of
w is a building set; we denote it tubes(w) and call it the graphical building set of
w.

Let WBSJ!] be the set of graphical building sets on I. We will see in Proposition
5.5.3 that graphical building sets form a submonoid of BS, which we now describe
directly in terms of the graphs.

5.5.1. The ripping and sewing Hopf monoid of simple graphs.

DEFINITION 5.5.2. Given a simple graph w whose vertex set is I, and a partition
I =SUT, an S-thread is a path in w whose initial and final vertices are in T', and
all of whose intermediate vertices (if any) are in S.

Define the operations of ripping and sewing as follows.
e ripping out T: w|g is the induced subgraph on S, obtained by “ripping out” every
vertex of T" and every edge incident to T'.
e sewing through S: w/gs is the simple graph on T where we add or “sew in” an
edge uv between vertices u,v € T' if the graph w contains an S-thread from wu to v.
Note that this includes all edges of w|7.
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For example, let I ={a,b,c,d,e, f,g,h},S ={a,b,c,d}, and T = {e, f, g, h}.
For the graph

e b e
d a ¢
f '\g I f
w= 9 we have wlg = d and w/g= 9

Let W[I] be the set of simple graphs on vertex set I. We turn the species W
into the ripping and sewing Hopf monoid with the following operations.
Let I =S UT be a decomposition.

e The product of two simple graphs wy € W[S] and wy € WI[T] is their disjoint
union.

e The coproduct of a simple graph w € W[I] is (w|g,w/s) € W[S]|x W[T] where w|s
and w/g are obtained from w by ripping out T and sewing through S, respectively.

One easily checks that this is indeed a Hopf monoid.

PRrROPOSITION 5.5.3. The species WBS of graphical building sets is a submonoid
of the Hopf monoid of building sets. Furthermore, the tube maps w +— tubes(w)
giwe an isomorphism of Hopf monoids W =2 WBS — BS.

PROOF. We first prove that the map tubes : W — BS is a morphism of Hopf
monoids. We do know that the set tubes(w) is a building set for any w. Also tubes
preserves products because tubes(w; Uws) = tubes(w;) U tubes(ws) for wy € WIS]
and we € W[T]. It remains to check that the map tubes preserves coproducts; that
is,

tubes(w)|s = tubes(w|g), tubes(w)/s = tubes(w/g)
for any simple graph w on I and any subset S C I.

The first statement is clear: the connected sets in w which are subsets of S are
precisely the connected sets in w|g, the induced subgraph on S. Let us prove the
second one.

C: Suppose B € tubes(w)/g, so AU B is a tube of w for some subset A C S.
To show B € tubes(w/g), we need to show that for any u,v € B there is a path
from u to v in w/s.

We do have a path P from u to v inside the induced subgraph A LI B of
w, since this is a tube in w. This path may contain vertices of S and T’ let
u = tg,t1,...,tk_1,t = v be the vertices of T that it visits, in that order. Now,
for each 0 < i < k — 1, the path P contains an S-thread ¢;s1 ...s;t;41 from ¢; to
t;+1 for some I > 0, so t;t; 11 is an edge of w/g. It follows that tot; ... ¢x_1tx is our
desired path from u to v in w/g. We conclude that B € tubes(w/g).

D: Conversely, suppose B € tubes(w/g). For each edge uv in w/g, choose an
S-thread from u to v; let Sy, C S be the set of vertices on that S-thread other
than v and v. Let A C S be the union of the sets S,, as we range over all edges
uv of w/g. We claim that AU B is a tube in w. To show this, first note that any
two vertices u, v of B are connected by an S-thread inside A U B by construction.
Furthermore, any vertex of A belongs to the set S, for some u,v € B, and hence
is connected to w and v by a path in AU B. It follows that AU B is a tube of w
and B € tubes(w)/s as desired.
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Thus we have proved that tubes : W — BS is a morphism of Hopf monoids,
and hence that its image WBS is a submonoid of BS. It remains to prove that the
surjective map tubes : W — WBS is also injective. To see this, notice that we can
easily recover a simple graph w € W[I] from its graphical building set tubes(w):
the edges of w are precisely the tubes of size 2. O

5.5.2. Graph associahedra. For a simple graph w on I we define the graph
associahedron A, C R to be

A, = Z A..

TEtubes(w)

Graph associahedra are the nestohedra corresponding to graphical building sets.
Let us recall their combinatorial structure, as described in [26,77].

DEFINITION 5.5.4. Let w be a simple graph. A tubing is a set ¢ of tubes such
that:
e any two tubes 7y and 73 in ¢ are disjoint or nested: we have 7, C 75,71 O 7o, or
T1 n T2 = @
e if 71,..., 7 are pairwise disjoint tubes in ¢, then 74 U--- U 7% is not a tube of w.
e every connected component of w is a tube in ¢.

Comparing this with Definition 5.4.4 we see that the tubings of w are precisely the
nested sets for the graphical building set tubes(w). An example is shown in Figure
4.

7 2
3 9

FIGURE 4. The nested set N =
{3,4,6,7,379,48,135679, 123456789} of Figure 2, now drawn
as a tubing.

For each tube 7 in a tubing ¢, let ., be the union of the tubes of ¢ that are
strictly contained in 7, and let the essential set of T be ess(7) = 7 —t<r. As T
ranges over the tubes of ¢, the essential sets ess(7) partition I.

Each tubing t of w gives rise to a simple graph

(59) wit) = || wlt<r 7]
T tube of ¢

where wlt<,, 7] := (w|;)/¢_. is the simple graph on ess(7) obtained by restricting
w to 7 and then sewing through the tubes strictly inside of 7. Since the essential
sets of 7 partition I, w(t) is a simple graph on T.
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THEOREM 5.5.5. [26,77] Let w be a simple graph. There is an order-reversing
bijection between the faces of the graph associahedron A,, and the tubings of w. If
t is a tubing of w and F is the corresponding face of A, then dim Fy, = |I| — |t|
and supp;(Fy) = w(t).

Proor. This is the result of specializing Theorem 5.4.8 to graphical building
sets and graph associahedra. (Il

An example is illustrated in Figure 5.

2

f © « @
1 3

G O) = @ -

FIGURE 5. The nestohedron of Figures 1 and 3 is the graph as-
sociahedron for the path of length 3; its faces are labeled by the
tubings of the path.

5.5.3. The antipode of the ripping and sewing Hopf monoid.

THEOREM 5.5.6. The antipode of the ripping and sewing Hopf monoid of simple
graphs W is given by the following cancellation-free expression. If w is a simple
graph on I then:

si(w)= Y (=1)w(t)

t tubing
where |t| is the number of tubes of t and w(t) is defined in (59).

PROOF. Since W is isomorphic to the Hopf monoid of graphical building sets
WBS, which is a submonoid of the Hopf monoid of simple hypergraphs SHG, its
antipode is given by Theorem 5.2.11. It remains to invoke Theorem 5.5.5, and to
remark again that faces of different dimension map to different supports. O

Note that the formula above is not combination-free. For example, for every
maximal tubing ¢, w(t) is the graph with no edges.

ExaMPLE 5.5.7. The antipode of the path of length 3 in W is dictated by its
graph associahedron, which again is the polytope of Figures 1, 3, and 5. The result
is now:
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*—o *—o *—o Cg

12+13+223_51

S(Q—H)Z—m+2 ° o o 0

1 2 3

FIGURE 6. The antipode of a path of length 3 in W.

5.6. II: Set partitions and permutahedra, revisited

DEFINITION 5.6.1. A clique is a complete graph. A cliquey graph is a disjoint
union of complete graphs.

Let K[I] be the set of cliquey graphs on I. There is a natural bijection between
cliquey graphs on I and set partitions of I: the cliquey graph w on I corresponds
to the set partition m(w) formed by its connected components.

PROPOSITION 5.6.2. The species K of cliquey graphs is a submonoid of the
ripping and sewing Hopf monoid of simple graphs W. Furthermore, K is isomorphic
to the Hopf monoid of set partitions II.

PrROOF. Since the disjoint union of cliquey graphs is cliquey, K is closed under
multiplication. Also if K7 is the clique on I then (K)|s = Kg and (Ky)/s = Kr,
so K is also closed under comultiplication, proving the first assertion. The map
7w : K — II sending a cliquey graph w to m(w) gives the desired isomorphism; it
clearly preserves products, and since

m(Kp)ls = {I}s = {S} = n(Ks) = m(K;|s) and
m(K1)/s ={I}/s ={T} = n(Kr) = n(K1/s),
it also preserves coproducts. O

Since II is cocommutative, we also have II = K — WP  as shown in the
commutative diagram at the beginning of Section 5.1.

5.6.1. The antipode of set partitions.

THEOREM 5.6.3 ([2, Theorem 12.47]). The antipode of the Hopf monoid of set
partitions II is given by the following cancellation-free and combination-free
expression. If w is a set partition on I,

si(m) = 32 (1" (x: p)lp

plr<p

summing over all partitions p that refine w. Here b(p) denotes the number of blocks
of p, and (7 : p)! = Hm€7r n;! where n; is the number of blocks of p that partition
the block p; of .

PROOF. Let w be a cliquey graph and m = {p1,...,pr} be the corresponding
set partition. A tube on w is a subset of one of the parts p;. A tubing ¢ on w cannot
contain two disjoint subsets of the same p;; thus ¢ consists of a flag ¢, of subsets

h=1cCc---C T,ZL = p; for each part p;. The flag ¢} gives rise to a composition
pi=piU---Uph, where ph =7t =74 . Tfwelet p(t) = {p} |1 <i <k,1<j<n}

as an unordered set partition, then p(t) is the partition corresponding to the graph
w(t) of (59). Clearly p(t) > 7 and [t| = b(p(t)).
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It remains to observe that the map from a tubing ¢ to the partition p(t) is a
(m : p)!-to-1 map, because there are n;! linear orders for the partition {p,---,p;,.}
of p; for 1 <4 < k, which give rise to different choices of the tubing ¢. O

As an example, let us revisit the cancellation-free formula for the antipode of
the set partition {ab, cde} shown in the introduction.

d d d d d d
®

JES| LNt T s S
be—ea be—ea be—ea be—ea be—ea be ea

d d d

°® o\. °® ./o °®
c e c e c e c e c €
+6° “+4° +4% %44 °-12° ¢
be—ea be ea be ea be ea be ea

As should be clear by now, our derivation of Theorem 5.6.3 is controlled by a
polytope; for the set partition 7 with blocks p1, ..., pg, it is the graph associahedron

— / e / = ..
Ap =T, Xooom, = Tp X oo Tp,

where 77 := " ;~; Ay is normally equivalent to the standard permutahedron ;.

Thus the antipode of 7 = {ab, cde} is an algebraic shadow of the face structure
of the hexagonal prism W/{a’b} X F{{c’ d,e}’ it has one 3-face, eight 2-faces (in normal
equivalence classes of size 2, 2, 2, 2), eighteen edges (in equivalence classes of sizes
6, 4, 4, 4) and twelve vertices (in one equivalence class of size 12).

d

FIGURE 7. The product Wf{a’b} X Wf{c’d’e} in Riab.c.det

5.6.2. Permutahedra, set partitions, and the Hopf algebra of sym-
metric functions. We conclude this section by precisely stating connections be-
tween permutahedra, set partitions, and symmetric functions

PROPOSITION 5.6.4. The Hopf monoid of permutahedra 11 is isomorphic to the
Hopf monoid of set partitions II.

PRrROOF. The Hopf monoid II is generated multiplicatively by the standard
permutahedra 7y, with coproduct given by Agr(n;) = (wg,mr) as observed in
Lemma 2.2.1. Comparing this with the definition of the Hopf monoid II gives the
isomorphism. (Il
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Recall that K is the Fock functor that associates a Hopf algebra K(H) to any
Hopf monoid in vector species H.

PROPOSITION 5.6.5. The Hopf algebra of permutahedra K(II) is isomorphic to
the Hopf algebra of symmetric functions A.

PRrROOF. This proof requires some basic facts about symmetric functions; see
[68] and [92, Section 7]. The Hopf algebra of symmetric functions A = k[zy, zs, .. .]9
is most easily described in terms of the homogeneous and elementary symmetric

functions:
hn= Y @i, en= > @iy cem,
i1 <<y 11 <<l
As an algebra, A = kley, es,...] is simply the polynomial algebra on the e;, while

the coproduct and antipode of A are

Ale,) = Z e @ ej, s(en) = (=1)"hy,.
i+j=n
for n > 0, where eg = 1.

The Fock functor IC maps II to the graded Hopf algebra K(II); let it take the
permutahedron 7; € II[I] to the element n!g, € II, where n = |I|. Then (31)
tells us that as an algebra K(II) = k[g1, g2, - . ] while Lemma 2.2.1 tells us that the
coproduct of (II) is given by

Alga) = Y 9:i®g;.
i+j=n
It follows that the map g, — e, preserves the product and coproduct. Since
the antipode of a graded Hopf algebra is unique, this map also also preserves the

~

antipode. This gives the desired isomorphism KC(II) = A. ([l

It is instructive to compare the antipodes of X(II) and A. In II the antipode of
nlg, is given by the face structure of the permutahedron 7,, as described in Section
1.3.4. This gives:

s(ga) = Y (=D"on g
A1t Ap=n
while the antipode of A is given by s(e,) = (—1)"h,. Comparing these expres-
sions, we obtain a polyhedral algebraic proof of the expression of the homogeneous
symmetric function h,, in the elementary basis:

hy, = Z (—1)nik€)\1 SRR S

A+ Ae=n
5.7. F: Paths and associahedra, revisited

Recall that a partition into paths on I is a graph whose connected components
are paths, and F[I] denotes the collection of partitions into paths on I. Recall the
Hopf monoid F defined in Section 1.2.5. The product of two partitions into paths
is their disjoint union. If s is a path and I = SUT is a decomposition, then s|g is
the path on S with the order inherited from s, whereas s/g is the induced subgraph
onT.

ProPOSITION 5.7.1. The Hopf monoid F of paths is a submonoid of the co-
opposite WP of the ripping and sewing Hopf monoid W.
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PRrROOF. This follows readily from the observation that the product operations
on F and W coincide, while the coproducts are co-opposite to each other. ([l

In light of this statement and the fact that W and WP share the same antipode
by Proposition 1.1.17, Theorem 5.5.6 immediately gives us a combinatorial formula
for the antipode of the Hopf monoid of paths F. This formula has several interesting
combinatorial variants, which we explore in the remaining sections.

5.7.1. The antipode of paths. If [ is a linear graph and ¢ is a tubing of [,
define the linear graph of t, denoted I(t), as follows. Each tube 7 of ¢ gives a path
I(7) consisting of the vertices which are in 7 and in no smaller tube of ¢, in the order
they appear in 7. The union of these paths is (). This procedure is illustrated in

Figure 8.
: )

FIGURE 8. A tubing ¢ of the path 123456789; its linear graph is
I(t) = 12|3|49|58|6]7. The labels and edges of the path have been
omitted for clarity.

PROPOSITION 5.7.2. The antipode of the Hopf monoid of paths F is given by
the following cancellation-free expression. If l is a linear graph on I then

st =Y (=)

t tubing

summing over all tubings t of 1, where [(t) is the linear graph of t.

Proor. This is a direct consequence of Theorem 5.5.6 because for a linear
graph w = [, the graph w(t) given by (59) is the linear graph I(¢). O

There are natural bijections between tubings on a path p, of length n, valid
parenthesizations of the expression xgxq - - - ,, and plane rooted trees with n + 1
unlabeled leaves [26] [92, Chapter 6]. This bijection allows us to state Proposition
5.7.2 in terms of parenthesizations or plane rooted trees as well. We leave the
details to the interested reader.

We can obtain a more useful formula by grouping equal terms in Proposition
5.7.2 as follows. As we range over the tubes 7 of a tubing ¢, the components of the
linear graph [(t) form a set partition of I, which we call # = m(¢). We also write
I(m) =1(¢).

Notice that m = 7(t) is a noncrossing partition of l; that is, if we let < denote
(either of) the (two) linear order(s) on I imposed by [, then 7 does not contain
blocks p; # p; and elements a < b < ¢ < d such that a,c € p; and b,d € p;. It
remains to describe the coefficient of I(7) for each noncrossing partition 7 in the
expression of Proposition 5.7.2.
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Let NC(1) be the set of noncrossing partitions of {. If |I| = n, then

1 2n
) == ()

is the n-th Catalan number [62]. We define the linear graph of a noncrossing
partition m € NC(1) to be the graph on I containing one path for each part of «
with the order induced by .

To simplify the discussion we let I = [n] and [ be the path 12---n. For a non-
crossing partition w of I, let the adjacent closure T be the partition obtained from
7 by successively merging any two adjacent blocks S and S such that max.S; = b
and min Sy = b + 1 for some b.

ExXAMPLE 5.7.3. The adjacent closure of the noncrossing partition
7w = 1]26|3]|45|78 in NC(8) is 7 = 12678|345.

THEOREM 5.7.4. The antipode of the Hopf monoid of paths ¥ is given by the

following cancellation-free and combination-free expression. If | is a path on
1

’

sil)= Y (=1)"Cem U()

TeNC(1)

summing over all the noncrossing partitions © of . Here l(w) denotes the linear
graph of 1, @ = {p1,...,pr} is the adjacent closure of w, and Ciz.ry = [] Ch,
where n; is the number of blocks of m refining block p; of 7.

DiET

PROOF. For a noncrossing partition 7, the coefficient of () in the expression
of Proposition 5.7.2 is equal to the number of tubings u of [ with m(u) = 7. We
claim that this number equals Cz.x).

Let m be a noncrossing partition of [n], and consider the set ¢ of tubes 7; =
[min p;, max p;] for all blocks p; of m. Notice that 7, C 7;, 7, D 7, or ; N7, =0
for ¢ # j; if that were not the case, without loss of generality we would have
minp; < minp; < maxp; < max p;, which would contradict the assumption that
7 is noncrossing. However, ¢ is not necessarily a tubing because it may contain
adjacent tubes.

Let t be the tubing obtained from # by successively merging any two adjacent
tubes of the form [a,b] and [b+ 1,¢]. It follows from the definitions that the
noncrossing partition associated to ¢ is 7.

For each tube of ¢, let us remember the tubes in ¢ that constituted it by drawing
vertical dotted lines separating them. This process is shown in Figure 9. Notice
that if part p; of T contains n; parts of m, then the corresponding tube #; of
contains n; tubes of ¢.
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T u

12|3J49)58/6]7 C-9-¢ d )

t

t
Do (o) ~( - o)

F1GURE 9. The process to go from a noncrossing partition 7 =
12|3|49|58/6|7 to a tubing u such that m(u) = w. The step m +— ¢
is bijective and the map t — t’ is defined uniquely; we draw the
vertical lines in ¢’ are a visual aid, but they are not part of . The
partial tubing ? has [, .z Cn, = C3C2 = 10 possible preimages u,
corresponding to resolving the two tubes having 3 and 2 vertical
compartments, respectively.

Any tubing w such that w(u) = 7 is obtained from the set ¢ of tubes — which
is usually not a tubing — by “resolving” any maximal sequence of adjacent tubes,
making them nested. To do this, we consider each tube 7; of £, treat the n; tubes of
t that it contains as singletons, and replace them with a maximal tubing of size n;;
there are C,, such tubings for each i. This explains why there are Cz.) tubings u
of [ with 7(u) = 7, completing the proof.

Since F is commutative, its antipode is multiplicative. This gives a similar
cancellation-free and combination-free formula for s;(«) for any partition into paths
aon .

EXAMPLE 5.7.5. For the path abed, Theorem 5.7.4 gives the formula from the
introduction:

*—eo—o

!
!

o0—0—0 o0—0o—0 o0—0—0
S(H—0—0)=—0—0—0—0+23 bcy+abdgiyacdyp?2bc dy?2abyad
a b c d a b c d L] [ [ [ o—0 o0—0

c b a c d b ¢
*—o *—o *—eo *—o *—e *—e o o
—-5ab-5bc-5¢cd-2ac-2bd-2ad414a b
e o0 e o0 o o [ I} [ N} [ N} o o
c d a d a b b d a ¢ b ¢ c d

Theorem 5.7.4 explains the double appearance of Catalan numbers in the for-
mula for the antipode of a linear graph: each coefficient is a products of Catalan
numbers, and the number of terms (14 in this case) is the number of noncrossing
partitions, which is also a Catalan number.

5.7.2. Associahedra and paths. As we have already anticipated, our for-
mulas for the antipode of the Hopf monoid of paths F are controlled by Loday’s
associahedra. We now make this connection precise.

We begin with a technical lemma. Recall that the Loday associahedron a, of
a linear order £ of I is the Minkowski sum a; = > ; A, where we sum over all the
intervals J of the linear order /.

LEMMA 5.7.6. If {1 # {5 are linear orders on I, then a;, and a,, are normally
equivalent if and only if £y is the reversal of ¢1.
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PROOF. If /5 is the reversal of ¢; then ¢; and ¢» have the same intervals, so
ag, = Oy,

Conversely, suppose we know the normal fan A := A/(a,) of the associahedron
of a linear order ¢. Then we know which hyperplanes of the form y(i) = y(j) for
i,7 € I are contained in (the codimension 1 subcomplex of) A. The hyperplane
y(i) = y(j) can only arise if a, has A;; as a Minkowski summand. In turn, that
summand appears if and only if 7 and j are adjacent in the linear order ¢. It follows
that A determines the set of adjacent pairs of ¢, and these completely determine
the linear order £ up to reversal. The desired result follows. O

PROPOSITION 5.7.7. The Hopf monoid of paths ¥ is isomorphic to the Hopf
monoid of associahedra A.

PRrOOF. The injective maps F — WP =~ WBS®P — BS“P — SHGP of
Propositions 5.7.1, 5.5.3, and 5.4.3 allow us to identify a path [ € F[I] with the set
tubes(l) € SHG[I]. Together with the surjection SHG® — HGP of Proposition
5.2.8, this gives a map a : F — HGP which sends a path [ to the associahedron a;.
The image of this map is A C HGP. Furthermore, a is injective thanks to Lemma
5.7.6, keeping in mind that a path and its reverse are identified in F. The desired
result follows. O

5.7.3. Associahedra and Faa di Bruno. The Fad di Bruno Hopf algebra F,
introduced by Joni and Rota [60] and anticipated by many others, appears naturally
in several areas of mathematics and physics [35,39]. In this section we show that
the Fock functor relates the Hopf monoid of associahedra A (or equivalently the
Hopf monoid of paths F) to the Faa Bruno Hopf algebra F.

As an algebra, the Faa di Bruno Hopf algebra F is freely generated as a graded
commutative algebra by {xq,x3,...} with degx,, = n — 1. It is convenient to write
x1 = 1. The coproduct is given by

n

>\1 )‘2...
Aln) ZZ Alho! - 11A12|A2... Ty Ty QT

summing over all sequences A = (1,1,...;2,2,...;...) = (1*,2* ) of length k
and total sum n,so0 \1 + Ao+ A3+ ---=kand \{ +2 s +3X3+---=n

The grading and the formulas are cleaner when we present F' in terms of the
generators a,—1 = T, /n!; it is useful to write ag = 1. Then we have

n

Bl M2
a 1 E E ay s Q Ak
" k=1 (/“"05,“‘15,“‘27"') b

summing over all sequences = (0,0,...;1,1,...;2,2,...;...) = (0¥ 1#1 2H2 )
of length k and total sum n—k, so po+p1+pus+us+--- =k and p1+2p2+3us+- - - =
n—k.

PROPOSITION 5.7.8. The Fock functor KC maps the co-opposite AP of the Hopf
monoid of associahedra A to the Faa di Bruno Hopf algebra F.

PRrROOF. Let the Fock functor K take the associa&egron as to the element a,,
where n = [¢|. Then (32) tells us that as an algebra K(A*") = klag, a1, ...] while
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Lemma 2.3.4 tells us that the coproduct of K(KCOP) is given by
Alap1)= > amy o ®as

[n—1]=5uT
where if S = {s1,...,8k_1} then T; is the interval of integers strictly between s;
and s;+1, with the convention that so = 0 and s = n.

A decomposition [n — 1] = S UT contributes to the term af’ab? - ® ax_1
in A(ap—1) when |S| = k — 1 and the k gaps |Ti|,...,|Tk| between consecutive
elements of S, including the initial and final gap, have sizes 0,0,... (uo times),
1,1,... (1 times), 2,2, ... (us2 times), etcetera. For example, for the decomposition

[12] = {1,2,4,7,8,12} U {3,4,5,9,10,11}, the gaps between consecutive elements
of S ={1,2,4,7,8,12} have sizes 0,0, 1,2,0, 3,0 in that order.

Now it remains to observe that there are (#o#fﬂm»--) different ways of assigning
the gap sizes 0,0,... (uo times), 1,1,... (u; times), 2,2, ... (u2 times), etcetera to
their k slots accordingly. Furthermore, these determine the possible choices for S

and T that contribute to the term af*ab? -+ ® ax_1 in A(a,—_1), as desired. O

5.7.4. Three antipode formulas for the associahedron. At this point we
have given formulas for the antipode of Loday’s associahedron a,, in three different
Hopf algebraic structures: the Hopf monoids GP and GP and the Hopf algebra
K(GP).

In GP, Theorem 1.6.1 gives

(60) Sa)= 3 (—yrimrp

F face of a,

where every face F' of a,, is normally equivalent to a product of Loday associahedra.
In A C GP, thanks to the isomorphism F = A, Theorem 5.7.4 gives

(61) s(an) = > ()" Cirm ap, -,
TENC(n)
summing over the noncrossing partitions 7 of [n]; here T = {p1,...,p} is the

adjacent closure of 7, and C(z.7) = Cy, - - Cy, where n; is the number of blocks of
« refining block p; of 7.
In K(A) C K(GP) the proofs of Theorems 2.4.3 and 2.4.4 give

(62) s(a,) = Z (_1)|m| (n 4 |m|)! mi ma

a
1 G
(1m13m3 . Y (n+1)!my!mgy!---

summing over all partitions (1™12™2...) of n, where |m| =mq +mg +---.

Each formula coarsens the previous one under the projection maps GP —»
GP — K(GP). In the first formula all faces of the associahedron are distinct. In
the second formula, faces of the associahedron are grouped together according to
their normal equivalence classes, which in turn correspond to their combinatorial
type and position with respect to the axes. In the third formula, normal equivalence
classes of faces of the associahedron are grouped according to their orbits under the
symmetric group, which correspond to their combinatorial type.

EXAMPLE 5.7.9. Let us consider the contribution of the 6 pentagonal faces of
the associahedron a4 to the three versions of the antipode s(ay):
e In GP, each one of these six pentagonal faces is a separate term of S(ay).
e In GP, these six faces group into four normal equivalence classes: the noncrossing
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A

FIGURE 10. The three-dimensional associahedron ay.

partitions {123,4} and {1,234} contribute two pentagons each, while the noncross-
ing partitions {134, 2} and {124, 3} contribute one pentagon each.

e In K(GP), these six faces are all grouped together into the coefficient of asa,
which is equal to (—1)%(4 +2)!/(4 + 1)!1!1! = 6.

These observations have two interesting enumerative corollaries.

COROLLARY 5.7.10. The number of normal equivalence classes of faces of Lo-
day’s associahedron a, is the Catalan number Cy,.

PROOF. The projection GP — GP takes (60) to (61), mapping the faces of
a, onto their normal equivalence classes. The result follows from the fact that
the terms of (61) are in bijection with the noncrossing partitions of [n] which are
counted by the Catalan number C,,. |

COROLLARY 5.7.11. Let p = (1™2™2...) be a partition of n and write |m| =
my+mo+---. Let NC(u) be the set of noncrossing partitions of n having type p;
that is, having m; blocks of size i fori=1,2,.... Then, in the notation of Theorem

5.7.4,
T (n + |m|)!
C(F:ﬂ') = ( ]

| |
reNOwW) n+ 1)!my!ms!

PRrOOF. The map GP — K(GP) takes (61) to (62). It maps each normal
equivalence class of faces, which is labeled by a noncrossing partition of [n], to its
combinatorial type, which is the corresponding partition of n. It then remains to
observe that the noncrossing partitions of type p are the ones that map to the

partition u, so their contributions to (61) must add up to the contribution of p to
(62). O
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