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Abstract

Generalized permutahedra are polytopes that arise in combinatorics, algebraic
geometry, representation theory, topology, and optimization. They possess a rich
combinatorial structure. Out of this structure we build a Hopf monoid in the
category of species.

Species provide a unifying framework for organizing families of combinatorial
objects. Many species carry a Hopf monoid structure and are related to generalized
permutahedra by means of morphisms of Hopf monoids. This includes the species
of graphs, matroids, posets, set partitions, linear graphs, hypergraphs, simplicial
complexes, and building sets, among others. We employ this algebraic structure to
define and study polynomial invariants of the various combinatorial structures.

We pay special attention to the antipode of each Hopf monoid. This map is
central to the structure of a Hopf monoid, and it interacts well with its characters
and polynomial invariants. It also carries information on the values of the invariants
on negative integers. For our Hopf monoid of generalized permutahedra, we show
that the antipode maps each polytope to the alternating sum of its faces. This fact
has numerous combinatorial consequences.

We highlight some main applications:

• We obtain uniform proofs of numerous old and new results about the Hopf
algebraic and combinatorial structures of these families. In particular,
we give optimal formulas for the antipode of graphs, posets, matroids,
hypergraphs, and building sets. They are optimal in the sense that they
provide explicit descriptions for the integers entering in the expansion of
the antipode, after all coefficients have been collected and all cancellations
have been taken into account.

• We show that reciprocity theorems of Stanley and Billera–Jia–Reiner
(BJR) on chromatic polynomials of graphs, order polynomials of posets,
and BJR-polynomials of matroids are instances of one such result for gen-
eralized permutahedra.

Received by the editor November 13, 2017, and, in revised form, January 10, 2021.
Article electronically published on August 24, 2023.
DOI: https://doi.org/10.1090/memo/1437
2020 Mathematics Subject Classification. 05A15, 16T30, 18M80, 52B05, 52B40.
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vi ABSTRACT

• We explain why the formulas for the multiplicative and compositional
inverses of power series are governed by the face structure of permutahedra
and associahedra, respectively, providing an answer to a question of Loday.

• We answer a question of Humpert and Martin on certain invariants of
graphs and another of Rota on a certain class of submodular functions.

We hope our work serves as a quick introduction to the theory of Hopf monoids
in species, particularly to the reader interested in combinatorial applications. It
may be supplemented with Marcelo Aguiar and Swapneel Mahajan’s 2010 and
2013 works, which provide longer accounts with a more algebraic focus.
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Introduction

Hopf monoids and generalized permutahedra

Joyal [16], Joni and Rota [60], Schmitt [84], Stanley [93], and others, taught us
that to study combinatorial objects, it is often useful to endow them with algebraic
structures. Aguiar and Mahajan’s Hopf monoids in species [2] provide an algebraic
framework that supports many familiar combinatorial structures.

Edmonds [36], Lovász [67], Postnikov [77], Stanley [89], and others, taught us
that to study combinatorial objects, it is often useful to build a polyhedral model
for them. Generalized permutahedra constitute an ubiquitous family of polytopes
which models many combinatorial structures. Generalized permutahedra arose in
the theory of combinatorial optimization as polymatroids. Each such polytope is
defined by a unique submodular function.

Our work brings together these two points of view. We endow the family of
generalized permutahedra with the structure of a Hopf monoid GP and show that
many other Hopf monoids built out of combinatorial structures find natural models
therein, in the sense that they map into GP (or certain quotients of GP) by means
of morphisms of Hopf monoids.

a

b

d

c

abd,c ad,bc
μ

We deal with Hopf monoid structures on (the species of) graphs, matroids,
posets, set partitions, simplicial complexes, building sets, and (an additional struc-
ture on) simple graphs, to name a few. On these and many other families of combi-
natorial objects, it is possible to carry out constructions of merging and breaking :
procedures for building a new object out of two, or for decomposing a given object
into two. When these procedures obey certain simple rules, the structure can be
organized into that of a Hopf monoid in the category of species. The combinatorial
objects constitute the elements of the species, merging gives rise to the product,
and breaking to the coproduct of the Hopf monoid. A Hopf monoid is a structure
akin to that of a Hopf algebra, but better suited to handle these examples rooted
in combinatorics.

We use this framework to unify known results, obtain new ones, and answer
questions of a combinatorial nature. We discuss some of these applications next.

Application A. Antipode formulas

Hopf monoids in species, Hopf algebras, and groups, may all be seen as instances
of the general notion of Hopf monoid in a braided (or symmetric) monoidal category.

1
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2 INTRODUCTION

A Hopf monoid H carries an antipode s : H → H, a map which is analogous to
inversion in a group. For the Hopf monoids in species we consider, the existence of
the antipode is guaranteed, much as is the existence of the reciprocal of a formal
power series of the form 1 + xF (x). The antipode maps a combinatorial structure
to a formal sum of structures of the same kind. It is given by a large alternating
sum, usually involving lots of cancellation. A fundamental task is to obtain a
cancellation-free formula for the antipode.

Figure 1 gathers a few examples showing the final result of the calculation, after
all cancellations have been taken into account. The combinatorial structures are
represented by pictures whose meaning is explained in later sections. The formulas
arise from alternating sums of 13, 75, and 541 terms, depending on whether the
cardinality of the ground set is 3, 4, or 5. One of our main goals is to provide a
uniform explanation for these formulas. It turns out that in each case the result
is dictated by a polyhedron that models the given combinatorial structure. We
explain this in more detail.
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APPLICATION A. ANTIPODE FORMULAS 3

Graphs G (Section 3.2):
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Posets P (Section 3.4):
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Partitions Π (Section 5.6):
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Partitions into paths F (Section 5.7):
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Figure 1. Antipode calculations in Hopf monoids
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4 INTRODUCTION

First, we address the antipode problem at the level of generalized permuta-
hedra, where the inherent geometry and topology enable us to understand the
cancellation completely. The following is one of our main results.

Theorem (Theorem 1.6.1). The antipode for the Hopf monoid of generalized
permutahedra GP is given by

sI(p) = (−1)|I|
∑

q face of p

(−1)dim q
q

for each generalized permutahedron p ⊆ RI .

Then, we relate the Hopf monoids G,M,P,Π,F to the Hopf monoid GP of
generalized permutahedra by means of morphisms of Hopf monoids. Such mor-
phisms preserve antipodes. For example, the graphic zonotope Zg of a graph g is a
generalized permutahedron, and the map g �→ Zg is a morphism of Hopf monoids
G → GP. To calculate s(g) in G, we calculate s(Zg) in GP using Theorem 1.6.1.
The faces of Zg are themselves graphic zonotopes associated to certain quotients of
g (Lemma 3.2.4). From here, an explicit formula for s(g) emerges (Corollary 3.2.7).
In general, combining Theorem 1.6.1 with an understanding of the combinatorial
structure of a given generalized permutahedron, yields a formula generalizing those
in Figure 1. The coefficients in the formula of Theorem 1.6.1 are ±1 (or 0). The
larger coefficients in some of the formulas in Figure 1 occur when the morphism to
GP is not injective.

We have gathered the main combinatorial structures that we deal with in the
table below. Each one gives rise to a Hopf monoid in species. The Hopf monoids
are interrelated by means of morphisms; the table is loosely organized and does not
reflect the various connections. The table shows the corresponding class of gener-
alized permutahedra in each case. It is worth mentioning at this point that we deal
with possibly unbounded generalized permutahedra. These polyhedra include cer-
tain cones associated to posets. The remaining classes of generalized permutahedra
in the table are bounded polytopes.

combinatorial structure polyhedral model Hopf monoid

(partitions into disjoint) sets (products of) permutahedra Π ∼= Π

(partitions into disjoint) paths (products of) associahedra F ∼= A

graphs graphic zonotopes G, SG

hypergraphs hypergraphic polytopes HG

simplicial complexes simplicial complex polytopes SC

matroids matroid polytopes M

graphic matroids graphic matroid polytopes Γ

building sets nestohedra BS

simple graphs graph associahedra W

submodular function generalized permutahedra SF ∼= GP, GP

extended submodular function extended generalized permutahedra SF+ ∼= GP+, GP+

partial orders (posets) top-cones in the braid arrangement P

preorders (preposets) cones in the braid arrangement Q ∼= SF0,∞
∼= GPcone

Some of these Hopf monoids are defined for the first time here, others come from
[2]. In many cases, the constructions have roots in earlier literature going back to
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Joni and Rota [60], Schmitt [84–86], and others. The paper by Haiman and Schmitt
[53] stands out as the first one to derive an antipode formula of combinatorial
significance. Another important landmark is the paper of Billera, Jia, and Reiner
[17] where Hopf algebraic and polyhedral considerations on matroids were analyzed
together for the first time.

These earlier sources deal with a Hopf algebra which we now regard as derived
from the Hopf monoid by means of the constructions of [2, Chapter 15]. (See
Section 1.1.10 for more on this point.) For example, the Hopf monoid of paths
gives rise to the Faà di Bruno Hopf algebra, an object introduced in [60] and
with roots in classical work on the composition of two power series. On a few
additional occasions, these associated Hopf algebras have been considered in the
recent literature, without consideration of Hopf monoids and independently of our
work. These include the cases of building sets [49], simplicial complexes [14], and
polymatroids [32].

Our results on the antipode encompass new and existing results in a unified
manner. The original result of Haiman and Schmitt is on the antipode of the
Faà di Bruno Hopf algebra [53, Theorem 4]. More recent results are by Humpert
and Martin [58, Theorem 3.1] (on the antipode for graphs), by Benedetti, Hallam,
and Machacek [14, Theorem 4] (on the antipode for simplicial complexes), and by
Bucher, Eppolito, Jun, and Matherne [24,25] (on the antipode for matroids).

Application B. Character theory and reciprocity theorems

Consider the following combinatorial invariants: Whitney’s chromatic polyno-
mial χg of a graph g, Stanley’s strict order polynomial χp of a poset p, and the
Billera–Jia–Reiner polynomial χm of a matroid m. These polynomials are deter-
mined by the following properties which hold for n ∈ N:
• χg(n) = number of proper vertex n-colorings of g.
• χp(n) = number of strictly order preserving n-labelings of p.
• χm(n) = number of n-weightings of m under which m has a unique maximum
basis.
Billera, Jia, and Reiner were the first to consider the matroid assignment m �→ χm,
and to understand it as a Hopf morphism. They compared it with the graph as-
signment g �→ χg(n), which also arises Hopf algebraically, writing:

“As far as we know, this [Hopf] morphism is of a different nature.” 1

We show that in fact these two morphisms – as well as the poset morphism p �→
χp(n) – are of exactly the same nature. To see this, one needs to view them inside
the Hopf monoid of extended generalized permutahedra; something that their work
helped us foresee.

One may wonder about a combinatorial description for the quantities obtained
by plugging in negative integer values into these polynomials. The answer is pro-
vided by the following combinatorial reciprocity theorems. For n ∈ N:
• |χg(−n)| = number of compatible pairs of an n-coloring and an acyclic orientation
of g.

1They wrote this about the assignment of a quasisymmetric function to a matroid m and a
graph g, but there is no essential difference with the assignment of a polynomial. As they explain
in [17], a character on a Hopf algebra or monoid gives rise to a polynomial and a quasisym-
metric function. For graphs and matroids, this gives rise to the polynomials we discuss and the
quasisymmetric functions they discuss.
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6 INTRODUCTION

• |χp(−n)| = number of weakly order preserving n-labelings of p.
• |χm(−n)| = number of pairs of an n-weighting w of m and a w-maximum basis.

The first two are due to Stanley [90, Theorem 1.2], [88, Theorem 3] and the
third to Billera, Jia, and Reiner [17, Theorem 6.3]. In Chapter 4, we cast these
results in a unified setting, showing that they are all instances of the same general
fact that holds for extended generalized permutahedra. We explain this general
fact employing the notion of a character on a Hopf monoid.

The choice of a character on a Hopf monoid gives rise to a polynomial χx(n) for
each element x of the monoid. This is an invariant of the structure x, in the sense
that isomorphic structures yield the same polynomial. Furthermore, this polyno-
mial satisfies a reciprocity rule as follows: up to a sign, χx(−n) equals χs(x)(n).
This is Proposition 4.1.5. It relates values of the invariant on negative integers
to values on positive integers, with the antipode bridging between the two. A
combinatorial understanding of the antipode may thus be exploited to answer the
question at hand.

As before, we first construct and analyze the invariant at the level of general-
ized permutahedra. The starting point is a character which sends points to 1 and
all other generalized permutahedra to 0. We then specialize by employing the mor-
phisms from G, M, and P to GP. This gives the three combinatorial reciprocity
theorems above.

In Chapter 4 we employ the heavier but more precise notation χI(x)(n), where
I is the ground set, x ∈ H[I] is the given combinatorial structure, and n is the
polynomial variable.

Application C. Inversion of formal power series

Figure 2 shows the first few (standard) permutahedra πn and (Loday) asso-
ciahedra an. Both π1 and a1 are points, π2 and a2 are segments. While π3 is a
hexagon, a3 is a pentagon. Next come π4, a truncated octahedron, and a4, the
three-dimensional associahedron. There is one permutahedron in each dimension,
and every face of a permutahedron is a product of permutahedra. There is one
associahedron in each dimension, and every face of an associahedron is a product
of associahedra.

Figure 2. The permutahedra π1, π2, π3, π4 (left) and associahedra
a1, a2, a3, a4 (right).

Multiplicative Inversion. Consider formal power series

(1) A(x) =
∑

n≥0

an
xn

n!
and B(x) =

∑

n≥0

bn
xn

n!
such that A(x)B(x) = 1,
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assuming for simplicity a0 = 1. The first few coefficients of B(x) = 1/A(x) are:

b1 = −a1

b2 = −a2 + 2a21

b3 = −a3 + 6a2a1 − 6a31

b4 = −a4 + 8a3a1 + 6a22 − 36a2a
2
1 + 24a41

What do these numbers count? The face structure of permutahedra tells the full
story. For example, the formula for b4 accounts for the faces of the permutahedron
π4: 1 truncated octahedron π4, 8 hexagons π3 ×π1, 6 squares π2 × π2, 36 segments
π2×π1×π1, and 24 points π1×π1×π1×π1. The signs in the formula are determined
by the parity of the face dimensions.

Compositional Inversion. The problem of inverting power series with respect
to composition is classical and falls under the heading of Lagrange inversion. There
exists a variety of approaches to the subject and vast work on variants and gener-
alizations. See [92, Chapter 5] for an introduction, and [46] for a recent survey.

Consider formal power series

(2) C(x) =
∑

n≥1

cn−1x
n and D(x) =

∑

n≥1

dn−1x
n such that C(D(x)) = x,

assuming for simplicity c0 = 1. The first few coefficients of D(x) = C(x)〈−1〉 are:

d1 = −c1

d2 = −c2 + 2c21

d3 = −c3 + 5c2c1 − 5c31

d4 = −c4 + 6c3c1 + 3c22 − 21c2c
2
1 + 14c41

Now it is the face structure of associahedra that tells us what these numbers
count. For example, the formula for d4 accounts for the faces of the associahedron
a4: 1 three-dimensional associahedron a4, 6 pentagons a3×a1 and 3 squares a2×a2,
21 segments a2 × a1 × a1, and 14 points a1 × a1 × a1 × a1. The signs are again
determined by the parity of the face dimensions. This description is a form of
combinatorial Lagrange inversion.

Combinatorial formulas for the coefficients of bn and dn above and combina-
torial formulas for the face enumeration of permutahedra and associahedra have
been known for a long time; and these formulas do coincide. However, our treat-
ment seems to be the first to truly explain the geometric connection. We derive
these inversion formulas in a unified fashion, exploiting the fact that both permu-
tahedra and associahedra are particular generalized permutahedra. In the case of
compositional inversion and associahedra, this answers a 2005 question of Loday
[66].

Our approach is again Hopf algebraic. The set of characters on a Hopf monoid
is endowed with a group structure. The product is convolution and the inversion
is precomposition with the antipode. For the Hopf monoid Π, characters may
be identified with power series A(x) as in (1), with convolution corresponding to
multiplication. It follows that to understand the coefficients of B(x), it suffices
to understand the antipode of Π. The Hopf monoid F and its antipode may be
similarly employed to deal with compositional inversion. We carry this work out in
Sections 2.2, 2.4, 5.6 and 5.7.
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8 INTRODUCTION

Outline

The material is organized into five chapters. Chapter 1 sets the foundations
and must be read first. The remaining chapters, while interconnected in various
ways, may be approached independently of each other. Section 4.3 depends on
Chapter 3, Sections 5.6 and 5.7 depend on Chapter 2.

Chapter 1: The Hopf monoid GP and its antipode. This chapter con-
tains the essential background on Hopf monoids in species (Section 1.1), introduces
a number of examples (Section 1.2) and goes on to discuss the central object in this
work, the Hopf monoid of generalized permutahedra (Sections 1.3–1.5). Normal
equivalence is a relation among polytopes. The quotient GP of the Hopf monoid
GP under this relation is defined in Section 1.4.3. In Section 1.6 we prove Theorem
1.6.1: this main result establishes that the antipode of GP maps a polytope to the
alternating sum of its faces. The Hopf monoids defined in Section 1.2 are those of
graphs G, matroids M, posets P, set partitions Π, and partitions into paths F.
The chapter may serve as a quick introduction to Hopf monoids in species and to
illustrate their ubiquity in combinatorics.

Chapter 2: Permutahedra, associahedra, and inversion. This chapter
connects two particular Hopf monoids to operations on power series. This necessi-
tates one more ingredient from the general theory of Hopf monoids: the notion of
character and the group structure on the set of characters on a Hopf monoid. This
is discussed in the opening Section 2.1. The connection to power series is covered in
Sections 2.2 and 2.3. Restricting generalized permutahedra to products of standard
permutahedra yields a Hopf submonoid Π of GP. The group of characters on Π is
isomorphic to the group of invertible power series under multiplication (normalized
by a0 = 1). Interestingly, a parallel story unfolds replacing standard permutahedra
by associahedra. This results in a Hopf submonoid A and a group of characters
isomorphic to the group of invertible power series under composition (normalized
by c0 = 1). Section 2.4 then uses these results and the antipode of GP to derive
Application C and obtain a unified explanation for the formulas computing the
inverse of a power series with respect to either multiplication or composition. This
material is complemented later in Sections 5.6 and 5.7, where it is shown that Π is
isomorphic to Π, and A to F.

Chapter 3: Submodular functions arising from combinatorial struc-

tures. This chapter centers around the notion of submodular function. Each gen-
eralized permutahedron in RI is determined by a unique submodular function on
the Boolean poset 2I with values in R. Generalized permutahedra and submodular
functions thus constitute cryptomorphic notions. We review this fact in Section
3.1. Several combinatorial structures give rise to submodular functions (and hence
to generalized permutahedra). The notion of diminishing returns offers a useful
alternative characterization for these functions. Submodular functions associated
to graphs, matroids, and posets are discussed in Sections 3.2, 3.3, and 3.4. These
are the cut function of a graph, the rank function of a matroid, and the order
ideal indicator function of a poset. To cover the latter case, we consider extended
submodular functions, which take values in R ∪ {∞}. They correspond to certain
unbounded polyhedra which we call extended generalized permutahedra. They give
rise to the Hopf monoid GP+.
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In this manner these combinatorial structures are modeled by particular classes
of (extended) generalized permutahedra: graphic zonotopes, matroid polytopes,
and poset cones. From our perspective, this allows us to view G and M as Hopf
submonoids of GP (and P as a Hopf submonoid of GP+) and then to obtain
antipode formulas for each of these Hopf monoids as corollaries to Theorem 1.6.1.
This accomplishes Application A. In the case of graphs, a closely related result was
obtained independently by Humpert and Martin [58, Theorem 3.1]. These authors
obtained the corresponding result for the Hopf algebra associated to G. In Section
3.2 we also answer some questions from [58, Section 5] on characters of complete
graphs. In the case of matroids, a formula for the antipode of the associated Hopf
algebra was obtained by Bucher, Eppolito, Jun, and Matherne in [24, Theorem
4.7].

Chapter 4: Characters, polynomial invariants, and reciprocity. This
chapters turns to Application B. The opening Section 4.1 discusses the construction
of polynomial invariants of combinatorial structures out of the choice of a character
on the corresponding Hopf monoid. We derive general properties of these invariants
in Propositions 4.1.1–4.1.3, and obtain a general reciprocity theorem in Proposition
4.1.5. Section 4.2 carries out this construction for a particular character of GP. In
Section 4.3 we derive the reciprocity theorems of Stanley on graphs and posets and
of Billera-Jia-Reiner on matroids as consequences.

Chapter 5: Hypergraphs, building sets, and related combinatorial

structures. The final chapter focuses on a particular family of generalized permu-
tahedra, the hypergraphic polytopes. In Section 5.1, we provide a characterization
of these objects answering a question of Rota. These polytopes give rise to a Hopf
submonoid HGP of GP. Section 5.2 introduces a Hopf monoid HG of hyper-
graphs. It is isomorphic to HGP and contains G. We study other interesting Hopf
submonoids of HG. One of them is the Hopf monoid SC of simplicial complexes.
We employ once again Theorem 1.6.1 to derive an antipode formula for SC. This
offers a geometric explanation for the antipode formula for the associated Hopf
algebra, which was obtained earlier by Benedetti, Hallam, and Machacek [14]. An-
other family of combinatorial objects (building sets) and their associated polytopes
(nestohedra) are considered in Section 5.4, together with the Hopf monoids they
give rise to. A third Hopf monoid of graphs, with operations of ripping and sewing,
is introduced in Section 5.5. It is denoted W and it maps to the Hopf monoid of
building sets. Sections 5.6 and 5.7 discuss how W contains both the Hopf monoid
Π of set partitions, and the Hopf monoid F of paths, giving rise to some interesting
enumerative consequences.

Conventions. We work over a field k of characteristic 0. We use H for Hopf
monoids in set species, H for Hopf monoids in vector species, and H for Hopf
algebras.
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Future directions

The Hopf monoid structure on generalized permutahedra has an interesting
connection with McMullen’s polytope algebra [70]. This structure descends to the
quotient Hopf monoid I(GP) = GP/ie, where ie is generated by the inclusion-
exclusion relations P =

∑
Q∈P(−1)dimP−dimQQ for any polyhedral subdivision P

of a generalized permutahedron P into generalized permutahedra. In particular,
the antipode now takes the elegant form sI(p) = (−1)|I|−dim pp◦, where p◦ denotes
the relative interior of p. This was shown by Ardila and Sanchez in [12,82], and by
Bastidas in [13]. Ardila and Sanchez further show that this Hopf theoretic frame-
work offers a simple, unified explanation for many new and old valuative invariants
on matroids, graphs, and posets that have recently arisen in combinatorics and
algebraic geometry. They also prove that I(GP+) satisfies a natural universality
property, which partially explains the ubiquity of generalized permutahedra and
valuative invariants in the theory of Hopf monoids. Bastidas further shows that
this polytope algebra is a module over the Tits algebra of the braid arrangement,
and describes its composition factors combinatorially in terms of permutation sta-
tistics. He also obtains analogous results for the signed braid arrangement and
signed permutations.

Another main direction in which this work may be continued consists in ex-
tending its constructions to the setting of deformations of Coxeter permutahedra.
The latter are polytopal deformations of the Coxeter permutahedron πW corre-
sponding to a finite Coxeter group W . The polyhedral foundations of this theory
have been laid out by Ardila, Castllo, Eur, and Postnikov [8]. They include con-
nections to Fomin-Zelevinsky and Hohlweg-Lange-Thomas’s Coxeter associahedra
[40,55], Fujishige’s bisubmodular functions [41], Gelfand and Serganova’s Coxeter
matroids [21,22], Reiner’s signed posets [78], Stembridge’s Coxeter root cones [96],
Zaslavsky’s signed graphs [102], and the weight polytopes describing the represen-
tations of semisimple Lie algebras [42]. An extension of the theory of Hopf monoids
that admits a real hyperplane arrangement as an input has been developed in recent
years by Aguiar and Mahajan [4,5]. A theory that incorporates aspects specific to
Coxeter arrangements is being developed by those authors and by Rodŕıguez [79].

We list other aspects that appear worth pursuing.

• There is a morphism of Hopf monoids GP → P which maps a generalized
permutahedron to the sum over its vertices of the normal cones at those
vertices. There is a similar map that sums normal cones over all faces.
These and related maps deserve study.

• The primitive part of the Hopf monoid G is described by Aguiar and
Mahajan in [3, Section 9.4]. The primitive part of several other Hopf
submonoids of GP are given by Sanchez in [81,82].
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CHAPTER 1

The Hopf monoid of generalized permutahedra

1.1. A brief guide to Hopf monoids in species

The theory of Hopf monoids in species developed in [2] constitutes a useful
algebraic tool to study many families of combinatorial objects of interest. The
structure captures procedures for merging two disjoint objects into one, and for
breaking an object into two disjoint parts. When certain simple axioms are satisfied,
these procedures define the product and coproduct in a Hopf monoid. One can then
use the general theory to obtain numerous combinatorial consequences. In Sections
1.1, 2.1, and 4.1 we outline the most relevant combinatorial features of this theory.
Our exposition is self-contained; the interested reader may find more details on
some of these constructions in [2].

1.1.1. Set species. We begin by reviewing Joyal’s notion of set species [15,
61]. This is a framework, rooted in category theory, used to systematically study
combinatorial families and the relationships between them.

Definition 1.1.1. A set species P consists of the following data.

• For each finite set I, a set P[I].
• For each bijection σ : I → J , a map P[σ] : P[I] → P[J ]. These should be
such that P[σ ◦ τ ] = P[σ] ◦ P[τ ] and P[id] = id.

It follows that each map P[σ] is invertible, with inverse P[σ−1]. Sometimes we refer
to an element x ∈ P[I] as a structure (of species P) on the set I.

Let [n] := {1, . . . , n}. It also follows that, for each for n ∈ N, the symmetric
group Sn acts on the set P[n] = P[{1, . . . , n}]. The action of σ ∈ Sn is the map
P[σ] : P[n] → P[n].

In the examples that interest us, P[I] is the set of all combinatorial structures
of a certain kind that can be constructed on the ground set I. For each bijection
σ : I → J , the map P[σ] takes each structure on I and relabels its ground set to J
according to σ.

Example 1.1.2. Define a set species L as follows. For any finite set I, L[I]
is the set of all linear orders on I. If ℓ is a linear order on I and σ : I → J is a
bijection, then L[σ](ℓ) is the linear order on J for which j1 < j2 if σ

−1(j1) < σ−1(j2)
in ℓ. If we regard ℓ as a list of the elements of I, then L[σ](ℓ) is the list obtained
by replacing each i ∈ I for σ(i) ∈ J .

For instance, L[{a, b, c}] = {abc, bac, acb, bca, cab, cba} and if σ : {a, b, c} →
{1, 2, 3} is given by σ(a) = 1, σ(b) = 2, σ(c) = 3, then L[σ] : L[{a, b, c}] →
L[{1, 2, 3}] is given by σ(abc) = 123, σ(acb) = 132, σ(bac) = 213, σ(bca) = 231, σ(cab)
= 312, σ(cba) = 321.

13
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Definition 1.1.3. A morphism f : P → Q between set species P and Q is a
collection of maps fI : P[I] → Q[I] which satisfy the following naturality axiom:
for each bijection σ : I → J , fJ ◦ P[σ] = Q[σ] ◦ fI .

Example 1.1.4. An automorphism of the set species L of linear orders is given
by the reversal maps revI : L[I] → L[I] defined by revI(a1a2 . . . ai) = ai . . . a2a1 for
each linear order on I written as a list a1a2 . . . ai.

1.1.2. Hopf monoids in set species. A set species P is connected if the
set P[∅] is a singleton. We make the assumption that all species are connected
throughout this work; occasionally we do this explicitly. This will let us state
the Hopf monoid axioms more briefly. In particular, the existence of an antipode
will not be required in the definition, as this is guaranteed by connectedness. The
antipode of a Hopf monoid is discussed later in Section 1.1.8.

A decomposition of a finite set I is a finite sequence (S1, . . . , Sk) of pairwise
disjoint subsets of I whose union is I. In this situation, we write

I = S1 ⊔ · · · ⊔ Sk.

Note that I = S ⊔ T and I = T ⊔ S are distinct decompositions of I (unless
I = S = T = ∅).

Definition 1.1.5. A connected Hopf monoid in set species consists of the fol-
lowing data.

• A connected set species H.
• For each finite set I and each decomposition I = S ⊔ T , product and
coproduct maps

H[S]× H[T ]
μS,T

−−−→ H[I] and H[I]
ΔS,T

−−−→ H[S]×H[T ]

satisfying the naturality, unitality, associativity, and compatibility axioms below.

Before stating the axioms of a Hopf monoid, we discuss some terminology
and notation. The collection of maps μ (resp. Δ) is called the product (resp. the
coproduct) of the Hopf monoid H. Fix a decomposition I = S ⊔ T . For x ∈ H[S],
y ∈ H[T ], and z ∈ H[I] we write

(x, y)
μS,T
−−−→ x · y and z

ΔS,T
−−−→ (z|S , z/S).

We call x · y ∈ H[I] the product of x and y, z|S ∈ H[S] the restriction of z to S and
z/S ∈ H[T ] the contraction of S from z. Finally, we call the element 1 ∈ H[∅] the
unit of H.

The product keeps track of how we merge two disjoint structures x on S and y
on T into a single structure x · y on I, according to a suitable combinatorial rule.
The coproduct keeps track of how we break up a structure z on I into a structure
z|S on S and a structure z/S on T . Section 1.2 features five important examples.

The axioms are as follows. We note that each axiom can be rephrased in terms
of a commutative diagram; we invite the reader to draw those diagrams or to see
[2, Sections 8.2–8.3] for details.

Naturality. For each decomposition I = S ⊔ T , each bijection σ : I → J ,
and any choice of x ∈ H[S], y ∈ H[T ], and z ∈ H[I], we have

H[σ](x · y) = H[σ|S ](x) ·H[σ|T ](y),

H[σ](z)|S = H[σ|S ](z|S), H[σ](z)/S = H[σ|T ](z/S).
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This says that relabeling may be performed either before or after merging and
breaking, without altering the result.

Unitality. For each I and x ∈ H[I], we must have

x · 1 = x = 1 · x, x|I = x = x/∅.

This says that merging and breaking are trivial when the decomposition of the
underlying set I is trivial; here 1 represents the unique structure (of species H) on
the empty set.

Associativity and Coassociativity. For each decomposition I = R⊔S⊔T ,
and any x ∈ H[R], y ∈ H[S], z ∈ H[T ], and w ∈ H[I], we must have

x · (y · z) = (x · y) · z,

(w|R⊔S)|R = w|R, (w|R⊔S)/R = (w/R)|S , w/R⊔S = (w/R)/S.

This says that successively merging three combinatorial structures on R,S, T into
one structure on I produces a coherent result (associativity) – namely ΔR,S,T (x, y, z)
= x · y · z – and similarly for breaking a single structure on I into three structures
on R,S, T (coassociativity) – namely ΔR,S,T (w) = (w|R, (w/R)|S , w/R⊔S). By in-
duction, merging and breaking are then also well-defined for decompositions of I
into more than three parts (higher (co)associativity).

Compatibility. Fix decompositions S ⊔ T = I = S′ ⊔ T ′, and consider the
pairwise intersections A := S ∩ S′, B := S ∩ T ′, C := T ∩ S′, D := T ∩ T ′ as
illustrated below. In this situation, for any x ∈ H[S] and y ∈ H[T ], we must have

(x · y)|S′ = x|A · y|C and (x · y)/S′ = x/A · y/C .

(3)

✬

✫

✩

✪

S

T

✬

✫

✩

✪
S′ T ′

✬

✫

✩

✪

A B

C D

This says that “merging then breaking” is the same as “breaking then merging”. If
we start with structures x and y on S and T , we can merge them into a structure
x · y on I, and then break the result into structures on S′ and T ′. We can also
break x (resp. y) into two structures on A and B (resp. C and D), and merge the
resulting pieces into structures on S′ and T ′. These two procedures should give the
same answer.

This completes the definition of connected Hopf monoid in set species. In the
cases that interest us, naturality and unitality are immediate and associativity is
very easy; usually the only non-trivial condition to be checked is compatibility.

We remark that in more general contexts, the definition of a Hopf monoid also
requires the existence of an antipode map, which we introduce in Section 1.1.8. In
the connected case, which is the one that interests us, this map always exists; see
also Remark 1.1.12.
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Note also that the unitality axiom determines the maps μS,T and ΔS,T uniquely
when one of the subsets S or T is empty. Thus, when specifying a Hopf monoid
structure, one may restrict attention to the case when both are proper and nonempty.

Definition 1.1.6. A morphism f : H → K between Hopf monoids H and K is
a morphism of species which preserves products, restrictions and contractions; that
is, we have

fJ
(

H[σ](x)
)

= K[σ]
(

fI (x)
)

for all bijections σ : I → J and all x ∈ H[I],
fI (x · y) = fS(x) · fT (y) for all I = S ⊔ T and all x ∈ H[S], y ∈ H[T ],
fS(z|S) = fI(z)|S , fT (z/S) = fI (z)/S for all I = S ⊔ T and all z ∈ H[I].

Units are preserved by connectedness.

Suppose H is a Hopf monoid. Note that if I = S ⊔ T is a decomposition, then
I = T ⊔ S is another. Therefore, any x ∈ H[S] and y ∈ H[T ] give rise to two
structures x · y and y · x on I. Similarly, any z ∈ H[I] gives rise to two pairs of
structures (z|S , z/S) and (z/T , z|T ) on (S, T ).

Definition 1.1.7. A Hopf monoid H is commutative if x · y = y · x for any
I = S⊔T , x ∈ H[S] and y ∈ H[T ]. It is cocommutative if (z|S , z/S) = (z/T , z|T ) for
any I = S ⊔T and z ∈ H[I]; it is enough to check that z/S = z|T for any I = S ⊔T
and z ∈ H[I].

Example 1.1.8. We now define a Hopf monoid structure on the species L of
linear orders of Example 1.1.2. To this end, we define the operations of concate-
nation and restriction. Let I = S ⊔ T . If ℓ1 = s1 . . . si is a linear order on S and
ℓ2 = t1 . . . tj is a linear order on T , their concatenation is the following linear order
on I:

ℓ1 · ℓ2 := s1 . . . si t1 . . . tj .

Given a linear order ℓ on I, the restriction ℓ |S is the list consisting of the elements
of S written in the order in which they appear in ℓ.

The product (merging) and coproduct (breaking) of the Hopf monoid L are
defined by

L[S]× L[T ]
μS,T
−−−→ L[I] L[I]

ΔS,T
−−−→ L[S]× L[T ]

(ℓ1, ℓ2) −−−→ ℓ1 · ℓ2 ℓ −−−→ (ℓ|S , ℓ|T ).

Given linear orders ℓ1 on S and ℓ2 on T , the compatibility axiom in Defini-
tion 1.1.5 boils down to the fact that the concatenation of ℓ1|A and ℓ2|C agrees with
the restriction to S′ of ℓ1 · ℓ2. The verification of the remaining axioms is similar.

By definition, ℓ/S = ℓ |T , so L is cocommutative.

Many Hopf monoids are presented in this monograph, revolving around the
main example of the Hopf monoid of generalized permutahedra (Section 1.4). Ad-
ditional examples are given in [2, Chapters 11–13].

1.1.3. Opposite and co-opposite. Given a Hopf monoid H, the opposite
Hopf monoid Hop has the same coproduct as H, while the product is reversed:
μS,T (x, y) in Hop is μT,S(y, x) in H. For example, for ℓ1 and ℓ2 as in Example 1.1.8,
the product in Lop is

ℓ1 · ℓ2 = t1 . . . tj s1 . . . si.

The co-opposite Hopf monoid Hcop is defined by keeping the product and reversing
the coproduct: if ΔS,T (z) = (z|S , z/S) in H, then ΔS,T (z) = (z/T , z|T ) in Hcop.
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One easily verifies that Hop and Hcop are Hopf monoids. H is (co)commutative
if and only if H = Hop (H = Hcop).

The reader may verify that the automorphism of the species L of Example 1.1.4
is an isomorphism of Hopf monoids L → Lop.

1.1.4. Vector species. All vector spaces and tensor products below are over
a fixed field k.

A vector species P consists of the following data.

• For each finite set I, a vector space P[I].
• For each bijection σ : I → J , a linear map P[σ] : P[I] → P[J ].

These are subject to the same axioms as in Definition 1.1.1. Again, these axioms
imply that every such map P[σ] is invertible. A morphism of vector species f :
P → Q is a collection of linear maps fI : P[I] → Q[I] satisfying the naturality
axiom of Definition 1.1.3.

1.1.5. Hopf monoids in vector species.

Definition 1.1.9. A connected Hopf monoid in vector species is a vector species
H with H[∅] = k that is equipped with linear maps

H[S]⊗H[T ]
μS,T
−−−→ H[I] and H[I]

ΔS,T
−−−→ H[S]⊗H[T ]

for each decomposition I = S⊔T , subject to axioms that naturally generalize those
in Definition 1.1.5. The axioms require the commutativity of certain diagrams;
see [2, Sections 8.2–8.3] for details.

We employ similar notations as for Hopf monoids in set species; namely,

μS,T (x⊗ y) = x · y and ΔS,T (z) =
∑

z|S ⊗ z/S ,

the latter being a variant of Sweedler’s notation for Hopf algebras. In general,∑
z|S ⊗ z/S stands for a tensor in H[S] ⊗H[T ]; individual elements z|S and z/S

may not be defined.
A morphism of Hopf monoids in vector species is a morphism of vector species

which preserves products, coproducts, and the unit, as in Definition 1.1.6.

1.1.6. Linearization. Consider the linearization functor

Set −→ Vec,

which sends a set to the vector space with basis the given set. Composing a set
species P with the linearization functor gives a vector species, which we denote P. If
H is a Hopf monoid in set species, then its linearizationH is a Hopf monoid in vector
species. In this situation, the coproduct of H is of the form ΔS,T (z) = z|S ⊗ z/S ,
where z ∈ H[I] is a basis element of H[I], and the right-hand side is a pure tensor.

Most, but not all, of the Hopf monoids considered in this monograph are in
set species. The linearization functor allows us to regard them as Hopf monoids in
vector species also.

Remark 1.1.10. The category of vector species carries a symmetric monoidal
structure. In any symmetric monoidal category one may consider the notion of Hopf
monoid. A Hopf monoid in the category of sets under cartesian product is precisely
a group. A Hopf monoid in vector species is a Hopf monoid in this categorical
sense. For more details about this point of view, and a discussion of set species
versus vector species, see [2, Chapter 8].
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1.1.7. Higher products and coproducts. Let H be a Hopf monoid in vec-
tor species. The following is a consequence of the associativity axiom. For any
decomposition I = S1 ⊔ · · · ⊔ Sk with k ≥ 2, there are unique maps

(4) H[S1]⊗ · · · ⊗H[Sk]
μS1,...,Sk−−−−−−→ H[I], H[I]

ΔS1,...,Sk−−−−−−→ H[S1]⊗ · · · ⊗H[Sk]

obtained by respectively iterating the product maps μ or the coproduct maps Δ
in any meaningful way. As mentioned when discussing the associativity axiom in
Section 1.1.2, these maps are well-defined; we refer to them as the higher products
and coproducts of H.

For k = 1, we define μI and ΔI to be the identity map id : H[I] → H[I]. For
k = 0, the only set with a decomposition into 0 parts is the empty set, and in that
case we let μ( ) : k −→ H[∅] and Δ( ) : H[∅] −→ k be the linear maps that send 1 to 1.

When H is the linearization of a Hopf monoid H in set species, we have higher
(co)products

μS1,...,Sk
(x1, . . . , xk) = x1 · . . . · xk ∈ H[I], ΔS1,...,Sk

(z) = (z1, . . . , zk)

whenever xi ∈ H[Si] for i = 1, . . . , k, and z ∈ H[I], respectively. We refer to zi ∈
H[Si] as the i-th minor of z corresponding to the decomposition I = S1 ⊔ · · · ⊔ Sk;
it is obtained from z by combining restrictions and contractions in any meaningful
way.

1.1.8. The antipode and the antipode problem. A composition of a finite
set I is a decomposition I = S1 ⊔ · · · ⊔ Sk in which each subset Si is nonempty; we
write

(S1, . . . , Sk) � I.

There is a unique composition of the empty set. It has no parts (k = 0).
If F = (S1, . . . , Sk), we write

μF = μS1,...,Sk
and ΔF = ΔS1,...,Sk

for the higher (co)products (4). Each composite μFΔF maps H[I] to itself.
We let ℓ(F ) = k denote the number of parts of F .

Definition 1.1.11. Let H be a (connected) Hopf monoid in vector species.
The antipode of H is the collection of maps

sI : H[I] → H[I],

one for each finite set I, given by

(5) sI =
∑

F�I

(−1)ℓ(F )μFΔF =
∑

(S1,...,Sk)�I
k≥0

(−1)kμS1,...,Sk
ΔS1,...,Sk

Note that s∅ = id and when I is nonempty, the sum effectively starts at k =
1. The right hand side of (5) involves the higher (co)products of (4). Since a
composition of I can have at most |I| parts, the sum is finite. We refer to (5) as
Takeuchi’s formula. For alternate formulas and axioms defining the antipode of a
Hopf monoid, see [2, Section 8.4].

Remark 1.1.12. In the general context of Remark 1.1.10, the antipode is part
of the definition of a Hopf monoid in a symmetric monoidal category. A Hopf
monoid is a bimonoid H for which the identity map is invertible in the convolution
monoid Hom(H,H); its inverse is called the antipode. For example, when a group
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is regarded as a Hopf monoid (in the category of sets), the antipode is the function
that sends each element of the group to its inverse. In the connected situation,
Takeuchi’s formula (5) automatically guarantees the existence of the antipode.

The antipode is a central part of the structure of a Hopf monoid, and the
following is a fundamental problem.

Antipode Problem 1.1.13 ([2, Section 8.4.2]). Find an explicit, cancellation-
free formula for the antipode of a given Hopf monoid.

If H is the linearization of a Hopf monoid in set species H, the sum in (5) takes
place in the vector space H[I] with basis H[I]. The antipode problem asks for an
understanding of the coefficients of sI(h) for each basis element h in H[I].

Remark 1.1.14. The number of terms in Takeuchi’s formula (5) is the or-
dered Bell number ω(n) ≈ n!/2(log 2)n+1; the first few terms in this sequence are
1, 1, 3, 13, 75, 541, 4683, 47293, 545835 [47]. Their rapid growth makes this equation
impractical, even for moderate values of n. To solve the Antipode Problem 1.1.13,
one needs further insight into the Hopf monoid in question.

1.1.9. Properties of the antipode. The following properties of the antipode
follow from general results for Hopf monoids in monoidal categories. The first result
states that the antipode reverses products and coproducts.

Proposition 1.1.15. Let H be a Hopf monoid and I = S⊔T a decomposition.
Then

sI(x · y) = sT (y) · sS(x) whenever x ∈ H[S] and y ∈ H[T ],(6)

ΔS,T

(
sI(z)

)
=
∑

sS(z/T )⊗ sT (z|T ) whenever z ∈ H[I].(7)

Proof. See [2, Proposition 1.22.(iii)]. �

More generally, let F = (S1, . . . , Sk) be a composition of I. Denote the reverse
composition by F = (Sk, . . . , S1). Let the switch map

swF : H[S1]⊗ · · · ⊗H[Sk] → H[Sk]⊗ · · · ⊗H[S1]

reverse the tensor factors; that is,

swF (x1 ⊗ · · · ⊗ xk) = xk ⊗ · · · ⊗ x1

whenever xi ∈ H[Si] for 1 ≤ i ≤ k. Let

sF = sS1
⊗ · · · ⊗ sSk

: H[S1]⊗ · · · ⊗H[Sk] → H[S1]⊗ · · · ⊗H[Sk].

Proposition 1.1.16. Let H be a Hopf monoid. For any composition F =
(S1, . . . , Sk) of I,

(8) sI μF = μF swF sF , ΔF sI = sF swF ΔF

Proof. For k = 2, this is a restatement of Proposition 1.1.15. For k ≥ 2, this
is the result of iterating Proposition 1.1.15. �

Proposition 1.1.17. Let H be a Hopf monoid that is either commutative or
cocommutative. For any finite set I,

(9) s
2
I = id.

If H is commutative, then H and its co-opposite Hcop share the same antipode.
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If f : H → K is a morphism of Hopf monoids, then

(10) fI sI = sI fI .

Proof. See [2, Propositions 1.16 and 1.22, Corollary 1.24]. �

Remark 1.1.18. A more general result than Propositions 1.1.15 and 1.1.16 is
given in [5, Lemma 12.12]. More general results than those in Proposition 1.1.17
are given in [5, Lemmas 12.2, 12.15, 12.17].

Example 1.1.19. Consider the Hopf monoid L of linear orders in vector species.
Problem 1.1.13 asks for an explicit expression for sI(ℓ), where ℓ is a linear order on
a finite set I. Takeuchi’s formula (5) yields a very large alternating sum of linear
orders, but many cancellations take place. It turns out that only one term survives:

sI(i1i2 . . . in) = (−1)n in . . . i2i1.

In other words, up to a sign, the antipode simply reverses the linear order.
Here is a simple proof. When I is a singleton, this follows readily from (5).

When |I| ≥ 2, Proposition 1.1.16 tells us that the antipode reverses products,
which implies that sI(i1i2 . . . in) = s{in}(in) · · · · · s{i1}(i1) = (−in) · · · (−i1) =
(−1)n in . . . i2i1, as desired.

For more complicated Hopf monoids, obtaining such an explicit description
for the antipode is often difficult. It requires understanding the cancellations that
occur in a large alternating sum indexed by combinatorial objects; the antipode
problem is therefore of a clear combinatorial nature.

Several instances of the antipode problem are solved in [2, Chapters 11–12]. In
Section 1.6 of this monograph we offer a unified framework that solves this problem
for many other Hopf monoids of interest, as outlined in the table in the introduction.
We describe a few consequences of these formulas in Sections 2.4, 4.1, 4.3, and 5.7.

1.1.10. From Hopf monoids to Hopf algebras. Our results on Hopf mon-
oids have counterparts for Hopf algebras, thanks to the Fock functor1 K that takes
Hopf monoids in species to graded Hopf algebras. We only employ Hopf algebras
briefly in this monograph, but we provide this brief discussion for the benefit of the
interested reader. See [2, Section 15.1.1] for further details.

First let us see how a connected Hopf monoid on set species H gives rise to a
graded Hopf algebra K(H). Let H[n] = H[{1, . . . , n}] for n ∈ N. Say h1, h2 ∈ H[n]
are isomorphic if they are in the same Sn-orbit; that is, if there exists a bijection
σ : [n] → [n] such that σ(h1) = h2. Let

K(H) :=
⊕

n≥0

Hn where Hn := span{isomorphism classes of elements of H[n]}

The operations of the Hopf algebra K(H) are induced from those of the Hopf monoid
H by means of the processes of shifting and standardization:

• The product of [h1] ∈ Hk1
and [h2] ∈ Hk2

is

[h1] · [h2] = [h1 · h
+k1
2 ] ∈ Hk1+k2

,

where h+k1
2 is the image of h2 under the order-preserving bijection from [k2] to

{k1 + 1, . . . , k1 + k2}.

1In fact this is only one of four Fock functors; see [2, Sections 15.2, 17].
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• The coproduct of [h] ∈ Hn is

Δ([h]) =
∑

[n]=S⊔T

[std(h|S)]⊗ [std(h/S)] ∈
n⊕

k=0

Hk ⊗Hn−k,

where std(h|S) and std(h/S) are the images of h|S and h/S under the unique order
preserving bijections from S to [|S|] and from T to [|T |], respectively.

More generally, a connected Hopf monoid in vector species H gives rise to a
graded Hopf algebra K(H). The symmetric group Sn acts on H[n], and we define

K(H) :=
⊕

n≥0

Hn where Hn := H[n] / span{w · h− h | w ∈ Sn, h ∈ H[n]}.

The graded component Hn is known as the space of Sn-coinvariants of H[n].

A morphism of species commutes with the symmetric group actions and hence
descends to coinvariants. In this manner, K acts on morphisms.

Theorem 1.1.20 ([2, Proposition 3.50, Theorem 15.12]). If H is a Hopf monoid
in species, then K(H) is a graded Hopf algebra. Furthermore, if s is the antipode
of H, then K(s) is the antipode of K(H).

Example 1.1.21. We invite the reader to verify that K(L) = k[x], the polyno-
mial Hopf algebra on one generator, with xn corresponding to the unique Sn-orbit
on L[n]. We have

Δ(xn) =

n∑

i=0

(
n

i

)
xi ⊗ xn−i and s(xn) = (−1)nxn.

Figure 1 shows antipode formulas for the Hopf algebras associated to some of
the Hopf monoids treated later in this work. They are to be compared with the
formulas in Figure 1, from which these formulas are derived. Isomorphic struc-
tures in H represent the same basis element in K(H), so their coefficients in Figure
1 combine into one coefficient in Figure 1. According to Theorem 1.6.1, the signs
appearing in the former figure only depend on the dimension of the polytope model-
ing the combinatorial structure. Hence, isomorphic structures occur with the same
sign, and cancellations do not take place in this passage. For other Hopf monoids
not related to generalized permutahedra, cancellations may occur.

1.2. G,M,P,Π,F: Graphs, matroids, posets, set partitions, partitions

into paths

In this section, we illustrate the previous definitions with five examples of Hopf
monoids built from combinatorial structures. Some of these and many others appear
in [2, Chapter 13]. Important ideas leading to these constructions are due to Joni
and Rota [60], Schmitt [84], and many others; additional references are given below.

1.2.1. G: Graphs. A graph with vertex set I consists of a multiset of edges.
Each edge is a subset of I of cardinality 1 or 2; in the former case we call it a
half-edge.

Let G[I] denote the set of all graphs with vertex set I. One may use a bijection
σ : I → J to relabel the vertices of a graph g ∈ G[I] and turn it into a graph
G[σ](g) ∈ G[J ]. Thus, G is a species, which we now turn into a Hopf monoid. Fix
I and a decomposition I = S ⊔ T .
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Graphs K(G):

(( +  +  _s = _ + 2 3_

Matroids K(M):

(( + 5 + 2 8 _s = + _ + 2 

Posets K(P):

( ( + 2 +  + 2 4 _s = _

Partitions K(Π):

(( _  _  _  6 2  s +18  12  = 

Paths K(F):

(( + 6  s = _ _+ 3     21 +14

Figure 1. Antipode calculations in Hopf algebras

• The product of two graphs g1 ∈ G[S] and g2 ∈ G[T ] is the graph g1 · g2 with
vertex set I and edge set the union of the edge sets of g1 and those of g2. Since the
vertex sets of g1 and g2 are disjoint, so are the edge sets. Thus, an edge of g1 · g2
is an edge of exactly one of g1 or g2.
• The coproduct of a graph g ∈ G[I] is ΔS,T (g) = (g|S , g/S) defined as follows. We
let g|S ∈ G[S] be the graph with vertex set S consisting of the edges and half-edges
of g which are incident to S only. The edges incident to T (on at least one vertex)
are removed. By contrast, g/S ∈ G[T ] is the graph with vertex set T consisting of
all edges and half-edges of g incident to T on at least one vertex: an edge {t, s} in
g joining t ∈ T and s ∈ S becomes a half-edge at t in g/S .

An example follows. Let I = {a, b, c, x, y}, S = {x, y}, and T = {a, b, c}.

If g = then g|S = and g/S = .

The Hopf monoid axioms are easily verified.
A simpler version of this Hopf monoid (disallowing half-edges) is discussed

in [2, Section 13.2]; this in turn elaborates on work of Schmitt [84].

Example 1.2.1. Consider the antipode s for the linearization G of the Hopf
monoid of graphs. For a graph on 3 vertices, Takeuchi’s formula (5) returns an
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alternating sum of 13 graphs on the same vertex set, corresponding to the 13
compositions of a 3-element set. An explicit calculation yields

(( +  +  +  +  

_ _  _  _  

s
a b c a b c a b c a b c a b c a b c

a b c a b c a b c a b c

= _

Cancellations took place which resulted in a cancellation-free and combination-free
sum of only 9 graphs. The antipode problem 1.1.13 for the Hopf monoid G asks
for an understanding of this phenomenon. This problem is solved in Section 3.2.

1.2.2. M: Matroids. Let I be a finite set. A matroid on ground set I is a
nonempty collection m of subsets of I which is closed under inclusion and satisfies
the following axiom: if A and B are in m and |A| = |B|+1, there exists a ∈ A−B
such that B ∪ {a} is in m.

The sets in the collection are called independent ; the remaining subsets of I are
called dependent. The maximal independent sets are called bases. Matroids abstract
the notion of independence, and arise naturally in many fields of mathematics.
Three key examples are the following.

(1) Linear matroids: If I is a set of vectors linearly spanning a vector space V ,
the collection of subsets of I which are linearly independent is a matroid.
The bases are the subsets of I which are linear bases of V .

(2) Graphical matroids: If I is the set of edges of a graph g, the collection of
subsets of I containing no cycles is a matroid. The bases are the subsets
of I which constitute a spanning forest of g.

(3) Algebraic matroids: If I is a set of elements which generate a field exten-
sion K of F, the collection of subsets of I which are algebraically indepen-
dent over F is a matroid. The bases are the subsets of I which constitute
a transcendence basis for K over F.

We review a number of basic operations on matroids; for more details on these
and other notions related to matroids, we refer the reader to [72,100].

Consider a matroid m on I and a decomposition I = S ⊔ T . The restriction of
m to S is the matroid on ground set S defined as

m|S = {A ⊆ S | A ∈ m}.

The contraction of S from m is the matroid on ground set T defined as

m/S = {B ⊆ T | there is a basis A of m|S such that A ∪B ∈ m}.

Let m1 and m2 be matroids on ground set S and T , respectively, and I = S⊔T .
Their direct sum is the matroid on ground set I defined as

m1 ⊕m2 = {A1 ∪ A2 | A1 ∈ m1, A2 ∈ m2}.

Let M[I] be the set of matroids on ground set I. Again, M is a species, which
we now turn into a Hopf monoid. Fix I, S and T as above.
• The product of m1 ∈ M[S] and m2 ∈ M[T ] is their direct sum m1 ⊕m2.
• The coproduct of m ∈ M[I] is ΔS,T (m) = (m|S ,m/S).

The Hopf monoid axioms boil down to familiar properties relating direct sums,
restriction, and contraction of matroids.
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The (linearization M of the) Hopf monoid M is discussed in [2, Section 13.8].
The crucial idea of assembling these matroid operations into an algebraic structure
goes back to Joni and Rota [60, Section XVII] and Schmitt [85, Section 15]. In
fact the terms restriction, contraction, and minor, which we employ for an arbitrary
Hopf monoid in set species, originate in this example.

Example 1.2.2. We consider the antipode of the Hopf algebra K(M), where
isomorphic matroids are identified. Let m be the matroid on {a, b, c, d} whose bases
are ab, ac, ad, bc, and bd. Takeuchi’s formula (5) expresses the antipode s(m) as an
alternating sum of 73 matroids, but after extensive cancellation, one obtains:

(( + 5 + 2 8 _s = + _ + 2 

where we are representing isomorphism classes of matroids by affine diagrams [94];
points represent elements and the following represent dependent sets: any four
points, three points on a line, two points above each other, and one hollow point.
In particular, hollow points represent loops. The antipode problem 1.1.13 for the
Hopf monoid M asks for an understanding of this cancellation. This problem is
solved in Section 3.3.

1.2.3. P: Posets. A poset p on a finite set I is a relation p ⊆ I × I, denoted
≤, which is reflexive, antisymmetric and transitive.

Let P[I] denote the set of all posets on I and P[I] its linearization; that is, the
vector space with basis P[I]. Then P is a set species and P is a vector species. We
turn P into a Hopf monoid in vector species as follows. Fix I = S ⊔ T .
• The product of p1 ∈ P[S] and p2 ∈ P[T ] is the poset p1 ·p2 on I which as a subset
of I × I is simply the (disjoint) union of the sets p1 ⊆ S × S and p2 ⊆ T × T . In
p1 · p2 there are no relations between elements of S and elements of T .
• The coproduct ΔS,T : P[I] → P[S]⊗P[T ] is the linear map determined by

ΔS,T (p) =

{
p|S ⊗ p|T if S is a lower set of p,

0 otherwise.

We say S is a lower set or order ideal of p if no element of T is less than an element
of S, and we let

p|S = p ∩ (S × S)

be the induced poset on S.
The Hopf monoid axioms are easily verified.
The Hopf monoid P is commutative but not cocommutative. It is discussed

in [2, Section 13.1]. Work of Malvenuto [69] and of Schmitt [85, Section 16] is at
the root of this construction. Work of Gessel [45] is also relevant.

Warning. The vector species P is the linearization of the set species P, so
each space P[I] carries the canonical basis P[I]. Note, however, that ΔS,T : P[I] →
P[S] ⊗ P[T ] does not always send a basis element in P[I] to a basis element in
P[S]×P[T ]. In other words, the Hopf monoid structure on P is not the linearization
of a Hopf monoid structure on P.

Example 1.2.3. We consider the antipode of the Hopf algebra of posets K(P),
where isomorphic posets are identified, and represent isomorphism classes by means
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( ( + 2 +  + 2 4 _s = _

of unlabeled Hasse diagrams. For the class shown below (of a poset on four ele-
ments), Takeuchi’s alternating sum of 73 posets simplifies to:

The antipode problem 1.1.13 for posets is solved in Section 3.4.

1.2.4. Π: Set partitions. A partition π of a finite set I is a covering of I by

nonempty and pairwise disjoint subsets:
⊔

B∈π

B = I. The sets B ∈ π are called the

parts or blocks of π.
Neither the blocks nor the elements within each block come in any specified

order. To display a set partition we arrange the blocks and the elements within
each block in an arbitrary order. For instance, {ab, cde} denotes the partition
π = {B,C} with blocks B = {a, b} and C = {c, d, e}.

Let Π[I] denote the set of all set partitions on I. Then Π is a set species. We
turn it into a Hopf monoid. Let I = S ⊔ T be a decomposition.
• The product π · ρ ∈ Π[I] of π ∈ Π[S] and ρ ∈ Π[T ] is the union of the two
collections. Thus, a block of π · ρ is either a block of π or of ρ.
• The coproduct of π ∈ Π[I] is ΔS,T (π) = (π|S, π|T ) where π|S is the collection of
nonempty intersections B ∩ S for B ∈ π.

For example, if I = {a, b, c, d, e}, S = {a, b, d}, T = {c, e} and

π = {ab, cde} then π|S = {ab, d} and π/S = π|T = {ce}.

The Hopf monoid axioms are easily verified. The Hopf monoid Π is both com-
mutative and cocommutative. The associated Hopf algebra K(Π) is the classical
Hopf algebra of symmetric functions. See [2, Sections 12.6 and 17.4] and [3, Section
9.3].

Example 1.2.4. For the antipode s({ab, cde}), Takeuchi’s formula (5) returns
an alternating sum of 530 set partitions, which simplifies as shown below.

(( _  _  _  

_  

_  2 2  2  2  s

d
e

b a

c

+ 6 + 4  + 4   12  + 4  

= 

d
e

b a

c
d

e

b a

c
d

e

b a

c
d

e

b a

c
d

e

b a

c

d
e

b a

c
d

e

b a

c
d

e

b a

c
d

e

b a

c
d

e

b a

c

Here we represent a partition of I by a graph on I whose edges are the pairs of
elements in the same block. This graph is a union of complete graphs, one for each
block of the partition.

The antipode of Π is fully described in [2, Theorem 12.47]. The result is
rederived here in Section 5.6. In Section 2.4 we apply this result to the calculation
of the multiplicative inverse of a formal power series.
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1.2.5. F: Paths and partitions into paths. Let I be a finite set. A path
on I is an equivalence class of linear orders on I under reversal. For example, the
linear orders abc and cba represent the same path p on {a, b, c}.

A partition of I into paths is a partition of the set I together with a path pB on
each block B of the partition. We display partitions into paths in the same manner
as set partitions, but the elements within each block B are now listed by employing
one of the two linear orders that represent the path pB. For example, {ac, bde},
{ca, bde}, {ac, edb}, and {ca, edb} all represent the same partition into paths.

Let C[I] denote the set of paths on I and F[I] denote the set of partitions of I
into paths. They define set species C and F.

Let I = S ⊔ T be a decomposition. Given a path p ∈ C[I], we define a path
p|S ∈ C[S] by erasing the elements of T from p and splicing the resulting pieces
together into one path, so that elements of S that bound a run of consecutive
elements of T in p become consecutive in p|S . We also define a partition into paths
p/S ∈ F[T ] by simply erasing the elements of S from p, so that the path p breaks
into the partition of T whose paths are the maximal runs of elements of T in p.
For example, if I = {a, b, c, d, e, f}, S = {b, c, f}, T = {a, d, e}, and

p = abcdef, then p|S = bcf and p/S = {a, de}.

Both operations extend to partitions α into paths, by applying them to each path
p in α. Thus, if α ∈ F[I], we obtain two partitions α|S ∈ F[S] and α/S ∈ F[T ].

We employ these constructions to turn the species F into a Hopf monoid.
• The product α · β ∈ F[I] of α ∈ F[S] and β ∈ F[T ] is the union of the two
collections of paths. Thus, a path of α · β is either a path of α or of β.
• The coproduct of α ∈ F[I] is ΔS,T (α) = (α|S, α/S) defined as above.

The Hopf monoid axioms are easily verified.
We may embed C[I] into F[I] by viewing each path as a partition into a single

path. In this manner, the commutative monoid F is freely generated by the species
C.

Example 1.2.5. Consider the single path abcd ∈ F[{a, b, c, d}]. For the an-
tipode s(abcd), Takeuchi’s formula (5) returns an alternating sum of 73 partitions
into paths which simplifies as shown below.

(( + 2  +  +  +  2  s
a b c d

= _

_

a b c d
a b c

d

a b d

c

a c d

b

b c d

a

+ 2  a b

c d

   +   

   5  a b

c d

_   5  b c

a d

_   5  c d

a b

_   2  a c

b d

_   2  b d

a c

_   2  a d

b c

 +14  a b

c d

a d

b c

Here paths are represented by graphs, so that each pair of consecutive elements are
joined by an edge.

In Section 5.7 we solve the antipode problem 1.1.13 for F. In particular, we
explain why every coefficient in this formula is a Catalan number, and the number
of terms is also a Catalan number. We will also discuss how F is closely related to
the associahedron, the Faà di Bruno Hopf algebra, and the calculation the compo-
sitional inverse of a formal power series.

1.3. Generalized permutahedra

The permutahedron is a ubiquitous polytope. Its vertices are in bijection with
the set of permutations of a finite set. We are interested in its deformations, known
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as generalized permutahedra. This family of polytopes is special enough to welcome
combinatorial analysis, and general enough to model many combinatorial families
of interest. It is also precisely the family of polytopes which are amenable to the
algebraic techniques of this monograph, as Section 1.5 will show.

We now recall some basic facts about permutahedra and their deformations.
These results and other background on polyhedra may be found in [36,41,77,87,
98,103].

1.3.1. Normal fans of polyhedra. Let V be a Euclidean space. Thus, V is
a finite dimensional real vector space endowed with an inner product 〈−,−〉.

Let p be a polytope (bounded polyhedron) in V and v ∈ V a vector. We refer
to the set

pv = {p ∈ p | 〈p, v〉 ≥ 〈q, v〉 for all q ∈ p}

as the v-maximum face of p. The set pv is then a face of p, the functional 〈−, v〉 is
constant on it, and greater than on the rest of p. In other words, the face pv is the
locus of p where the functional 〈−, v〉 achieves its maximum.

Figure 2. a) A generalized permutahedron p. b) Two directions
v and w and the corresponding maximal faces pv and pw.

The face pv only depends on the direction of v: dilating v by a positive scalar
results on the same face. If we intersect p with affine hyperplanes orthogonal to
v, pv is the last nonempty intersection we encounter as we travel outward in the
direction of v.

The same definition applies more generally when p is a (possibly unbounded)
polyhedron. In this case, the functional 〈−, v〉 may not achieve a maximum on it;
equivalently, the set pv may be empty.

We define the (open and closed) normal cones of a face q of a polyhedron p by

N ◦
p (q) = {v ∈ V | pv = q},

Np(q) = {v ∈ V | q is a face of pv},

respectively. They are polyhedral cones (open and closed, respectively), Np(q) is
the closure of N ◦

p (q), dimNp(q) = dimV − dim q, and q1 is a face of q2 if and only
if Np(q2) is a face of Np(q1).

The normal fan Np of p ⊆ V consists of the normal cones Np(q) for all faces q
of p. Its support is the cone of directions with respect to which p is bounded above.
In particular, it is a convex subset of V . If p is a polytope, the support is the whole
of V , and the fan Np is complete.
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Two polyhedra p and p′ in V are normally equivalent if they have the same
normal fan:

p ≡ p
′ ⇐⇒ Np = Np′ ;

that is, if Np and Np′ consist of exactly the same cones. A polyhedron is normally
equivalent to any of its translates or nonzero dilations.

We say a polyhedron q is a deformation of a polyhedron p if the normal fan
Nq is a coarsening of the normal fan Np; that is, every cone of Np is a subset of
a cone of Nq. We say q is an extended deformation of p if the normal fan Nq is a
coarsening of a convex subfan of the normal fan Np.

When p is a simple polytope, it is shown in [76, Theorem 15.3] that we may
think of the deformations of p equivalently as being obtained by any of the following
three procedures:

• moving the vertices of p while preserving the direction of each edge, or
• changing the edge lengths of p while preserving the direction of each edge, or
• moving the facets of p while preserving their directions, without allowing a

facet to move past a vertex.
The Minkowski sum of polyhedra p and q in V is

p+ q = {p+ q | p ∈ p, q ∈ q} ⊆ V.

The normal fan Np+q is the coarsest common refinement of the normal fans Np

and Nq. Its cones are the nonempty intersections between cones in Np and cones
in Nq.

A zonotope is a Minkowski sum Z(A) =
∑

a∈A a of a finite set of segments A.
The deformations of zonotopes can be described more simply as follows.

Proposition 1.3.1. [8, Prop. 2.6] Let A be a finite set of vectors in a vector
space V and Z(A) the corresponding zonotope. A polytope is a deformation of the
zonotope Z(A) if and only if every edge is parallel to some vector in A. More
generally, a polyhedron P in V is an extended deformation of Z(A) if and only if
every face affinely spans a parallel translate of span(S) for some S ⊆ A.

1.3.2. Lemmas from polyhedral geometry. For proofs of the results col-
lected here we refer to [103, Chapter 7].

Let V and W be Euclidean spaces and endow V ×W with the inner product

〈(v, w), (v′, w′)〉 = 〈v, v′〉+ 〈w,w′〉.

Given polyhedra p ⊆ V and q ⊆ W , let p× q ⊆ V ×W be their Cartesian product.
Maximum faces of a product are products of maximum faces, as follows.

Lemma 1.3.2. Let p and q be polytopes in V and W , respectively. Let v ∈ V
and w ∈ W . Then

(11) (p× q)(v,w) = pv × qw.

In particular,

(12) (p× q)(v,0) = pv × q and (p× q)(0,w) = p× qw.

Lemma 1.3.2 holds as well for polyhedra, assuming that v and w lie in the
support of Np and Nq, respectively. This is equivalent to assuming that (v, w) lies
in the support of Np×q.

The following describes the result of computing maximum faces iteratively.
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Lemma 1.3.3. Let p be a polytope in V . Let v1 and v2 ∈ V . There exist
λ1, λ2 > 0 such that

(13) (pv1)v2 = pλ1v1+λ2v2 .

In fact, there exists r > 0 such that (13) holds for all λ1, λ2 > 0 with λ1/λ2 > r.

We abbreviate the above conditions on λ1 and λ2 by writing λ1 >> λ2 > 0.
Lemma 1.3.3 holds as well for polyhedra, assuming that v1 and v2 lie in the

support of Np, which implies that λ1v1 + λ2v2 also does.

The following is a consequence of Lemma 1.3.2.

Lemma 1.3.4. We have

(14) Np×q = Np ×Nq.

More precisely, the faces of p× q are products of faces p1 of p and q1 of q, and

Np×q(p1 × q1) = Np(p1)×Nq(q1),

so that the cones in the normal fan of the product p×q identify with pairs of cones
in the normal fans of p and q.

Lemma 1.3.5. Let p, p′ be polyhedra in V and q, q′ be polyhedra in W . Then

(15) p ≡ p
′ and q ≡ q

′ ⇐⇒ p× q ≡ p
′ × q

′.

This follows from (14).

Lemma 1.3.6. Let p ≡ p′ be normally equivalent polyhedra in V . Let v be a
vector in the support of Np = Np′ . Then

(16) pv ≡ p
′
v.

1.3.3. Standard Euclidean spaces. Let I be a finite set I and RI the real
vector space whose vectors are I-tuples of real numbers:

RI = {(ai)i∈I | ai ∈ R}.

Let {ei | i ∈ I} be the standard basis of RI . For any subset S of I, let

eS =
∑

i∈S

ei.

We endow RI with the standard inner product

〈x, y〉 =
∑

i∈I

xiyi.

The standard basis {ei}i∈I is then orthonormal, and for all x ∈ RI ,

〈x, eS〉 =
∑

i∈S

xi.

Let I = S ⊔ T a decomposition. Then

RS × RT = RI

as Euclidean spaces. Indeed, the coordinates of a vector x ∈ RI split into a pair
(y, z) where the coordinates of y are indexed by S and those of z by T .
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1.3.4. Standard permutahedra. Let I be a nonempty finite set and n =
|I|. The standard permutahedron πI is the convex hull of the points in RI whose
coordinates consist precisely of the elements 1, . . . , n, listed in any order:

πI = conv { (ai)i∈I | {ai}i∈I = [n] } ⊆ RI .

It is a convex polytope of dimension n − 1. We let πn = π[n] denote the standard
permutahedron in Rn.

For example, π{a,b,c} is a regular hexagon lying on the plane xa + xb + xc = 6,
while π{a,b,c,d} is a truncated octahedron on the hyperplane xa +xb +xc +xd = 10

in R{a,b,c,d}. These polytopes are shown below, in each case next to the standard
simplex in RI .

b

a c (3,1,2)

(3,2,1) (1,2,3)

(1,3,2)(2,3,1)

(2,1,3)

a

b

d

c

The permutahedron πI may also be described as the set of solutions (xi)i∈I ∈
RI to the following system of (in)equalities:

∑

i∈I

xi =

(
n+ 1

2

)
,(17)

∑

i∈S

xi ≤

(
n+ 1

2

)
−

(
t+ 1

2

)
,(18)

for all compositions (S, T ) of I, where t = |T | = n− |S|.
The facial structure of the permutahedron admits a simple description.

• (Dimension 0.) The vertices of πI are in bijection with the linear orders on I.
The vertex corresponding to the order ℓ has i coordinate equal to the position of i
in the reversal of ℓ. For example, the linear order abc corresponds to the vertex in
the hexagon with coordinates xa = 3, xb = 2, xc = 1. More plainly, the vertices of
πn are the n! permutations of (1, 2, . . . , n).
• (Dimension 1.) There is an edge between two vertices x and y if and only if their
coordinates can be obtained from each other by swapping two consecutive values.
Thus xi = r and xj = r+1 become yi = r+1 and yj = r for some i and j in I, r in
[n], while yk = xk for k �= i, j. The edge joining x and y is then a parallel translate
of the vector ei − ej .
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• (Dimension n− 2.) The 2n− 2 facets of πI are in bijection with the compositions
of I into 2 parts. The facet corresponding to (T, S) is obtained by turning (18) into
an equality, and keeping the remaining (in)equalities.
• (Arbitrary dimension.) The (n− k)-dimensional faces of πI are in bijection with
the compositions of I into k parts. For each composition F = (S1, . . . , Sk) � I,
the corresponding face πF has as vertices the permutations x ∈ RI such that the
coordinates {xi | i ∈ S1} are the largest |S1| numbers in [n], the coordinates {xi |
i ∈ S2} are the next largest |S2| numbers in [n], and so on. This description shows
that the face πF is a parallel translate of the product of permutahedra πS1

×· · ·×πSk

in RS1 × · · · × RSk = RI .
• (Face containment.) Given compositions F = (S1, . . . , Sk) and G = (T1, . . . , Tl),
we say that F refines G if each Ti is a union of consecutive Sj ’s. It follows from
the preceding discussion that πF is contained in πG if and only if F refines G.

There is another convenient representation of the permutahedron. If we let Δij

be the segment connecting ei and ej in RI , then we can represent the standard
permutahedron as the zonotope

(19) πI =
∑

i �=j∈I

Δij + eI .

Note that the summand eI simply affords a translation by the vector (1, . . . , 1).

1.3.5. The braid arrangement. The braid arrangement BI consists of the(
n
2

)
hyperplanes in RI with equations

yi = yj , i, j ∈ I, i �= j.

If n = 1, the arrangement is empty.
The faces of the braid arrangement are in bijection with compositions of I,

with F = (S1, . . . , Sk) labeling the face defined by the inequalities

yi = yj if i, j ∈ Sa and yi ≥ yj if i ∈ Sa, j ∈ Sb, a < b.

The vectors y lying in the relative interior of this face of BI are precisely those for
which the y-maximum face of the standard permutahedron πI is πF .

In other words, the faces of the braid arrangement BI are precisely the cones
NπI

(πF ) in the normal fan of the permutahedron πI . We call this fan the braid fan.

The vector eI = (1, . . . , 1) is orthogonal to πI and the line it spans is the
lineality space of the braid fan NπI

(the minimum cone in the fan). Two vectors
congruent modulo eI lie in the same cone of the fan.

Assume S and T are proper and nonempty. Then the vector eS lies in the open
face of BI labeled by the composition (S, T ). More generally, for F as above and
any positive scalars λi, the vector

(20) λ1eS1
+ λ2eS1⊔S2

+ · · ·+ λkeS1⊔···⊔Sk

lies in the open face labeled by F . Among these there is the vector

(21) eF = eS1
+ eS1⊔S2

+ · · ·+ eS1⊔···⊔Sk
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Note that eS,T = eS + eI and

(22) eR⊔S,T + eR,S⊔T ≡ eR,S,T mod eI .

1.3.6. Generalized permutahedra. Recall that a fan G coarsens another
fan F (or F refines G) if every cone of F is contained in a cone of G or, equivalently,
if every cone of G is a union of cones of F . We are now ready to define our main
object of study.

Definition 1.3.7. A generalized permutahedron on I is a deformation of the
permutahedron πI ; that is, a polytope p ⊆ RI whose normal fan Np coarsens the
braid fan NπI

.

Let p be a generalized permutahedron in RI . To a composition F of I, one
may attach a face of p, as follows. Recall that F determines a face πF of πI . By
assumption, the open cone N ◦

πI
(πF ) is contained in a unique open cone of the form

N ◦
p (q), where q is a face of p. We denote this face q by pF . Thus,

N ◦
p (q) =

⊔

F : pF=q

N ◦
πI
(πF ).

Equivalently, pF is the y-maximum face of p for any y lying in the open face of BI

labeled by F . In particular,

(23) pF = peF ,

where eF is as in (21) Every face of p arises in this manner, in general for several
compositions F .

We wish to consider more general (unbounded) polyhedra. For this we allow
the support of the normal fan to be smaller than the ambient space RI .

Definition 1.3.8. An extended generalized permutahedron on I is an extended
deformation of the permutahedron πI ; that is, a polytope p ⊆ RI whose normal fan
Np coarsens a subfan of the braid fan NπI

.

The support of such a subfan coincides with the support of Np, and hence must
be convex (in fact, a cone).

Since the permutahedron is a simple polytope, a generalized permutahedron is
obtained from it by shifting the facets while preserving their directions, without
letting a facet go past a vertex. To deform a permutahedron into an extended gen-
eralized permutahedron, vertices can be moved off to infinity, and facet hyperplanes
can be erased. The figure below shows the standard permutahedron in R4 and four
of its deformations.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1.4. GP: THE HOPF MONOID OF GENERALIZED PERMUTAHEDRA 33

Since the permutahedron πI is a parallel translate of the zonotope of the root
system AI = {ei− ej : i, j ∈ I}, the following is a special case of Proposition 1.3.1.

Corollary 1.3.9. A polytope p is a generalized permutahedron if and only if
every edge is parallel to a vector of the form ei − ej for i, j ∈ I. More generally, a
polyhedron p in RI is an extended generalized permutahedron if and only if every face
affinely spans a parallel translate of span(S) for some S ⊆ AI = {ei−ej : i, j ∈ I}.

Remark 1.3.10. Generalized permutahedra were introduced by Postnikov in
[77], but have emerged in various forms and guises in the work of many authors.

Up to translation, generalized permutahedra are equivalent to base polytopes
of polymatroids, which were defined earlier by Edmonds [36]; see Section 3.1.3.
Generalized permutahedra are also equivalent to submodular functions [36,41,71,
87]; we discuss this further in Section 3.1. We have extended these definitions to
allow for unbounded polyhedra; similar generalizations were considered by Fujishige
[41] and Derksen and Fink [32].

Complete fans coarsening NπI
appear in [76] as complete fans of posets and in

[71] as convex rank tests. Not every such coarsening is the normal fan of a polytope.
When it is, the polytope is (by Definition 1.3.7) a generalized permutahedron.
Those polytopal fans are the submodular rank tests of [71]. It is shown in [71,
Theorem 9] that convex rank tests are in bijection with semigraphoids, a concept
arising in nonparametric statistics [30,73,97].

1.4. GP: The Hopf monoid of generalized permutahedra

We turn the collection of generalized permutahedra into a Hopf monoid in set
species. We focus on polytopes initially, and treat the unbounded case (extended
generalized permutahedra) in Section 1.4.5.

1.4.1. Cartesian product, restriction, and contraction. We introduce
suitable operations on generalized permutahedra. Let I be a finite set and I = S⊔T
a decomposition. Recall that

RS × RT = RI .

Assume that S and T are proper and nonempty.

Proposition 1.4.1. If p ⊆ RS and q ⊆ RT are generalized permutahedra, then
p× q ⊆ RI is a generalized permutahedron.
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Proof. By assumption, NπS
and NπT

refine Np and Nq, respectively. Em-
ploying (14) we deduce that NπS×πT

= NπS
× NπT

refines Np × Nq = Np×q. In
turn, the braid fan NπI

, which is cut out by the hyperplanes xi = xj for i, j ∈ I,
refines the product NπS

× NπT
of the braid fans in RS and RT , which is cut out

by the hyperplanes xi = xj for i, j ∈ S or i, j ∈ T . It follows that NπI
refines

Np×q. �

Let F = (S, T ). This is a composition of I. Given a generalized permutahedron
p ⊆ RI , the face pF of p is defined (Section 1.3.6). It is the eS-maximum face of
p, and more generally the y-maximum face for any y lying in the open face of BI

labeled by F .

Proposition 1.4.2. There exist generalized permutahedra p|S ⊆ RS and p/S ⊆
RT such that

(24) pS,T = p|S × p/S .

Proof. This result appears in [41, Theorem 3.15]. It may be also derived
from the proof of Theorem 3.1.3. �

We call p|S the restriction of p to S and p/S the contraction of S from p.
The figure below shows a generalized permutahedron p ⊆ Rabcd and its faces

pabd,c = p|abd × p/abd ⊆ Rabd × Rc and pad,bc = p|ad × p/ad ⊆ Rad × Rbc.

= X

= X

a

b

d

c

1.4.2. The Hopf monoid GP of generalized permutahedra. For each
finite set I, let GP[I] denote the set of generalized permutahedra on I. We agree
that GP[∅] consists of a single polytope, the only polytope (the origin) in the 0-
dimensional space R∅. A bijection σ : I → J induces a linear isomorphism

(25) RI → RJ , x �→ y

where yj = xσ−1(j) for each j ∈ J . This sends πI and its faces bijectively onto πJ

and its faces. Therefore, it sends a generalized permutahedron on I to another on
J .

In this manner, GP is a connected set species. We turn it into a Hopf monoid
as follows. Let (S, T ) be a composition of I.
• The product of p ∈ GP[S] and q ∈ GP[T ] is

p · q := p× q ∈ GP[I].
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• The coproduct of p ∈ GP[I] is

ΔS,T (p) = (p|S , p/S),

where the restriction p|S ∈ GP[S] and contraction p/S ∈ GP[T ] are defined in
Proposition 1.4.2.

Theorem 1.4.3. These operations turn the set species GP into a (connected)
Hopf monoid.

Proof. We verify two of the axioms; the others are straightforward.

Coassociativity. Let p ⊆ RI be a generalized permutahedron. We need to show
that for any decomposition I = R ⊔ S ⊔ T ,

(p|R⊔S)|R = p|R, (p|R⊔S)/R = (p/R)|S , p/R⊔S = (p/R)/S .

We may assume R, S and T are nonempty. We employ (12) and (24) to calculate

(pR⊔S,T )R,S⊔T = (p|R⊔S × p/R⊔S)R,S⊔T

=(p|R⊔S)R,S × p/R⊔S = (p|R⊔S)|R × (p|R⊔S)/R × p/R⊔S ,

(pR,S⊔T )R⊔S,T = (p|R × p/R)R⊔S,T

=p|R × (p/R)S,T = p|R × (p/R)|S × (p/R)/S .

Thus, it suffices to prove the equality of the polytopes (pR⊔S,T )R,S⊔T and
(pR,S⊔T )R⊔S,T . For this, we employ (13) and (20) to find that for λ >> μ > 0
and λ′ >> μ′ > 0,

(pR⊔S,T )R,S⊔T = (peR⊔S
)eR = pλeR⊔S+μeR = pR,S,T ,

(pR,S⊔T )R⊔S,T = (peR)eR⊔S
= pλ′eR+μ′eR⊔S

= pR,S,T .

The last equations in each step above follow from the fact that λeR⊔S + μeR and
λ′eR + μ′eR⊔S lie in the open face of the braid fan labeled by the composition
(R,S, T ).

Compatibility. Fix decompositions S ⊔ T = I = S′ ⊔ T ′ and let A,B,C,D be
the pairwise intersections, as in (3). Let p ⊆ RS and q ⊆ RT be generalized
permutahedra. We need to verify that

(p× q)|S′ = p|A × q|C and (p× q)/S′ = p/A × q/C .

If any of A,B,C,D is empty, these hold trivially. Assume they are not. We calculate
employing (12) and (24), noting that eS′ = eA + eC :

(p× q)|S′ × (p× q)/S′ = (p× q)eS′ = peA × qeC

= p|A × p/A × q|C × q/C = (p|A × q|C)× (p/A × q/C).

The desired equalities follow. �

The Hopf monoid p is commutative but not cocommutative.
Having verified (co)associativity, we are now able to describe higher (co)products

in GP in geometric terms. Recall from (21) that if F = (S1, . . . , Sk) then eF =
eS1

+eS1⊔S2
+ · · ·+eS1⊔···⊔Sk

, where eS is the indicator vector of S in RE for S ⊆ E.

Proposition 1.4.4. Let F = (S1, . . . , Sk) be a composition of I. In the Hopf
monoid GP, the higher product and coproduct associated to F are as follows:
• For generalized permutahedra p1 . . . , pk in RS1 , . . . ,RSk , μF (p1, . . . , pk) = p1 · . . . ·
pk.
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• For a generalized permutahedron p in RI , ΔF (p) = (p1, . . . , pk) where p1, . . . , pk
are the generalized permutahedra in RS1 , . . . ,RSk , respectively, such that the eF -
maximal face of p is pF = p1 · . . . · pk.

Consequently, we have

(26) μFΔF (p) = pF .

Proof. The expression for the higher product follows readily by associativity.
We prove the expression for the higher coproduct by induction on the number of
parts of F , recalling from (21) and (23) that pF = peF . When F has one part,
eF is orthogonal to p, so pF = p and the result holds. When F has two or more
parts, let S be the first part, T the union of the remaining parts, and G the
composition of T consisting of those parts. By the induction hypothesis we have
ΔG(p/S) = (p2, . . . , pk) for the generalized permutahedra p2, . . . , pk in RS2 , . . . ,RSk

such that (p/S)G = p2 · . . . · pk. Now, eF = keS + eG lies in the same open face
of the braid fan as λeS + μeG when λ, μ > 0. In light of Lemma 1.3.3 and (12),
whenever λ >> μ > 0 we have

pF = pλeS+μeG = (peS )eG = (p|S × p/S)eG = p|S × (p/S)eG = p1 · p2 · . . . · pk

where p1 = p|S ∈ GP[S]. By coassociativity,

ΔF (p) = (id,ΔG)ΔS,T (p) = (id,ΔG)(p|S, p/S) = (p1, p2, . . . , pk)

as desired.
The descriptions of μF and ΔF imply that μFΔF (p) = pF . �

Remark 1.4.5. In the language of polymatroids and submodular functions,
equivalent definitions of restriction and contraction were given by Edmonds in [36].
A similar Hopf algebraic structure on polymatroids was defined independently by
Derksen and Fink [32] at about the same time that our results were announced. In
our work we emphasize the polytopal perspective, which allows us to obtain many
new results.

1.4.3. Normal equivalence: the Hopf monoid GP. Let GP[I] denote the
quotient of the set GP[I] in which normally equivalent generalized permutahedra
in RI are identified. This defines a quotient species GP of GP.

Proposition 1.4.6. The Hopf monoid structure of GP descends to GP.

Proof. The product descends to the quotient in view of (15). For the coprod-
uct, consider two normally equivalent generalized permutahedra p ≡ p′ in RI and
let (S, T ) be a composition of I. It suffices to show that pS,T ≡ p′S,T , again by (15).

This follows from (16) applied to the vector eS . �

We obtain a quotient Hopf monoid

GP ։ GP.

The elements of GP[I] are in one-to-one correspondence with polytopal coars-
enings of the normal fan of πI (coarser fans which arise as normal fans of a polytope
in RI). There is a finite number of such coarsenings. It follows from the discussion
in [71, Section 4] that for |I| = 1, 2, 3, 4 there are 1, 2, 22, 22108 elements in GP[I].
Figure 3 shows the 22 classes for |I| = 3, together with the corresponding fans.

One may also define an intermediate quotient Hopf monoid in which generalized
permutahedra are identified only up to translations and dilations.
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Figure 3. The pantheon of generalized permutahedra on {a, b, c}.

1.4.4. Central symmetry. Given a polyhedron p, its opposite is

p = {−x | x ∈ p}.

We call p centrally symmetric if p = p.
For any face q of p, we have

(27) Np(q) = Np(q).

A fan is centrally symmetric if for each cone in the fan, the opposite cone
belongs to the fan. It follows from (27) that if p is centrally symmetric, so is its
normal fan. Hence the same is true if p is normally equivalent to its opposite.

The standard permutahedron πI is normally equivalent to its opposite, since
its translate to the origin (by means of −

(
n+1
2

)
eI) is centrally symmetric. It fol-

lows that the fan NπI
is centrally symmetric, and then that if p is a generalized

permutahedron in RI , so is p. We obtain a bijective map

GP[I] → GP[I], p �→ p,

and then an isomorphism of species GP → GP.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

38 1. THE HOPF MONOID OF GENERALIZED PERMUTAHEDRA

Proposition 1.4.7. The above map is an isomorphism of Hopf monoids GPcop →
GP.

Proof. The product is preserved since p× q = p × q. To verify that the
coproduct is reversed, pick a generalized permutahedron p in RI and a composition
(S, T ) of I. Note that

eT = eS + eI .

We calculate using (24):

p|S × p/S = peS = peS = peT = p|T × p/T .

The third equality holds since eI is orthogonal to p. This says that ΔS,T (p) =
ΔT,S(p). �

The map p �→ p is well-defined on classes under normal equivalence by (27), so

it descends to the quotient yielding an isomorphism of Hopf monoids GP
cop

→ GP.

1.4.5. The Hopf monoid GP+ of extended generalized permutahedra.

For each finite set I, let GP+[I] be the set of extended generalized permutahedra
on I. Then GP+ is a set species in the same manner as GP is. Let GP+ denote its
linearization. We proceed to turn the latter into a Hopf monoid in vector species:
certain components of the coproduct are not defined set-theoretically. Let (S, T )
be a composition of I.
• The product of p ∈ GP+[S] and q ∈ GP+[T ] is

p · q := p× q ∈ GP+[I].

This operation is set theoretic, and extends linearly to μS,T : GP+[S]⊗GP+[T ] →
GP+[I].
• The coproduct is defined on a basis element p ∈ GP[I] by

ΔS,T (p) =

{
p|S ⊗ p/S if eS lies in the support of Np,

0 otherwise,

and extended linearly to ΔS,T : GP+[I] → GP+[S] ⊗GP+[T ]. This operation is
not set theoretic.

Propositions 1.4.1 and 1.4.2 hold for extended generalized permutahedra (the
latter in the case that eS lies in the support of the normal fan). This makes the
above operations well-defined.

Proposition 1.4.4 holds in the following form:

(28) μFΔF (p) =

{
pF if F lies in the support of Np,

0 otherwise.

Theorem 1.4.8. These operations turn the vector species GP+ into a (con-
nected) Hopf monoid.

Proof. We verify coassociativity. Let (R,S, T ) be a composition of I. The
key fact is this:

eR,S⊔T and eR⊔S,T lie in the support of Np ⇐⇒ eR,S,T does.

The forward implication holds by (22) and the comments following Lemma 1.3.3.
To show the backward implication, recall that the fan Np refines a subfan Σ of NπI

.
Since eR,S,T is interior to the cone of the braid fan spanned by eR,S⊔T and eR⊔S,T ,
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if that subfan Σ contains eR,S,T , it must contain the generating rays eR,S⊔T and
eR⊔S,T .

This fact guarantees that if one encounters 0 in calculating (id×ΔS,T )ΔR,S⊔T (p),
then one also encounters 0 in calculating (ΔR,S × id)ΔR⊔S,T (p). When 0 is not en-
countered, coassociativity holds by the same argument as in Theorem 1.4.3. The
compatibility axiom requires a similar check. �

The Hopf monoid GP+ contains GP as a Hopf submonoid.

Repeating the construction of Section 1.4.3, we let GP+ denote the Hopf
monoid of extended generalized permutahedra modulo normal equivalence. We
obtain the commutative diagram of Hopf monoids below.

GP

����

�

�

�� GP+

����

GP
�

�

�� GP+

1.5. Maximality of GP

In Section 1.4 we endowed the family of generalized permutahedra with the
structure of a Hopf monoid in set species. The operations capture natural geometric
features of this family of polytopes. One may wonder if other families of polytopes
may lend themselves to the same treatment. We show here that this is not the case:
generalized permutahedra constitute the largest such family.

Suppose P is a connected Hopf monoid in set species such that for every finite
set I and composition (S, T ) of I, the following properties hold.
• The elements of P[I] are polytopes in RI .
• The action of a bijection I → J on polytopes is induced from the map RI → RJ

in (25).
• The product μS,T (p, q) ∈ P[I] of two polytopes p ∈ P[S] and q ∈ P[T ] is their
cartesian product p× q ⊆ RS × RT = RI .
• If we write the coproduct of p ∈ P[I] as

ΔS,T (p) = (p|S , p/S) ∈ P[S]× P[T ],

then the polytope p|S × p/S ⊆ RS × RT = RI is the maximum face of p in the
direction of eS .

Theorem 1.5.1. Suppose P is as above. Then every polytope in P[I] is a
generalized permutahedron on I, and P is a Hopf submonoid of GP.

Proof. Connectedness means that P[∅] consists of a single polytope, the only
polytope (the origin) in the 0-dimensional space R∅. Denote it 1.

First notice that for any polytope p ∈ P[I] we have, by counitality for P,

peI = p|I × p/I = p× 1 = p.

It follows that 〈−, eI〉 is constant on p. Therefore p is not full-dimensional, and
the direction eI is in the lineality space of its normal fan Np. In other words, eI
belongs to every cone in Np.

Write pS,T = p|S × p/S when (S, T ) is a composition of I. As in the proof of
Theorem 1.4.3, coassociativity for P implies that

(pR⊔S,T )R,S⊔T = (pR,S⊔T )R⊔S,T
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when (R,S, T ) is a composition of I. Let us denote this polytope pR,S,T . Then by
(13) we have

pR,S,T = pλeR⊔S+μeR = pλ′eR+μ′eR⊔S

for λ >> μ > 0 and λ′ >> μ′ > 0. It follows that λeR⊔S + μeR and λ′eR + μ′eR⊔S

are both in the normal cone Np(pR,S,T ). Since that cone is closed, we may take
the limits in which μ/λ and μ′/λ′ approach 0 and obtain that eR⊔S and eR are in
Np(pR,S,T ). Since the braid cone NπI

(πR,S,T ) is spanned by {eR, eR⊔S , eR⊔S⊔T =
eI}, it must be contained in the normal cone Np(pR,S,T ). We conclude that every
three-dimensional cone of the braid fan NΠI

is contained in a cone of the normal
fan Np of p.

We now use higher coassociativity to carry out the analogous argument for any
composition F = (S1, . . . , Sk) of I, using Proposition 1.4.4. The higher coproduct
ΔS1,...,Sk

(p) = (p1, . . . , pk) may be computed by iterating the coproduct maps ΔS,T

in any meaningful way. Write pF = p1×· · ·×pk. Each way gives rise to an expression
for this face of p. One of them is

pF = (· · · ((pS1⊔···⊔Sk−1,Sk
)S1⊔···⊔Sk−2,Sk−1⊔Sk

)...)S1,S2⊔···⊔Sk
.

This implies, by (13), that λ1eS1⊔···⊔Sk−1
+ λ2eS1⊔···⊔Sk−2

+ · · · + λk−1eS1
lies in

the normal cone Np(pF ) for any λ1 >> λ2 >> · · · >> λk−1 > 0. By sending
λk−1/λk−2, . . . , λ3/λ2, λ2/λ1 → 0 in that order, we obtain eS1⊔···⊔Sk−1

∈ Np(pF ).
By computing the coproduct in different ways, we similarly obtain eS1⊔···⊔Sj

∈
Np(pF ) for any 1 ≤ j ≤ k − 1. We already know that eS1⊔···⊔Sk

= eI ∈ Np(pF )
as well. Therefore, Np(pF ) contains the cone spanned by the vectors eS1

, eS1⊔S2
,

. . . , eS1⊔···⊔Sk
, and this cone is NπI

(πF ).
It follows that every cone in the braid fan NπI

is contained in a cone of the
normal fan Np. By definition, this means that p is a generalized permutahedron.

This shows that, for each I, P[I] is a subset of GP[I], and the condition on
the action of bijections guarantees that P is a subspecies of GP. The remaining
conditions state that the operations on P are the restriction of those of GP. It
follows that P is a Hopf submonoid of GP, as desired. �

A similar result holds for Hopf monoids built out of (possibly unbounded)
polyhedra. They are necessarily Hopf submonoids of GP+. We leave the details to
the reader.

1.6. The antipode of GP

In this section we derive a remarkably simple formula for the antipode of the
Hopf monoid of generalized permutahedra. This is the best possible formula in that
it involves no cancellations or repeated terms.

If p ⊆ RI is a generalized permutahedron, then so is every face q of p by
Corollary 1.3.9.

Theorem 1.6.1. The antipode of the Hopf monoid GP of generalized permuta-
hedra is given by the following cancellation-free and combination-free formula.
If p is a generalized permutahedron on I, then

(29) sI(p) = (−1)|I|
∑

q≤p

(−1)dim q
q,

where the sum is over all faces q of p. The same formula holds for the antipode of
the Hopf monoid GP+ of extended generalized permutahedra.
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Proof. Takeuchi’s formula (5) together with (26) give us

sI(p) =
∑

F�I

(−1)ℓ(F ) μFΔF (p) =
∑

F�I

(−1)ℓ(F )
pF .

This is indeed a linear combination of faces of p. Collecting the coefficient

αq =
∑

F�I: pF=q

(−1)ℓ(F )

of each face q of p, we have

sI(p) =
∑

q≤p

αq q,

and we are left with the task of proving that αq = (−1)|I|−dim q.
Since the fan Np refines the fan N ◦

πI
, we have

pF = q ⇐⇒ N ◦
πI
(πF ) ⊆ N ◦

p (q).

Define

Cq = {F � I | N ◦
πI
(πF ) ⊆ N ◦

p (q)} and Cq = {F � I | N ◦
πI
(πF ) ⊆ Np(q)}.

Noting that ℓ(F ) = dimN ◦
πI
(πF ), we have

αq =
∑

F∈Cq

(−1)dimN◦
πI

(πF ).

We would like to interpret this sum as an Euler characteristic, but as F varies in
Cq, the set of cones N ◦

πI
(πF ) does not constitute a polyhedral complex, since it is

not closed under subfaces. To remedy this, we observe that the cones indexed by
Cq as well as those indexed by Cq−Cq do constitute polyhedral complexes. We may
then rewrite the previous equation as

αq =
∑

F∈Cq

(−1)dimN◦
πI

(πF ) −
∑

F∈Cq−Cq

(−1)dimN◦
πI

(πF )

= χ(Cq)− χ(Cq − Cq),

where χ denotes the reduced Euler characteristic. We employ it since we want to
count the composition (I) which belongs to both complexes.

Let us intersect the cones in NπI
with the sphere S = {x ∈ RI |

∑
xi =

0,
∑

x2
i = 1}. The resulting cells form a CW-decomposition of S, namely, the

Coxeter complex of type AI . The cells indexed by Cq form a CW-decomposition

of Np(q) ∩ S, while the cells indexed by Cq − Cq form a CW-decomposition of
∂Np(q) ∩ S. So we have

αp = χ(Np(q) ∩ S)− χ(∂Np(q) ∩ S).

We now observe that if q is a proper face of p, Np(q) ∩ S is a ball of dimension
dimNp(q)− 2, and ∂Np(q) ∩ S is a sphere of dimension dimNp(q)− 3. Therefore,
in this case,

αq = 0− (−1)dimNp(q)−3 = (−1)|I|−dim q.

On the other hand, Np(p)∩S is a sphere of dimension dimNp(p)−2, and ∂Np(p)∩S
is empty. So in this case

αp = (−1)dimNp(p)−2 − 0 = (−1)|I|−dim p

as well. This completes the proof of (29).
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The formula is cancellation-free and combination-free since distinct polytopes
are linearly independent in GP.

Formula (29) holds for the Hopf monoid GP+, as stated. In the proof, we
employ (28) in place of (26), and the rest of the argument goes through unchanged.

�

Remark 1.6.2. Let P = kP be any linearized Hopf monoid. The coefficients
of the antipode on the basis P always admit a description in terms of the reduced
Euler characteristic of a pair of complexes. See [4, Section 7.7] and [5, Section
12.9].

The formula also holds for the quotients GP and GP+. At this level it is
no longer combination-free, since normally equivalent faces may occur. It is still
cancellation-free, since normally equivalent polytopes have the same dimension and
hence only terms of the same sign may combine in (29). For example, the 11 faces
of the pentagon in GP[a, b, c] combine in the antipode formula as follows.

((s = + 2  _ + + 2    5  _

The Hopf monoid GP is commutative, so by Proposition 1.1.17 the antipode
is involutory. The reader may enjoy verifying from (29) that this boils down to the
fact that in the poset of faces of the polytope p, the Möbius function satisfies

μ(q, p) = (−1)dim p−dim q.

This holds since the poset of faces of a polytope is Eulerian.
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CHAPTER 2

Permutahedra, associahedra, and inversion

2.1. The group of characters of a Hopf monoid

We return to the general setting of Hopf monoids of Section 1.1. We define
the notion of characters on a Hopf monoid, and discuss how they assemble into a
group. We use this general construction to settle a question of Loday [66] and a
conjecture of Humpert and Martin [58] in Sections 2.4 and 3.2, respectively.

2.1.1. Characters.

Definition 2.1.1. Let H be a connected Hopf monoid in vector species. A
character ζ on H is a collection of linear maps

ζI : H[I] → k,

one for each finite set I, subject to the following axioms.

Naturality. For each bijection σ : I → J and x ∈ H[I], we have ζJ
(
H[σ](x)

)
=

ζI(x).

Multiplicativity. For each I = S ⊔ T , x ∈ H[S] and y ∈ H[T ], we have
ζI(x · y) = ζS(x)ζT (y).

Unitality. The map ζ∅ : H[∅] → k sends 1 ∈ k = H[∅] to 1 ∈ k: we have
ζ∅(1) = 1.

In most examples that interest us, naturality and unitality are trivial, and
we can think of characters simply as multiplicative functions. When H is the
linearization of a Hopf monoid H over set species, the characters ζ are constructed
easily: one chooses arbitrarily the value ζI(h) for each object h ∈ H[I] that is
indecomposable under multiplication, and then extend those values multiplicatively
to all objects.

2.1.2. The character group. The characters of a connected Hopf monoid
H have the structure of a group, called the character group X(H).

Theorem 2.1.2. Let H be a connected Hopf monoid in vector species. The set
X(H) of characters of H is a group under the convolution product, defined by

(30) (ϕψ)I(x) =
∑

I=S⊔T

ϕS(x|S)ψT (x/S)

for characters ϕ and ψ. The identity ǫ is given by ǫI = 0 if I �= ∅ and ǫ∅(1) = 1.
The inverse of a character ζ is ζ ◦ s, its composition with the antipode s of H.

Proof. We need to check that the convolution product of characters ϕ and ψ
is indeed a character. Let I = S ⊔ T be a decomposition and z = x · y for x ∈ H[S]

43
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and y ∈ H[T ]. Then, using the notation of (3) and the compatibility of the product
and coproduct, we get

(ϕψ)I(x · y)

=
∑

I=S′⊔T ′

ϕS′((x · y)|S′)ψT ′((x · y)/S′) =
∑

I=S′⊔T ′

ϕS′(x|A · y|C)ψT ′(x/A · y/C)

=
∑

S=A⊔B
T=C⊔D

ϕA(x|A)ϕC(y|C)ψB(x/A)ψD(y/C) = (ϕψ)S(x) · (ϕψ)T (y)

as desired. It is easy to check that ǫ is indeed the identity, and the description of
the inverse follows from [2, Definition 1.15]. �

There is a well-known analogous notion for Hopf algebras. If H is a Hopf
algebra, then a character is a function from H to k that is multiplicative and
unital. The characters of H form a group under the convolution φψ = m(φ⊗ψ)Δ.
In this group, the inverse of a character φ is φ ◦ s, where s is the antipode.

We mentioned in Section 1.1.8 that the antipode of a Hopf monoid plays the role
of the inverse function in a group. The previous theorem is a concrete manifestation
of that analogy. The following is another fundamental question.

Problem 2.1.3. Find an explicit description for the character group of a given
Hopf monoid.

We will now answer Problem 2.1.3 for permutahedra and associahedra, in Sec-
tions 2.2 and 2.3 respectively. This will establish the connection between these
Hopf-theoretic structures on polytopes and the inversion of power series, as de-
scribed in the introduction.

2.2. Π: Permutahedra and the multiplication of power series

In this section we consider the Hopf monoid of permutahedra, and show that
its character group is the group of formal power series under multiplication.

Recall that πI is the standard permutahedron in RI . Let Π be the Hopf sub-
monoid of GP generated by the standard permutahedra, where the Hopf monoid
GP is the quotient of GP where we identify generalized permutahedra with the
same normal fan.

Lemma 2.2.1. The coproduct of Π is given by

ΔS,T (πI) = (πS , πT ).

for each decomposition I = S ⊔ T .

Proof. From the description of the faces of permutahedron πI ⊆ RI in Section
1.3.4 we know that the maximal face of πI in the direction of 1S is πS,T = πI |S ×
πI/S where πI |S is a translation of πS and πI/S is equal to πT . The result follows.

�

This implies, in particular, that the corresponding Hopf monoid in vector
species is given by

(31) Π[I] = span{πS1
× · · · × πSk

| I = S1 ⊔ · · · ⊔ Sk}.

We can now prove the main result of this section.
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Theorem 2.2.2. The group of characters X(Π) of the Hopf monoid of permu-
tahedra is isomorphic to the group of exponential formal power series

{
1 + a1x+ a2

x2

2!
+ a3

x3

3!
+ · · · | a1, a2, . . . ∈ k

}

under multiplication.

Proof. Since characters are multiplicative and invariant under relabeling, a
character ζ of Π is uniquely determined by the sequence (1, z1, z2, . . .) of values that
it takes on the standard permutahedra of order 0, 1, 2, . . .. Here zn = ζI(πI) for
|I| = n. (Recall that any character has z0 = ζ∅(1) = 1.) We encode this sequence
in the exponential generating function ζ(t) = 1 + z1t + z2t

2/2! + z3t
3/3! + · · · .

Conversely, any such formal power series determines a character of Π.
Now suppose that two characters ϕ, ψ and their convolution product ϕψ give

rise to sequences (1, a1, a2, . . .), (1, b1, b2, . . .), and (1, c1, c2, . . .), respectively. Con-
sider any I with |I| = n. By (30) we have

cn = (ϕψ)I(πI) =
∑

I=S⊔T

ϕS(πS)ψT (πT ) =
n∑

k=0

(
n

k

)
akbn−k.

This is equivalent to

ϕψ(x) :=
∑

n≥0

cn
xn

n!
=

⎛
⎝∑

k≥0

ak
xk

k!

⎞
⎠
⎛
⎝∑

l≥0

bl
xl

l!

⎞
⎠ =: ϕ(x)ψ(x),

as desired. �

Using Lemma 2.2.1 it is not difficult to see that the Hopf monoid of permu-
tahedra Π is isomorphic to the Hopf monoid of set partitions Π. Theorem 1.6.1
then gives us a combinatorial formula for the antipode of the Hopf monoid of set
partitions Π. We will carry out this computation in Section 5.6, and explain why
the Fock functor K takes the Hopf monoid or permutahedra Π to the Hopf algebra
of symmetric functions Λ.

2.3. K(A): Associahedra and the composition of power series

In this section we consider the Hopf algebra K(A) of Loday associahedra, and
show that its character group is the group of formal power series under composition.

2.3.1. Loday’s associahedron. The associahedron is “a mythical polytope
whose face structure represents the lattice of partial parenthesizations of a sequence
of variables” [52]. Stasheff [95] constructed it as an abstract cell complex in the
context of homotopy theory and Milnor suggested that it could be realized as a
polytope. There are now many different polytopal realizations due to Tamari,
Stasheff, Haiman, Lee, and others; see [27] for a survey. We will focus on the
following construction due to Loday [65] and, in this formulation, to Postnikov
[77].

Definition 2.3.1. Let I be a finite set and ℓ be a linear order on I. Loday’s
associahedron aℓ is the Minkowski sum

aℓ =
∑

i≤j

Δ[i,j]ℓ
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where [i, j]ℓ = {m ∈ I | i ≤ m ≤ j in ℓ} is the interval from i to j for i ≤ j in ℓ.

We let an denote the Loday associahedron for the natural order of [n]. We
state the following theorem for completeness, but the connection between the asso-
ciahedron and parenthesizations will be irrelevant for now. We will return to this
connection and its combinatorial consequences in Section 5.7.

Theorem 2.3.2 ([65,77]). Loday’s associahedron aℓ is a simple polytope whose
face poset is isomorphic to the poset of partial parenthesizations of a sequence of
n + 1 variables ordered by refinement. In particular, the number of vertices is the
Catalan number Cn = 1

n+1

(
2n
n

)
.

A key property of Loday’s associahedron is the following.

Lemma 2.3.3. Let I be a finite set and ℓ a linear order on I. Let I = S ⊔ T be
a decomposition and let T = T1 ⊔ · · · ⊔ Tk be the decomposition of T into maximal
subintervals of ℓ. Then

aℓ |S ≡ aℓ |S , aℓ/S = aℓ |T1
× · · · × aℓ |Tk

where ≡ denotes normal equivalence and for each subset U ⊆ I, ℓ |U denotes the
restriction of the linear order ℓ to U .

Proof. Let us write [i, j] for [i, j]ℓ for simplicity. The maximal face of a
Minkowski sum P + Q in direction v is (P + Q)v = Pv + Qv [51]. Therefore the
1S-maximal face of aℓ is

(aℓ)S,T = (aℓ)1S
=
∑

i≤j

(
Δ[i,j]

)
1S

=
∑

i≤j|[i,j]∩S �=∅

Δ[i,j]∩S +
∑

i≤j|[i,j]⊆T

Δ[i,j],

where the first summand lives in RS and the second lives in RT , so they are (aℓ)|S
and (aℓ)/S , respectively. In RT we have

(aℓ)/S =
∑

i≤j|[i,j]⊆T

Δ[i,j] =

k∑

t=1

∑

i≤j|[i,j]⊆Tl

Δ[i,j] =

k∑

t=1

aℓ |Tt
= aℓ |T1

× · · · × aℓ |Tk

as desired. In RS we get

(aℓ)|S =
∑

i≤j|[i,j]∩S �=∅

Δ[i,j]∩S .

Now notice that [i, j] ∩ S is always a subinterval of S with respect to the induced
order ℓ |S, and every such subinterval equals [i, j] ∩ S for some choice of i ≤ j in
ℓ. It follows that the Minkowski sum above involves the same summands as the
Minkowski sum defining aℓ |S – possibly with different coefficients.

We now recall the fact that the normal fan N (P+Q) is the common refinement
of N (P ) and N (Q), while N (λP ) = N (P ) for any λ > 0 [51]. Therefore the normal
fan of a Minkowski sum of scaled polytopes

∑
i λiPi does not depend on the scaling

factors λi as long as they are all positive. This implies that (aℓ)|S ≡ aℓ |S as
desired. �

The above description of (aℓ)S,T = (aℓ)|S × (aℓ)/S has a nice pictorial de-
scription. It is natural to arrange the summands of an =

∑
1≤i≤j≤nΔ[i,j] into a

staircase of size n, as shown in the left panel of Figure 1 for n = 9. To get the
1S-maximal face (an)S,T we replace each summand Δ[i,j] with (Δ[i,j])1S

. We can
separate the resulting summands into a staircase above each one of the Tis – which
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Figure 1. The Minkowski sum decompositions of a9 and (a9)148,235679.

give the associahedra aℓ |T1
, . . . , aℓ |Tk

– and a (fattened) staircase above S which
gives a polytope normally equivalent to aℓ |S . This is illustrated in the right panel
of Figure 1 for the decomposition [9] = {1, 4, 8} ⊔ {2, 3, 5, 6, 7, 9}.

2.3.2. The Hopf algebra of Loday associahedra and its character

group. We consider the Hopf monoid A generated by associahedra inside the Hopf
monoid GP of generalized permutahedra modulo normal equivalence. We also con-
sider the Hopf algebra of associahedra K(A) obtained by applying the Fock functor
K to the Hopf monoid A. Recall that the Fock functor K identifies elements of
H[n] in the same Sn orbit. Since every linear order ℓ on [n] has a bijection to [n],
every corresponding Loday associahedron aℓ in Rn is identified with the standard
Loday associahedron an in the Hopf algebra K(A). Lemma 2.3.3 may be restated
algebraically as follows.

Corollary 2.3.4. The coproduct of a Loday associahedron in GP is given by

ΔS,T (aℓ) = (aℓ |S , aℓ |T1
× · · · × aℓ |Tk

).

for each linear order ℓ on I and each decomposition I = S⊔T , where T = T1⊔· · ·⊔Tk

is the decomposition of T into maximal intervals of ℓ.

In particular, it follows that A[I] consists of products of associahedra:

(32) A[I] = {aℓ1 × · · · × aℓk | ℓi is a linear order on Si for I = S1 ⊔ · · · ⊔ Sk}.

We can now prove the main result of this section.
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Theorem 2.3.5. The group of characters X(K(A)) of the Hopf algebra of as-
sociahedra is isomorphic to the group of ordinary formal power series

{
x+ a1x

2 + a2x
3 + · · · | a1, a2, . . . ∈ k

}

under composition.

Proof. A character ζ ofK(A) is uniquely determined by the sequence (1, z1, z2, . . .)
where zn = ζ[n](an). We encode that character in the formal power series ζ(t) =

t+ z1t
2 + z2t

3 + · · · . Conversely, any such formal power series gives a character of
K(A).

Now suppose that two characters ϕ, ψ and their convolution product ϕψ give
sequences (1, a1, a2, . . .), (1, b1, b2, . . .), and (1, c1, c2, . . .), respectively. By (30) and
Corollary 2.3.4,

cn−1 = (ϕψ)[n−1](an−1) =
∑

[n−1]=S⊔T

ϕS(aS)ψT1
(aT1

) · · ·ψTk
(aTk

).

where T = T1 ⊔ · · · ⊔ Tk is the decomposition of T into maximal subintervals of
[n− 1], and S, T1, . . . , Tk are listed in their standard linear order.

Each (k − 1)-subset S ⊆ [n − 1] determines a “gap sequence” i1, . . . , ik where
ij = |Tj | is the number of elements of [n−1] in the gap between the (j−1)th and the
jth elements of S. These non-negative integers satisfy i1+ · · ·+ ik+(k−1) = n−1,
and it is clear how to recover S from them. Since an−1|S ≡ ak−1 and an−1/S ≡
ai1 × · · · × aik by Lemma 2.3.3, we may rewrite the above equation as

cn−1 =
n∑

k=1

∑

i1,...,ik≥0

i1+···+ik+(k−1)=n−1

ak−1bi1 · · · bik

which is equivalent to

φψ(t) :=
∑

n≥1

cn−1x
n =

∑

k≥1

ak−1

⎛
⎝∑

i≥0

bix
i+1

⎞
⎠

k

=: φ(ψ(t)),

as desired. �

A similar Hopf-theoretical result, without the connection to associahedra, is
due to Doubilet, Rota, and Stanley [34].

In light of Corollary 2.3.4, Theorem 1.6.1 gives us a combinatorial formula for
the antipode of the Hopf monoid of paths A. We will carry out this computation in
Section 5.7, and relate the Hopf algebra of associahedra K(A) to the Faà di Bruno
Hopf algebra F .

2.4. Inversion of formal power series and Loday’s question

In this section we will show how the formulas for multiplicative and composi-
tional inverses of formal power series follow directly from the Hopf algebraic struc-
tures Π and K(A) on permutahedra and associahedra, respectively.1

1More symmetrically, and slightly more complicatedly, we could use K(Π) instead of Π here.
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2.4.1. Multiplicative Inversion Formulas. As illustrated in the Introduc-
tion, the multiplicative inversion of power series is precisely given by the facial
structure of permutahedra. We now explain this phenomenon.

Theorem 2.4.1. (Multiplicative Inversion, Polytopal Version) The multiplica-
tive inverse of

A(x) = 1+a1x+a2
x2

2!
+a3

x3

3!
+· · · is

1

A(x)
= B(x) = 1+b1x+b2

x2

2!
+b3

x3

3!
+· · ·

where

bn =
∑

F face of πn

(−1)n−dimF aF

and we write aF = af1 · · · afk for each face F ∼= πf1×· · ·×πfk of the permutahedron
πn.

Proof. Theorem 2.2.2 allows us to identify the formal power series A(x) =∑
anx

n/n! and 1/A(x) = B(x) =
∑

bnx
n/n! with the characters α and β of the

Hopf monoid Π determined uniquely by

α[n](πn) = an, β[n](πn) = bn,

where πn is the standard permutahedron in R[n]. By Theorem 2.2.2, since B(x) =
1/A(x), these characters are inverses of each other in the character group X(Π).

Recall that the inverse in the character group of any Hopf monoid is given by
β = α ◦ s where s is the antipode. For Π, this antipode is given by Theorem 1.6.1.
Therefore

bn = β[n](πn) = (α ◦ s)[n](πn) = α[n]

(
∑

F face of πn

(−1)n−dimFF

)

=
∑

F face of πn

(−1)n−dimF aF ,

using the multiplicativity of the character α. �

Theorem 2.4.2. (Multiplicative Inversion, Enumerative Version) The multi-
plicative inverse of

A(x) = 1+a1x+a2
x2

2!
+a3

x3

3!
+· · · is

1

A(x)
= B(x) = 1+b1x+b2

x2

2!
+b3

x3

3!
+· · · ,

where

bn =
∑

〈1m12m2 ··· 〉⊢n

(−1)|m|

(
n

1, 1, . . .︸ ︷︷ ︸
m1

, 2, 2, . . .︸ ︷︷ ︸
m2

, . . .

)(
|m|

m1,m2, . . .

)
am1
1 am2

2 · · ·

summing over all partitions 〈1m12m2 · · · 〉 = 11 . . .︸ ︷︷ ︸
m1

22 . . .︸ ︷︷ ︸
m2

· · · of n, where |m| = m1+

m2 + · · · .

Proof. Recall from Section 1.3.4 that the faces of πn are in bijection with the
compositions (S1, . . . , Sk) of [n], where the face F = πS1,...,Sk

∼= πS1
× · · · × πSk

corresponds to the composition (S1, . . . , Sk). If we let mi be the number of Sjs of
size i, then n− dimF = k = |m| and aF = am1

1 am2
2 · · · . Therefore the coefficient of

this monomial is the number of compositions leading to block sizes 〈1m12m2 · · · 〉.
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There are
(
m1+m2+···
m1,m2,...

)
ways of assigning these sizes to the parts S1, . . . , Sk in some

order. Having fixed that order, there are then
(

n
1,1,...,2,2,...

)
ways of partitioning

the elements of I into parts S1, . . . , Sk of those respective sizes. The desired result
follows. �

2.4.2. Compositional inversion formulas. Just as the facial structure of
permutahedra tells us exactly how to compute the multiplicative inverse of a for-
mal power series, the facial structure of associahedra tell us how to compute the
compositional inverse.

Theorem 2.4.3. (Lagrange Inversion, polytopal version) The compositional
inverse of

C(x) = x+ c1x
2+ c2x

3+ · · · is C〈−1〉(x) = D(x) = x+d1x
2+d2x

3+ · · · ,

where

dn =
∑

F face of an

(−1)n−dimF cF

and we write cF = cf1 · · · cfk for each face F ∼= af1 × · · · × afk of the associahedron
an.

Proof. We proceed exactly as in the proof of Theorem 2.4.1. We identify the
formal power series C(x) =

∑
cn−1x

n and C〈−1〉(x) = D(x) =
∑

dn−1x
n with the

characters γ and δ of the Hopf algebra of associahedra K(A) determined uniquely
by

γ[n](an) = cn, δ[n](an) = dn

for the standard Loday associahedron an. By Theorem 2.3.5, since C〈−1〉(x) =
D(x), these characters are inverses in the character group X(K(A)). Therefore
δ = γ◦s, and the result now follows from the antipode formula of Theorem 1.6.1. �

Theorem 2.4.4. (Lagrange Inversion, enumerative version) The compositional
inverse of

C(x) = x+ c1x
2+ c2x

3+ · · · is C〈−1〉(x) = D(x) = x+d1x
2+d2x

3+ · · · ,

where

dn =
∑

〈1m12m2 ··· 〉⊢n

(−1)|m| (n+ |m|)!

(n+ 1)!m1!m2! · · ·
cm1
1 cm2

2 · · ·

summing over all partitions 〈1m12m2 · · · 〉 of n, where |m| = m1 +m2 + · · · .

Proof. This follows from Theorem 2.4.3 and the known correspondence be-
tween faces of associahedra and trees, which we reprove in a more general setting
in Section 5.5. More precisely, the (n−|m|)-dimensional faces of the associahedron
an of type a

m1
1 × a

m2
2 × · · · are in bijection with the plane rooted trees that have

n+1 leaves and mi vertices of down-degree i for each i ≥ 1. The result then follows
from the fact [92, Theorem 5.3.10] that there are (n+ |m|)!/((n+ 1)!m1!m2! · · · )
such plane rooted trees. �
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2.4.3. Loday’s question and Schmitt’s remark. It has long been known
that Lagrange inversion is closely related to the enumeration of trees (or, equiva-
lently, parenthesizings). In turn, this enumeration is related to the associahedron;
see for example [6,92]. However, in 2005, Loday [66] asked for a direct explanation
of the connection between Lagrange inversion and the associahedra:

“There exists a short operadic proof of the [Lagrange inver-
sion] formula which explicitly involves the parenthesizings, but
it would be interesting to find one which involves the topological
structure of the associahedron.”

The associahedral statement and proof of the Lagrange inversion formula in Theo-
rem 2.4.3 may be regarded as an answer to Loday’s question. It is a combinatorics-
free approach. Aside from the basic Hopf monoid architecture, it relies only on two
key ingredients:

• our topological proof for the antipode of the associahedron (Theorem 1.6.1)
• the structure of Loday’s associahedron with respect to the 1S directions

(Lemma 2.3.3)
Interestingly, there are many other realizations of the associahedron as a generalized
permutahedron [28,29,54,56,57,64,74,75]. These have isomorphic face posets,
but they lead to different Hopf structures and different character groups. Surpris-
ingly, to answer Loday’s question within this algebro-polytopal context, Loday’s
realization of the associahedron is precisely the one that we need!

Relatedly, in the closing remarks to his 1987 paper [83], Schmitt wrote about
the cancellation of 1s and −1s that leads to his Hopf algebraic proof of the Lagrange
inversion formula 2:

“We believe that an understanding of exactly how these cancella-
tions take place will not only provide a direct combinatorial proof
of the Lagrange inversion formula, but may well yield analogous
formulas for the antipodes of [. . . ] other [. . . ] Hopf algebras.”

Schmitt’s suggestion is very close to the philosophy of this project, though our
approach is more geometric and topological than combinatorial. Applying the same
point of view to other families of polytopes, we will obtain optimal formulas for the
antipodes of many Hopf monoids throughout this monograph.

2According to Schmitt [84], the connection between antipodes of Hopf algebras and inversion
of formal power series was foreshadowed by Joni in 1979.
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CHAPTER 3

Submodular functions, graphs, matroids, and

posets

3.1. SF: Submodular functions and generalized permutahedra

Generalized permutahedra arise in a multitude of settings, and can be used
to model many combinatorial objects: graphs, matroids, posets, set partitions,
paths, and many others. In this section we present one reason for the ubiquity
of these polyhedra: generalized permutahedra are equivalent to submodular func-
tions, which are central objects in optimization. These functions occur in numerous
mathematical and real-world contexts, since they are characterized by a diminishing
returns property that is natural in many settings.

3.1.1. Boolean functions. Let 2I denote the collection of subsets of a finite
set I. A Boolean function on I is an arbitrary function z : 2I → R such that
z(∅) = 0.

Let BF[I] denote the set of Boolean functions on I. To turn the species BF
into a connected Hopf monoid, we first notice that BF[∅] is indeed a singleton. Now
fix a decomposition I = S ⊔ T . We make the following definitions.

• The product of two Boolean functions u ∈ BF[S] and v ∈ BF[T ] is the function
u · v ∈ BF[I] given by

(33) (u · v)(E) := u(E ∩ S) + v(E ∩ T ) for E ⊆ I.

• The coproduct of a Boolean function z ∈ BF[I] is (z|S , z/S) ∈ BF[S] × BF[T ],
where

(34) z|S(E) := z(E) for E ⊆ S and z/S(E) := z(E ∪ S)− z(S) for E ⊆ T .

The Hopf monoid axioms of Definition 1.1.5 are easily verified. To illustrate
this, we check the compatibility between products and coproducts. Consider two
compositions I = S ⊔ T and I = S′ ⊔ T ′ as described in (3) and illustrated below,
and choose u ∈ BF[S], v ∈ BF[T ].

✬

✫

✩

✪

A B

C D

☛✡ ✟✠ ✗
✖

✔
✕E F

S = A ⊔B

T = C ⊔D

S′ = A ⊔ C T ′ = B ⊔D

53
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For any E ⊆ S′ we have

(u · v)|S′(E) = (u · v)(E) = u(E ∩ S) + v(E ∩ T ) = u(E ∩A) + v(E ∩ C)

= u|A(E ∩ A) + v|C(E ∩ C) =
(
u|A · v|C

)
(E),

and for any F ⊆ T ′ we have

(u · v)/S′(F ) = (u · v)(F ∪ S′)− (u · v)(S′)

= u
(
(F ∪ S′) ∩ S

)
+ v

(
(F ∪ S′) ∩ T

)
− u(S′ ∩ S)− v(S′ ∩ T )

= u
(
(F ∩B) ∪A

)
− u(A) + v

(
(F ∩D) ∪ C

)
− v(C)

= (u/A)(F ∩B) + (v/C)(F ∩D) =
(
(u/A) · (v/C)

)
(F ).

Thus (u · v)|S′ = (u|A) · (v|C) and (u · v)/S′ = (u/A) · (v/C), as needed.

3.1.2. Submodular functions and diminishing returns. A Boolean func-
tion z on I is submodular if

(35) z(A ∪B) + z(A ∩B) ≤ z(A) + z(B)

for every A,B ⊆ I. Submodular functions arise in many contexts in mathematics
and applications, partly because submodularity is equivalent to a natural dimin-
ishing returns property that we now describe.

Suppose the Boolean function z measures some quantifiable benefit z(A) asso-
ciated to each subset A ⊆ I. Then the contraction z/S has a natural interpretation:
for e /∈ S,

z/S(e) = z(S ∪ e)− z(S) = marginal return of adding e to S.

Theorem 3.1.1 ([87, Theorem 44.1], Diminishing returns). A Boolean function
z on I is submodular if and only if for every e ∈ I we have

(36) z/S(e) ≥ z/T (e) for S ⊆ T ⊆ I − e (diminishing returns)

that is, the marginal return z/S(e) decreases as we add more elements to S.

From the algebraic point of view, submodular functions have a Hopf monoid
structure because they are closed under products and coproducts.

Theorem 3.1.2. Let SF[I] denote the set of submodular functions on I. Then
SF is a Hopf submonoid of BF, with the product and coproduct given by (33) and
(34).

Proof. It suffices to show that submodular functions are closed under the
product (33) and coproduct (34) of Boolean functions as defined above. This is well
known [72] and follows from Theorem 3.1.1; the details are left to the reader. �

3.1.3. Submodular functions and generalized permutahedra. The base
polytope of a given Boolean function z : 2I → R is the set1

(37) P(z) := {x ∈ RI |
∑

i∈I

xi = z(I) and
∑

i∈A

xi ≤ z(A) for all A ⊆ I}.

1It is worth remarking that, in Postnikov’s work on generalized permutahedra [77], he writes

the defining inequalities as
∑

i∈A xi ≥ z′(A). The difference is unimportant thanks to the equality
∑

i∈I xi = z(I). Our convention affords a cleaner connection between generalized permutahedra

and submodular functions.
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For x ∈ RI and A ⊆ I, we denote

x(A) =
∑

i∈A

xi.

We say the inequality x(A) ≤ z(A) is optimal for P(z) if z(A) is the minimum
value for which this inequality holds; that is, if z(A) equals the maximum value of
x(A) over all x in the polytope P(z).

The following theorem collects several results from the literature, and plays a
central role in this monograph.

Theorem 3.1.3 ([32, 41, 71, 77, 87]). For a polytope p in RI , the following
conditions are equivalent.

(1) The polytope p is a generalized permutahedron.
(2) The normal fan Np is a coarsening of the braid arrangement BI .
(3) Every edge of p is parallel to the vector ei − ej for some i, j ∈ I.
(4) There exists a submodular function z : 2I → R such that p = P(z).

Furthermore, when these conditions hold, the submodular function z of part 4 is
unique, and every definining inequality in (37) is optimal.

We will extend this result to possibly unbounded objects in Theorem 3.1.6,
and provide references and a complete proof there. We are now ready to prove an
important result about the Hopf monoid GP.

Theorem 3.1.4. The collection of maps

SF[I] → GP[I], z �→ P(z)

is an isomorphism of Hopf monoids in set species SF ∼= GP.

Proof. Theorem 3.1.3 shows that each one of those maps is bijective. It is
not difficult to check that the products on SF and GP agree. To prove that the
coproducts agree, we now check that restriction and contraction coincide in SF and
GP.

Let p = P(z) be a generalized permutahedron in RI and let I = S ⊔ T be a
decomposition. We need to show that the maximal face in direction 1S is pS,T =
P(z|S)× P(z/S). We prove the two inclusions.

⊇: First consider any point x = (xS , xT ) ∈ P(z|S) × P(z/S). For any A ⊆ I
let AS = A ∩ S and AT = A ∩ T , so that A = AS ⊔ AT . Then

x(A) = xS(AS) + xT (AT ) ≤ z|S(AS) + z/S(AT )

= z(AS) + z(AT ∪ S)− z(S) = z(A ∩ S) + z(A ∪ S)− z(S) ≤ z(A)

by submodularity. In particular, for A = I we get

x(I) = xS(S) + xT (T ) = z|S(S) + z/S(T ) = z(S) + z(T ∪ S)− z(S) = z(I).

Therefore x ∈ p. On the other hand, for A = S we get

x(S) = xS(S) + xT (∅) = z|S(S) + 0 = z(S)

which, in view of (37), implies that x is 1S-maximal in p, that is, x ∈ pS,T .
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⊆: In the other direction, let x ∈ pS,T . By Theorem 3.1.3, x attains the
1S-optimal value x(S) = z(S). Letting x = (xS , xT ) ∈ RS × RT , we then have

xS(S) = x(S) = z(S) = z|S(S),

xT (T ) = x(T ) = x(I)− x(S) = z(I)− z(S) = z/S(T ).

Furthermore, for any A ⊆ S and B ⊆ T ,

xS(A) = x(A) ≤ z(A) = z|S(A),

xT (B) = x(B) = x(B ∪ S)− x(S) ≤ z(B ∪ S)− z(S) = z/S(B).

These observations imply that xS ∈ P(z|S) and xT ∈ P(z/S) as desired. �

A polymatroid is a submodular function f : 2I → R with f(∅) = 0 that is
non-negative (f(S) ≥ 0 for all ∅ �= S ⊆ I) and non-decreasing (f(S) ≤ f(T ) for all
S ⊆ T ⊆ I) [36]. Its base polytope is the corresponding generalized permutahedron
P(f). One can verify that a submodular function f is a polymatroid if and only
if P(f) is in the positive orthant. Therefore, as polytopes modulo translation, the
family of generalized permutahedra is the same as the family of base polytopes of
polymatroids.

Definitions of restriction and contraction for polymatroids are given in [36]
and [32]. They correspond to restriction of contraction of Boolean functions and
of generalized permutahedra from Sections 1.4.1 and 3.1.1.

Proposition 3.1.5. Let PM[I] denote the set of polymatroids on I. Then PM
is a Hopf submonoid of SF.

Proof. One readily verifies that polymatroids are closed under the product
(33) and coproduct (34) of Boolean functions, from which the result follows. �

3.1.4. GP+: Extended generalized permutahedra and extended sub-

modular functions. We now extend the previous constructions to allow for un-
bounded polyhedra. Most of the results of this section may be found in Fujishige
[41].

Let an extended Boolean function be a function z : 2I → R∪{∞} with z(∅) = 0
and z(I) �= ∞. We say z is submodular if

z(A∪B)+z(A∩B) ≤ z(A)+z(B) for all A,B ⊆ I such that z(A), z(B) are finite.

Extended submodular functions are also called submodular systems [41]. The base
polyhedron of z is
(38)

P(z) := {x ∈ RI |
∑

i∈I

xi = z(I) and
∑

i∈A

xi ≤ z(A) for all A ⊆ I with z(A) < ∞}.

Theorem 3.1.3 extends to this setting, providing a bijective correspondence
between extended submodular functions and extended generalized permutahedra.
We now survey this correspondence in Theorem 3.1.6, providing proofs for some
statements which we were not able to find in the literature.

Define a braid cone to be a cone in (RI)∗ ∼= RI cut out by inequalities of the
form y(i) ≥ y(j) for i, j ∈ I. Define a root subspace of RI to be a subspace spanned
by vectors of the form ei − ej for i, j ∈ I; these vectors are the roots of the root
system AI = {ei− ej | i, j ∈ I} in the sense of Lie theory [59]. Define an affine root
subspace of RI to be a translate of a root subspace.
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Theorem 3.1.6 ([41, 77, 87]). For a polyhedron p in RI , the following are
equivalent.

(1) The polyhedron p is an extended generalized permutahedron.
(2) The normal fan Np is a coarsening of (BI)|C , the restriction of the braid

arrangement BI to some braid cone C.
(3) The affine span of every face of p is an affine root subspace.
(4) There exists an extended submodular function z : 2I → R∪{∞} such that

p = P(z).

Furthermore, when these conditions hold, the extended submodular function z of
part 4 is unique, and every definining inequality in (38) is optimal.

Proof. We proceed in several steps.

1 ⇔ 2: This is Definition 1.3.8.

3 ⇔ 4: This is anticipated by Fujishige in [41, Thms. 3.15, 3.18, 3.22] and
proved explicitly by Derksen and Fink in [32, Proposition 2.9] for megamatroids,
where the function z is integral; their proof works for general z. In condition 3 they
include the additional hypothesis that the polyhedron p lies on a hyperplane of the
form

∑
i∈I xi = r for some r ∈ R, but this follows from the assumption that the

affine span of p is an affine root subspace.

2 ⇒ 3: Assume p satisfies 2. Since 1 ∈ RI is in every braid cone, it is also in
Np(p), so 1(x) =

∑
i∈I xi is constant on p.

Now let q be any d-dimensional face of p and write aff(q) = v+W for a vector
v and a subspace W . We need to show that W is a root subspace. The normal
face Np(q) contains a face F of the braid arrangement BI of its same dimension,
so span(Np(q)) = span(F ) is the intersection of d independent hyperplanes y(ik) =
y(jk) for 1 ≤ k ≤ d. We claim that W = span{eik − ejk | 1 ≤ k ≤ d}. Since both
of these vector spaces are d-dimensional, it suffices to show that eik − ejk ∈ W for
each k.

We have the following inequality description of Np(q):

Np(q) = {y ∈ RI | y(q1) = y(q2) for q1, q2 ∈ q, y(q) ≥ y(p) for q ∈ q, p ∈ p}

Since y ∈ Np(q) implies that y(ik) = y(jk), eik − ejk must be a linear combination
of vectors of the form q1 − q2 for q1, q2 ∈ q. But every such vector is in W , so
eik − ejk ∈ W as desired.

(3+ 4) ⇒ 2: Let p satisfy 3 and 4.
First we show that the support of the normal fan Np

C = supp(Np) = {y ∈ RI | max
p∈p

y(p) is finite },

is a braid cone. Let D = Np(q) be a codimension 1 face of Np on the boundary of
Np. Say q is d-dimensional, and, in light of 3, let the affine span of q be a translate
of the subspace W = span{ei1 − ej1 , . . . , eid − ejd}. We claim that span(D) is the
intersection of the hyperplanes y(ik) = y(jk) for 1 ≤ k ≤ d. Since both subspaces
have codimension d, it is enough to prove one inclusion. To do that, observe that
if y ∈ D, then y(q) is constant for q ∈ q, so y(w) = 0 for w ∈ W and therefore
y(ik) = y(jk). The same statement is then true for any y ∈ span(D). We conclude
that C can be described by inequalities of the form y(i) ≥ y(j), as desired.
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Now that we know that Np is supported on a braid cone C, we need to show
that it is refined by the braid arrangement; that is, that for y ∈ C, the relative
order of the coordinates of y ∈ RI is enough to determine the maximum face py.
But condition 4 tells us that p = P(z) for an extended submodular function z, and
Fujishige showed that this family of functions may be optimized using the greedy
algorithm, which only pays attention to the relative order of the coordinates of y
[41, Thms. 3.15, 3.18]. The result follows.

Having proved the equivalence of 1, 2, 3, and 4, it remains to remark that
the uniqueness and optimality of the defining equations (38) of p are implicit in
[41, Section 3]. �

Remark 3.1.7. When p is bounded, Theorem 3.1.6 reduces to Theorem 3.1.3.
Condition 3 looks different in these two statements, but in this setting, the seem-
ingly weaker condition that every edge is parallel to a root ei − ej implies that
every face spans an affine root subspace. The reason for this is that in a bounded
polytope, every face is spanned by its edges. This is not true in general; some
unbounded polytopes do not even have one-dimensional faces.

Let SF+[I] be the set of extended submodular functions on I. To construct a
connected Hopf monoid, we use essentially the same operations as in BF and SF.
The only difference is that the contraction z/S of z ∈ SF+[I] is no longer defined
when z(S) = ∞. Therefore, we need to modify the coproduct by defining

ΔS,T (z) =

{
z|S ⊗ z/S if z(S) �= ∞

0 if z(S) = ∞.

for a decomposition I = S ⊔ T . This definition forces us to work in the context of
vector species. It is now straightforward to extend Theorem 3.1.4 to this context.

Theorem 3.1.8. The collection of maps

SF+[I] → GP+[I], z �→ P(z)

is an isomorphism of Hopf monoids in vector species SF+ ∼= GP+.

3.2. G: Graphs and graphic zonotopes

In this section we revisit the Hopf monoid of graphs of Section 1.2.1, now taking
a geometric perspective: we realize G as a submonoid of GP. The key idea is that
every graph g is modeled by a generalized permutahedron Zg called its graphic
zonotope, and this model respects the Hopf structure of graphs. This geometric
interpretation of the Hopf monoid G readily gives us the optimal formula for its
antipode – obtained independently by Humpert and Martin [58] – and allows us to
prove their conjecture from [58, Section 5].

3.2.1. Graphic zonotopes. Let g be a graph with vertex set I. Given A ⊆ I
and an edge e of g, we say that e is incident to A if either endpoint of e belongs to
A. Consider the incidence function

incg : 2I → Z

incg(A) = number of edges and half-edges of g incident to A.
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For example, the incidence function of the graph is given by

incg(∅) = 0, incg({x}) = 3, incg({y}) = 2, and incg({x, y}) = 3.

The following result is well-known.

Proposition 3.2.1. For any graph g, the incidence function incg is submodu-
lar.

Proof. By Theorem 3.1.1 it suffices to observe that the marginal benefit of
adding e to S:

(incg)/S(e) = # of edges of g incident to e and not to S

diminishes as we add elements to S. �

By Theorem 3.1.3 and (37), the submodular function incg gives rise to a gen-
eralized permutahedron P(inc(g)) = Zg which is called the graphic zonotope of
g.

Example 3.2.2. Revisiting Example 1.2.1, if g is the graph then
the graphic zonotope Zg = P(incg) is given by

xa+xb+xc = 3, xa+xb ≤ 2, xb+xc ≤ 3, xa+xc ≤ 3, xa ≤ 1, xb ≤ 2, xc ≤ 2

and is shown in Figure 1. Note that the third and fifth inequalities are optimal but
redundant.

x  + x  = 3
a       c

x  + x  = 3
b       cx  + x  = 2

a       b

x  = 2
b

x  = 1
a

x  = 2
c

x  + x  = 3
b       c

x  +
a       

Figure 1. A graphic zonotope.

There is a useful alternative description of the zonotope of a graph.

Proposition 3.2.3. [77, Proposition 6.3] The zonotope Zg ⊆ RI of a graph g
on I equals the Minkowski sum

(39) Zg =
∑

{i} half-edge of g

Δi +
∑

{i,j} edge of g

Δ{i,j}.
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In particular, the zonotope of the complete graph KI on the set I is a translation
of the standard permutahedron πI :

ZKI
= πI − eI .

Note that the right hand side of (39) may have repeated summands.
The facial structure of graphic zonotopes can be described combinatorially

[77,90] as we now recall. A flat f of a graph g is a set of edges with the property
that for any cycle of g consisting of edges e1, . . . , ek, if e1, . . . , ek−1 ∈ f then ek ∈ f .

For each flat f of g and each acyclic orientation o of g/f , let g(f, o) be the
graph obtained from g by keeping f intact, and replacing each edge {i, j} not in f
by the half-edge {i} where i → j in the orientation o of g/f . The following result
is essentially known [90].

Lemma 3.2.4. Let g be a graph with vertex set I. The faces of the zonotope
Zg ⊆ RI are in bijection with the pairs of a flat f of g and an acyclic orientation
o of g/f . The face corresponding to flat f and orientation o is Zg(f,o), and it is a
translation of Zf .

Proof. By (39), the maximal face of Zg in the direction of y ∈ RI is

(40) (Zg)y =
∑

{i}∈g

Δi +
∑

{i,j}∈g
y(i)=y(j)

Δ{i,j} +
∑

{i,j}∈g
y(i)>y(j)

Δi +
∑

{i,j}∈g
y(i)<y(j)

Δj .

The vector y determines a flat fy consisting of the edges {i, j} of g such that
y(i) = y(j). It also determines an acyclic orientation oy of g/f obtained by giving
the edge {i, j} the orientation i → j if y(i) > y(j) or i ← j if y(i) < y(j). Clearly
the maximal face (Zg)y depends only on fy and oy. Furthermore, different choices
of fy and oy determine different faces of (Zg)y, and every choice of a flat f of g and
an acyclic orientation o of g/f can be realized by some vector y. This proves the
desired one-to-one correspondence. It follows from (40) that (Zg)y = Zg(fy,oy) and
that this is a translation of Zfy , as desired. �

3.2.2. Graphs as a submonoid of generalized permutahedra. Recall
that G is the Hopf monoid of graphs, where G[I] is the set of graphs with vertex set
I, where repeated edges and half-edges are allowed. For a decomposition I = S⊔T ,
the product of two graphs g1 ∈ G[S] and g2 ∈ G[T ] is their disjoint union. The
coproduct of g ∈ G[S] is (g|S , g/S) ∈ G[S]×G[T ], where the restriction g|S ∈ G[S]
is the induced subgraph on S, while the contraction g/S ∈ G[T ] is obtained by
keeping all edges incident to T , converting each edge from T to S into a half-edge
on T .

Let Gcop be the Hopf monoid co-opposite to G, as defined at the end of Section
1.1.2.

Proposition 3.2.5. The map inc : Gcop → SF
∼=
−→ GP is an injective morphism

of Hopf monoids.

Proof. We first check that inc is a morphism of Hopf monoids. Let I = S⊔T .
Choose g1 ∈ G[S] and g2 ∈ G[T ]. Since there are no edges connecting S to T in
g1 · g2, an edge of g1 · g2 incident to A ⊆ I is either incident to A ∩ S or to A ∩ T ,
but not both. Hence,

incg1·g2(A) = incg1(A ∩ S) + incg2(A ∩ T ) = (incg1 · incg2)(A).
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Thus, inc preserves products.
Let us now show that inc reverses coproducts. Choose g ∈ G[I]. If A ⊆ T , then

for any edge e of g incident to A there is a corresponding edge e′ of g/S incident to
A (possibly a half-edge, if the other endpoint of e belongs to S). Since every edge
of g/S arises in this manner from an edge of g, we have

incg/S
(A) = incg(A) = (incg)|T (A).

Now, if A ⊆ S, notice that an edge of g incident to A ∪ T is either incident to T ,
or has both endpoints in S (and at least one endpoint in A), in which case it is an
edge of g|S . Therefore incg(A ∪ T ) = incg(T ) + incg|S (A), so

incg|S (A) = incg(A ∪ T )− incg(T ) = (incg)/T (A).

It follows that inc reverses restrictions and contractions, as desired.
To prove injectivity, note that if a and b are two distinct vertices of a graph g,

then the number of edges of g between a and b is incg({a})+incg({b})−incg({a, b}).
Also, the number of half-edges at a is incg(I) − incg(I \ {a}). These numbers
determine g entirely. �

Remark 3.2.6. In graph theory one also considers the cut function cutg defined
by

cutg(A) = the number of edges of g joining A to I \A,

The map g �→ cutg is not a morphism of Hopf monoids G → SF: neither restrictions
nor contractions are preserved. However, we do have cutg(A) = 2 · incg(A) −∑

i∈A degg(i), where the degree degg(i) is the number of edges incident to vertex
i. It follows from this that cutg is submodular (a known result) and its generalized
permutahedron P(cutg) is a scaling of P(incg) = Zg followed by a translation by
the vector − degg ∈ RI . Therefore the map g �→ cutg does give a morphism of

Hopf monoids G → GP; but since P(incg) and P(cutg) are normally equivalent,
this morphism does not teach us anything new about the Hopf monoid of graphs.

3.2.3. The antipode of graphs. In view of Proposition 3.2.5 and Theorem
1.6.1, the antipode of G is given by the facial structure of graphic zonotopes, as
described in Lemma 3.2.4.

Corollary 3.2.7. The antipode of the Hopf monoid of graphs G is given by
the following cancellation-free and combination-free expression. If g is a graph
on I then

sI(g) =
∑

f,o

(−1)c(f)g(f, o),

summing over all pairs of a flat f of g and an acyclic orientation o of g/f , where
c(f) is the number of connected components of f .

Proof. This follows from Theorem 1.6.1 and Lemma 3.2.4, and the observa-
tion that the dimension of the zonotope Zf is |I| − c(F ). �

Example 3.2.8. Let us revisit Example 1.2.1. The formula

(( +  +  +  +  

_ _  _  _  

s
a b c a b c a b c a b c a b c a b c

a b c a b c a b c a b c

= _
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is the algebraic manifestation of the face structure of the graphic zonotope of Exam-
ple 3.2.2 which consists of one parallelogram, four edges, and four vertices. These
nine faces are the graphic zonotopes of the nine graphs occurring in the expression
above.

3.2.4. Simple graphs. A graph is simple if it has no half-edges or multiple
edges. Let SG[I] denote the set of all simple graphs with vertex set I. Then SG is
a subspecies of G, but it is not a Hopf submonoid because a contraction of a simple
graph need not be simple.

To remedy this situation, consider the simplification map

G[I] → SG[I], g �→ g′.

which removes half-edges and edge multiplicities: in g′ there is a unique edge joining
two vertices a and b if and only if a �= b and there is at least one edge joining a and
b in g. This defines a surjective morphism of species

G ։ SG.

The Hopf monoid structure of G descends to SG via this map, so that SG is a
quotient Hopf monoid of G. In SG, products and contractions have the same
description as in G, while restrictions now coincide with contractions. Therefore
SG is cocommutative.

The (linearization of the) Hopf monoid SG appears (with different notation)
in [2, Section 13.2]. A closely related structure was first considered by Schmitt [84,
Example 3.3.(3)].

Proposition 3.2.9. There is a commutative diagram of morphisms of Hopf
monoids as follows.

Gcop

����

�

�

�� GP

����

SGcop �

�

�� GP

Proof. Simplification gives the vertical map Gcop
։ SGcop while the map

GP ։ GP identifies generalized permutahedra with the same normal fan. The top
map Gcop →֒ GP is given by Proposition 3.2.5, while the bottom map SGcop →֒ GP
sends a simple graph to the normal equivalence class of its zonotope. To verify
that the diagram commutes, we need to show that if g is a graph and g′ is its
simplification, then Zg and Zg′ are normally equivalent.

By (39), the normal fan N (Zg) is the common refinement of the fans N (Δ{i})
for all half-edges {i} and N (Δ{i,j}) for all edges {i, j}. This common refinement is
unaffected by the removal of the former fans (which are trivial) and by the removal
of repetitions of the latter fans. Therefore N (Zg) = N (Zg′) as desired. �

Corollary 3.2.10. The antipode of the Hopf monoid of simple graphs SG is
given by the following cancellation-free and combination-free expression. If g
is a simple graph on I then

sI(g) =
∑

f flat of g

(−1)c(f)a(g/f) f

where a(g/f) is the number of acyclic orientations of the contraction g/f and c(f)
is the number of connected components of f .
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Proof. This follows from Corollary 3.2.7 and the observation that when g is
a simple graph, the simplification of g(f, o) is f . �

An equivalent formula for Hopf algebras was also obtained by Humpert and
Martin [58] through a clever inductive argument. In the context of Hopf algebras
isomorphic graphs are identified, so to find the coefficient of a particular graph h
in sI(g) one has to overcome the additional problem of identifying all flats of g
isomorphic to h. This is one reason to prefer working with Hopf monoids instead
of Hopf algebras in combinatorial contexts. See also Remark 3.3.7.

3.2.5. Characters of complete graphs and a conjecture of Humpert

and Martin. For each k ∈ C let ξk be the character on G given by (ξk)I(g) = k|I|

for any graph g on vertex set I. Let ζ be the character on G where ζI(g) equals 1
if g has no edges and 0 otherwise. For each k ∈ C and c ∈ Z let ξkζ

c denote the
convolution product of ξk and ζc in G.

Recall that a derangement of I is a permutation of I without fixed points, and
an arrangement is a permutation of a subset of I. The following formulas were
conjectured by Humpert and Martin [58].

Theorem 3.2.11 ([58, Conjecture (27)]). Let Kn be the complete graph on n
vertices. Then

∑

n≥0

(ξkζ
c)(Kn)

xn

n!
= ekx(1 + x)c

for any complex number k and integer c. In particular,

(ξ1ζ
−1)(Kn) = (−1)nDn (ξ−1ζ

−1)(Kn) = (−1)nAn

where Dn and An are the numbers of derangements and arrangements of [n] re-
spectively.

Proof. Since the graphic zonotope of a complete graph KI is a translation
of the standard permutahedron πI by Proposition 3.2.3, the Hopf submonoid of
G generated by complete graphs is isomorphic to the Hopf submonoid Π of GP

generated by standard permutahedra, considered in Section 2.2. We may then
regard ξk and ζ as characters on Π. This allows us to carry out the required
computations in the character group X(Π), where they become straightforward.

By Theorem 2.2.2, convolution of characters of Π corresponds to multiplication
of their exponential generating functions; therefore

∑

n≥0

(ξkζ
c)(πn)

xn

n!
=

⎛
⎝∑

n≥0

ξk(πn)
xn

n!

⎞
⎠
⎛
⎝∑

n≥0

ζ(πn)
xn

n!

⎞
⎠

c

= ekx(1 + x)c

as desired. By comparing this with the generating functions

∑

n≥0

(−1)nDn
xn

n!
=
∑

n≥0

[
(−1)n

(
n∑

i=0

(−1)i
n!

i!

)
xn

n!

]
=

⎛
⎝∑

i≥0

xi

i!

⎞
⎠
⎛
⎝∑

j≥0

(−1)jxj

⎞
⎠

= ex(1 + x)−1
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and

∑

n≥0

(−1)nAn
xn

n!
=
∑

n≥0

[
(−1)n

(
n∑

i=0

n!

i!

)
xn

n!

]
=

⎛
⎝∑

i≥0

(−1)ixi

i!

⎞
⎠
⎛
⎝∑

j≥0

(−1)jxj

⎞
⎠

= e−x(1 + x)−1

we obtain the remaining two formulas. �

3.3. M: Matroids and matroid polytopes

Similarly to graphs, matroids also have a polyhedral model called its matroid
polytope, due to Edmonds [36]. This model respects the Hopf-algebraic structure
of matroids, introduced in 1982 by Joni and Rota [60] and further studied by
Schmitt [84]. We now employ the geometric perspective to compute, for the first
time, the optimal formula for the antipode of matroids.

3.3.1. Matroid polytopes. Let m be a matroid on ground set I. The rank
of A ⊆ I in m, denoted rankm(A), is the cardinality of any maximal independent
set of m contained in A. The matroid axioms guarantee that this is well-defined
and moreover, that the function

rankm : 2I → N

is submodular [72, Lemma 1.3.1]; indeed, the marginal benefit of adding e to S

(rankm)/S(e) =

{
1 if e is independent of S,

0 if e is dependent on S

weakly decreases as we add elements to S.
By Theorem 3.1.3 and (37), the submodular function rankm gives rise to a

generalized permutahedron P(rankm) = P(m) which is called the matroid polytope
of m. This polytope has an elegant vertex description.

Proposition 3.3.1. [36, 44] The matroid polytope P(rankm) = P(m) of a
matroid m on I is given by

P(m) = conv {eb1 + · · ·+ ebr | {b1, . . . , br} is a basis of m} ⊆ RI ,

where {ei | i ∈ I} is the standard basis. Furthermore, every basis gives a vertex of
P(m).

This construction goes back to Edmonds [36] in optimization, and later to
Gel’fand, Goresky, MacPherson, and Serganova [44] in algebraic geometry. In
what follows, we will sometimes identify a matroid m with its matroid polytope
P(m).

Example 3.3.2. Revisiting Example 1.2.2, let m be the matroid of rank 2 on
{a, b, c, d} whose only non-basis is {c, d}. The matroid polytope P(m), shown in
Figure 3.3.1, is given by the inequalities:

xa + xb + xc + xd = 2, xa + xb, xa + xc, xa + xd, xb + xc, xb + xd ≤ 2,

xc + xd ≤ 1, xa, xb, xc, xd ≤ 1

There does not seem to be a simple and purely combinatorial indexing for the
faces of the matroid polytope P(m). For a non-bijective description of these faces,
see [10, Proposition 2] or [22, Problem 1.26].
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a

b

d

c

Figure 2. The matroid polytope of the matroid of Example 3.3.2.

3.3.2. Matroids as a submonoid of generalized permutahedra. Recall
that M is the Hopf monoid of matroids, where M[I] is the set of matroids on ground
set I. For a decomposition I = S ⊔ T , the product of two matroids m1 ∈ M[S]
and m2 ∈ M[T ] is their direct sum m1 ⊕m2 ∈ M[I]. The coproduct of a matroid
m ∈ M[I] is (m|S ,m/S), where m|S ∈ M[S] and m/S ∈ M[T ] are the restriction
and contraction of m with respect to S, respectively.

Proposition 3.3.3. The map rank : M → SF
∼=−→ GP is an injective morphism

of Hopf monoids.

Proof. The descriptions for the rank function of the direct sum, restriction
and contraction of matroids in [72, Propositions 3.1.5, 3.1.7, 4.2.17] imply that
rank is a morphism of Hopf monoids. Injectivity holds since the rank function
determines the matroid uniquely. �

More widely, by Proposition 3.1.5, basis polytopes of polymatroids also form a
submonoid of generalized permutahedra.

3.3.3. The antipode of matroids. We now give a formula for the antipode
of matroids in Proposition 3.3.3 and Theorem 1.6.1. The result is expressed in
terms of the facial structure of matroid polytopes.

Every matroid m has a unique maximal decomposition as a direct sum of
smaller matroids. Let c(m) be the number of summands, which are called the
connected components of m [72, Section 4].

Theorem 3.3.4. The antipode of the Hopf monoid of matroids M is given by the
following cancellation-free and combination-free formula. If m is a matroid
on I, then

(41) sI(m) =
∑

n≤m

(−1)c(n) n,

where we sum over all the nonempty faces n of the matroid polytope of m.

Proof. This is an immediate consequence of Theorem 1.6.1, taking into ac-
count that the dimension of a matroid polytope P(m) on I equals |I|−c(m) [36]. �

As mentioned earlier, there seems to be no simple combinatorial indexing of
the faces of a matroid polytope, and hence no purely combinatorial counterpart of
this formula.

The (discrete and algebraic) geometric point of view on matroids, initiated in
[36] and [44], has evolved into a central component of matroid theory thanks to
the natural appearances of matroid polytopes in various settings in optimization,
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algebraic geometry, and tropical geometry. Theorem 3.3.4 shows that this geometric
point of view also plays an essential role here: if one wishes to fully understand
the Hopf algebraic structure of matroids, it becomes indispensable to view them as
polytopes.

3.3.4. The Hopf algebra of matroids. The Fock functor sends the Hopf
monoid M to the Hopf algebra of (isomorphism classes of) matroids defined by
Joni and Rota [60, Section XVII] and also studied by Schmitt [85, Section 15].
Theorem 3.3.4 answers the open question of determining the optimal formula for
the antipode of a matroid: it is simply the signed sum of the faces of the matroid
polytope.

Theorem 3.3.5. In the Hopf algebra of (isomorphism classes of) matroids, the
antipode of a matroid m is

(42) s(m) =
∑

n

(−1)c(n)a(m : n)n,

where c(n) is the number of components of a matroid n and a(m : n) is the number
of faces of the matroid polytope P(m) which are congruent to P(n).

Proof. This is an immediate consequence of Theorem 3.3.4. �

Example 3.3.6. Let us revisit Example 1.2.2. The formula is the algebraic

(( + 5 + 2 8 _s = + _ + 2 

manifestation of the face structure of the corresponding matroid polytope, which
is a square pyramid. It has one full-dimensional face, 5 two-dimensional faces (in
matroid isomorphism classes of sizes 2, 1, 2), 8 edges (in one isomorphism class),
and 5 vertices (in one isomorphism class).

Remark 3.3.7. Theorems 3.3.4 and 3.3.5 illustrate an important advantage of
working with Hopf monoids instead of Hopf algebras.

To try to discover (42), we might compute a few small examples and try to find
a pattern. After witnessing unexpected cancellations and unexplained groupings of
equal terms, we are left with coefficients a(m : n) that are very hard to identify; in
fact, we do not know any enumerative properties of these coefficients.

If, instead, we work in the context of Hopf monoids, a coefficient equal to 5 in
(42) comes from a sum 1+1+1+1+1 in (41) where each 1 is indexed combinatorially;
this additional granularity allows us to identify each term contributing to (41), and
to then combine them to obtain (42).

However, for matroids, the geometric lens is crucial – even in the context of
Hopf monoids. It is not easy to identify the individual terms of (41) if one is not
thinking about the matroid polytope, whose faces have no simple combinatorial
description.

A cancellation-free but not combination-free formula for the antipode of the
Hopf algebra of matroids appears in [24,25].
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3.3.5. Graphical matroids and another Hopf monoid of graphs. Any
family of matroids which is closed under direct sums, restriction, and contraction
forms a Hopf submonoid of M. Many important families of matroids satisfy these
properties and have the structure of a Hopf monoid; for instance: linear matroids
over a fixed field, graphical matroids, algebraic matroids over a fixed field, gam-
moids, and lattice path matroids [20,72,101]. In particular, the Hopf monoid of
graphical matroids is closely related to a third Hopf monoid of graphs, which we
now describe.

For a finite set I, let Γ[I] be the set of graphs with edges labeled by I, with
unlabeled vertices, and without isolated vertices. To define a product and coproduct
on Γ, let I = S ⊔ T be a decomposition. The product γ1 · γ2 ∈ Γ[I] is the (disjoint)
union of the graphs γ1 ∈ Γ[S] and γ2 ∈ Γ[T ]. The coproduct ΔS,T (γ) = (γ|S , γ/S)
is given by the standard notions of restriction and contraction from graph theory,
which are defined as follows. The restriction γ|S ∈ Γ[S] is obtained from γ ∈ Γ[I]
by removing all edges in T and all vertices not incident to S. The contraction
γ/S ∈ Γ[S] is obtained by contracting each edge e in S from γ ∈ Γ[I] – removing e
and identifying its endpoints – and removing any isolated vertices that remain.

The two Hopf monoids of graphs Γ and G that we have discussed are not directly
related; in fact, they differ already as species. Instead, we have a morphism of Hopf
monoids

Γ → M

mapping each graph γ to its graphical matroid, which is the set of spanning trees
of γ [72]. We do not know further properties of the Hopf monoid Γ, in particular,
because we are not aware of any results on graphical matroid polytopes.

3.4. P: Posets and poset cones

Similarly to graphs and matroids, posets also have a polyhedral model that
respects the Hopf algebra structure introduced by Schmitt in 1994 [85]. We use
this geometric model to give an optimal combinatorial formula for the antipode of
posets.

3.4.1. Poset cones. A {0,∞} function on I is a Boolean function z : 2I →
{0,∞} such that z(∅) = z(I) = 0. Its support is supp(z) = {J ⊆ I | z(J) = 0}. For
a {0,∞} function z on I,

(43) z is submodular ⇐⇒ if A,B ∈ supp(z) then A ∪B,A ∩B ∈ supp(z).

For each poset p on I we define the lower set function

lowp : 2I �→ R ∪ {∞}, lowp(J) =

{
0 if J is a lower set of p,
∞ if J is not a lower set of p.

This is an extended submodular function since the family of lower sets of p is closed
under unions and intersections.

By Theorem 3.1.6 and (38), the submodular function lowp gives rise to an
extended generalized permutahedron

P(p) := P(lowp) = {x ∈ RI |
∑

i∈I

xi = 0 and
∑

a∈A

xa ≤ 0 for every lower set A of p}

which we call the poset cone of p. This cone has an elegant description in terms of
generators. Dobbertin proved an analogous result for a related polytope in [33].
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Proposition 3.4.1. The poset cone of a poset p is given by

P(p) = cone {ei − ej | i > j in p}

where {ei | i ∈ I} is the standard basis of RI . The generating rays of P(p) are
given by the roots ei − ej corresponding to the cover relations i⋗ j of p.

Proof. Recall the notation

x(A) =
∑

i∈A

xi

for x ∈ RI and A ⊆ I. We prove both containments:

⊇: Let i > j in p. Every order ideal A that contains i must also contain j, so ei−ej
satisfies x(A) ≤ 0. This implies that cone{ei − ej | i > j ∈ p} ⊆ P(p).

⊆: We will need the following lemma.

Lemma 3.4.2. Let x ∈ P(p). Let i be a maximal element of p such that xi �= 0,
and let i1, . . . , ik be the elements covered by i in p. We can write

x = x′ + λ(ei − ej)

for some x′ ∈ P(p), some element j ⋖ i, and some number λ > 0 which is a linear
combination of the xis.

Proof of Lemma 15.2. The maximality of i and the fact that p≥i := {j ∈
p | j ≥ i} is an upper set imply that

(44) xi =
∑

j∈p≥i

xj = x(p≥i) > 0.

Let i1, . . . , ik be the elements covered by i in p. We claim that

(45) there exists an index 1 ≤ a ≤ k with x(Ia) < 0 for every lower set Ia ∋ ia .

We prove this claim by contradiction. If that was not the case, then for every
1 ≤ a ≤ k we would have a lower set Ia ∋ ia such that x(Ia) = 0. Now, we observe
that
(46)
if A and B are lower sets with x(A) = x(B) = 0, then x(A ∪B) = x(A ∩B) = 0.

This observation follows from the fact that A∪B and A∩B are lower sets, so they
satisfy x(A∪B) ≤ 0 and x(A∩B) ≤ 0, while also satisfying x(A∪B)+x(A∩B) =
x(A) + x(B) = 0. Applying (46) repeatedly, we see that I1 ∪ · · · ∪ Ik is a lower set
with x(I1 ∪ · · · ∪ Ik) = 0. But then we observe that I1 ∪ · · · ∪ Ik ∪ i is also a lower
set, so we get

xi = x(I1 ∪ · · · ∪ Ik ∪ i) ≤ 0,

contradicting (44).
Having proved (44) and (45), let 1 ≤ a ≤ k be as in (45). Then

λ := min({xi} ∪ {−x(Ia) | Ia is a lower set containing ia}) > 0,

and define x′ = x − λ(ei − eia) as required. To conclude, it remains to prove that
y ∈ P(p). To do this, let J be any lower set of p. If J contains both ia and i, or if
it contains neither ia nor i, then we have x′(J) = x(J) ≤ 0. On the other hand, if
J contains ia but not i, then x′(J) = x(J) + λ ≤ 0 by the definition of λ, since J
is a lower set containing ia. It follows that x′ ∈ P(p), concluding the proof of the
lemma. �
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Now we need to prove that any x ∈ P(p) is a positive linear combination of
vectors of the form ei − ej such that i < j in p. Since the rationals are a dense
subset of the reals and the cones we are considering are closed, it suffices to prove
this when all entries of x are rational. We proceed by induction on the number of
positive entries of x.

Let i be a maximal element of p with xi > 0. Write x = x′+λ(ei−ej) for λ > 0
and i ⋗ j as in the lemma, and note that x′

i < xi. If x′
i > 0, use the lemma again

to write x′ = x′′ + λ′(ei − ej′) for λ′ > 0 and i ⋗ j′, and note that x′′
i < x′

i < xi

. We can continue applying the lemma in this way while x
′′···′

i > 0. In each step,
the ith coordinate decreases by a positive linear combination of the original xis.
Since the xis are rational, the ith coordinate is decreasing discretely, and must
reach 0 eventually. We will then have written x = y + c for a linear combination
c ∈ cone{ei − ej | i > j ∈ p} and a vector y ∈ P(p) with one fewer positive entry,
since yi = 0. The induction hypothesis now gives y ∈ cone{ei − ej | i > j ∈ p},
which implies x ∈ cone{ei − ej | i > j ∈ p} as well. The desired result follows by
induction.

Having proved that P(p) is generated by the vectors ei − ej where i > j, let us
observe that if i > j then there is a sequence of cover relations i⋗ k1 ⋗ · · ·⋗ kr ⋗ j,
which implies that ei − ej = (ei − ek1

) + (ek1
− ek2

) + · · · + (ekr
− ej). Therefore

the vectors ei − ej with i ⋗ j generate P(p). By a similar argument one sees that
they generate P(p) irredundantly. �

The faces of poset polytopes were described (for the cones dual to poset cones)
by Postnikov-Reiner-Williams [76, Proposition 3.5] (for order polytopes) by Geissin-
ger [43] and Stanley [91], and (for oriented matroids) by Las Vergnas [Proposition
9.1.2][18]. Our presentation follows Las Vergnas, interpreting his general criterion
in this special case.

Define a circuit of p to be a cyclic sequence i1, . . . , in of elements of p where
every consecutive pair is comparable in p. Circuits consist of up-edges where ij <
ij+1 in p and down-edges where ij > ij+1 in p. We will say that a subposet q of p
is positive2 if the following conditions hold for every circuit X:

(1) if all the down-edges of a circuit X are in q, then all the up-edges of X are
in q, and

(2) if all the up-edges of a circuit X are in q, then all the down-edges of X is
in q.

Lemma 3.4.3. Let p be a poset on I. The faces of the poset cone P(p) ⊆ RI

are precisely the poset cones P(q) as q ranges over the positive subposets of p.

Proof. In this proof we will assume some basic facts about oriented matroid
theory; see [9, 19] for the relevant definitions. Let M be the (acyclic) oriented
matroid of the set of vectors {ei−ej | i > j in p}. The faces of the poset cone P(p)
are the cones generated by the positive flats of the Las Vergnas face lattice of M.
By [19, Proposition 9.1.2], these are the subsets F of M such that for every signed
circuit X of M, X+ ⊆ F implies X− ⊆ F .

The oriented matroid M is isomorphic to the graphical oriented matroid of the
graph of p on I, whose directed edges i → j correspond to the order relations i > j
in p. Therefore the signed circuits of M correspond to the cycles of the graph; they

2this terminology comes from the theory of oriented matroids
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are the sets of the form:

X = {eik − eik+1
| i1, . . . , in is a circuit of p}

where in+1 = i1. Each circuit X comes with two orientations. One of them is given
by X+ = {eik − eik+1

| ik > ik+1 in p} and X− = {eik − eik+1
| ik < ik+1 in p} and

the other one is its reverse.
Now let F = q ⊆ p be a subposet of p. In the first orientation of X, the

condition that X+ ⊆ F implies X− ⊆ F says that if every down-edge is in q then
every up-edge must be in q. In the other orientation, this condition is reversed. It
follows that the positive flats of M are in bijection with the positive subposets of
p, as desired. �

Example 3.4.4. Let p be the poset on {a, b, c, d} given by the cover relations
a < c, b < c, a < d, b < d. The poset cone of p is shown in Figure 3. The positive
subposets q �= p are those which do not contain both vertical cover relations a < c
and b < d, and do not contain both diagonal cover relations a < d and b < c. There
are nine such subposets, corresponding to the nine proper faces of P(p).

a

b

d

c

Figure 3. The poset cone for the poset of Example 15.4.

Remark 3.4.5. Let us give some additional intuition for the definition of pos-
itive subposets. We will need preposets; see Section 3.4.4 for a definition.

A poset contraction is a preposet obtained from p by successively contracting
order relations i < j of p and replacing them by equivalence relations i ∼ j. Since
we need to keep the preposet transitive, contracting the up-edges of a circuit forces
us to also contract the down-edges, and viceversa. For instance, in Example 3.4.4, if
we contract a < c and b < d, we get the contradictory relations a ∼ c > b ∼ d > a;
to remedy this, we are forced to contract b < c and a < d into b ∼ c and a ∼ d as
well.

In conclusion, the positive subposets of p are precisely the contracted subposets
for the contractions of p.

3.4.2. Posets as a submonoid of extended generalized permutahedra.

Recall that P is the Hopf monoid (in vector species) of posets. For I = S ⊔ T , the
product of two posets p1 on S and p2 on T is their disjoint union p1 · p2 regarded
as a poset on I. The coproduct ΔS,T : P[I] → P[S]⊗P[T ] is

ΔS,T (p) =

{
p|S ⊗ p|T if S is a lower set of p,

0 otherwise.
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Proposition 3.4.6. The map low : P → SF+ ∼=
−→ GP+ is an injective mor-

phism of Hopf monoids in vector species.

Proof. To check that low preserves the product, let I = S ⊔T be a decompo-
sition. Let p1 and p2 be posets on S and T , and p1 · p2 be their product. A subset
J ⊆ I is a lower set of p1 · p2 if and only if J ∩S and J ∩ T are lower sets of p1 and
p2, respectively. It follows that

lowp1·p2
(J) = lowp1

(J ∩ S) + lowp2
(J ∩ T ) = (lowp1

· lowp2
)(J),

so low preserves products.
To check that low preserves the coproduct, let I = S ⊔ T and let p be a poset

on I. We need to consider two cases:
1. Suppose S is not a lower set of p. Then ΔS,T (p) = 0. In this case we also

have lowp(S) = ∞ so ΔS,T (lowp) = 0 by the definition of the coproduct in SF+.
It follows that low trivially respects the coproduct in this case.

2. Suppose S is a lower set of p. Then the restriction and contraction of p with
respect to S are p|S and p|T , respectively. Also lowp(S) = 0. To see that low is
compatible with restriction, notice that for R ⊆ S we have (lowp)|S(R) = lowp(R),
so

lowp|S (R) =

{
0 if R is a lower set of p|S

∞ otherwise
,

(lowp)|S(R) =

{
0 if R is a lower set of p

∞ otherwise.

Since R is a lower set of p|S if and only if it is a lower set of p, we have
lowp|S = (lowp)|S.

On the other hand, to see that low is compatible with contraction, notice
that for R ⊆ T we have lowp/S

(R) = lowp|T (R) = lowp(R) and (lowp)/S(R) =
lowp(R ∪ S), so

lowp/S
(R) =

{
0 if R is a lower set of p|T

∞ otherwise
,

(lowp)/S(R) =

{
0 if R ∪ S is a lower set of p

∞ otherwise.

Since R is a lower set of p|T if and only if it R ∪ S is a lower set of p, we have
lowp/S

= (lowp)/S .
We conclude that low is a morphism of monoids. Injectivity follows from the

fact that we can recover a poset p from its collection of lower sets as follows: two
elements i, j of p satisfy i < j if and only if every lower set containing j also contains
i. �

3.4.3. The antipode of posets. In view of Proposition 3.4.6 and Theorem
1.6.1, the antipode of P is given by the facial structure of poset polytopes, as
described in Lemma 3.4.3. This allows us to give the optimal combinatorial formula
for the antipode of the Hopf monoid of posets.
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Recall that the Hasse diagram of a poset p is the graph whose vertices corre-
spond to the elements of p and whose edges x → y, which are always drawn with x
lower than y, correspond to the cover relations x⋖ y of p.

Corollary 3.4.7. The antipode of the Hopf monoid of posets P is given by
the following cancellation-free and combination-free expression. If p is a poset
on I then

sI(p) =
∑

q

(−1)c(q)q,

summing over all positive subposets q of p, where c(q) is the number of connected
components of the Hasse diagram of q.

Proof. This follows from Theorem 1.6.1 and Lemma 3.4.3, and the observa-
tion that the dimension of the poset cone P(p) is |I| − c(p). �

Example 3.4.8. Let us revisit Example 1.2.3. This example takes place in the
Hopf algebra of posets P , where isomorphic posets are identified. The formula

( ( + 2 +  + 2 4 _s = _

is the algebraic manifestation of the face structure of the corresponding poset cone,
which is the cone over a square shown in Figure 3. It has one full-dimensional face,
4 two-dimensional faces (in poset isomorphism classes of sizes 2 and 2), 4 rays (in
one isomorphism class), and 1 vertex. Combinatorially, the summands correspond
to the positive subposets of the poset in question, as described in Example 3.4.4.

3.4.4. Preposets and preposet cones. One may wonder whether there are
other interesting submonoids of GP consisting of cones, or (almost equivalently)
submonoids of SF consisting of {0,∞} functions. In Theorem 3.4.9 and Proposition
3.4.6 we show that, essentially, there aren’t. We prove that {0,∞} submodular
functions are equivalent to the slightly larger class of preposets, which may be
viewed as posets in their own right.

A preposet on I is a binary relation q ⊆ I × I, denoted ≤, which is reflexive
(x ≤ x for all x ∈ q) and transitive (x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ q).
A preposet is not necessarily antisymmetric, and we define an equivalence relation
by setting

x ∼ y when x ≤ y and y ≤ x.

Let p = q/∼ be the set of equivalence classes of p. The relation ≤ induces a relation
≤ on q/∼ which is still reflexive and transitive, and is also antisymmetric; i.e., it
defines a poset.

It follows that we may think of preposets as posets whose elements are labeled
by nonempty and pairwise disjoint sets. More precisely, we may equivalently define
a preposet on I to be a set partition π = {I1, . . . , Ik} of I together with a poset p
on π.

If p′ is a lower set of the poset p = q/∼, then we say q′ =
⋃

K∈p′ K is a lower
set of the preposet q. As before, we define the lower set function of q to be

lowq : 2I �→ R ∪ {∞}, lowq(J) =

{
0 if J is a lower set of q,
∞ otherwise.
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Theorem 3.4.9. A Boolean function z : I → {0,∞} is submodular if and only
if z = lowq is the lower set function of a preposet q on I.

Proof. The backward direction is straightforward: If q is a preposet then its
collection of lower sets is closed under union and intersection. It follows from (43)
that lowq is submodular.

The forward direction will require more work. Suppose z is a submodular
{0,∞} function on I and let

L := supp(z).

We need to show that L is the collection of lower sets of a preposet q on I.
Thanks to (43) we know that L = supp(z) is a lattice under the operations of

union and intersection. These operations are distributive, so Birkhoff’s fundamental
theorem of distributive lattices [94, Theorem 3.4.1] applies: If Lirred is the subposet
of join-irreducible elements of L, and if J(Lirred) is the poset of lower sets of Lirred

ordered by inclusion, then
L ∼= J(Lirred).

We reinterpret Lirred as a preposet on I as follows. For each set A ∈ Lirred let

ess(A) = A−
⋃

B∈Lirred
B<A

B.

be the essential set of A, consisting of the essential elements which are in no lesser
join-irreducible. Consider the collection of essential sets

q := {ess(A) | A ∈ Lirred},

endowed with the partial order inherited from Lirred. We will now show that:
1. q is a preposet on I, and
2. L is the collection of lower sets of q.

These two statements will complete the proof.
Before we prove these two statements, let us illustrate this construction with

an example. The left panel of Figure 4 shows a distributive lattice L of subsets of
I = {a, b, c, d, e, f, g, h, i, j}. We only label the join-irreducible elements; the label
of every other set is the union of the join-irreducibles less than it in L. The right
hand side panel shows the subposet Lirred. For each join-irreducible set A ∈ Lirred

we have indicated its essential set ess(A) in bold. These essential sets partition I,
allowing us to think of this object q as a preposet on I.

Step 1. q is a preposet on I: We need to show that the sets in q form a set partition
of I. Each essential set ess(A) is nonempty because A is join-irreducible. To prove
that the essential sets are pairwise disjoint, assume contrariwise that x ∈ ess(A)
and x ∈ ess(B) for some A �= B ∈ Lirred. Then A∩B ∈ L and x ∈ A∩B, so x ∈ C
for some join irreducible C ∈ Lirred with C ⊆ A ∩ B � A. This contradicts the
assumption that x is an essential element of A.

The following lemma completes the proof of Step 1.

Lemma 3.4.10. For all A ∈ L,

A =
⊔

B∈Lirred
B≤A

ess(B).

In particular, {ess(B) | B ∈ Lirred} is a partition of I.
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cfba

abhj

abcfhij

cdefg
cfba

abhj

abcfhij

cdefg

Figure 4. A distributive lattice L of subsets of I =
{a, b, c, d, e, f, g, h, i, j} and its poset of join-irreducibles. The es-
sential sets of Lirred are shown in boldface; they give rise to a
preposet q on I, whose lower sets are precisely the sets in L.

Proof of Lemma 3.4.10. First we prove that the lemma holds for each join-
irreducible A ∈ Lirred ⊆ L, proceeding by induction. This statement is clearly true
for the minimal elements of Lirred. Also, if it holds for all elements B < A in Lirred,
then using the definition of ess(A) and the induction hypothesis,

A = ess(A) ⊔
⋃

B∈Lirred
B<A

B = ess(A) ⊔
⋃

B∈Lirred
B<A

⊔

C∈Lirred
C≤B

ess(C) =
⊔

C∈Lirred
C≤A

ess(C)

so the claim holds for A as well. Therefore the lemma holds for all A ∈ Lirred.
Now we can prove Lemma 3.4.10 holds for all A ∈ L. The backward inclusion

is clear. To prove the forward inclusion, let x ∈ A. Since A is the union of the
join-irreducibles less than it in L, we have x ∈ C for some C ∈ Lirred with C ≤ A.
By the previous paragraph, x ∈ ess(D) for some D ∈ Lirred with D ≤ C; but then
D ≤ A also, so x is in one of the essential sets on the right hand side. The desired
result follows.

The last statement follows by recalling that z(I) = 0 and applying the lemma
to A = I, which is the maximum element of the lattice L. This completes the proof
of Lemma 3.4.10 and of Step 1 of this proof. �

Step 2. L is the collection of lower sets of q: By Birkhoff’s theorem and Lemma
3.4.10, A ∈ L if and only if there is a down set J ⊆ Lirred with

A =
⋃

B∈J

B =
⊔

B∈J

ess(B);

that is, if and only if A is a lower set of q. �

We now state an algebraic counterpart of Theorem 3.4.9. Let Q[I] be the set
of preposets on I. Preposets become a Hopf monoid in vector species Q with the
same operations of the Hopf monoid of posets P. Let SF{0,∞} be the submonoid of

SF consisting of {0,∞} functions. Let GPcone be the submonoid of GP consisting
of cones.
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Proposition 3.4.11. The maps low : Q
∼=
−→ SF{0,∞}

∼=
−→ GPcone are isomor-

phisms of Hopf monoids in vector species.

Proof. The first isomorphism is an immediate consequence of Theorem 3.4.9.
For the second one, notice that every cone c ∈ GP is a translate of a unique cone
c′ that contains the origin. The submodular function zc such that c′ = P(zc) is a
{0,∞} function, and the correspondence c �→ zc gives the desired isomorphism. �

In the correspondence between preposets and generalized permutahedra which
are cones, posets on I correspond to cones of the maximum possible dimension
|I|−1. The antipode formula for preposetsQ is essentially the same as the antipode
formula for posets P.
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CHAPTER 4

Characters, polynomial invariants, and reciprocity

4.1. Invariants of Hopf monoids and reciprocity

Once again, we set aside the combinatorial examples of earlier sections and
return to the general setting of Hopf monoids of Section 1.1, where we begin to
develop the basics of character theory. Similar results for Hopf algebras can be
found in [1,17].

This section shows that each character on a Hopf monoid gives rise to an asso-
ciated polynomial invariant. There are two main results. Proposition 4.1.1 shows
that the polynomial invariant is indeed polynomial and invariant. Proposition 4.1.5
relates the values of the invariant on an integer and on its negative by means of the
antipode of the Hopf monoid.

This abstract framework has concrete combinatorial consequences. For in-
stance, we will see in Section 4.3 that the simplest non-zero characters on the
Hopf monoids G,P,M give rise to three important combinatorial polynomials: the
chromatic polynomial of a graph, the strict order polynomial of a poset, and the
BJR polynomial of a matroid. Furthermore, this Hopf-theoretic framework shows
that the celebrated reciprocity theorems for these three polynomials, due to Stan-
ley [90, Theorem 1.2], [88, Theorem 3] and Billera, Jia, and Reiner [17, Theorem
6.3], are specific instances of the same general fact about extended generalized
permutahedra.

4.1.1. The polynomial invariant of a character. Recall from Section 2.1
the notion of a character ζ on a Hopf monoid in vector species H. In the examples
that interest us, H is a Hopf monoid coming from a family of combinatorial objects,
and ζ is a multiplicative function on our objects which is invariant under relabelings
of the ground set.

Throughout this section, we fix a connected Hopf monoid H and a character
ζ : H → k. Define, for each element x ∈ H[I] and each natural number n ∈ N, the
scalar

(47) χI(x)(n) :=
∑

I=S1⊔···⊔Sn

(ζS1
⊗ · · · ⊗ ζSn

) ◦ΔS1,...,Sn
(x),

summing over all decompositions of I into n disjoint subsets which are allowed to
be empty. For fixed I and x, the function χI(x) is defined for n ∈ N and takes
values on k. Note that

(48) χI(x)(0) =

{
ζ∅(x) if I = ∅,

0 otherwise,
χI(x)(1) = ζI(x).

77



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

78 4. CHARACTERS, POLYNOMIAL INVARIANTS, AND RECIPROCITY

Proposition 4.1.1. (Polynomial invariants) Let H be a connected Hopf monoid,
ζ : H → k be a character, and χ be defined by (47). Fix a finite set I and an element
x ∈ H[I].

(1) For each n ∈ N we have

χI(x)(n) =

|I|∑

k=0

χ
(k)
I (x)

(
n

k

)

where, for each k = 0, . . . , |I|,

χ
(k)
I (x) =

∑

(T1,...,Tk)�I

(ζT1
⊗ · · · ⊗ ζTk

) ◦ΔT1,...,Tk
(x) ∈ k.

summing over all compositions (T1, . . . , Tk) of I. Therefore, χI(x) is a
polynomial function of n of degree at most |I|.

(2) Let σ : I → J be a bijection, x ∈ H[I] and y := H[σ](x) ∈ H[J ]. Then
χI(x) = χJ (y).

Proof. 1. Given a decomposition I = S1 ⊔ · · · ⊔ Sn, let (T1, . . . , Tk) be the
composition of I obtained by removing the empty Sis and keeping the remaining
ones in order. In view of the unitality of Δ and ζ, we have

(ζS1
⊗ · · · ⊗ ζSn

) ◦ΔS1,...,Sn
(x) = (ζT1

⊗ · · · ⊗ ζTk
) ◦ΔT1,...,Tk

(x).

Note that k ≤ |I| and the number of decompositions I = S1 ⊔ · · · ⊔ Sn which give
rise to a given composition (T1, . . . , Tk) is

(
n
k

)
. It follows that

χI(x)(n) =

|I|∑

k=0

(
∑

(T1,...Tk)�I

(ζT1
⊗ · · · ⊗ ζTk

) ◦ΔT1,...,Tk
(x)

)(
n

k

)
.

as desired. Since each
(
n
k

)
is a polynomial function of n of degree k, χI(x) is

polynomial of degree at most |I|.
2. This follows from the naturality of Δ and ζ. �

Let k[t] denote the polynomial algebra. Proposition 4.1.1 states that each char-
acter ζ gives rise to a family of polynomials χI(x) ∈ k[t] associated to each structure
x ∈ H[I], whose values on nonnegative integers n are given by (47). Furthermore, it
says that two isomorphic structures have the same associated polynomial. Thus, the
function χI(x) is a polynomial invariant of the structure x (canonically associated
to the Hopf monoid H and the character ζ).

4.1.2. Properties of the polynomial invariant of a character. We now
collect some useful properties of these polynomial invariants.

Proposition 4.1.2. Let H be a connected Hopf monoid, ζ : H → k be a
character, and χ be the associated polynomial invariant, defined by (47). Let I be
a finite set.

(i) χI is a linear map from H[I] to k[t].
(ii) Let I = S ⊔ T be a decomposition. For any x ∈ H[S] and y ∈ H[T ], we

have the equality of polynomials

χI(x · y) = χS(x)χT (y)

(iii) χ∅(1) = 1, the constant polynomial.
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(iv) For any x ∈ H[I] and scalars n and m,

χI(x)(n+m) =
∑

I=S⊔T

χS(x|S)(n)χT (x/S)(m).

Proof. Property (i) follows from the linearity of Δ and ζ.
Property (ii) follows from the compatibility between μ and Δ and the multi-

plicativity of ζ. We provide the details. First, decompositions I = I1 ⊔ · · · ⊔ In
into n parts are in bijection with pairs of decompositions S = S1 ⊔ · · · ⊔ Sn and
T = T1 ⊔ · · · ⊔ Tn, where Si = Ii ∩ S and Ti = Ii ∩ T .

✬

✫

✩

✪

S

T

✬

✫

✩

✪
I1 · · · In

✬

✫

✩

✪

· · ·

· · ·

S1 Sn

T1 Tn

The compatibility between μ and Δ and the associativity of the latter imply that
if we write

ΔS1,...,Sn
(x) =

∑
x1 ⊗ · · · ⊗ xn and ΔT1,...,Tn

(y) =
∑

y1 ⊗ · · · ⊗ yn,

in Sweedler’s notation, as described in Section 1.1.5, then

ΔI1,...,In(x · y) =
∑

(x1 · y1)⊗ · · · ⊗ (xn · yn)

The above, together with the multiplicativity of ζ, yield that χI(x · y)(n) equals
∑

I=I1⊔···⊔In

(ζI1 ⊗ · · · ⊗ ζIn) ◦ΔI1,...,In(x · y)

=
∑

S=S1⊔···⊔Sn
T=T1⊔···⊔Tn

∑
ζI1(x1 · y1) · · · ζIn(xn · yn)

=
∑

S=S1⊔···⊔Sn
T=T1⊔···⊔Tn

∑
ζS1

(x1)ζT1
(y1) · · · ζSn

(xn)ζTn
(yn)

=
( ∑

S=S1⊔···⊔Sn

(ζS1
⊗ · · · ⊗ ζSn

) ◦ΔS1,...,Sn
(x)

)

×
( ∑

T=T1⊔···⊔Tn

(ζT1
⊗ · · · ⊗ ζTn

) ◦ΔT1,...,Tn
(y)

)

= χS(x)(n)χT (y)(n).

Thus χI(x · y) = χS(x)χT (y) as polynomials, since they agree at every natural
number n.

Property (iii) follows from unitality of Δ and ζ.
For property (iv), note that decompositions of I into n+m parts are in bijection

with tuples

(S, S1, . . . , Sn, T, T1, . . . , Tm)
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where I = S⊔T , S = S1⊔· · ·⊔Sn, and T = T1⊔· · ·⊔Tm. In addition, associativity
of Δ implies that

ΔS1,...,Sn,T1,...,Tm
=
(
ΔS1,...,Sn

⊗ΔT1,...,Tm

)
◦ΔS,T .

Therefore, χI(x)(n+m) is equal to

∑

I=S1⊔···⊔Sn⊔T1⊔···⊔Tm

(ζS1
⊗ · · · ⊗ ζSn

⊗ ζT1
⊗ · · · ⊗ ζTm

) ◦ΔS1,...,Sn,T1,...,Tm
(x)

=
∑

I=S⊔T

∑

S=S1⊔···⊔Sn
T=T1⊔···⊔Tm

(ζS1
⊗ · · · ⊗ ζSn

⊗ ζT1
⊗ · · · ⊗ ζTm

)

◦
(
ΔS1,...,Sn

⊗ΔT1,...,Tm

)
◦ΔS,T (x)

=
∑

I=S⊔T

∑

S=S1⊔···⊔Sn
T=T1⊔···⊔Tm

(
(ζS1

⊗ · · · ⊗ ζSn
)

◦ΔS1,...,Sn
(x|S)

)(
(ζT1

⊗ · · · ⊗ ζTm
) ◦ΔT1,...,Tm

(x/S)
)

=
∑

I=S⊔T

χS(x|S)(n)χT (x/S)(m).

The above yields the desired equality when n and m are nonnegative integers.
Since both sides of the equation are polynomial functions of (n,m) in view of
Proposition 4.1.1, the result then follows for arbitrary scalars n and m. �

The following result states that if two characters are related by a morphism
of Hopf monoids, then the same relation holds for the corresponding polynomial
invariants.

Proposition 4.1.3. Let H and K be two Hopf monoids. Suppose ζH is a
character on H, ζK is a character on K, and f : H → K is a morphism of Hopf
monoids such that

ζKI
(
fI(x)

)
= ζHI (x)

for every I and x ∈ H[I]. Let χH and χK be the polynomial invariants correspond-
ing to ζH and ζK, respectively. Then

χK

I

(
fI(x)

)
= χH

I (x)

for every I and x ∈ H[I].

Proof. Since f preserves coproducts, we have ΔS,T

(
fI(x)

)
= (fS⊗fT )

(
ΔS,T (x)

)

and a similar fact for iterated coproducts. This and the hypothesis give the re-
sult. �

Remark 4.1.4. Most of the results in this section hold under weaker hypothe-
ses (different ones for each result). For instance, Proposition 4.1.1 holds for any
collection of linear maps ζI : H[I] → k which is unital (with the same proof). If n
and m are nonnegative integers, statement (iv) in Proposition 4.1.2 holds for any
collection of linear maps ζI : H[I] → k. Proposition 4.1.3 holds for any morphism
of comonoids which preserves the characters.
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4.1.3. From Hopf monoids to reciprocity theorems. For a character ζ on
a Hopf monoid H, the construction of Section 4.1.1 produces a polynomial invariant
χ whose values on natural numbers are well understood in terms of H and ζ. What
about the values on negative integers? The antipode provides an answer to this
question.

Proposition 4.1.5. (Reciprocity for polynomial invariants) Let H be a con-
nected Hopf monoid, ζ : H → k be a character, and χ be the associated polynomial
invariant, defined by (47). Let s be the antipode of H. Then

(49) χI(x)(−1) = ζI
(
sI(x)

)
.

More generally, for every scalar n,

(50) χI(x)(−n) = χI

(
sI(x)

)
(n).

Proof. Since
(
−1
k

)
= (−1)k, Proposition 4.1.1 implies

χI(x)(−1) =

|I|∑

k=0

(
∑

(T1,...Tk)�I

(ζT1
⊗ · · · ⊗ ζTk

) ◦ΔT1,...,Tk
(x)

)
(−1)k.

Using multiplicativity of ζ and Takeuchi’s formula (5), this may be rewritten as

χI(x)(−1) =

|I|∑

k=0

(
∑

(T1,...Tk)�I

ζI ◦ (μT1
⊗ · · · ⊗ μTk

) ◦ΔT1,...,Tk
(x)

)
(−1)k

= ζI

(
∑

k≥0

(−1)k
∑

(T1,...Tk)�I

μT1,...,Tk
◦ΔT1,...,Tk

(x)

)
= ζI

(
sI(x)

)
,

which proves (49).
To prove (50) one may assume that the scalar n is a nonnegative integer, since

both sides are polynomial functions of n. We make this assumption and proceed
by induction on n ∈ N.

When n = 0 the result holds in view of (48) and the fact that s∅ = id. When
n = 1 it follows from (48) and (49). For n ≥ 2 we apply Proposition 4.1.2(iv) as
follows:

χI(x)(−n) = χI(x)(−n+ 1− 1) =
∑

I=S⊔T

χS(x|S)(−n+ 1)χT (x/S)(−1).

Using the induction hypothesis, and then reversing the roles of S and T , this equals
∑

I=S⊔T

χS

(
sS(x|S)

)
(n− 1)χT

(
sT (x/S)

)
(1)

=
∑

I=S⊔T

χS

(
sS(x/T )

)
(1)χT

(
sT (x|T )

)
(n− 1).

Applying Proposition 4.1.2(iv) to sI(x), and using the fact (7) that the antipode
reverses coproducts, we see that this equals

χI

(
sI(x)

)
(1 + n− 1) = χI

(
sI(x)

)
(n),

as needed. �
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Formulas (49) and (50) are reciprocity results of a very general nature. They
gives us another reason to be interested in an explicit antipode formula: such a
formula allows for knowledge of the values of all polynomial invariants at negative
integers. The antipode acts as a universal link between the values of the invariants
at positive and negative integers. We now apply this approach toGP in Section 4.2.
This will allow us to unify several important reciprocity results in combinatorics
and to obtain new ones in Section 4.3.

4.2. The basic character and the basic invariant of GP

In this section we return to specifics, focusing on the Hopf monoids of general-
ized permutahedra GP and GP+. We will prove the results in this section for GP

but they also hold in GP+; see Remark 4.2.6.
We introduce the (almost trivial) basic character β and its associated basic

invariant χ on the Hopf monoid of generalized permutahedra GP. We use the
algebraic structure of GP and β to obtain combinatorial formulas for χ(n) and
χ(−n) for n ∈ N in Propositions 4.2.3 and 4.2.4; these were also obtained in [17].
In Section 4.3 we will see that several important combinatorial facts about graphs,
posets, and matroids are straightforward consequences of this setup.

Definition 4.2.1. The basic character β of GP is given by

βI(p) =

{
1 if p is a point

0 otherwise.

for a generalized permutahedron p ∈ RI . The basic invariant χ of GP is the
polynomial invariant associated to β by Proposition 4.1.1 and (47).

Note that β is indeed a character because the product of two polytopes p × q

is a point if and only if both p and q are points.

4.2.1. A lemma on directionally generic faces. Given a generalized per-
mutahedron p ⊆ RI and a linear functional y ∈ RI , say p is directionally generic
in the direction of y if the y-maximal face py is a point. If this is the case, we will
also say that y is p-generic and that p is y-generic. See Figure 1.

We will need the following technical lemma about directionally generic faces.

Lemma 4.2.2. For any generalized permutahedron p ⊆ RI and linear functional
y ∈ RI , the following equations hold as formal sums of polytopes.

(1) ∑

q≤p

(−1)dim q
qy =

∑

q≤p−y

(−1)dim q
q

(2)
∑

q≤p:
y is q-generic

(−1)dim q = (−1)|I| (number of vertices of p−y).

Proof. 1. Let us express both sides of the equation Hopf-theoretically. Let
F be the face of the braid arrangement that y belongs to, and say it corresponds
to the decomposition I = S1 ⊔ · · · ⊔ Sk, as described in Section 1.3.5. Also recall
from Section 1.1.9 that we denote μF = μS1,...,Sk

, ΔF = ΔS1,...,Sk
, and sF =

sS1
⊗ · · · ⊗ sSk

.
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a

b

d

c

Figure 1. The y-generic faces of the permutahedron π4 for y =
(0, 1, 1, 0) are shaded.

For any generalized permutahedron r ⊆ RI we have ry = rF = μFΔF (r) by
Proposition 1.4.4. It then follows from the formula for the antipode of GP in
Theorem 1.6.1 that

(−1)|I|μFΔF sI(p) =
∑

q≤p

(−1)dim q
qy.

Now let F be the opposite face of F , corresponding to the decomposition I =
Sk ⊔ · · · ⊔ S1. Then F contains −y so μFΔF (p) = p−y, and

(−1)|I| sI μFΔF (p) =
∑

q≤p−y

(−1)dim q
q.

To prove that these expressions equal each other, recall Proposition 1.1.16, which
holds for any Hopf monoid in vector species:

sI μF = μF sF swF , ΔF sI = sF swF ΔF .

where we have rewritten the first equation, using that sF swF = swF sF . Applying

the second equation to F and then the first equation to F , we obtain

μFΔF sI = μF sF swF ΔF = sI μFΔF ,

which gives the desired result.

2. This follows by applying the character χI to both sides of the equation of part
1. �

4.2.2. The basic invariant and the basic reciprocity theorem of GP.

Recall that the basic invariant χ ofGP is the polynomial invariant that Proposition
4.1.1 associates to the basic character β of Definition 4.2.1.

Proposition 4.2.3. [17, Def. 2.3, Thm 9.2.(v)] At a natural number n, the
basic invariant χ of a generalized permutahedron p ⊆ RI is given by

χI(p)(n) = (number of p-generic functions y : I → [n]).
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Proof. First notice that each summand in (47) comes from a decomposition
I = S1 ⊔ · · · ⊔ Sn, which bijectively corresponds to a function y : I → [n] defined
by y(i) = k for each i ∈ Sk. The corresponding summand for χI(p)(n) is

(ζS1
⊗ · · · ⊗ ζSn

) ◦ΔS1,...,Sn
(p) = ζS1

(p1) · · · ζSn
(pn)

where the y-maximal face py factors as py = p1 × · · · × pn for pi ∈ RSi. This term
contributes to the sum if and only if every pi is a point, that is, if and only if py is
a point; and in that case, it contributes 1. The desired result follows. �

Proposition 4.2.4. [17, Theorems 6.3 and 9.2.(v)] (Basic invariant reci-
procity.) At a negative integer −n, the basic invariant χ of a generalized per-
mutahedron p ⊆ RI is given by

(−1)|I|χI(p)(−n) =
∑

y:I→[n]

(number of vertices of py)

where py is the y-maximum face of p.

Proof. Using the general reciprocity formula for characters of Proposition
4.1.5 and the formula for the antipode of Theorem 1.6.1 of GP we obtain

χI(p)(−n) = χI(sI(p))(n) = (−1)|I|
∑

q≤p

(−1)dim qχI(q)(n).

Proposition 4.2.3 and Lemma 4.2.2 then give

χI(p)(−n) = (−1)|I|
∑

q≤p

(−1)dim q(# of q-generic functions y : I → [n])

= (−1)|I|
∑

y:I→[n]

∑

q≤p:
y is q-generic

(−1)dim q =
∑

y:I→[n]

(number of vertices of p−y).

This gives the desired result since p−y = p(n+1,...,n+1)−y, and (n+1, . . . , n+1)− y
maps I to [n] if and only if y maps I to [n]. �

Remark 4.2.5. Propositions 4.2.3 and 4.2.4 were also obtained by Billera, Jia,
and Reiner in [17]; their proof of the basic invariant reciprocity of Proposition
4.2.4 relies on Stanley’s combinatorial reciprocity theorem for P -partitions. Our
approach is different: we choose to give Hopf-theoretic proofs of these results. This
will allow us to give straightforward derivations of various combinatorial reciprocity
theorems, using only the Hopf-theoretic structure ofGP; we do this in the following
section.

Remark 4.2.6. The results of this section also hold for the Hopf monoid GP+

of possibly unbounded generalized permutahedra. In that setting, we must set
py = 0 whenever the polyhedron p is unbounded above in the direction of y. For
a linear functional y to be p-generic, we must require that the polyhedron p is
bounded above in the direction of y, and that py is a point.

4.3. Combinatorial reciprocity for graphs, matroids, and posets

We now show how characters on Hopf monoids naturally give rise to numer-
ous reciprocity theorems in combinatorics; some old, some new. We would like
to emphasize one benefit of this approach: this algebraic framework allows us to
discover and prove reciprocity theorems automatically. All we have to do is define
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a character on a Hopf monoid, and the general theory will produce a polynomial
invariant and a reciprocity theorem satisfied by it. In this section we will use some
of the simplest possible characters to obtain several theorems of interest.

The ideas in this section are closely related to those in [1,17] and in [2, Chapters
11 and 13].

4.3.1. The basic invariant of graphs is the chromatic polynomial.

Given a graph g, an n-coloring of the vertices of g is an assignment of a color in [n]
to each vertex of g. A coloring is proper if any two vertices connected by an edge
have different colors.

Proposition 4.3.1. Let ζ be the character on the Hopf monoid of graphs G

defined by

ζI(g) =

{
1 if g has no edges, and

0 otherwise.

The corresponding polynomial invariant is the chromatic polynomial, which equals

χI(g)(n) = number of proper colorings of g with n colors.

for n ∈ N.

Proof. The zonotope Zg is a point if and only if g has no edges. Therefore,
thanks to the inclusion Gcop −֒→ GP of Proposition 3.2.5, when we restrict the basic
character β of GP to graphic zonotopes, we obtain the character ζ of graphs. It
follows that χI(g) is the basic invariant of the graphic zonotope Zg, and Proposition
4.2.3 then tells us that χI(g)(n) is the number of Zg-generic functions y : I → [n].
By (40), a function y : I → [n] is Zg-generic if and only if y(i) �= y(j) whenever
{i, j} is an edge of g; that is, if and only if y is a proper coloring of g. The result
follows. �

We say that an n-coloring y of g and an acyclic orientation o of the edges of g
are compatible if we have y(i) ≥ y(j) for every directed edge i → j in the orientation
o.

Corollary 4.3.2. (Stanley’s reciprocity for graphs [90, Theorem 1.2]) Let g
be a graph on vertex set I, and n ∈ N. Then (−1)|I|χI(g)(−n) equals the number
of compatible pairs of an n-coloring and an acyclic orientation of g. In particular,
(−1)|I|χI(g)(−1) is the number of acyclic orientations of g.

Proof. This result is a special case of Proposition 4.2.4. To see this, regard
an n-coloring y of g as a linear functional y : I → [n] on the zonotope Zg. This
coloring induces a partial orientation oy of the edges of g, assigning an edge {i, j}
the direction i → j whenever y(i) > y(j). By (40), the vertices of (Zg)y correspond
to the acyclic orientations that extend oy; these are precisely the acyclic orientations
of g compatible with y. �

4.3.2. The basic invariant of matroids is the Billera-Jia-Reiner poly-

nomial. Given a matroid m on I, say a function y : I → [n] is m-generic if m has
a unique y-maximum basis {b1, . . . , br} maximizing y(b1) + · · ·+ y(br).
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Proposition 4.3.3. Let ζ be the character on the Hopf monoid of matroids M
defined by

ζI(m) =

{
1 if m has only one basis, and

0 otherwise.

The corresponding polynomial invariant is the Billera-Jia-Reiner polynomial of a
matroid, which equals

χI(m)(n) := number of m-generic functions y : I → [n]

for n ∈ N.

Proof. The matroid polytope of m is a point if and only if m has only one
basis. Therefore, thanks to the inclusion M −֒→ GP of Proposition 3.3.3, when we
restrict the basic character β of GP to matroid polytopes, we obtain the character
ζ of matroids. It follows that χI(m) The result now follows by applying Proposition
4.2.3 to matroid polytopes. �

Corollary 4.3.4. (Billera-Jia-Reiner’s reciprocity for matroids [17, Theorem
6.3.]) Let m be a matroid on I and n ∈ N. Then

(−1)|I|χI(m)(−n) =
∑

y:I→[n]

(number of y-maximum bases of m).

Proof. This is the result of applying Proposition 4.2.4 to matroid polytopes.
�

4.3.3. The basic invariant of posets is the strict order polynomial.

Given a poset p, say a map y : p → [n] is order-preserving if y(i) ≤ y(j) whenever
i < j in p. Say y is strictly order-preserving if y(i) < y(j) whenever i < j in p.

Proposition 4.3.5. Let ζ be the character on the Hopf monoid of posets P

defined by

ζI(p) =

{
1 if p is an antichain, and

0 otherwise.

The corresponding polynomial invariant is the strict order polynomial, which equals

χI(p)(n) := number of strictly order-preserving maps p → [n].

for n ∈ N.

Proof. The poset cone P(p) is a point if and only if p is an antichain. There-
fore, thanks to the inclusion P −֒→ GP+ of Proposition 3.4.6 (see Remark 4.2.6),
when we restrict the basic character β of GP+ to poset cones, we obtain the char-
acter ζ of posets. It follows that χI(p)(n) is the number of P(p)-generic functions
y : p → [n]. Now, thanks to Proposition 3.4.1, the normal fan to P(p) is a single
cone cut out by the inequalities y(i) ≤ y(j) for i > j in p, so the p-generic functions
are precisely the strictly order-reversing maps. It remains to note that there is a
natural bijection between order-reversing maps I → [n] and order-preserving maps
I → [n]. �

Corollary 4.3.6. (Stanley’s reciprocity for posets [88, Theorem 3]) Let p be
a poset on I and n ∈ N. Then (−1)|I|χI(p)(−n) is the order polynomial of p, that
is,

(−1)|I|χI(p)(−n) = number of order-preserving maps p → [n].
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Proof. This is a consequence of Proposition 4.2.4 and the following observa-
tions. The poset cone P(p) only has one vertex, namely, the origin. If y : p → [n] is
order-reversing, then there is a y-maximum face P(p)y, and it contains that single
vertex. If y is not order-reversing, then P(p) is not bounded above in the direction
of y. �

4.3.4. The Bergman polynomial of a matroid. A loop in a matroid is an
element which is not contained in any basis.

Definition 4.3.7. The Bergman character γ of the Hopf monoid of matroids
M is given by

γI(m) =

{
1 if m has no loops

0 otherwise.

for a matroid m on I. The Bergman polynomial B(m) of a matroid m is the
invariant associated to γ by Proposition 4.1.1 and (47).

Note that γ is indeed a character, because a direct sum of matroids m ⊕ n is
loopless if and only ifm and n are both loopless. To study the Bergman polynomial,
we need some definitions. A flat is a set F of elements such that r(F ∪ i) > r(F ) for
every i /∈ F . When m is the matroid of a collection of vectors A in a vector space
V , the flats correspond to the subspaces of V spanned by subsets of A. The flats
form a lattice L under inclusion, and the Möbius number μL(0̂, 1̂) of this lattice
(see [6], [94, Chapter 3]) is also called the Möbius number of the matroid μ(m).

We call B(m) the Bergman polynomial because it is related to the Bergman
fan

B(m) = {y ∈ RI | my has no loops}

where my is the matroid whose bases are the y-maximum bases of m. Notice that
the matroid polytope of my is the y-maximum face of the matroid polytope of m;
that is, P(my) = P(m)y. Therefore B(m) is a polyhedral fan: it is a subfan of the
normal fan of the matroid polytope P(m), consisting of the faces Nm(n) normal to
the loopless faces n of m.

Note also that B(m) is invariant under translation by 1 and under scaling by a
positive constant. Therefore, nothing is lost by intersecting it with the hyperplane∑

i xi = 0 and the sphere
∑

i x
2
i = 1, to obtain the Bergman complex B̃(m).

Bergman fans of matroids are central objects in tropical geometry, because
they are the tropical analog of linear spaces [10,99]. Two central results are the
following combinatorial and topological descriptions.

Theorem 4.3.8. [10] Let m be a matroid of rank r on I. The Bergman fan
B(m) has a triangulation into cones of the braid arrangement BI , consisting of the
cones BS1,...,Sr

such that S1 ⊔ · · · ⊔ Si is a flat of m for i = 1, . . . , r.

Theorem 4.3.9. [10] The Bergman complex of a matroid m of rank r is home-
omorphic to a wedge of (−1)rμ(m) spheres of dimension r − 2, where μ(m) is the
Möbius number of m.

We now describe some of the combinatorial properties of the Bergman polyno-
mial. The first one is essentially equivalent to [23, Example 4.15]. Define a flag
of flats of m to be an increasing chain of flats under containment ∅ = F0 � F1 �
F2 � · · · � Fn−1 � Fn = 1̂. We call n the length of the flag. Similarly, a weak flag
of flats to be a weakly increasing chain of flats.
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Proposition 4.3.10. At a natural number n, the Bergman polynomial B(m)
of a matroid m is given by

B(m)(n) = number of weak flags of flats of m of length n =
r∑

k=0

cd

(
n

d

)
,

where cd is the number of flags of flats of m of length d. Its degree is the rank r of
m.

Proof. We use the inclusion M −֒→ GP to proceed geometrically. Let p =
P(m) be the matroid polytope of m. The summand of BI(p)(n) in (47) corre-
sponding to a decomposition I = S1 ⊔ · · · ⊔ Sn equals

(γS1
⊗ · · · ⊗ γSn

) ◦ΔS1,...,Sn
(p) = γS1

(p1) · · · γSn
(pn) = γI(pT1,··· ,Td

)

where I = T1 ⊔ · · · ⊔ Td is the composition obtained by removing all empty parts,
and pT1,··· ,Td

is the y-maximal face of p for any y ∈ BT1,...,Td
. This term contributes

1 to the sum if pT1,··· ,Td
is loopless and 0 otherwise.

By Theorem 4.3.8, pT1,··· ,Td
is loopless if and only if BT1,...,Td

is in the Bergman
fan of m, and this is the case if and only if ∅ � T1 � T1∪T2 � · · · � T1∪· · ·∪Td = I
is a flag of flats. For fixed n and d there are cd choices for that flag of flats, and

(
n
d

)

ways to enlarge the resulting composition I = T1 ⊔ · · · ⊔ Td into a decomposition
I = S1 ⊔ · · · ⊔ Sn by adding empty parts. This results in a weak flag of flats
∅ ⊆ S1 ⊆ S1 ∪ S2 ⊆ · · · ⊆ S1 ∪ · · · ∪ Sn = I of length n.

Since
(
n
d

)
is a polynomial in n of degree d, the degree of B(m) is the largest

possible length of a flag of flats of m, which is the rank r of m. �

Proposition 4.3.11. (Bergman polynomial reciprocity.) The Bergman poly-
nomial of a matroid m of rank r satisfies

B(m)(−1) = (−1)rμ(m)

where μ(m) is the Möbius number of m.

Proof. Using Proposition 4.1.5 and Theorem 1.6.1 we get

B(m)(−1) = γI(sI(m)) =
∑

n face of m

(−1)|I|−dimnγ(n)

=
∑

n face of m
n loopless

(−1)|I|−dimn =
∑

F=Nm(n)
face of B(m)

(−1)dimF = χ(B̃(m)),

the reduced Euler characteristic of the Bergman complex of m. The result now
follows from Theorem 4.3.9. �
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CHAPTER 5

Hypergraphs, simplicial complexes, and building

sets

For the remainder of this manuscript, when P and Q are polytopes, we will
write P + Q for the Minkowski sum of P and Q. This is not to be confused with
the formal sum of polytopes entering in earlier formulas such as (29).

5.1. HGP: Minkowski sums of simplices, hypergraphs, Rota’s question

In this section we focus on a large family of generalized permutahedra which we
call hypergraphic polytopes or Minkowski sums of simplices. The polytopes in this
family conserve the Hopf algebraic structure of GP while featuring additional combi-
natorial structure, which makes them very useful for combinatorial applications, as
we will see in Sections 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7. In fact, HGP is a useful source
of old and new Hopf monoids: we start with some important subfamilies of general-
ized permutahedra – namely hypergraphic polytopes, graphic zonotopes, simplicial
complex polytopes, nestohedra, graph associahedra, permutahedra, and associahe-
dra – and we let them give rise to several interesting (and mostly new) Hopf monoids
of a more combinatorial nature, denoted HG, SHG,G, SC,BS,WBS,W,Π,F, which
consist of hypergraphs, simple hypergraphs, graphs, simplicial complexes, building
sets, graphical building sets, simple graphs, set partitions, and paths, respectively.
As we will see in the upcoming sections, these Hopf monoids are related to each
other by the following morphisms:

Π

��
❊❊

❊❊
❊❊

❊❊
� �

��
❊❊

❊❊
❊❊

❊❊
Gcop ���

�

�� HGcop

s

�� ��❑
❑❑

❑❑
❑❑

❑❑
❑

∼= �� HGP ���

�

��

supp
����

GP

Wcop
∼= �� WBScop ���

�

�� BScop ���

�

�� SHGcop

F

��②②②②②②②②②�
�

��②②②②②②②②

SCcop

�������������
	

�����������

5.1.1. Minkowski sums of simplices. We briefly mentioned in earlier sec-
tions that permutahedra, Loday’s associahedra, and graphic zonotopes may be
expressed as Minkowski sums of simplices. We now place these statements into a
broader context, following Postnikov [77].

Recall that the Minkowski sum of two polytopes P and Q ⊆ RI is

P +Q := {p+ q | p ∈ P, q ∈ Q} ⊆ RI .

89
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For the remainder of this monograph, P + Q will always denote this Minkowski
sum.

Normal fans of polytopes behave well under scaling and Minkowski sums: the
polytopes P and λP have the same normal fan for λ > 0, while the normal fan
of P +Q (and hence of λP + μQ for λ, μ > 0) is the coarsest common refinement
of the normal fans of P and Q [99]. It follows that if P and Q are generalized
permutahedra, then so is λP + μQ for λ, μ ≥ 0.

Recalling from Theorem 3.1.3 that every generalized permutahedron p is as-
sociated to a unique submodular function z such that p = P(z), the previous
statement has the following counterpart. If z and z′ are submodular functions,
then so is λz + μz′ for λ, μ ≥ 0, and

(51) λP(z) + μP(z′) = P(λz + μz′).

Let ΔI = conv{ei | i ∈ I} be the standard simplex in RI . Let

ΔJ = conv{ei | i ∈ J} for J ⊆ I

be the faces of ΔI ; note that the face ΔJ is itself the standard simplex in RJ . The
following proposition is a consequence of (51).

Proposition 5.1.1 ([77, Proposition 6.3]). If y : 2I → R≥0 is a non-negative
Boolean function then the Minkowski sum

∑
J⊆I y(J)ΔJ of dilations of faces of the

standard simplex in RI is a generalized permutohedron. We have

(52)
∑

J⊆I

y(J)ΔJ = P(z),

where z is the submodular function given by

z(J) =
∑

K∩J �=∅

y(K) for each J ⊆ I.

Furthermore, if a polytope can be written in the form (52), then there is a unique
choice of y that makes this equation hold.1

Definition 5.1.2. A generalized permutahedron p is y-positive if it is given
by (52) for a non-negative Boolean function y : 2I → R≥0. If, additionally, y(J) is
an integer for all J ⊆ I, we call p a Minkowski sum of simplices or a hypergraphic
polytope.

We should say a word about this nomenclature. A hypergraph H on I is a collec-
tion of (possibly repeated) subsets of I, called the multiedges of H. Our convention
will be that the empty set appears exactly once in H. Then there is a natural bi-
jection between hypergraphs and hypergraphic polytopes: to a hypergraph H on I
containing y(J) copies of the subset J ⊆ I, we associate the hypergraphic polytope
ΔH =

∑
H∈H ΔH =

∑
J⊆I y(J)ΔJ .

Remark 5.1.3. We saw in Theorem 3.1.3 that there is a one-to-one correspon-
dence between generalized permutahedra in Rn and submodular functions, which
naturally form a polyhedral cone in R2n−1. The y-positive generalized permutahe-
dra form a polyhedral subcone of this submodular cone, which is full-dimensional

1In fact, every generalized permutahedron can be expressed uniquely as a signed Minkowski
sum

∑

J⊆I y(J)ΔJ where y(J) is allowed to be negative, but the definitions become more subtle.

We will not pursue this point of view here; for more information, see [7, Proposition 2.3].
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since it is parameterized by 2n− 1 independent parameters. The inequalities defin-
ing this subcone will be given in Proposition 5.1.4.2.

Many polytopes of interest are hypergraphic, although that is not always appar-
ent at the outset. For example, graphic zonotopes, permutahedra, and associahedra
turn out to be hypergraphic, but this is not clear from their definitions. We will
see many other examples in the upcoming sections.

5.1.2. Relations, hypergraphic polytopes, and Rota’s question. A re-
lation R ⊆ I × J gives rise to a function fR : 2I → N defined by

fR(A) = |R(A)| = |{b ∈ B | (a, b) ∈ R for some a ∈ A}| for A ⊆ I.

Let us call such a function relational. One may verify that every relational function
is submodular, and Rota [63, Problem 2.4.1(d)] asked for a characterization of these
relational submodular functions :

There is an interesting open question which ought to have been
worked out, and that I ought to have worked out, but I haven’t:
Characterize those submodular set functions that come from a
relation in this way [80, Exercise 18.1].

It is likely that Rota knew how to do this, but we have not been able to find a
precise statement in the literature. We offer the following characterizations.

Proposition 5.1.4. A submodular function f : 2I → R is relational if and
only if either of the following conditions hold:

(1) Its associated polytope P(f) is hypergraphic.
(2) f(∅) = 0 and for all A ⊆ I we have f(A) ∈ Z and

∑

K⊇A

(−1)|K−A|f(K) ≤ 0.

Proof. 1. A relation R ⊆ I × J naturally gives rise to a hypergraph HR on
I whose hyperedges hj = {i | (i, j) ∈ R} for j ∈ J are given by the columns of
R. Clearly any hypergraph on I arises in this way from a relation. If yR(K) is the
multiplicity of hyperedge K in HR then

(53) fR(A) =
∑

K∩A �=∅

yR(K)

for all A ⊆ I. Proposition 5.1.1 then gives

P(fR) =
∑

J⊆I

yR(K)ΔK .

which is a Minkowski sum of simplices. Conversely, given such a Minkowski sum,
we can use its coefficients as the multiplicities of a hypergraph which gives rise to
the desired relation.

2. The submodular function of a relation R clearly satisfies fR(∅) = 0. We rewrite
(53) as fR(A) = |J | −

∑
K⊆I−A yR(K) and use the inclusion-exclusion formula to

obtain

yR(B) =
∑

K⊆B

(−1)|B−K|(|J | − fR(I −K)) = −
∑

K⊆B

(−1)|B−K|fR(I −K)
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for B �= ∅. Therefore

(54) yR(I −A) = −
∑

K⊇A

(−1)|K−A|fR(K) ≥ 0

Conversely, for any integral function f satisfying the given inequalities, (54) gives
us a non-negative function y : 2I → Z. We then construct the desired relation
R ⊆ I × J as in part 1: for each K ⊆ I we include y(K) elements j in J such that
hj = K. �

We wish to study these objects further, following the philosophy of Joni and
Rota’s paper [60]: we will describe their Hopf algebraic structure in Sections 5.1.3
and 5.2. This will turn out to be a crucial ingredient for the rest of this monograph.

5.1.3. The Hopf monoid of hypergraphic polytopes.

Proposition 5.1.5. The hypergraphic polytopes form a submonoid HGP of the
Hopf monoid of generalized permutahedra GP.

Proof. Let I = S ⊔ T be a decomposition. To prove HGP is a submonoid of
GP we need to prove two things:
• If polytopes p and q are hypergraphic in RS and RT , then p× q is hypergraphic
in RI .
• If p is hypergraphic in RI , then p|S and p/S are hypergraphic in RS and RT ,
respectively.

For the first statement, if p =
∑

J⊆S y1(J)ΔJ ⊆ RS and q =
∑

K⊆T y2(K)ΔK ⊆

RT are Minkowski sums of simplices, then

(55) p× q = p+ q =
∑

J⊆S

y1(J)ΔJ +
∑

K⊆T

y2(K)ΔK ⊆ RI

is also a Minkowski sum of simplices.
For the second one, we use that (P+Q)v = Pv+Qv for any polytopes P,Q ⊆ RI

and any linear functional v ∈ RI . Now, the maximal face of the simplex ΔJ in
direction 1S is

(ΔJ )S,T =

{
ΔJ∩S if J ∩ S �= ∅

ΔJ if J ∩ S = ∅.

Therefore if p =
∑

J⊆I y(J)ΔJ ⊆ RI is a hypergraphic polytope, then its 1S-

maximal face is pS,T = p|S + p/S where

(56) p|S =
∑

J∩S �=∅

y(J)ΔJ∩S ⊆ RS , p/S =
∑

J∩S=∅

y(J)ΔJ ⊆ RT .

Therefore p|S and p/S are hypergraphic, as desired. �

Since HGP is a Hopf submonoid of GP, Theorem 1.6.1 gives us a formula for
the antipode of HGP. We write it down in Theorem 5.2.5 in terms of hypergraphs.

5.2. HG: Hypergraphs

Recall that a hypergraph with vertex set I is a collection H of (possibly re-
peated) subsets of I. We will use the convention that there is always a single copy
of ∅ in H.2 We can think of each subset H in H as a multiedge which can now
connect any number of vertices.

2This is the opposite of the usual convention that ∅ /∈ H.
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5.2.1. The Hopf monoid of hypergraphs. Let HG[I] be the set of all
hypergraphs with vertex set I. Clearly HG is a species, which we now turn into a
Hopf monoid.

Let I = S ⊔ T be a decomposition.

• For H1 ∈ HG[S] and H2 ∈ HG[T ], define their product H1 · H2 ∈ HG[I] to be
the disjoint union H1 ⊔H2 as a hypergraph on I.

• The coproduct of H ∈ HG[I] is (H|S ,H/S), where the restriction and contraction
of H with respect to S are the multisets

H|S := {H | H ∈ H, H ⊆ S}

H/S := {H ∩ T | H ∈ H, H � S} ∪ {∅}.

Each multiedge HS of H|S has the same multiplicity that it had in H, while the
multiplicity of a nonempty multiedge HT of H/S is the sum of the multiplicities of
the edges H ∈ H such that H ∩ T = HT .

The Hopf monoid axioms are easily verified.

Example 5.2.1. For the hypergraph H = {∅, 1, 2, 3, 12, 23, 123} on I = [3], we
have

H|13 = {∅, 1, 3}, H/13 = {∅, 2, 2, 2, 2},

H|2 = {∅, 2}, H/2 = {∅, 1, 1, 3, 3, 13}.

We omit the brackets from the individual multiedges in H for clarity.

5.2.2. Hypergraphs as a submonoid of generalized permutahedra.

Recall that the hypergraphic polytope of a hypergraph H on I is the Minkowski
sum

ΔH =
∑

H∈H

ΔH

where ΔH is the standard simplex in RH ⊆ RI .

Example 5.2.2. The hypergraphic polytope for the hypergraph

H = {∅, 1, 2, 3, 12, 23, 123}

is
ΔH = Δ1 +Δ2 +Δ3 +Δ12 +Δ23 +Δ123,

as shown in Figure 1.

+ + + + =+

2

1 3

Figure 1. The hypergraphic polytope of the hypergraph H =
{∅, 1, 2, 3, 12, 23, 123}.

Let HGcop be co-opposite to the Hopf monoid of hypergraphs HG, as defined in
Section 1.1.2; it has the same product and the reverse coproduct of HG.
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Proposition 5.2.3. The map H �→ ΔH gives an isomorphism HGcop ∼=
−→ HGP

between HGcop and the Hopf monoid of hypergraphic polytopes HGP.

Proof. We know that the map is bijective. The equation (55) says that the
map preserves the product and (56), which may be rewritten as (ΔH)|S = ΔH/T

and (ΔH)/S = ΔH|T , says that the map reverses the coproduct. �

Example 5.2.4. For the hypergraphic polytope of Example 5.2.2 and Figure
1, the northwest edge and southwest vertex are described by

(ΔH)13,2 = (Δ1 +Δ2 +Δ3 +Δ1 +Δ3 +Δ13)

= Δ{∅,1,1,3,3,13} ×Δ{∅,2} = ΔH/2
×ΔH|2

(ΔH)2,13 = (Δ1 +Δ2 +Δ3 +Δ2 +Δ2 +Δ2)

= Δ{∅,2,2,2,2} ×Δ{∅,1,3} = ΔH/13
×ΔH|13 ,

in (co-opposite) agreement with Example 5.2.2.

Theorem 5.2.5. The antipode of the Hopf monoid of hypergraphs HG is given
by the following cancellation-free and combination-free expression. If H is a
hypergraph on I then

sI(H) =
∑

ΔG≤ΔH

(−1)c(G)G,

summing over all faces ΔG of the hypergraphic polytope ΔH of H, where c(G) is the
number of connected components of the hypergraph G.

Proof. This is the result of applying Theorem 1.6.1 to the submonoid HGP

of GP, taking into account the identification of HGP and HG of Proposition 5.2.3
and the observation that dimΔG = |I|− c(G). There is no cancellation or grouping
in the right hand side of this equation because ΔG = ΔG′ implies G = G′. �

Example 5.2.6. The antipode of the hypergraph H = {∅, 1, 2, 3, 12, 23, 123} in
HG is given by the hypergraphic polytope of Figure 1, namely:

s[3](H) = {∅, 1, 2, 3, 12, 23, 123} − {∅, 1, 2, 3, 1, 23, 1} − {∅, 1, 2, 3, 1, 3, 13}
−{∅, 1, 2, 3, 12, 3, 3} − {∅, 1, 2, 3, 2, 23, 23} − {∅, 1, 2, 3, 12, 2, 12}
+{∅, 1, 2, 3, 1, 2, 1}+ {∅, 1, 2, 3, 1, 3, 1}+ {∅, 1, 2, 3, 1, 3, 3}
+{∅, 1, 2, 3, 2, 3, 3}+ {∅, 1, 2, 3, 2, 2, 2}.

5.2.3. Graphs, revisited. We now give another explanation of the inclusion
of Gcop into GP shown in Proposition 3.2.5.

Proposition 5.2.7. The map g �→ Zg is an injective morphism of Hopf monoids
Gcop →֒ GP.

Proof. Since the graph operations of G defined in Section 1.2.1 are special
cases of the hypergraph operations of HG defined in Section 5.2.4, we have an
inclusion of Hopf monoids, G →֒ HG, which gives an inclusion Gcop →֒ HGcop.
Proposition 5.2.3 tells us that the map H �→ ΔH is an isomorphism HGcop ∼= HGP.
By Proposition 3.2.3, the composition of these maps is the map Gcop → HGP →֒ GP
given by g �→ Zg. �
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5.2.4. Simple hypergraphs and simplification. A hypergraph is simple if
it has no repeated multiedges.3 In the applications we have in mind, we are only
interested in simple hypergraphs. Unfortunately, simple hypergraphs are not closed
under the contraction map of HG, so the Hopf structure that we define on them
requires a slightly different contraction map. Let SHG[I] be the set of all simple
hypergraphs with vertex set I.

Let I = S ⊔ T be a decomposition.

• The product of H1 ∈ SHG[S] and H2 ∈ SHG[T ] is their disjoint union H1 ⊔H2.

• The coproduct ofH ∈ SHG[I] is (H|S ,H/S), where the restriction and contraction
of H with respect to S are:

H|S := {H | H ∈ H, H ⊆ S}

H/S := {H ∩ T | H ∈ H, H � S} ∪ {∅} = {B ⊆ T | A ⊔B ∈ H for some A ⊆ S},

now regarded as sets without repetition.

One easily verifies that the simplification maps, which remove any repetitions of
multiedges in a hypergraph, give a morphism of Hopf monoids s : HG ։ SHG. We
now show that this map behaves reasonably well with respect to the corresponding
polytopes. Define HGP ⊆ GP to be the quotient of HGP obtained by identifying
hypergraphic polytopes with the same normal fan.

Proposition 5.2.8. We have a commutative diagram of Hopf monoids as fol-
lows.

HGcop

s
����

��
∼= �� HGP

����

SHGcop �� �� HGP

Proof. The two vertical maps are defined in the previous paragraph, while
the top map is H �→ ΔH. It remains to verify that the bottom map that makes
this diagram commute is well-defined: if H is a hypergraph, the normal fan NΔH

is the common refinement of NΔH
as we range over all H ∈ H; this only depends

on the simplification of H. �

Remark 5.2.9. The bottom map SHGcop −֒→ HGP of Proposition 5.2.8 is not
an isomorphism. For example, Δ{∅,12,13,23} and Δ{∅,12,13,23,123} are hexagons with
the same normal fan. More generally, for any simple hypergraph H on I containing
all pairs {i.j} with i, j ∈ I, the hypergraphic polytope ΔH is normally equivalent
to the standard permutahedron πI . To see this, notice that the normal fan of ΔH

coarsens the braid arrangement (since ΔH is a generalized permutahedron) and
refines the braid arrangement (since it has πI =

∑
{i,j}⊆I Δ{i,j} as a Minkowski

summand).

5.2.5. The support maps. The support maps suppI : HGP[I] → SHG[I]
will be an important tool in what follows; they take a hypergraphic polytope p =
ΔH =

∑
J⊆I y(J)ΔJ ⊆ RI to the simple hypergraph supporting it:

suppI(p) := {J ⊆ I | y(J) > 0} ∪ {∅}.

3We allow simple hypergraphs to contain singletons, slightly against the usual convention.
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Under the isomorphism HGP ∼= HGcop of Proposition 5.2.3 which identifies p with
its corresponding hypergraph H, the support suppI(p) is the simplification of H.

Theorem 5.2.10. The support maps suppI : HGP[I] → SHG[I] give a surjec-
tive morphism of Hopf monoids supp : HGP ։ SHGcop.

Proof. This morphism is the composition of the top isomorphism with the
simplification map s in Proposition 5.2.8. �

Theorem 5.2.11. The antipode of the Hopf monoid of simple hypergraphs SHG

is given by the following cancellation-free expression. If H is a simple hypergraph
on I then

sI(H) =
∑

F≤ΔH

(−1)c(F )suppI(F ),

summing over all faces F of the hypergraphic polytope ΔH of H, where c(F ) =
|I| − dimF is the number of connected components of the hypergraph suppI(F ).

Proof. Thanks to Proposition 1.1.17, the surjective maps supp turn Theo-
rem 5.2.5, our formula for the antipode of HGcop ∼= HGP, into a formula for
the antipode of SHG. The formula is cancellation free because faces of different
dimension must have different support. �

Example 5.2.12. The antipode of the hypergraph H = {∅, 1, 2, 3, 12, 23, 123}
in SHG is also given by the hypergraphic polytope of Figure 1, but the result is
now the simplification of the one in Example 5.2.6:

s[3](H) = H− 2{∅, 1, 2, 3, 23} − 2{∅, 1, 2, 3, 12} − {∅, 1, 2, 3, 12}+ 5{∅, 1, 2, 3}

As in the case of matroids, we have no simple combinatorial labeling of the faces
of a general hypergraphic polytope, so we do not have a way of simplifying the for-
mula of Theorem 5.2.11. This shows that hypergraphic polytopes are fundamental
in the Hopf structure of hypergraphs.

However, we do know a few families of hypergraphic polytopes whose com-
binatorial structure we can describe more explicitly; they give rise to interesting
combinatorial families which inherit Hopf monoid structures from their polytopes.
In the remaining sections of this monograph, we will describe the resulting Hopf
monoids and use Theorem 5.2.11 to describe their antipodes.

5.3. SC: Simplicial complexes, graphs, and Benedetti et al.’s formula

Benedetti, Hallam, and Machacek [14] constructed a combinatorial Hopf alge-
bra of simplicial complexes, and obtained a formula for its antipode through a clever
combinatorial argument. Surprisingly, the formula is almost identical to Humpert
and Martin’s formula for the antipode of the Hopf algebra of graphs [58]. In this
section, by modeling simplicial complexes polytopally, we are able to offer a simple
geometric explanation of this phenomenon.

A(n abstract) simplicial complex on a finite set I is a collection C of subsets of
I, called faces, such that any subset of a face is a face; that is, if J ∈ C and K ⊆ J
then J ∈ C. For a subset J ⊆ I, the induced simplicial complex C|J consists of the
faces of C which are subsets of J .
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5.3.1. The Hopf monoid of simplicial complexes. Let SC[I] denote the
set of all simplicial complexes on I. We turn the set species SC into a commutative
and cocommutative Hopf monoid with the following structure.

Let I = S ⊔ T be a decomposition.

• The product of two simplicial complexes C1 ∈ SC[S] and C2 ∈ SC[T ] is their
disjoint union.

• The coproduct of a simplicial complex C ∈ SC[I] is (C|S , C|T ).

The Hopf monoid axioms are easily verified.
At first sight, this Hopf monoid – which is cocommutative – does not seem

related to the Hopf monoids of hypergraphs – which are not cocommutative. How-
ever, it turns out that SC lives inside the cocommutative part of SHG.

Proposition 5.3.1. The Hopf monoid of simplicial complexes SC is a sub-
monoid of the Hopf monoid of simple hypergraphs SHG.

Proof. Simplicial complexes are simple hypergraphs, and the product and
restriction operations for these two families coincide. The contraction operations
are defined slightly differently. However, if C is a simplicial complex and I =
S ⊔ T is a decomposition, one may verify that the contraction C/S in the sense
of simple hypergraphs coincides with the restriction C|T in the sense of simplicial
complexes. �

5.3.2. Simplicial complex polytopes. Each simplicial complex C, being a
hypergraph, has a corresponding hypergraphic polytope ΔC :=

∑
C∈C ΔC . Unlike

general hypergraphic polytopes, this family of polytopes have a simple combinato-
rial facial structure.

Recall that the one-skeleton C(1) of a simplicial complex on I is the graph on
I whose edges are the sets in C of size 2.

Lemma 5.3.2. For any simplicial complex C, the hypergraphic polytope ΔC is
normally equivalent to the graphic zonotope ZC(1) of its one-skeleton C(1).

Proof. We use the central fact from Proposition 5.2.8 that the normal equiva-
lence class of a hypergraphic polytope ΔH depends only on the support supp(ΔH).

Let C be a simplicial complex on I. Since they have the same support, the
simplicial complex polytope ΔC =

∑
F∈C ΔF is normally equivalent to the polytope

P1 =
∑

G∈C

∑

F⊆G

ΔF =
∑

G∈C

π′
G.

where we define π′
G :=

∑
F⊆G ΔF for each set G ∈ C. By Remark 5.2.9, π′

G

is normally equivalent to the standard permutahedron πG in RI . Therefore the
polytope P1 is normally equivalent to

P2 =
∑

G∈C

πG =
∑

G∈C

∑

{i,j}⊆G

Δ{i,j}

using (19). In turn, P2 is normally equivalent to ZC(1) =
∑

{i,j}∈C Δ{i,j} since they

have the same support. �

As a consequence, the simplicial complex polytope ΔC has the same facial
structure as the zonotope Zg for g = C(1), as described by Lemma 3.2.4. It would
be interesting to further study these simplicial complex polytopes.
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5.3.3. The antipode of simplicial complexes. Since simplicial complexes
form a submonoid of simple hypergraphs by Proposition 5.3.1, we may use Theorem
5.2.11 to compute the antipode of SC, thus recovering the formula of Benedetti,
Hallam, and Machacek [14]. We now carry this out.

Let C be a simplicial complex C on I and let f be a flat of the 1-skeleton C(1) of
C. The flat f is a subgraph of C(1), and its connected components form a partition
π = {π1, . . . , πk} of its vertex set I. As before, we let c(f) = k denote the number of
connected components of f . We define C(f) = C|π1

⊔· · ·⊔C|πk
to be the subcomplex

of C consisting of the faces which are contained in a connected component of f .

Corollary 5.3.3 ([14]). The antipode of the Hopf monoid of simplicial com-
plexes SC is given by the following cancellation-free and combination-free ex-
pression. If C is a simplicial complex on I then

sI(C) =
∑

f

(−1)c(f)a(g/f) C(f),

summing over all flats f of the 1-skeleton g = C(1) of C, where a(g/f) is the number
of acyclic orientations of the contraction g/f .

Proof. By Theorem 5.2.11, the antipode of C is given by the face structure
of the polytope ΔC , which is equivalent to the face structure of the zonotope Zg by
Lemma 5.3.2. Lemma 3.2.4 tells us that the faces of these polytopes are in bijection
with the pairs of a flat f of g and an acyclic orientation o of g/f . Recall from that
proof that the maximal face (ΔC)y in a direction y ∈ RI depends only on a flat
f = fy of g and an orientation o = oy of g/f determined by y. The flat f of g
consists of the edges ij such that y(i) = y(j); the acyclic orientation o of g/f will
be irrelevant here.

The corollary will now follow from the claim that the support of the (|I| − c)-
dimensional face (ΔC)y equals C(f), independently of the choice of o. To prove this
claim, we will use the following expressions:

(57) (ΔC)y =
∑

C∈C

(ΔC)y, ΔC(f) =
∑

C∈C :
y is constant on C

ΔC .

We will show that they have the same summands, possibly with different multiplic-
ities.
−→: For each C ∈ C we have (ΔC)y = ΔCmax

where Cmax = {c ∈ C | y(c) is
maximum. Clearly y is constant on Cmax, so this is a summand of ΔC(f).
←−: For any summand ΔC of ΔC(f), C is a face of the simplicial complex C where
y is constant, so ΔC = ΔCmax

= (ΔC)y is a summand of (ΔC)y.
This proves the claim that supp(ΔC)y = C(f), and the desired result follows. �

The proof above gives a simple geometric explanation for the striking similarity
between the antipode formulas for the Hopf algebra of graphs G and the Hopf
algebra of simplicial complexes SC: these formulas have the same combinatorial
structure because they are controlled by polytopes that are normally equivalent.

5.4. BS: Building sets and nestohedra

In this section we study building sets, a second family of hypergraphs whose
hypergraphic polytope has an elegant combinatorial structure. This allows us to
describe the Hopf theoretic structure of building sets very explicitly.
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Building sets were introduced independently and almost simultaneously in two
very different contexts by De Concini and Procesi [31] in their construction of the
wonderful compactification of a hyperplane arrangement, and by Schmitt [86] (who
called them Whitney systems) in an effort to abstract the notion of connectedness.
We follow [77]; see also [37,38,49].

Definition 5.4.1. A collection B of subsets of a set I is a building set on I if
it satisfies the following conditions:
• If J,K ∈ B and J ∩K �= ∅ then J ∪K ∈ B
• For all i ∈ I, {i} ∈ B.
We call the sets in B connected.

We call the maximal sets of a building set B its connected components ; one may
show that they form a partition of I. If I ∈ B then we say B is connected.

One prototypical example of a building set comes from a graph w on vertex set
I. The connected sets are the subsets J ⊆ I for which the induced subgraph of w
on J is connected. This family of graphical building sets is the subject of Section
5.5.

Example 5.4.2. The graphical building set for the path •
1 2

•
3
• on [3]

is the hypergraph {∅, 1, 2, 3, 12, 23, 123} of Example 5.2.2.

Another example of a building set comes from a matroidm on I. The connected
sets of m form a building set on I. We recall that a subset J ⊆ I of a matroid is
connected if for every pair of elements x, y ∈ J there exists a circuit C (a minimal
set with r(C) < |C|) such that {x, y} ⊆ C ⊆ J .

5.4.1. The Hopf monoid of building sets. Let BS[I] denote the species
of building sets on I. The species BS becomes a Hopf monoid with the following
additional structure.

Let I = S ⊔ T be a decomposition.

• The product of two building sets B1 ∈ BS[S] and B2 ∈ BS[T ] is their disjoint
union.

• The coproduct of a building set B ∈ BS[I] is (B|S ,B/S) ∈ BS[S]× BS[T ], where
the restriction and contraction of B with respect to S are defined as

B|S = {B | B ∈ B, B ⊆ S}

B/S = {B ⊆ T | A ⊔B ∈ B for some A ⊆ S}.

One may check that these two collections are indeed building sets, and that the
operations defined above satisfy the axioms of Hopf monoid.

Proposition 5.4.3. The Hopf monoid of building sets BS is a submonoid of
the Hopf monoid of simple hypergraphs SHG.

Proof. Building sets are simple hypergraphs, and the product, restriction,
and contraction operations for these two families are defined identically. �

Note that this Hopf structure is essentially the same as the one defined by Grujić
in [48,50], but different from the (cocommutative) Hopf algebras of building sets
defined in [49,86].
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5.4.2. Nestohedra. Since each building set B is a hypergraph, we can model
it polytopally using its hypergraphic polytope, which is called the nestohedron

ΔB =
∑

J∈B

ΔJ .

Unlike general hypergraphic polytopes, there is an explicit combinatorial descrip-
tion of the faces of the nestohedron ΔB; they are in bijection with the nested sets
for B and with the B-forests, two equivalent families of objects which we now define.

Definition 5.4.4. [38, 77] A nested set N for a building set B is a subset
N ⊆ B such that:
(N1) If J,K ∈ N then J ⊆ K or K ⊆ J or J ∩K = ∅.
(N2) If J1, . . . , Jk ∈ N are pairwise incomparable and k ≥ 2 then J1 ∪ · · · ∪Jk /∈ B.
(N3) All connected components of B are in N .
The nested sets of B form a simplicial complex, called the nested set complex of B.

Example 5.4.5. The collection N = {3, 4, 6, 7, 379, 48, 135679, 123456789} is a
nested set for the graphical building set of the graph shown in Figure 2(a); see also
Figure 4.

1

7

4

8
9

6

5

3

2

2

15

6 49

3

8

7

123456789

135679

6 4379

3

48

7

Figure 2. (a) A graph w. (b) A nested set for the graphical
building set B of w and the corresponding B-forest.

As shown in [38, 77] and illustrated in Figure 2(b), nested sets for B are in
bijection with a family of objects called B-forests, as follows. We may regard a
nested set N as a poset ordered by containment. We then relabel each node by
removing all elements which appear in nodes below it; the result is the corresponding
B-forest. We now define these objects more precisely.

Definition 5.4.6. [38,77] Given a building set B on I, a B-forest N is a rooted
forest whose vertices are labeled with nonempty sets partitioning I such that:
(F1) For any node S, N≤S ∈ B.

(F2) If S1, . . . , Sk are pairwise incomparable and k ≥ 2,
⋃k

i=1 N≤Si
/∈ B.

(F3) If R1, . . . , Rr are the roots of N , then the sets N≤R1
, . . . ,N≤Rr

are precisely
the connected components of B.
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Here ≤ denotes the partial order on the nodes of the forest where all branches
are directed up towards the roots. Also we denote N≤S :=

⊔
T≤S T .

Proposition 5.4.7. [38,77] For any building set B on I, there is a bijection
between the nested sets for B and the B-forests.

As the notation suggests, we will make no distinction between a nested set and
its corresponding B-forest.

Each B-forest N gives rise to a building set

(58) B(N ) :=
⊔

S node of N

B[N<S ,N≤S ]

where for X ⊆ Y ⊆ I we define B[X,Y ] := (B|Y )/X = (B/X)|Y−X on Y −X.

Theorem 5.4.8. [38,77] Let B be a building set. There is an order-reversing
bijection between the faces of the nestohedron ΔB and the nested sets of B. If N is
a nested set of B and FN is the corresponding face of ΔB, then dimFN = |I| − |N |
and suppI(FN ) = B(N ).

Proof. This is implicit in the proofs of [11, Proposition 3.5] and [77, Theorem
7.4, 7.5]. �

In other words, the nestohedron ΔB is a simple polytope whose dual simplicial
complex is isomorphic to the nested set complex of B. An example is illustrated in
Figure 3.
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 1

13

2

12

 3

123

Figure 3. The hypergraphic polytope of Figure 1 is the nestohe-
dron for the building set B = {∅, 1, 2, 3, 12, 23, 123}; its faces are
labeled by the B-forests.

5.4.3. The antipode of building sets. Since building sets form a submonoid
of simple hypergraphs by Proposition 5.4.3, we may use Theorem 5.2.11 to compute
the antipode of BS.
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Corollary 5.4.9. The antipode of the Hopf monoid of building sets BS is
given by the following cancellation-free expression. If B is a building set on I
then

sI(B) =
∑

B−forests N

(−1)|N |B(N )

where for each B-forest N , |N | is the number of vertices of N and B(N ) is defined
in (58).

Proof. By Theorem 5.2.11, the antipode of BS is given by the face struc-
ture of the nestohedron ΔB. It remains to invoke Theorem 5.4.8 which tells us
the dimension and the building set supporting each face of ΔB. The formula is
cancellation-free since faces of different dimensions have different supports. �

Note that the formula of Corollary 5.4.9 is not combination-free. For example,
all vertices of ΔB map to the trivial building set {{i}, i ∈ I} ∪ {∅}.

Example 5.4.10. Let us return to the building set {∅, 1, 2, 3, 12, 23, 123} of
Example 5.4.2. We computed its antipode in Example 5.2.12:

s[3](H) = H− 2{∅, 1, 2, 3, 23} − 2{∅, 1, 2, 3, 12} − {∅, 1, 2, 3, 12}+ 5{∅, 1, 2, 3}

and we now encourage the reader to compare this with the expression in Corollary
5.4.9.

5.5. W: Simple graphs, ripping and sewing, and graph associahedra

In Section 5.4 we briefly mentioned how connectivity in graphs was one of the
motivations to study building sets. In this section we focus on the graphical building
sets that arise in this way, which give rise to a new Hopf monoid W on graphs.
This ripping and sewing Hopf monoid should not be confused with the monoids G,
SG, and Γ of Sections 3.2 and 3.3.5.

Definition 5.5.1. Let w be a simple graph whose vertex set is I. A subset
J ⊆ I is a tube if the induced subgraph of w on J is connected. The set of tubes of
w is a building set; we denote it tubes(w) and call it the graphical building set of
w.

Let WBS[I] be the set of graphical building sets on I. We will see in Proposition
5.5.3 that graphical building sets form a submonoid of BS, which we now describe
directly in terms of the graphs.

5.5.1. The ripping and sewing Hopf monoid of simple graphs.

Definition 5.5.2. Given a simple graph w whose vertex set is I, and a partition
I = S ⊔ T , an S-thread is a path in w whose initial and final vertices are in T , and
all of whose intermediate vertices (if any) are in S.

Define the operations of ripping and sewing as follows.
• ripping out T : w|S is the induced subgraph on S, obtained by “ripping out” every
vertex of T and every edge incident to T .
• sewing through S: w/S is the simple graph on T where we add or “sew in” an
edge uv between vertices u, v ∈ T if the graph w contains an S-thread from u to v.
Note that this includes all edges of w|T .
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For example, let I = {a, b, c, d, e, f, g, h}, S = {a, b, c, d}, and T = {e, f, g, h}.
For the graph

w =

a
b

f

h

e
c

d

g , we have w|S =

a
b

c

d and w/S =

f

h

e

g .

Let W[I] be the set of simple graphs on vertex set I. We turn the species W
into the ripping and sewing Hopf monoid with the following operations.

Let I = S ⊔ T be a decomposition.

• The product of two simple graphs w1 ∈ W[S] and w2 ∈ W[T ] is their disjoint
union.

• The coproduct of a simple graph w ∈ W[I] is (w|S , w/S) ∈ W[S]×W[T ] where w|S
and w/S are obtained from w by ripping out T and sewing through S, respectively.

One easily checks that this is indeed a Hopf monoid.

Proposition 5.5.3. The species WBS of graphical building sets is a submonoid
of the Hopf monoid of building sets. Furthermore, the tube maps w �→ tubes(w)
give an isomorphism of Hopf monoids W ∼= WBS →֒ BS.

Proof. We first prove that the map tubes : W → BS is a morphism of Hopf
monoids. We do know that the set tubes(w) is a building set for any w. Also tubes
preserves products because tubes(w1 ⊔w2) = tubes(w1)⊔ tubes(w2) for w1 ∈ W[S]
and w2 ∈ W[T ]. It remains to check that the map tubes preserves coproducts; that
is,

tubes(w)|S = tubes(w|S), tubes(w)/S = tubes(w/S)

for any simple graph w on I and any subset S ⊆ I.
The first statement is clear: the connected sets in w which are subsets of S are

precisely the connected sets in w|S , the induced subgraph on S. Let us prove the
second one.

⊆: Suppose B ∈ tubes(w)/S, so A ⊔ B is a tube of w for some subset A ⊆ S.
To show B ∈ tubes(w/S), we need to show that for any u, v ∈ B there is a path
from u to v in w/S .

We do have a path P from u to v inside the induced subgraph A ⊔ B of
w, since this is a tube in w. This path may contain vertices of S and T ; let
u = t0, t1, . . . , tk−1, tk = v be the vertices of T that it visits, in that order. Now,
for each 0 ≤ i ≤ k − 1, the path P contains an S-thread tis1 . . . slti+1 from ti to
ti+1 for some l ≥ 0, so titi+1 is an edge of w/S . It follows that t0t1 . . . tk−1tk is our
desired path from u to v in w/S . We conclude that B ∈ tubes(w/S).

⊇: Conversely, suppose B ∈ tubes(w/S). For each edge uv in w/S , choose an
S-thread from u to v; let Suv ⊆ S be the set of vertices on that S-thread other
than u and v. Let A ⊆ S be the union of the sets Suv as we range over all edges
uv of w/S . We claim that A ⊔ B is a tube in w. To show this, first note that any
two vertices u, v of B are connected by an S-thread inside A ⊔ B by construction.
Furthermore, any vertex of A belongs to the set Suv for some u, v ∈ B, and hence
is connected to u and v by a path in A ⊔ B. It follows that A ⊔ B is a tube of w
and B ∈ tubes(w)/S as desired.
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Thus we have proved that tubes : W → BS is a morphism of Hopf monoids,
and hence that its image WBS is a submonoid of BS. It remains to prove that the
surjective map tubes : W ։ WBS is also injective. To see this, notice that we can
easily recover a simple graph w ∈ W[I] from its graphical building set tubes(w):
the edges of w are precisely the tubes of size 2. �

5.5.2. Graph associahedra. For a simple graph w on I we define the graph
associahedron Δw ⊆ RI to be

Δw :=
∑

τ∈tubes(w)

Δτ .

Graph associahedra are the nestohedra corresponding to graphical building sets.
Let us recall their combinatorial structure, as described in [26,77].

Definition 5.5.4. Let w be a simple graph. A tubing is a set t of tubes such
that:
• any two tubes τ1 and τ2 in t are disjoint or nested: we have τ1 ⊆ τ2, τ1 ⊇ τ2, or
τ1 ∩ τ2 = ∅.
• if τ1, . . . , τk are pairwise disjoint tubes in t, then τ1 ∪ · · · ∪ τk is not a tube of w.
• every connected component of w is a tube in t.

Comparing this with Definition 5.4.4 we see that the tubings of w are precisely the
nested sets for the graphical building set tubes(w). An example is shown in Figure
4.

1

7

4

8
9

6

5

3

2

Figure 4. The nested set N =
{3, 4, 6, 7, 379, 48, 135679, 123456789} of Figure 2, now drawn
as a tubing.

For each tube τ in a tubing t, let t<τ be the union of the tubes of t that are
strictly contained in τ , and let the essential set of τ be ess(τ ) = τ − t<τ . As τ
ranges over the tubes of t, the essential sets ess(τ ) partition I.

Each tubing t of w gives rise to a simple graph

(59) w(t) :=
⊔

τ tube of t

w[t<τ , τ ],

where w[t<τ , τ ] := (w|τ )/t<τ
is the simple graph on ess(τ ) obtained by restricting

w to τ and then sewing through the tubes strictly inside of τ . Since the essential
sets of τ partition I, w(t) is a simple graph on I.
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Theorem 5.5.5. [26,77] Let w be a simple graph. There is an order-reversing
bijection between the faces of the graph associahedron Δw and the tubings of w. If
t is a tubing of w and Ft is the corresponding face of Δw, then dimFt = |I| − |t|
and suppI(Ft) = w(t).

Proof. This is the result of specializing Theorem 5.4.8 to graphical building
sets and graph associahedra. �

An example is illustrated in Figure 5.

2

1 3

Figure 5. The nestohedron of Figures 1 and 3 is the graph as-
sociahedron for the path of length 3; its faces are labeled by the
tubings of the path.

5.5.3. The antipode of the ripping and sewing Hopf monoid.

Theorem 5.5.6. The antipode of the ripping and sewing Hopf monoid of simple
graphs W is given by the following cancellation-free expression. If w is a simple
graph on I then:

sI(w) =
∑

t tubing

(−1)|t|w(t)

where |t| is the number of tubes of t and w(t) is defined in (59).

Proof. Since W is isomorphic to the Hopf monoid of graphical building sets
WBS, which is a submonoid of the Hopf monoid of simple hypergraphs SHG, its
antipode is given by Theorem 5.2.11. It remains to invoke Theorem 5.5.5, and to
remark again that faces of different dimension map to different supports. �

Note that the formula above is not combination-free. For example, for every
maximal tubing t, w(t) is the graph with no edges.

Example 5.5.7. The antipode of the path of length 3 in W is dictated by its
graph associahedron, which again is the polytope of Figures 1, 3, and 5. The result
is now:
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(( + 2  s
1 2 3

= _ _
1 2 3

1 2

3

   5  +  1 3

2

+ 2  2 3

1

1 2

3

Figure 6. The antipode of a path of length 3 in W.

5.6. Π: Set partitions and permutahedra, revisited

Definition 5.6.1. A clique is a complete graph. A cliquey graph is a disjoint
union of complete graphs.

Let K[I] be the set of cliquey graphs on I. There is a natural bijection between
cliquey graphs on I and set partitions of I: the cliquey graph w on I corresponds
to the set partition π(w) formed by its connected components.

Proposition 5.6.2. The species K of cliquey graphs is a submonoid of the
ripping and sewing Hopf monoid of simple graphs W. Furthermore, K is isomorphic
to the Hopf monoid of set partitions Π.

Proof. Since the disjoint union of cliquey graphs is cliquey, K is closed under
multiplication. Also if KI is the clique on I then (KI)|S = KS and (KI)/S = KT ,
so K is also closed under comultiplication, proving the first assertion. The map
π : K → Π sending a cliquey graph w to π(w) gives the desired isomorphism; it
clearly preserves products, and since

π(KI)|S = {I}|S = {S} = π(KS) = π(KI |S) and

π(KI)/S = {I}/S = {T} = π(KT ) = π(KI/S),

it also preserves coproducts. �

Since Π is cocommutative, we also have Π ∼= K →֒ W cop, as shown in the
commutative diagram at the beginning of Section 5.1.

5.6.1. The antipode of set partitions.

Theorem 5.6.3 ([2, Theorem 12.47]). The antipode of the Hopf monoid of set
partitions Π is given by the following cancellation-free and combination-free

expression. If π is a set partition on I,

sI(π) =
∑

ρ|π≤ρ

(−1)b(ρ)(π : ρ)! ρ

summing over all partitions ρ that refine π. Here b(ρ) denotes the number of blocks
of ρ, and (π : ρ)! =

∏
pi∈π ni! where ni is the number of blocks of ρ that partition

the block pi of π.

Proof. Let w be a cliquey graph and π = {p1, . . . , pk} be the corresponding
set partition. A tube on w is a subset of one of the parts pi. A tubing t on w cannot
contain two disjoint subsets of the same pi; thus t consists of a flag ti• of subsets
∅ = τ i0 ⊂ · · · ⊂ τ ini

= pi for each part pi. The flag ti• gives rise to a composition

pi = ρi1⊔ · · ·⊔ρini
where ρij = τ ij − τ ij−1. If we let ρ(t) = {ρij | 1 ≤ i ≤ k, 1 ≤ j ≤ ni}

as an unordered set partition, then ρ(t) is the partition corresponding to the graph
w(t) of (59). Clearly ρ(t) ≥ π and |t| = b(ρ(t)).
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It remains to observe that the map from a tubing t to the partition ρ(t) is a
(π : ρ)!-to-1 map, because there are ni! linear orders for the partition {ρi1, · · · , ρ

i
ni
}

of pi for 1 ≤ i ≤ k, which give rise to different choices of the tubing t. �

As an example, let us revisit the cancellation-free formula for the antipode of
the set partition {ab, cde} shown in the introduction.

(( _  _  _  

_  

_  2 2  2  2  s

d
e

b a

c

+ 6 + 4  + 4   12  + 4  
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c
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e
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c

As should be clear by now, our derivation of Theorem 5.6.3 is controlled by a
polytope; for the set partition π with blocks p1, . . . , pk, it is the graph associahedron

Δπ = π′
p1

× · · ·π′
pk

≡ πp1
× · · ·πpk

,

where π′
I :=

∑
J⊆I ΔJ is normally equivalent to the standard permutahedron πI .

Thus the antipode of π = {ab, cde} is an algebraic shadow of the face structure
of the hexagonal prism π′

{a,b} × π′
{c,d,e}: it has one 3-face, eight 2-faces (in normal

equivalence classes of size 2, 2, 2, 2), eighteen edges (in equivalence classes of sizes
6, 4, 4, 4) and twelve vertices (in one equivalence class of size 12).

b

d

e

c

a

Figure 7. The product π′
{a,b} × π′

{c,d,e} in R{a,b,c,d,e}.

5.6.2. Permutahedra, set partitions, and the Hopf algebra of sym-

metric functions. We conclude this section by precisely stating connections be-
tween permutahedra, set partitions, and symmetric functions

Proposition 5.6.4. The Hopf monoid of permutahedra Π is isomorphic to the
Hopf monoid of set partitions Π.

Proof. The Hopf monoid Π is generated multiplicatively by the standard
permutahedra πI , with coproduct given by ΔS,T (πI) = (πS , πT ) as observed in
Lemma 2.2.1. Comparing this with the definition of the Hopf monoid Π gives the
isomorphism. �
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Recall that K is the Fock functor that associates a Hopf algebra K(H) to any
Hopf monoid in vector species H.

Proposition 5.6.5. The Hopf algebra of permutahedra K(Π) is isomorphic to
the Hopf algebra of symmetric functions Λ.

Proof. This proof requires some basic facts about symmetric functions; see
[68] and [92, Section 7]. The Hopf algebra of symmetric functions Λ = k[x1, x2, . . .]

S∞

is most easily described in terms of the homogeneous and elementary symmetric
functions:

hn =
∑

i1≤···≤in

xi1 · · ·xin , en =
∑

i1<···<in

xi1 · · ·xin

As an algebra, Λ = k[e1, e2, . . .] is simply the polynomial algebra on the ei, while
the coproduct and antipode of Λ are

Δ(en) =
∑

i+j=n

ei ⊗ ej , s(en) = (−1)nhn.

for n ≥ 0, where e0 = 1.
The Fock functor K maps Π to the graded Hopf algebra K(Π); let it take the

permutahedron πI ∈ Π[I] to the element n!gn ∈ Πn where n = |I|. Then (31)
tells us that as an algebra K(Π) = k[g1, g2, . . .] while Lemma 2.2.1 tells us that the
coproduct of K(Π) is given by

Δ(gn) =
∑

i+j=n

gi ⊗ gj .

It follows that the map gn �→ en preserves the product and coproduct. Since
the antipode of a graded Hopf algebra is unique, this map also also preserves the
antipode. This gives the desired isomorphism K(Π) ∼= Λ. �

It is instructive to compare the antipodes of K(Π) and Λ. In Π the antipode of
n!gn is given by the face structure of the permutahedron πn, as described in Section
1.3.4. This gives:

s(gn) =
∑

λ1+···+λk=n

(−1)kgλ1
· · · gλk

,

while the antipode of Λ is given by s(en) = (−1)nhn. Comparing these expres-
sions, we obtain a polyhedral algebraic proof of the expression of the homogeneous
symmetric function hn in the elementary basis:

hn =
∑

λ1+···+λk=n

(−1)n−keλ1
· · · eλk

.

5.7. F: Paths and associahedra, revisited

Recall that a partition into paths on I is a graph whose connected components
are paths, and F[I] denotes the collection of partitions into paths on I. Recall the
Hopf monoid F defined in Section 1.2.5. The product of two partitions into paths
is their disjoint union. If s is a path and I = S ⊔ T is a decomposition, then s|S is
the path on S with the order inherited from s, whereas s/S is the induced subgraph
on T .

Proposition 5.7.1. The Hopf monoid F of paths is a submonoid of the co-
opposite Wcop of the ripping and sewing Hopf monoid W.
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Proof. This follows readily from the observation that the product operations
on F and W coincide, while the coproducts are co-opposite to each other. �

In light of this statement and the fact that W andWcop share the same antipode
by Proposition 1.1.17, Theorem 5.5.6 immediately gives us a combinatorial formula
for the antipode of the Hopf monoid of paths F. This formula has several interesting
combinatorial variants, which we explore in the remaining sections.

5.7.1. The antipode of paths. If l is a linear graph and t is a tubing of l,
define the linear graph of t, denoted l(t), as follows. Each tube τ of t gives a path
l(τ ) consisting of the vertices which are in τ and in no smaller tube of t, in the order
they appear in τ . The union of these paths is l(t). This procedure is illustrated in
Figure 8.

Figure 8. A tubing t of the path 123456789; its linear graph is
l(t) = 12|3|49|58|6|7. The labels and edges of the path have been
omitted for clarity.

Proposition 5.7.2. The antipode of the Hopf monoid of paths F is given by
the following cancellation-free expression. If l is a linear graph on I then

sI(l) =
∑

t tubing

(−1)|t| l(t)

summing over all tubings t of l, where l(t) is the linear graph of t.

Proof. This is a direct consequence of Theorem 5.5.6 because for a linear
graph w = l, the graph w(t) given by (59) is the linear graph l(t). �

There are natural bijections between tubings on a path pn of length n, valid
parenthesizations of the expression x0x1 · · ·xn, and plane rooted trees with n + 1
unlabeled leaves [26] [92, Chapter 6]. This bijection allows us to state Proposition
5.7.2 in terms of parenthesizations or plane rooted trees as well. We leave the
details to the interested reader.

We can obtain a more useful formula by grouping equal terms in Proposition
5.7.2 as follows. As we range over the tubes τ of a tubing t, the components of the
linear graph l(t) form a set partition of I, which we call π = π(t). We also write
l(π) = l(t).

Notice that π = π(t) is a noncrossing partition of l; that is, if we let < denote
(either of) the (two) linear order(s) on I imposed by l, then π does not contain
blocks pi �= pj and elements a < b < c < d such that a, c ∈ pi and b, d ∈ pj . It
remains to describe the coefficient of l(π) for each noncrossing partition π in the
expression of Proposition 5.7.2.
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Let NC(l) be the set of noncrossing partitions of l. If |l| = n, then

|NC(l)| = Cn =
1

n+ 1

(
2n

n

)

is the n-th Catalan number [62]. We define the linear graph of a noncrossing
partition π ∈ NC(l) to be the graph on I containing one path for each part of π
with the order induced by l.

To simplify the discussion we let I = [n] and l be the path 12 · · ·n. For a non-
crossing partition π of I, let the adjacent closure π be the partition obtained from
π by successively merging any two adjacent blocks S1 and S2 such that maxS1 = b
and minS2 = b+ 1 for some b.

Example 5.7.3. The adjacent closure of the noncrossing partition
π = 1|26|3|45|78 in NC(8) is π = 12678|345.

Theorem 5.7.4. The antipode of the Hopf monoid of paths F is given by the
following cancellation-free and combination-free expression. If l is a path on
I,

sI(l) =
∑

π∈NC(l)

(−1)|π|C(π:π) l(π)

summing over all the noncrossing partitions π of l. Here l(π) denotes the linear
graph of π, π = {p1, . . . , pk} is the adjacent closure of π, and C(π:π) =

∏
pi∈π Cni

where ni is the number of blocks of π refining block pi of π.

Proof. For a noncrossing partition π, the coefficient of l(π) in the expression
of Proposition 5.7.2 is equal to the number of tubings u of l with π(u) = π. We
claim that this number equals C(π:π).

Let π be a noncrossing partition of [n], and consider the set t of tubes τi =
[min pi,max pi] for all blocks pi of π. Notice that τi ⊂ τj , τi ⊃ τj , or τi ∩ τj = ∅
for i �= j; if that were not the case, without loss of generality we would have
min pi < min pj < max pi < max pj , which would contradict the assumption that
π is noncrossing. However, t is not necessarily a tubing because it may contain
adjacent tubes.

Let t be the tubing obtained from t by successively merging any two adjacent
tubes of the form [a, b] and [b + 1, c]. It follows from the definitions that the
noncrossing partition associated to t is π.

For each tube of t, let us remember the tubes in t that constituted it by drawing
vertical dotted lines separating them. This process is shown in Figure 9. Notice
that if part pi of π contains ni parts of π, then the corresponding tube ti of t
contains ni tubes of t.
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12|3|49|58|6|7

t t

u

_

π

Figure 9. The process to go from a noncrossing partition π =
12|3|49|58|6|7 to a tubing u such that π(u) = π. The step π �→ t
is bijective and the map t �→ t′ is defined uniquely; we draw the
vertical lines in t′ are a visual aid, but they are not part of t. The
partial tubing t has

∏
pi∈π Cni

= C3C2 = 10 possible preimages u,
corresponding to resolving the two tubes having 3 and 2 vertical
compartments, respectively.

Any tubing u such that π(u) = π is obtained from the set t of tubes – which
is usually not a tubing – by “resolving” any maximal sequence of adjacent tubes,
making them nested. To do this, we consider each tube τi of t, treat the ni tubes of
t that it contains as singletons, and replace them with a maximal tubing of size ni;
there are Cni

such tubings for each i. This explains why there are C(π:π) tubings u
of l with π(u) = π, completing the proof. �

Since F is commutative, its antipode is multiplicative. This gives a similar
cancellation-free and combination-free formula for sI(α) for any partition into paths
α on I.

Example 5.7.5. For the path abcd, Theorem 5.7.4 gives the formula from the
introduction:

(( + 2  +  +  +  2  s
a b c d

= _

_

a b c d
a b c

d

a b d

c

a c d

b

b c d

a

+ 2  a b

c d

   +   

   5  a b

c d

_   5  b c

a d

_   5  c d

a b

_   2  a c

b d

_   2  b d

a c

_   2  a d

b c

 +14  a b

c d

a d

b c

Theorem 5.7.4 explains the double appearance of Catalan numbers in the for-
mula for the antipode of a linear graph: each coefficient is a products of Catalan
numbers, and the number of terms (14 in this case) is the number of noncrossing
partitions, which is also a Catalan number.

5.7.2. Associahedra and paths. As we have already anticipated, our for-
mulas for the antipode of the Hopf monoid of paths F are controlled by Loday’s
associahedra. We now make this connection precise.

We begin with a technical lemma. Recall that the Loday associahedron aℓ of
a linear order ℓ of I is the Minkowski sum aℓ =

∑
J ΔJ , where we sum over all the

intervals J of the linear order ℓ.

Lemma 5.7.6. If ℓ1 �= ℓ2 are linear orders on I, then aℓ1 and aℓ2 are normally
equivalent if and only if ℓ2 is the reversal of ℓ1.
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Proof. If ℓ2 is the reversal of ℓ1 then ℓ1 and ℓ2 have the same intervals, so
aℓ1 = aℓ2 .

Conversely, suppose we know the normal fan N := N (aℓ) of the associahedron
of a linear order ℓ. Then we know which hyperplanes of the form y(i) = y(j) for
i, j ∈ I are contained in (the codimension 1 subcomplex of) N . The hyperplane
y(i) = y(j) can only arise if aℓ has Δij as a Minkowski summand. In turn, that
summand appears if and only if i and j are adjacent in the linear order ℓ. It follows
that N determines the set of adjacent pairs of ℓ, and these completely determine
the linear order ℓ up to reversal. The desired result follows. �

Proposition 5.7.7. The Hopf monoid of paths F is isomorphic to the Hopf
monoid of associahedra A.

Proof. The injective maps F →֒ Wcop ∼= WBScop →֒ BScop →֒ SHGcop of
Propositions 5.7.1, 5.5.3, and 5.4.3 allow us to identify a path l ∈ F[I] with the set
tubes(l) ∈ SHG[I]. Together with the surjection SHGcop

։ HGP of Proposition
5.2.8, this gives a map a : F → HGP which sends a path l to the associahedron al.
The image of this map is A ⊆ HGP. Furthermore, a is injective thanks to Lemma
5.7.6, keeping in mind that a path and its reverse are identified in F. The desired
result follows. �

5.7.3. Associahedra and Faà di Bruno. The Faà di Bruno Hopf algebra F ,
introduced by Joni and Rota [60] and anticipated by many others, appears naturally
in several areas of mathematics and physics [35,39]. In this section we show that
the Fock functor relates the Hopf monoid of associahedra A (or equivalently the
Hopf monoid of paths F) to the Faà Bruno Hopf algebra F .

As an algebra, the Faà di Bruno Hopf algebra F is freely generated as a graded
commutative algebra by {x2, x3, . . .} with deg xn = n− 1. It is convenient to write
x1 = 1. The coproduct is given by

Δ(xn) =

n∑

k=1

∑

λ

n!

λ1!λ2! · · · 1!λ12!λ2 · · ·
xλ1
1 xλ2

2 · · · ⊗ xk

summing over all sequences λ = (1, 1, . . . ; 2, 2, . . . ; . . .) = (1λ1 , 2λ2 , . . .) of length k
and total sum n, so λ1 + λ2 + λ3 + · · · = k and λ1 + 2λ2 + 3λ3 + · · · = n.

The grading and the formulas are cleaner when we present F in terms of the
generators an−1 = xn/n!; it is useful to write a0 = 1. Then we have

Δ(an−1) =

n∑

k=1

∑

μ

(
k

μ0, μ1, μ2, . . .

)
aμ1

1 aμ2

2 · · · ⊗ ak−1

summing over all sequences μ = (0, 0, . . . ; 1, 1, . . . ; 2, 2, . . . ; . . .) = (0μ0 , 1μ1 , 2μ2 , . . .)
of length k and total sum n−k, so μ0+μ1+μ2+μ3+· · · = k and μ1+2μ2+3μ3+· · · =
n− k.

Proposition 5.7.8. The Fock functor K maps the co-opposite A
cop

of the Hopf
monoid of associahedra A to the Faà di Bruno Hopf algebra F .

Proof. Let the Fock functor K take the associahedron aℓ to the element an
where n = |ℓ|. Then (32) tells us that as an algebra K(A

cop
) = k[a0, a1, . . .] while
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Lemma 2.3.4 tells us that the coproduct of K(A
cop

) is given by

Δ(an−1) =
∑

[n−1]=S⊔T

a|T1| · · · a|Tk| ⊗ a|S|

where if S = {s1, . . . , sk−1} then Ti is the interval of integers strictly between si
and si+1, with the convention that s0 = 0 and sk = n.

A decomposition [n − 1] = S ⊔ T contributes to the term aμ1

1 aμ2

2 · · · ⊗ ak−1

in Δ(an−1) when |S| = k − 1 and the k gaps |T1|, . . . , |Tk| between consecutive
elements of S, including the initial and final gap, have sizes 0, 0, . . . (μ0 times),
1, 1, . . . (μ1 times), 2, 2, . . . (μ2 times), etcetera. For example, for the decomposition
[12] = {1, 2, 4, 7, 8, 12} ⊔ {3, 4, 5, 9, 10, 11}, the gaps between consecutive elements
of S = {1, 2, 4, 7, 8, 12} have sizes 0, 0, 1, 2, 0, 3, 0 in that order.

Now it remains to observe that there are
(

k
μ0,μ1,μ2,...

)
different ways of assigning

the gap sizes 0, 0, . . . (μ0 times), 1, 1, . . . (μ1 times), 2, 2, . . . (μ2 times), etcetera to
their k slots accordingly. Furthermore, these determine the possible choices for S
and T that contribute to the term aμ1

1 aμ2

2 · · · ⊗ ak−1 in Δ(an−1), as desired. �

5.7.4. Three antipode formulas for the associahedron. At this point we
have given formulas for the antipode of Loday’s associahedron an in three different
Hopf algebraic structures: the Hopf monoids GP and GP and the Hopf algebra
K(GP).

In GP, Theorem 1.6.1 gives

(60) s(an) =
∑

F face of an

(−1)n−dimFF

where every face F of an is normally equivalent to a product of Loday associahedra.
In A ⊆ GP, thanks to the isomorphism F ∼= A, Theorem 5.7.4 gives

(61) s(an) =
∑

π∈NC(n)

(−1)|π|C(π:π) ap1
· · · apk

summing over the noncrossing partitions π of [n]; here π = {p1, . . . , pl} is the
adjacent closure of π, and C(π:π) = Cn1

· · ·Cnl
where ni is the number of blocks of

π refining block pi of π.
In K(A) ⊆ K(GP) the proofs of Theorems 2.4.3 and 2.4.4 give

(62) s(an) =
∑

〈1m12m2 ··· 〉⊢n

(−1)|m| (n+ |m|)!

(n+ 1)!m1!m2! · · ·
a
m1
1 a

m2
2 · · ·

summing over all partitions 〈1m12m2 · · · 〉 of n, where |m| = m1 +m2 + · · · .
Each formula coarsens the previous one under the projection maps GP ։

GP ։ K(GP). In the first formula all faces of the associahedron are distinct. In
the second formula, faces of the associahedron are grouped together according to
their normal equivalence classes, which in turn correspond to their combinatorial
type and position with respect to the axes. In the third formula, normal equivalence
classes of faces of the associahedron are grouped according to their orbits under the
symmetric group, which correspond to their combinatorial type.

Example 5.7.9. Let us consider the contribution of the 6 pentagonal faces of
the associahedron a4 to the three versions of the antipode s(a4):
• In GP, each one of these six pentagonal faces is a separate term of s(a4).
• In GP, these six faces group into four normal equivalence classes: the noncrossing
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Figure 10. The three-dimensional associahedron a4.

partitions {123, 4} and {1, 234} contribute two pentagons each, while the noncross-
ing partitions {134, 2} and {124, 3} contribute one pentagon each.
• In K(GP), these six faces are all grouped together into the coefficient of a3a1,
which is equal to (−1)2(4 + 2)!/(4 + 1)!1!1! = 6.

These observations have two interesting enumerative corollaries.

Corollary 5.7.10. The number of normal equivalence classes of faces of Lo-
day’s associahedron an is the Catalan number Cn.

Proof. The projection GP ։ GP takes (60) to (61), mapping the faces of
an onto their normal equivalence classes. The result follows from the fact that
the terms of (61) are in bijection with the noncrossing partitions of [n] which are
counted by the Catalan number Cn. �

Corollary 5.7.11. Let μ = 〈1m12m2 · · · 〉 be a partition of n and write |m| =
m1 +m2 + · · · . Let NC(μ) be the set of noncrossing partitions of n having type μ;
that is, having mi blocks of size i for i = 1, 2, . . .. Then, in the notation of Theorem
5.7.4,

∑

π∈NC(μ)

C(π:π) =
(n+ |m|)!

(n+ 1)!m1!m2! · · ·
.

Proof. The map GP ։ K(GP) takes (61) to (62). It maps each normal
equivalence class of faces, which is labeled by a noncrossing partition of [n], to its
combinatorial type, which is the corresponding partition of n. It then remains to
observe that the noncrossing partitions of type μ are the ones that map to the
partition μ, so their contributions to (61) must add up to the contribution of μ to
(62). �
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