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Abstract

Calcific aortic valve disease (CAVD) is a common cardiovascular disease that affects millions of people worldwide. The
disease is characterized by the formation of calcium nodules on the aortic valve leaflets, which can lead to stenosis and heart
failure if left untreated. The pathogenesis of CAVD is still not well understood, but involves several signaling pathways,
including the transforming growth factor beta (TGFf) pathway. In this study, we developed a multiscale computational model
for TGFp-stimulated CAVD. The model framework comprises cellular behavior dynamics, subcellular signaling pathways,
and tissue-level diffusion fields of pertinent chemical species, where information is shared among different scales. Processes
such as endothelial to mesenchymal transition (EndMT), fibrosis, and calcification are incorporated. The results indicate that
the majority of myofibroblasts and osteoblast-like cells ultimately die due to lack of nutrients as they become trapped in areas
with higher levels of fibrosis or calcification, and they subsequently act as sources for calcium nodules, which contribute to
a polydispersed nodule size distribution. Additionally, fibrosis and calcification processes occur more frequently in regions
closer to the endothelial layer where the cell activity is higher. Our results provide insights into the mechanisms of CAVD
and TGFp signaling and could aid in the development of novel therapeutic approaches for CAVD and other related diseases
such as cancer. More broadly, this type of modeling framework can pave the way for unraveling the complexity of biological
systems by incorporating several signaling pathways in subcellular models to simulate tissue remodeling in diseases involv-
ing cellular mechanobiology.
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1 Introduction

Calcific aortic valve disease (CAVD) is the most predomi-
nant type of heart valve disease (Nkomo et al. 2006). CAVD
is particularly widespread among the elderly in developed
countries, and its healthcare burden is expected to increase
with the global aging population (Yutzey et al. 2014). By
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2050, the number of patients aged 75 and older with mod-
erate to severe calcific aortic stenosis in the USA is pro-
jected to more than double (Benjamin et al. 2019). CAVD
is a chronic disease that progresses from nanoscale cal-
cific nodule formation to micro- and macro-scale nodules,
resulting in severe stenosis due to progressive fibrotic tis-
sue remodeling and mineralization (Fig. 1a) (Mathieu et al.
2015). Unfortunately, no treatment currently exists for val-
vular calcification, and patients typically do not experience
symptoms until the disease has progressed significantly. At
an advanced stage, valvular replacements are necessary to
restore healthy physiology. Moreover, flow disturbances
resulting from calcified valves can have downstream effects
on the vascular system, as the aortic valve regulates blood
flow into the vascular system (Misfeld and Sievers 2007)
(Tables 1, 2).

Current research indicates that valvular disease is an
active procalcific process that results in severe extracellular
matrix (ECM) remodeling, fibrosis, and calcification (Raja-
mannan et al. 2011; Leopold 2012; Aikawa and Libby 2017).

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10237-023-01793-4&domain=pdf

J. Azimi-Boulali et al.

Table 1 List of nonstandard abbreviations and acronyms

Abbreviation Definition

CAVD Calcific aortic valve disease
ECM Extracellular matrix

CPM Cellular Potts model

TGFp Transforming growth factor beta
MMP-9 Matrix metallopeptidase 9
aSMA Alpha smooth muscle actin
LDL Low-density lipoprotein

MCS Monte Carlo step

PECAM-1 Platelet endothelial cell adhesion molecule 1
GAG Glycosaminoglycan

BMP Bone morphogenic protein

Wnt Wingless-related integration site
VEC Valvular endothelial cell

VIC Valvular interstitial cell

Table 2 List of mathematical symbols used in the paper

Symbol Meaning

o Model cell

T Model cell type

J Contact energy per unit area
S Kronecker delta

H, Contact energy

H,, Constraint energy

H, Volume constraint energy
H, Motility energy

H, Force energy

H,, Chemotaxis energy

A, Volume constraint intensity
Acn Chemotaxis intensity

A Force intensity

v Model cell volume

v, Model cell target volume
T, Pseudo-temperature in CPM

D Diffusion coefficient

k Chemical decay rate

s Secretion rate

MMP-9 concentration in the nucleus
T, Experimental calcification rate
Model calcification rate

bpn Fraction of nodule surface area in
contact with dead cells

n Calcification rate adjusting factor

Experimental models of CAVD, both in vitro, ex vivo, and
in vivo, have identified several signaling pathways that
contribute to CAVD pathophysiology, including the bone
morphogenic protein (BMP), Notchl, wingless-related
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integration site (Wnt), and transforming growth factor beta
(TGFEp). These pathways promote endothelial cell dysfunc-
tion and interstitial osteogenic differentiation (Driscoll et al.
2021; Ankeny et al. 2011; Sucosky et al. 2009; Gaur et al.
2005; Garg et al. 2005; Dutta and Lincoln 2018; Jian et al.
2003).

Abnormal hemodynamic forces, such as shear stress, have
been suggested as a potential driver for calcification, as they
are known to cause tissue remodeling (Butcher et al. 2011,
2008; Balachandran et al. 2011). Studies conducted both
in vitro and in vivo have shown that shear stress can acti-
vate latent TGFfS (Ahamed et al. 2008). Moreover, TGFf
has been identified as a key signaling pathway involved
in EndMT (Dutta and Lincoln 2018), and is also respon-
sible for upregulating matrix metallopeptidase 9 (MMP-9)
(Kumarswamy et al. 2012). The increased levels of MMP-9
can lead to ECM degradation, thinning of the valve leaf-
lets, loss of mechanical strength, and ultimately, valve
dysfunction.

Valve disease research has traditionally relied on animal
and static cell culture models. However, the emergence of
organ-on-a-chip models, or microfluidic systems that inte-
grate living cells to mimic multicellular architectures and
organ functional units, has provided a new tool for studying
tissue pathophysiology in vitro. Despite this, due to the enor-
mous biological and biophysical complexity of cell-cell and
cell-ECM interactions, it is challenging to experimentally
decipher how multiple factors simultaneously contribute to
calcification in aortic tissue. Therefore, mathematical and
simulation tools have become increasingly important in the
attempt to understand CAVD (Sadrabadi et al. 2021; Maleki
et al. 2014; Weinberg and Kaazempur Mofrad 2007; Chan-
dra et al. 2012; Arzani et al. 2017).

Most of the computational studies on CAVD reported in
the literature utilized computational fluid dynamics (CFD)
and fluid—structure interaction (FSI) methods. While these
approaches are useful to evaluate aortic valve hemodynam-
ics, they do not analyze cellular interactions and tissue
remodeling processes (Mirza and Ramaswamy 2022; Sad-
rabadi et al. 2021; Amindari et al. 2017; Luraghi et al. 2019;
Chandra et al. 2012). The focus of this study is to develop
a new computational modeling framework for aortic valve
calcification based on TGFf stimulation.

The progression of CAVD involves multiple scales spa-
tially and temporally, with biochemical pathways occur-
ring at the biomolecular and subcellular scales while tissue
remodeling progresses at larger scale. Although develop-
ing multiscale models for simulating CAVD is challeng-
ing due to the complexity and uncertainty associated
with the biological processes and the disparity between
the modeling scales (Weinberg and Kaazempur Mofrad
2007; Bakhaty and Mofrad 2015), they can provide more
comprehensive analysis about the progression of CAVD.
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Fig. 1 a schematic comparison between a healthy aortic valve and a
calcified one, in both opening and closing states. b schematic illustra-
tion of our multiscale modeling framework, which consists of a tissue
scale model, several diffusion fields, and subcellular models. Infor-
mation is shared among different scales, where cells read cytokine
concentrations from diffusion fields, and subcellular models generate

One such model, developed by Arzani et al, simulates
the cascade of mechanosensitive biochemical events that
occur during aortic valve calcification (Arzani et al. 2017).
The model combines a cell-scale systems biology model
with organ-scale hemodynamics to study the trajectory of
prominent biochemicals and cells involved in CAVD. The
model comprises a system of ordinary differential equa-
tions that capture the effects of low-density lipoprotein
(LDL) and TGFg. On the other hand, it does not simulate
the interaction of cells and ECM or the progression of
tissue remodeling in CAVD. Weinberg and Mofrad also
examined the dynamic behavior of the human aortic valve
at the cell, tissue, and organ length scales (Weinberg and
Kaazempur Mofrad 2007). They linked simulations at
different scales by applying deformations of one scale as
boundary conditions to the other scales. While it provides
insights into the mechanical properties and deformations
of the tissue, it lacks cellular responses and systems biol-
ogy analysis of the disease, which are critical to under-
standing the underlying factors for CAVD.

In this study, we aim to develop a novel multiscale mod-
eling framework that integrates systems biology models with
a tissue scale model to investigate the calcification process in
CAVD. To achieve this, we incorporate the TGFf signaling
pathway into the tissue-scale model cells that can undergo
processes such as EndMT, cell differentiation, fibrosis, and
calcification. This hybrid discrete-continuous modeling
approach allows cells and fibers to interact in a discrete
field, while the concentrations and transport of chemicals are
modeled by solving ordinary differential equations (ODEs)
and partial differential equations (PDEs). Although previ-
ous models have simulated aortic valve calcification (Arzani
et al. 2017; Weinberg and Kaazempur Mofrad 2007), to the
best of our knowledge, this is the first multiscale modeling

responses. The secretion and uptake of cytokines by cells are repre-
sented as sources and sinks in the diffusion fields. Tissue scale mod-
els implement cell-cell and cell-ECM interactions and processes such
as fibrosis and calcification. Created with https://www.BioRender.
com

framework that incorporates cellular responses based on sys-
tems biology models within a discrete tissue model.

2 Methods
2.1 Model components

The multiscale modeling framework is composed of three
major components: the subcellular TGFf signaling pathway
model, in which series of chemical reactions occur within
each cell; diffusion fields in which proteins such as TGFf
and MMP-9 diffuse at the tissue model scale; and the tissue
scale model in which cell-cell and cell-ECM interactions
evolve and tissue remodeling occurs. Information between
these components at different scales is shared to form a com-
prehensive framework (Fig. 1b).

2.2 Cellular Potts model

The primary component of the multiscale computational
model is the Cellular Potts model (CPM) which was devel-
oped initially over thirty years ago (Graner and Glazier
1992). It stems from statistical mechanics models used
to understand phenomena in solid-state physics. Since its
inception, the CPM has been used in many studies to simu-
late individual biological cell behavior.

The full theoretical development of the CPM is well
documented. There have been several computational imple-
mentations of the CPM. The most extensive computational
framework is provided by the open source software platform
CompuCell3D (Swat et al. 2012). The software has been used
in a substantial number of published studies on cell and tissue
behaviors and its implementation of the CPM is well verified.
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Using Compucell3D, the CPM has been validated by simula-
tions of in vitro observations of a variety of biological cell
behavior (Jafari Nivlouei et al. 2022; Bustamante et al. 2021;
Fortuna et al. 2020; Nguyen Edalgo et al. 2019; Kumar et al.
2016). Below we include a brief description of the physical
basis of the approach.

At the tissue scale, the CPM method is used for cell-cell and
cell-ECM interactions and tissue remodeling. CPM is a lat-
tice-based, multi-cell, and stochastic framework based on the
Monte Carlo approach for tissue morphogenesis. Physiologi-
cally relevant simulations are based on a direct proportionality
between Monte Carlo steps (MCSs) and physical time. In our
simulations, each MCS is considered as one physical minute
to match the physical cell time scale to the simulation time
scale. The overall simulation duration is set to 14 physical
days, mirroring the in vitro experimental time frame reported
by Mendoza et al. (Mendoza et al. 2022). The whole simula-
tion domain is divided into model cells (collection of voxels)
and fiber bundles representative of the ECM. Specific biologi-
cal cell types with distinct characteristics are assigned to the
model cells. The dynamics of the CPM is governed by the
Hamiltonian energy functionals, which describe the effective
energy of a particular configuration of the model cells in the
lattice. The effective energy is used to approximate biological
constraints between model components, similar to that of the
in vivo or in vitro biological systems. It consists of actual phys-
ical energies, such as cell-cell adhesion, along with terms that
simulate energy-like effects, for instance a cell’s chemotactic
response to a concentration gradient in its surrounding (Kel-
ler and Segel 1971). By imposing constraints in the form of
the effective energies, it becomes possible to simulate a wide
range of cellular properties, including cell volume, membrane
area, and more. In our simulation framework, three different
terms contribute to the overall effective energy of a system, H:

H= Hc + Hcst + Hm’ (1)

where H, is contact energy associated with interactions
between different entities, H,, is constraint energy associ-
ated with change in cell shape and size, and H,, is energy
related to cell motility.

Contact energies define the adhesive/repulsive dynamics
of the model cell entities, and lower contact energies lead to
stronger adhesion (e.g., higher concentration of membrane
complex such as E-cadherin-f-catenin binding (Ramis-Conde
et al. 2008)) and vice versa. We denote o, as a generic cell that
occupies the voxel i, and 7 (o-i) as the cell type of the generic
cell that occupies the voxel i. In the CPM the contact energy
is defined as:

H, = Z,J(T(Gi)’f(ﬁj))(l—‘sij)’ )
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where i and j are two neightbor voxels, J(T(Gl-), T(Gj)) is
the contact energy per unit area between two neighboring
model cells o; and o; of given cell types T(Gi) and T(Gj>,
respectively, and 6, is the Kronecker delta. The sum is taken
over all neighboring pairs of lattice sites i and j. In this study,
we used 9 different model cell types in the CPM to differ-
entiate between various biological cell types and the ECM
(Table 3).

In the CPM, the absolute values of the contact energies are
not as important as the hierarchy of contact energies between
cells (Swat et al. 2012). We assume that the cells bind to each
other more strongly than to the fibers (Chowkwale et al. 2019).
Also, the microstructure of calcified nodules in our recent
study shows that mineral structures are embedded within the
fibrous collagen matrix, particularly localized around fiber
bundles (Mendoza et al. 2022). Thus we use relatively lower
contact energy for the nodule-fiber interaction. The contact
energy per unit area hierarchy for our model is as follows:
‘If—n < Jc—c = Jc—n < Jc—f’ (3)
where J;_,, J._., J._,, and J_; are the contact energy per
unit area between fiber-nodule, cell-cell, cell-nodule, and
cell-fiber, respectively. The values of the contact energies are
determined by experimentation and chosen to keep the cell,
nodule, and fiber bundle structures physiologically realistic
and stable (summarized in Table 4).

Constraint energies in the CPM act like penalty functions
which are minimized to satisfy the constraint. If the value of
a parameter diverges from the pre-defined target value, the
constraint energy increases. As the parameter value gets closer
to the target value, the constraint energy approaches zero. The
general form of constraint energy is expressed as

Hey = Y 4,(x(0)g(0) - g (z(@)I, @

where g denotes the value of the quantity being analyzed, g,
signifies the target value for ¢, and 4, represents the inten-
sity or strength of the constraint for g. A large value of 4,

Table 3 List of model cell types used in this study

Model cell type Explanation

qVEC quiescent valvular endothelial cell
aVEC activated valvular endothelial cell
qVIC quiescent valvular interstitial cell
aVIC activated valvular interstitial cell
OST osteoblast-like cell

iFiber initial fiber bundle

fFiber fibrotic fiber bundle

DEAD dead cell

CaNod calcium nodule
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Table 4 CPM parameter values

Parameter Value Comment
Temperature 100 Estimated

Monte Carlo Step 1 min (Chowkwale et al. 2019)
Voxel (side) 2 pm (Kumar et al. 2016)
Voxel (volume) 8 pm? (Kumar et al. 2016)
Lattice dimensions 300 x 100 x 300 Chosen

Joeerdeoy 40 Estimated

Joy 200 Estimated

Jrn 30 Estimated

4, for qVEC 500 Estimated

4, for aVEC, qVIC, OST 10 Estimated

A, for DEAD 8 Estimated

A, for iFiber, fFiber 15,000 Estimated

4, for CaNod 2000 Estimated

A, for aVEC, aVIC, qVIC, OST 10000 Estimated

Af for aVEC, aVIC —160 ~ 160 Estimated

prevents g from significantly deviating from ¢g,. Because the
CPM algorithm tries to minimize the effective energy of the
system, it automatically drives any configuration toward one
that satisfies the constraint.

Using this formulation, we employ a volume constraint
for the model cells in the form of

H,= Y 40)[n0) - v(e@)]’, )

where 4, represents the intensity of the volume constraint,
v denotes the volume of the model cell, and v, signifies the
target volume of the model cell. Lower values of 1, makes
the model cells more flexible for deformations and easier
to migrate during the index-copying steps, while at higher
A, values the cells are more rigid and more fixed in their
positions. For instance, quiescent valvular endothelial cells

(qVECs) uniformly cover the surface layer of the tissue, and
thus we use relatively high value of 4, to constraint them
to their initial positions during the simulation. In contrast,
a lower A, value is suitable for dead cells because they can
easily change form and disintegrate into apoptotic fragments
(Table 5).

The process of calcium nodule (CaNod) nucleation begins
with the random generation of a single voxel around oste-
oblastic-like cells (OSTs). Over time, the calcium nodules
gradually increase in size. The width of the fiber bundles is
limited to a single voxel. These small entities are prone to
deletion by index copy attempts and thus a higher A, value
is assigned to prevent such occurrence. Trial testing showed
that A, = 2000 for the calcium nodules and 4, = 15,000 for
fiber bundles will prevent undesirable index copies and
ensure their existence.

Table 5 Diffusion parameters

Parameter Value Comment

D (MMP-9) 6 pm?/min Computational (Collier et al. 2011; Kumar et al.
2016; Anderson 2005; Franssen et al. 2019)

k (MMP-9) 0.0048 min~! Empirical (Chowkwale et al. 2022)

59 (MMP-9) 1.2 x 107" nM/(cell'min)  Empirical (Chowkwale et al. 2022)

y (MMP-9) 1.5% 10712 Empirical (Chowkwale et al. 2022)

D (TGFp) 186 pm?/min Empirical (Son et al. 2017)

k (TGEp) 0.22 min™! Empirical (Wakefield et al. 1990)

s (TGFp) 3.5x 107" nM/(cell'min) Empirical (Chowkwale et al. 2022)

TGFp input concentration  0.001 to 0.1 nM Empirical (Ahamed et al. 2008; Abdelhalim 2011)

D (Fiber) 2 pm?/min Estimated

k (Fiber) 0.5 min™! Estimated

Pseudo-concentration
value for a fiber bundle

1 (arbitrary unit)

Assumed pseudo-parameter

@ Springer
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The last contributing energy term, H,,, accounts for the
motility of the model cells due to chemotaxis and other
directional movements. While cell migration is a compli-
cated process, in computational models it can be represented
as a random walk (Thampatty and Wang 2007). We incor-
porated an energy associated with chemotaxis of model
cells toward collagen fibers (O’Brien et al. 2010), H,;,, and
a random force H, was additionally applied to model cells
exhibiting higher motility characteristics, such that

Hm = Hch + Hf (6)

Chemotaxis is expressed in the form of a change in energy:
AH = =Ag(c(d) = (), (7

where 4, the strength and direction of chemotaxis, and c(i)
and c(j) are the concentration field values of target voxel
and source voxel, respectively, during index-copy attempts.
Fiber bundle interaction tests showed that with 4_, = 10000
cells become attracted to the fiber bundles in their surround-
ings. Low A, values hinder cell-fiber interaction, promoting
straight cell movement, while high 4, values cause cells
to bind strongly to fibers, impeding movement and causing
them to get stuck easily. For cells with higher migratory
properties, an additional force is incorporated in the form of

AH; = =2:(p(D) = p()))s ®)

where ﬂf the strength and direction of the force, and p(i)
and p(j) are the positions of target voxel and source voxel,
respectively, during index-copy attempts. Assuming a maxi-
mum velocity of 0.3 pm/min for the cells (Kick et al. 2016),
the cell velocity trial tests indicated that the maximum A,
value that could be employed would be approximately 160.
The value of 4, for the activated cells is determined by its
proportionality to the concentration of the aSMA protein in
the subcellular model, a known indicator of increased migra-
tory potential in myofibroblasts (Kawamoto et al. 1997). The
sign of the force is chosen randomly in three dimensional
space to generate random walk behavior in the simulation.

In the CPM the model cells move their boundaries by
emulating cytoskeletally driven cell motility through index
copy attempts that change the effective energy. These
attempts are stochastically accepted or rejected with a prob-
ability that depends on the resulting change of the overall
effective energy H based on the Boltzmann acceptance func-
tion (Chen et al. 2007):

~(AH/T,) if AH > 0
e 1 >
P<“'_"")_{1 if AH <0 ©)

where T,, does not reflect any conventional thermal tempera-
ture; instead, it represents the strength of noise in the dynam-
ics and can be regarded as the amplitude of cell-membrane
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fluctuations (Kabla 2012; Swat et al. 2012). At lower T, val-
ues, there is little change in the cell membrane and the cells
tend to retain their initial shapes without displacements. At
high T,, values, however, there are significant fluctuations
in the cell membrane which can lead to cell disintegration
instead of motion. Trial tests show that a value of T,, = 100
provides an appropriate level of fluctuations in the cell
boundary for motility. The details of the CPM setup used in
our Compucell3D simulations are provided in Supplemental
Information.

2.3 Diffusion fields

The CPM methodology can be extended to include other
physical components such as diffusion fields, which can be
utilized to simulate the secretion, uptake, and transport of
cytokines within the domain (Swat et al. 2012). Here, three
separate diffusion fields are included: TGFg, MMP-9, and
fiber bundles. These fields are governed by the diffusion
equation

dac _ 2

E_DV c—kc+s, (10)
where c is the field concentration and D, k and s denote
the diffusion coefficient, decay constant and secretion rate,
respectively.

A Dirichlet boundary condition is set at the surface of
the qVEC (i.e., the blood vessel lumen) with a fixed value
of 0.08 nM for the TGFf concentration, while zero gradi-
ent Neumann boundary conditions are imposed on the other
boundaries of the tissue domain. The diffusion coefficient
and decay rate for active TGFf are set to be 186 pm*/min
and 0.22 min~!, respectively (Son et al. 2017; Wakefield
et al. 1990). Upon activation, cells secrete TGF at a rate of
3.5 x 10~ nM/(cell'min) (Chowkwale et al. 2022). MMP-
9’s diffusion coefficient and decay rate are 6 pm*/min and
0.0048 min~', respectively (Collier et al. 2011; Kumar et al.
2016; Anderson 2005; Franssen et al. 2019). Since only acti-
vated cells within the tissue secrete MMP-9, we apply zero
gradient at all tissue boundaries. While an MMP-9 secretion
rate of 1.2 X 101" nM/(cell'min) has been suggested in the
literature (Chowkwale et al. 2022), we allow the cells to
secrete MMP-9 at a rate that is linearly proportional to the
MMP-9 concentration in the nucleus from the subcellular
model,

Cn
()

where s, = 1.2 X 107! nM/(cell'min), c, is the concentration
in the nucleus, and ¢, = 8.3 nM is the maximum MMP-9
concentration value attainable in the subcellular model (as
shown in Fig. 3).
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The cells in tissues are anchored to collagenous struc-
tures, indicating a higher adhesion between cells and fibers
(Heino 2007). However, applying a lower contact energy in
the CPM method does not realistically simulate the obstruc-
tion of fibers when cells move past them, as it results in
a higher index copy acceptance when cells come in con-
tact with fibers. To overcome this, we considered a higher
contact energy between cells and fibers and model the pro-
pensity of cells to attach to fiber bundles by dedicating a
pseudo-diffusion field for fiber bundles to attract cells toward
the fiber bundles through chemotaxis. This agrees with pre-
vious work that has shown collagen to have chemoattractant
properties (O’Brien et al. 2010). To ensure the effective-
ness of chemotaxis and avoid interference with nearby fiber
bundles, we assumed a diffusion coefficient of 2 pm?min
and a decay rate of 0.5 min~! for this field, which results in
a range of two to four voxels with a nonzero local pseudo-
concentration gradient. Additionally, we used a fixed con-
stant concentration value of unity as a boundary condition
for all fiber bundles and set all tissue domain boundaries to a
zero gradient boundary condition. By combining an overall
attraction of the cells to the fibers and a low probability of
index copy acceptance of cells to the immediately adjacent
fiber bundle voxels, we can simulate realistic cell movement
behavior around the fibers.

2.4 Calcification model

EndMT: Endothelial-to-mesenchymal transition (EndMT)
is an intricate cellular differentiation process whereby
endothelial cells lose endothelial markers like platelet
endothelial cell adhesion molecule-1 (PECAM-1) and
detach and migrate into the deeper parts of the tissue and
express mesenchymal markers such as alpha smooth muscle
actin (a-SMA). Previous studies showed that the EndMT and
epithelial-to-mesenchymal transition (EMT) are key regula-
tors in diseases such as kidney fibrosis, cancer and cardio-
vascular diseases (Dongre and Weinberg 2019) (Sanchez-
Duffhues et al. 2018). Accumulating evidence indicates that
EndMT plays a role in the pathogenesis of CAVD (Mahler
et al. 2013) (Ma et al. 2020) .

In our model, the top layer of the simulated tissue is cov-
ered by quiescent valvular endothelial cells (QVECs), which
can become stimulated based on the amount of TGFJ in their
surroundings (Fig. 2). Experimental studies have shown
that approximately 1% of valvular endothelial cells (VECs)
undergo the EndMT process in healthy valves, and upon
TGFp stimulation. However, However, up to 9% of endothe-
lial cells can undergo EndMT (Bischoff 2019). In our model,
we assume that 5% of eligible VECs, determined based on
their PECAM-1 protein levels, undergo the EndMT process.
The PECAM-1 protein level in the subcellular model is uti-
lized to trigger the transition from the qVEC to the activated

valvular endothelial cell (aVEC) state, where the threshold
for activation of VECs is set to half of the initial PECAM-1
level. Furthermore, aVECsS can return to the quiescent state
if the PECAM-1 level falls below the threshold, except in
the case of a prolonged activity of the aVEC defined by a
continuous active time period exceeding 48 h (Chowkwale
et al. 2019).

Quiescent valvular interstitial cells (QVICs) are randomly
scattered inside the tissue and can be activated by the TGFf
protein (Fig. 2). We use the aSMA protein level from the
subcellular models for activation and deactivation of VICs
to switch the state from qVIC to aVIC and vice versa. The
threshold for activation of VICs is set to half of the maxi-
mum aSMA concentration, which is 4.2 nM. Moreover,
aVICs can return to the quiescent state if the concentration
of aSMA drops below the threshold, unless the duration of
activity exceeds 48 h (Chowkwale et al. 2019). aVECs and
aVICs exhibit fibrosis activity by depositing collagen fiber
bundles at a rate of 3.2 x 10~'° mg/(cell.min) (Kumarswamy
et al. 2012; Masur et al. 1996; O’Brien et al. 2005). They are
also programmed to exhibit a higher migratory property that
is proportional to the concentration of aSMA in the subcel-
lular calculations.

Shear stress to TGFf concentration: Studies conducted
both in vivo and in vitro have shown that shear forces can
trigger the activation of latent TGFf in blood (Ahamed et al.
2008). Excessive or abnormal mechanical stress can also
trigger the activation of latent TGFf within the tissue by
disrupting its complex, thus releasing active TGFf into the
tissue (Sarper et al. 2016; Dayawansa et al. 2022). In this
study, for model simplicity we are solely addressing TGFf
activation through blood shear stress, while postponing the
consideration of TGFf activation within the tissue induced
by mechanical stress to future model development. By utiliz-
ing shear stress and shear rate conversion methods (Abdel-
halim 2011), we can determine the concentration of active
TGFp. For instance, a shear stress of 20 dyne/cm? (Butcher
et al. 2006; Mendoza et al. 2022) is indicative of active
TGFp concentrations of approximately 0.08 nM, which is
used as a boundary condition for TGFf diffusion field in
the tissue model.

Cell Death: Fibrotic activity results in stiffening of the
heart valve, reduced nutrient diffusion, and eventually leads
to cell death (Piek et al. 2016). In our model, we determine
necrosis by measuring fraction of the cell surface area
exposed to the medium, and if this fraction drops below
10%, the model cell dies and changes type to dead cell
(DEAD). Furthermore, if a cell become trapped in an area
with a high level of fibrosis or calcification and its mobility
is limited, cell death is likely to occur (Fig. 2). We assess
the intensity of fibrosis with the fiber field value and use
75% of the maximum fiber field value as a threshold. For
cells trapped in calcified or fibrotic regions, we use a cell
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Fig.2 Schematic illustration of the tissue model consisting of three
layers: the Fibrosa, Spongiosa, and Ventricularis layers. The Fibrosa
layer is the outermost layer of the valve, covered by qVECsS, and pri-
marily composed of collagen fibers. The Spongiosa layer is the mid-
dle layer of the valve and mainly composed of proteoglycans and
glycosaminoglycans (GAGs). The Ventricularis layer is the inner-
most layer of the valve, predominantly composed of elastic fibers
and covered by qVECs. qVECs can undergo EndMT transition upon
PECAM-1 downregulation, becoming aVECs, while qVICs can be

velocity threshold of 0.003 pm/min (1% of the maximum
cell velocity) for determining insignificant cell movement
(Nekolla et al. 2016).

Osteoblastic differentiation: Interstitial cells in the valve
undergo osteoblastic differentiation in response to TGFf
(Osman et al. 2006). An experimental study by Hjortnaes
et al. showed that osteogenic differentiation markers such as
Runx2, osteopontin and osteocalcin significantly increase,
and EndMT markers such as aSMA expression decreases in
osteoblastic-like interstitial cells (Hjortnaes 2015). There-
fore, osteoblastic differentiation is modeled when activated
cells exhibit prolonged activity and aSMA concentration
starts to decrease. Additionally, Hjortnaes et al. suggested

@ Springer

/ﬁm‘;{; TGFB .

activated by upregulating aSMA and becoming aVICs. Both aVECs
and aVICs secrete MMP-9 and TGFf and deposit fFibers during the
fibrosis process. Prolonged activity and downregulation of aVECs
and aVICs can lead to differentiation into OSTs, resulting in calcium
nodule nucleation and growth. VICs can inhibit the differentiation of
aVECs into OSTs when they are in close proximity. Cells can die by
becoming trapped in high fibrotic or calcified areas, and the resulting
dead bodies can act as feeding sites for CaNods. Created with https://
www.BioRender.com

that VICs inhibit the osteogenesis of VECs (Hjortnaes
2015). To model this inhibitory behavior, the surface area
of each aVEC is examined before differentiation to the oste-
oblastic-like type, ensuring that there is no contact between
aVECs and VICs.

Calcification: Both ossification and dystrophic calcifi-
cation have been theorized to contribute to the calcification
of the valve tissue. In the active ossification, the osteogenic
differentiation of the interstitial cells give rise to the calcific
nodules. (Masjedi et al. 2017). To simulate this process in the
computational model, OST cells are coded to initiate calci-
fication nucleation. In the passive dystrophic calcification,
dead and damaged interstitial cells are a significant source of
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calcium deposits and calcification and form calcific nodules
(Steitz et al. 2002; Butcher et al. 2011). In the computational
model this process is captured by the setting that, when a cal-
cified nodule is in contact with DEAD cells, the DEAD cells
are considered as feeding sites and the calcification rate for
the nodule would increase based on the nodule surface ratio
in contact with the DEAD cells. Based on our in vitro study,
we calculated the experimental calcification rate ry, to be 0.1
pm?/(min-nodule), assuming a constant rate over the course of
the experiment (Mendoza et al. 2022).

In order to incorporate the influence of different sources
on the calcification rate, we make an assumption that approxi-
mately half of the calcification rate is attributed to the proxim-
ity of DEAD cells, while the other half is dependent on other
biological processes not captured in our model. Leveraging the
in vitro data, we express the model calcification rate R, as

rexp

2 L]

rexp
Rsim = Td)D—Nn +

12)

where ¢,_, represents the fraction of a CaNod surface area
that is in contact with DEADs, and # is an adjustable weight-
ing factor. The range of ¢, , is between 0 and 1, where 0
indicates no surface area in contact with any DEADs, and 1
indicates the entire nodule surface is surrounded by DEADs.
Since r,, represents a target calcification rate for a CaNod,
through trial-and-error we have found that # = 10 provides
a reasonable result for R,

Table 6 Model parameter values

Table 6 summarizes all parameter values used in our
simulations.

2.5 TGFB signaling pathway

The TGFp signaling pathway is used in the subcellular mod-
eling within each model cell and is integrated with the CPM
and the rest of the simulation framework. In Supplemental
Information, the model details are provided in Antimony
language (Chowkwale 2019). The TGFpg concentration from
the diffusion field is used as an input for the subcellular
model in each cell. The values of PECAM-1 and aSMA
obtained in the subcellular models are used for cell type
differentiation, and if cells are activated, MMP-9 and TGFf
proteins are secreted into their surroundings in the diffusion
fields. The subcellular models are deterministically solved
using libRoadRunner, which is a simulation engine in a C++
library used for simulating and analyzing systems of differ-
ential equations (Welsh et al. 2023). The CVODE integra-
tion method is chosen, which uses a backward differentiation
formula solver for stiff ODE problems.

2.6 ECM and tissue composition

The noncellular portion of connective tissues is known as
the extracellular matrix (ECM), a complex meshwork of
insoluble fibrillar proteins and signaling factors interacting
together to provide physical scaffolding and instructional

Parameter Value

Comment

Initial VIC density
Initial VEC density

107 cell/ml

10° cell/cm?

Empirical (Mendoza et al. 2022)
Empirical (Mendoza et al. 2022)

Initial collagen concentration 1.5 mg/ml Empirical (Mendoza et al. 2022)
Collagen fiber density 1.3 mg/ml Empirical (O’Brien et al. 2005)
Fibrosis rate 0.32 pg/(cell'min) Empirical (Kumarswamy et al. 2012; Masur et al.

Calcification rate

0.1 pm? /(min-nodule)

1996; O’Brien et al. 2005)
Empirical (Mendoza et al. 2022)

MMP-9 threshold for fiber degradation 3.6x10~'""'nM Computational (Chowkwale et al. 2022)
Cell doubling time 1800 min Empirical (Rush 2018; Pho et al. 2008)
Maximum cell velocity 0.3 pm/min Empirical (Nekolla et al. 2016)

Initial cell size

Fiber bundle length 50 pm
Fiber bundle thickness 2 pm
Fiber field criterion for cell death > 75%

Medium exposure criterion for cell death
Medium Exposure criterion for cell growth and mitosis
aSMA field threshold for VIC activation

Velocity criterion for insignificant movement leading to cell
death

EndMT-derived activation rate of qVECs

10 pm X 10 pm X 10 pm

< 10% of cell surface area
> 50% of cell surface area
4.2 M

< 0.003 pm/min

1to 10%

Empirical (Bosse et al. 2013)

Computational (Lee et al. 2014; Kumar et al. 2016)
Computational (Kumar et al. 2016)

Assumed: 75% of parameter range

Assumed: 10% of parameter range

Assumed: average of parameter range

Assumed: average of parameter range

Empirical (Nekolla et al. 2016)

Empirical (Bischoft 2019)
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cues to the surrounding cells. In our modeling framework,
the ECM is modeled as randomly generated fiber bun-
dles within the domain, which contains several diffusion
fields responsible for transporting signaling proteins. In
the aortic valve fibrosa collagen I is the most abundant
ECM protein (Taylor 2007), and since it has a typical
length of 20-200 pm and a typical thickness of 200-350
nm (Lee et al. 2014), we chosen each fiber bundle in our
model to be 50 pm in length and 2 pm in thickness simi-
lar to those used by (Kumar et al. 2016). By assuming a
collagen concentration of 1.5 mg/ml as in the previously
reported in vitro experiment (Mendoza et al. 2022) and a
collagen fiber density of 1.3 mg/ml (O’Brien et al. 2005),
we determined and set the number of fiber bundles in our
computational tissue domain. Two types of fiber bundles,
iFiber and fFiber, are specifically defined to differentiate
between the fiber bundles that already exist at the start
of the simulation (iFiber) and the fiber bundles that are
formed during fibrosis simulations (fFiber).

At the start of the simulation, the tissue consisted of
only qVECs, qVICs, and iFibers. The cells are assumed to
be cubic in shape with dimensions of 10 pm. The qVECs
cover the top part of the tissue with a concentration of 10°
cell/cm?, assuming confluency. qVICs, on the other hand,
are randomly scattered within the ECM with a concentra-
tion of 107 cell/cm® (Mendoza et al. 2022).

2.7 Fibrosis

Fibrosis is typically caused by the abnormal accumula-
tion of ECM components, particularly collagen, within
tissues. The presence of fibrosis is associated with calcifi-
cation and contributes to valve obstruction, as evidenced
by contrast-enhanced CT and histology images (Cartlidge
et al. 2021). It is known that TGFf can induce fibrosis
through myofibroblast activation which results in exces-
sive production of ECM components (ming Meng et al.
2016). The typical collagen concentration in a heart valve
is around 5 mg/ml, which can increase up to 13 times due
to fibrosis induced by TGFf (Kumarswamy et al. 2012).
Moreover, the cell concentration in a typical heart ranges
from 0.5 to 1 x 108 cells/cm?, and about 5% of the cells
undergo myofibroblast differentiation upon TGFp stimula-
tion (Masur et al. 1996). Using these data, we estimated
the fibrosis rate in the heart valve to be approximately
3 x 107'° mg/(cell'min). In our simulation model, once
cells become activated they initiate fibrosis by randomly
generating fiber bundles around them. Using a fiber den-
sity of 1.3 g/ml (O’Brien et al. 2005), the model calcu-
lates the fiber bundle volume and generates fiber bundles
accordingly, with a maximum bundle length of 50 pm and
a bundle thickness of 2 um.
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2.8 ECM degradation

In addition to synthesizing collagen, myofibroblasts are also
the primary source of MMPs that degrade matrix proteins
(Horn and Trafford 2016). Activated cells in the model start
secreting matrix degrading enzymes based on the concentra-
tion of MMP-9 protein in the subcellular model calculations.
Upon secretion, MMP-9 molecules diffuse throughout the
ECM. If the concentration of MMP-9 around a fiber bundle
exceeds a certain threshold, degradation of the fiber bun-
dle is initiated. We set the threshold to be 3.6 x 10~ nM,
which is three times the maximum secretion concentration
of MMP-9 by activated cells (Chowkwale et al. 2022).

2.9 Mitosis

Mitosis is a process of cell duplication during which one cell
splits into two genetically identical daughter cells. Nutrients
are essential for cell growth and DNA synthesis in mitosis
(Gottesman 2014). In our model, we approximate a cell’s
access to nutrients by calculating the fraction of the cell’s
surface area in contact with the medium. If this fraction is
more than 50%, the cell will grow and proceed with the
mitosis process. Reported experimental studies showed that
the doubling time for myofibroblast with higher expression
of aSMA in heart valve interstitial cells is around 30 h (Rush
2018; Pho et al. 2008). Thus, we use this value for mitosis
of activated cells when they have access to enough nutrients
in their surroundings.

3 Results and discussion
3.1 Subcellular model

The concentrations of PECAM-1, aSMA and MMP-9 were
used in our subcellular model. PECAM-1 helps distinguish
between qVEC and aVEC, MMP-9 is responsible for the
degradation of ECM, and aSMA plays a role in the dif-
ferentiation to OST and in the change of cells between the
quiescent and the activated states. Depending on the local
TGFp concentration as an input to the subcellular model,
cells may exhibit varying behaviors. Quiescent cells with
less movement receive TGFf similar to a continuous input
while activated cells with higher migratory properties expe-
rience a TGFp field similar to an initial input at the begin-
ning when moving toward lower concentrations. Although
the cells may experience TGF/ as a combination of an initial
input and continuous inputs, analyzing the subcellular model
separately helps associate input types with cell behaviors.
The results of the TGFf subcellular model for an initial input
and continuous inputs at different concentration levels are
shown in Fig. 3.
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Fig.3 Subcellular model responses with different concentration lev-
els of TGFp and input types. The first row a—c are protein concentra-
tions with a TGFf input pulse at the start of the simulation (Time =
0 h). The second row d—f are protein concentrations under a continu-

It is found that higher TGFf concentrations increase a
SMA and MMP-9 concentration levels, while decreasing
PECAM-1 protein. In the case of an initial input (Fig. 3a—c),
higher TGFp concentrations intensify and prolong protein
expression, which are characteristics of activated cells.
Except for very low concentrations of TGFp that are insuf-
ficient to trigger pathway reactions, all protein expressions
follow a similar pattern with different active time scale even
under varying TGFf concentration levels. In the case of con-
tinuous inputs of TGFf (depicted in Fig. 3d—f), the protein
expressions exhibit a consistent pattern across different lev-
els of TGFp concentration, with the exception of very low
concentrations that are not enough to initiate pathway reac-
tions. The subcellular models provide protein concentration
values for each cell, which are utilized to assess the cells’
states and guide their differentiation, mirroring their behav-
iors observed in in vitro studies.

3.2 Tissue model

Figure 4 presents snapshots of the tissue taken at various
time instances after the start of the simulation. At the outset
of the simulation, the top layer of the domain is covered
by qVECs while qVICs are dispersed inside. Initial fiber
bundles are created and randomly oriented throughout the
domain. As the simulation progresses, quiescent cells can

Time (hours)

100 0 50 100
Time (hours)

ous TGFp input since the start of the simulation. a and d are concen-
trations of aSMA. b and e are concentrations of PECAM-1. ¢ and f
are concentrations of MMP-9

become activated from being exposed to TGFf and begin
to produce matrix-degrading enzymes (MMP-9). They can
also move more quickly and deposit collagen fiber bundles,
resulting in fibrosis. At the 50-hour mark, an early stage
of fibrosis is visible, as illustrated by activated cells hav-
ing deposited fiber bundles colored in light green (Fig. 4).
Exposure of activated cells to lower concentrations of TGFf
can revert the cells back to the quiescent state. However,
prolonged status as activated cells can trigger their differ-
entiation into OSTs, which initiate the calcification process.
An early stage of calcification can be observed in Fig. 4 at
the 100-hour mark. Moreover, higher fiber deposition at that
time stimulates cell death in highly fibrotic regions. As nod-
ules continue to grow, more cells die, which in turn further
elevates the nodules’ growth rate. Eventually, the major-
ity of cells in highly fibrotic or calcified regions are dead,
as depicted in Fig. 4 at 333 h. To provide a more detailed
visualization of the tissue remodeling, we created separate
figures for VICs, VECs, OSTs, DEADs, iFibers, fFibers, as
well as diffusion fields associated with MMP-9 and TGF-4.
These additional figures can be found in the Supplemental
Information section.

Activated fibroblasts or myofibroblasts are characterized
by their increased expression of ECM proteins and fibro-
genic cytokines, which contribute to the mechanical proper-
ties of affected tissues (Phan 2008). In CAVD, osteogenic
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time = 100 hours

time = 250 hours

time = 50 hours
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time = 333 hours
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@ fFiber

Fig.4 Remodeling of the tissue at different time points. Different cell
types, fibers and nodules are presented in different colors. Brown, red,
blue, and pink are related to qVEC, aVEC, qVIC, and aVIC, respec-

differentiation has been observed, and dead cells are a major
source of calcification (Steitz et al. 2002; Butcher et al.
2011). Thus, tracking the population of cell types during
tissue remodeling is crucial for understanding disease pro-
gression and developing potential treatment methods. How-
ever, monitoring cells’ differentiation steps experimentally
can be difficult, and this is where computational models are
beneficial. By keeping a record of each cell’s evolutionary
path, these models can provide insight into the dynamics of
tissue remodeling.

In this simulation, cell differentiation into various types
was counted and presented in Fig. 5 as a fraction of all cells
during the simulation. The results indicate that approxi-
mately 9.6% of all quiescent cells became activated, of
which about 4.7% returned to the quiescent state. A smaller
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tively. Initial fiber bundles are white and fibrotic fiber bundles are
light green. Calcium nodules, dead cells and osteobalst-like cells are
yellow, gray, and dark green, respectively

proportion of aVECs became quiescent compared to aVICs,
which could be due to the exposure of VECs to higher TGFf
concentrations near the boundary while the VICs were
exposed to lower TGFf concentrations at deeper parts of
the tissue. Depending on the protein concentration, activated
cells can differentiate into osteoblast-like cells, return to the
quiescent state, or become trapped among calcified nodules
or fibrotic fibers and die.

During the simulation, it was observed that about 7.4%
of the activated cells differentiated into osteoblast-like cells,
which initiated the formation of calcified sites around them.
As time passed, these sites grew in size, and the osteoblast-
like cells became trapped inside them. Eventually, the major-
ity of these cells died due to a lack of nutrients. Overall,
the simulation showed that 21.8% of the cells died, getting
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Fig.5 Cells phenotype transition during the simulation from six sim-
ulation runs with different random seedings
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Fig.6 Cell count statistics from six simulation runs with different
random seedings. a Cell count ratio comparison for different types at
the start and end of the simulation. b Generated cells due to the mito-
sis activity of aVIC and aVEC

trapped in either fibrotic or calcified areas (Fig. 5). The
apoptotic bodies from the dead cells contributed to the cal-
cification process by serving as feeding sites.

Figure 6a displays the cell count ratio for each cell type at
the beginning and end of the simulation. The figure reveals a
decrease in the number of quiescent cells and an emergence
of dead cells toward the end of the simulation. Furthermore,
it indicates that there were no significant numbers of aVEC,

aVIC, and OST at the beginning and the end of the simu-
lation. However, by plotting the cell population data over
time, one can monitor the dynamics of different cell types
as illustrated in Fig. 7.

Activated cells grow and proliferate through the process
of mitosis, depending on the availability of nutrients in their
vicinity. Figure 6b illustrates the mitosis of activated cells,
wherein new daughter cells are produced during the simula-
tion. The figure highlights that the number of mitotic aVICs
is greater than that of aVECs. This disparity is attributed to
the higher number of VIC activations compared to VECs,
as depicted in Fig. 5.

Activated cells exhibit higher migratory properties,
allowing them to reach deeper parts of the tissue and set-
tle in regions with lower TGFf concentrations, which can
cause them to revert to a quiescent state. This phenomenon
explains the observed jump in the qVIC population at 60 to
70 h mark (Fig. 7b) and the corresponding drop in the aVIC
population at around the the same time (Fig. 7e). Moreover,
activated cells proliferate new daughter cells through mito-
sis, resulting in sudden increases in the activated cell popu-
lations, as depicted in Fig. 7d, e. If these cells survive, they
eventually either revert to the quiescent state or differentiate
into osteoblast-like cells.

The population of osteoblast-like cells increases as more
cells differentiate from activated cells. However, the exces-
sive growth of nodules around them can lead to insufficient
access to surrounding nutrients, resulting in cell death and a
decrease in the population around 120 h after the start of the
simulation (Fig. 7c). The DEAD cell population increases
over time as more fiber bundles and nodules appear due
to fibrosis and calcification, respectively, as illustrated in
Fig. 71.

3.3 Fibrosis

In the simulation, fiber bundles are classified as initial or
fibrotic. While initial fiber bundles were randomly distrib-
uted throughout the ECM domain at the beginning of the
simulation, fibrotic fibers were formed through the process
of fibrosis during the simulation. The initial fibers were
degraded by MMP-9 secreted from aVICs and aVECs. Fig-
ure 8a shows the distribution of initial fiber bundles (iFibers)
throughout the tissue depth at different times. It is revealed
that degradation of fibers occurred up to a depth of approxi-
mately 100 pm, and there was no significant fiber degrada-
tion after about 90 h. Approximately 23.4% of the iFibers
were degraded during the simulation.

The aVICs and aVECs secrete ECM components such
as collagen fibers based on the aSMA concentration in their
subcellular models. The distribution of fibrotic fibers is
shown in Fig. 8b, which indicates an accumulation of fibers
over time. The presence of aVICs and aVECs drove fibrosis
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Fig.7 Cell count ratio of different types during the simulation from
six runs with different random seedings. a qVECs, b qVICs, ¢ OSTs,
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son of the average fiber bundle depth at the start and the end of the
simulations
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by secretion of collagen fibers, and the fibrosis activity was
high up to around 150 h and became low beyond 250 h. This
is consistent with the population of activated cells shown in
Fig. 7d, e.

Figure 8c shows the distribution of all fiber bundles in
the tissue, including both iFibers and fFibers. The accumu-
lation of fibrotic fibers shifted the overall distribution of all
fibers in the tissue, resulting in a peak around 45 pm depth.
Figure 8d shows the average fiber depths at the start and the
end of the simulation. For iFibers, the average depth shifted
toward deeper regions as a result of iFiber degradation in
the shallower areas. Fibrotic fibers, on the other hand, were
mostly generated in the shallower depths. In fact, during the
simulation the fibrosis activities deposited about 5.5 times
more fiber bundles than the number of iFibers at the start of
the simulation. Because of the abundance of generated fFib-
ers in the shallower regions, the average depth of all fibers
decreased from about 110 to 60 pm.

3.4 Calcification

Calcium nodule formation is initiated by the osteoblast-like
cells, and apoptotic bodies and cell fragments serve as feed-
ing sites for the nodules to grow. The nodule density in the
tissue over time is depicted in Fig. 9a, showing that the first
nodules appear after approximately 50 h and increase gradu-
ally. This finding is consistent with a previous calcification
experiment treated with TGFf (Clark-Greuel et al. 2007).
The number of new nodule formation is dependent on the
OST population, and as this population decreases, the nodule
density does not increase further and reaches a plateau.
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Fig.9 Nodule data in six simulation runs with different random seed-
ings. a Nodule density, calculated as the total number of nodules per
volume of the tissue domain. b Nodule size, defined as volume per
nodule. The line trace represents the average nodule size while the
shaded area represents the nodule size standard deviation

The growth rate of nodule size can vary depending on
the location of the nodule and its proximity to apoptotic
bodies. These cell fragments release factors that stimulate
calcification (Hutcheson et al. 2013), and nodules with more
common surface area in contact with apoptotic bodies grow
faster than those without cell fragments nearby. This vari-
ability in nodule size increased over time, evident in Figs. 9b
and 10a. The average nodule size is approximately 2000 um?
at 336 h after the start of the simulation, which is consistent
with reported experimental results, showing about 79 per-
cent agreement with our computational findings. (Mendoza
et al. 2022).

Figure 10b displays the distribution of nodules across the
depth of the tissue at different time points. The graph illus-
trates that at the early stages of the simulation the nodules
initially appeared in shallower regions of the tissue, but as
time progressed the distribution shifted toward the deeper
regions. The observed trend can be explained by the migra-
tory behavior of activated cells. Due to the presence of the
endothelial cell layer acting as a nonpenetrable barrier, the
activated cells were biased toward migrating to the deeper
parts of the tissue. Once in the deeper regions, the activated
cells had the potential to undergo differentiation into osteo-
blast-like cells, resulting in more nodule formation.

The results from an experimental study by Stephens et al.
(2011) show that prenodules tend to form at the shallower
parts of aortic tissue, predominantly in the fibrosa section.
Our simulation results support these findings, suggesting
that this phenomenon primarily stems from the interplay
between the diffusion and decay of TGFp in the tissue,
where the presence of TGFf at certain depths serves as a
trigger for the activation of fibroblasts, ultimately leading
to fibrosis and calcification in specific regions.
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Fig. 10 Time evolution of nodule size distribution. a Nodule size dis-
tribution. b Nodule location distribution in terms of depth in tissue
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3.5 Limitations

To the best of our knowledge, this model for calcification
in CAVD using CPM is a pioneering effort. While the cur-
rent model provides a novel tool for simulating CAVD and
other similarly intricate biological processes, there remain
limitations. Given that the CPM does not rely on tradi-
tional stress—strain formulations, it is not able to capture
the mechanical responses of the tissue during remodeling.
Consequently, this study does not consider the activation
of TGFp within the tissue in response to structural stress.
Additionally, beyond the TGFgf signaling pathway, other
hypothesized factors that may play a role in initiating and
regulating the calcification process in CAVD. BMP, LDL,
monocytes, for example, are not addressed in this study. Our
model will require further development to incorporate other
relevant signaling pathways to better mirror real-life human
conditions.

For most of the model’s parameters, we sourced them
from reported experimental and computational studies.
However, in cases where pertinent parameters and their val-
ues were readily unavailable in the literature, we either chose
them through numerical experimentation to ensure their
physiological relevance or employed heuristic reasoning to
make estimation. This involved using the averaged result or
a qualitative assessment of what appeared to be most appro-
priate within the context of our study. We plan to continue
development of our models by expanding the parameter sets
with additional experimentation to better capture the human
CAVD process.

4 Conclusion

This study describes a multiscale computational model and
simulation of calcification in aortic valve tissue, with a focus
on the role of TGFf stimulation. The model includes a sub-
cellular component of the TGFp signaling pathway for each
cell, as well as a tissue-scale component that incorporates
interactions between cells, ECM proteins, and diffusing
cytokines. The model tracks changes in cell population and
phenotype, including transitions between different types and
states. The ECM is represented as fiber bundles with asso-
ciated diffusion fields, and fibrosis activity is quantified by
measuring the deposition of fiber bundles. Following the
differentiation of osteoblast-like cells, calcification occurs
through nucleation and growth over time. According to the
results, MMP-9 secreted by aVECs and aVICs contributes
to the degradation of the initially present fibers while also
depositing collagen fibers through fibrosis. Additionally, the
occurrence of fibrosis and calcification processes is preva-
lent at shallower regions of the tissue. The deposition of
fibers during fibrosis and the appearance of calcified nodules

@ Springer

restrict the cells’ access to nutrients and contribute to cell
death. The fragments of dead cells further fuel the formation
of calcium nodules, contributing to diverse nodule sizes. The
calcification results show that the location and average size
of the nodules are consistent with the experimental findings.

The multiscale model presented in this study has the
potential to unravel the complexity of CAVD by incorporat-
ing various subcellular models and integrating them with a
fiber-based tissue-scale model. This methodology enables
comprehensive studies of tissue remodeling, not only in
CAVD but also in diseases related to cell mechanobiology,
such as cancer .
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