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Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular disease that affects millions of people worldwide. The 
disease is characterized by the formation of calcium nodules on the aortic valve leaflets, which can lead to stenosis and heart 
failure if left untreated. The pathogenesis of CAVD is still not well understood, but involves several signaling pathways, 
including the transforming growth factor beta (TGF� ) pathway. In this study, we developed a multiscale computational model 
for TGF�-stimulated CAVD. The model framework comprises cellular behavior dynamics, subcellular signaling pathways, 
and tissue-level diffusion fields of pertinent chemical species, where information is shared among different scales. Processes 
such as endothelial to mesenchymal transition (EndMT), fibrosis, and calcification are incorporated. The results indicate that 
the majority of myofibroblasts and osteoblast-like cells ultimately die due to lack of nutrients as they become trapped in areas 
with higher levels of fibrosis or calcification, and they subsequently act as sources for calcium nodules, which contribute to 
a polydispersed nodule size distribution. Additionally, fibrosis and calcification processes occur more frequently in regions 
closer to the endothelial layer where the cell activity is higher. Our results provide insights into the mechanisms of CAVD 
and TGF� signaling and could aid in the development of novel therapeutic approaches for CAVD and other related diseases 
such as cancer. More broadly, this type of modeling framework can pave the way for unraveling the complexity of biological 
systems by incorporating several signaling pathways in subcellular models to simulate tissue remodeling in diseases involv-
ing cellular mechanobiology.
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1  Introduction

Calcific aortic valve disease (CAVD) is the most predomi-
nant type of heart valve disease (Nkomo et al. 2006). CAVD 
is particularly widespread among the elderly in developed 
countries, and its healthcare burden is expected to increase 
with the global aging population (Yutzey et al. 2014). By 

2050, the number of patients aged 75 and older with mod-
erate to severe calcific aortic stenosis in the USA is pro-
jected to more than double (Benjamin et al. 2019). CAVD 
is a chronic disease that progresses from nanoscale cal-
cific nodule formation to micro- and macro-scale nodules, 
resulting in severe stenosis due to progressive fibrotic tis-
sue remodeling and mineralization (Fig. 1a) (Mathieu et al. 
2015). Unfortunately, no treatment currently exists for val-
vular calcification, and patients typically do not experience 
symptoms until the disease has progressed significantly. At 
an advanced stage, valvular replacements are necessary to 
restore healthy physiology. Moreover, flow disturbances 
resulting from calcified valves can have downstream effects 
on the vascular system, as the aortic valve regulates blood 
flow into the vascular system (Misfeld and Sievers 2007) 
(Tables 1, 2).

Current research indicates that valvular disease is an 
active procalcific process that results in severe extracellular 
matrix (ECM) remodeling, fibrosis, and calcification (Raja-
mannan et al. 2011; Leopold 2012; Aikawa and Libby 2017). 
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Experimental models of CAVD, both in vitro, ex vivo, and 
in vivo, have identified several signaling pathways that 
contribute to CAVD pathophysiology, including the bone 
morphogenic protein (BMP), Notch1, wingless-related 

integration site (Wnt), and transforming growth factor beta 
(TGF� ). These pathways promote endothelial cell dysfunc-
tion and interstitial osteogenic differentiation (Driscoll et al. 
2021; Ankeny et al. 2011; Sucosky et al. 2009; Gaur et al. 
2005; Garg et al. 2005; Dutta and Lincoln 2018; Jian et al. 
2003).

Abnormal hemodynamic forces, such as shear stress, have 
been suggested as a potential driver for calcification, as they 
are known to cause tissue remodeling (Butcher et al. 2011, 
2008; Balachandran et al. 2011). Studies conducted both 
in vitro and in vivo have shown that shear stress can acti-
vate latent TGF� (Ahamed et al. 2008). Moreover, TGF� 
has been identified as a key signaling pathway involved 
in EndMT (Dutta and Lincoln 2018), and is also respon-
sible for upregulating matrix metallopeptidase 9 (MMP-9) 
(Kumarswamy et al. 2012). The increased levels of MMP-9 
can lead to ECM degradation, thinning of the valve leaf-
lets, loss of mechanical strength, and ultimately, valve 
dysfunction.

Valve disease research has traditionally relied on animal 
and static cell culture models. However, the emergence of 
organ-on-a-chip models, or microfluidic systems that inte-
grate living cells to mimic multicellular architectures and 
organ functional units, has provided a new tool for studying 
tissue pathophysiology in vitro. Despite this, due to the enor-
mous biological and biophysical complexity of cell-cell and 
cell-ECM interactions, it is challenging to experimentally 
decipher how multiple factors simultaneously contribute to 
calcification in aortic tissue. Therefore, mathematical and 
simulation tools have become increasingly important in the 
attempt to understand CAVD (Sadrabadi et al. 2021; Maleki 
et al. 2014; Weinberg and Kaazempur Mofrad 2007; Chan-
dra et al. 2012; Arzani et al. 2017).

Most of the computational studies on CAVD reported in 
the literature utilized computational fluid dynamics (CFD) 
and fluid–structure interaction (FSI) methods. While these 
approaches are useful to evaluate aortic valve hemodynam-
ics, they do not analyze cellular interactions and tissue 
remodeling processes (Mirza and Ramaswamy 2022; Sad-
rabadi et al. 2021; Amindari et al. 2017; Luraghi et al. 2019; 
Chandra et al. 2012). The focus of this study is to develop 
a new computational modeling framework for aortic valve 
calcification based on TGF� stimulation.

The progression of CAVD involves multiple scales spa-
tially and temporally, with biochemical pathways occur-
ring at the biomolecular and subcellular scales while tissue 
remodeling progresses at larger scale. Although develop-
ing multiscale models for simulating CAVD is challeng-
ing due to the complexity and uncertainty associated 
with the biological processes and the disparity between 
the modeling scales (Weinberg and Kaazempur Mofrad 
2007; Bakhaty and Mofrad 2015), they can provide more 
comprehensive analysis about the progression of CAVD. 

Table 1   List of nonstandard abbreviations and acronyms

Abbreviation Definition

CAVD Calcific aortic valve disease
ECM Extracellular matrix
CPM Cellular Potts model
TGF� Transforming growth factor beta
MMP-9 Matrix metallopeptidase 9
�SMA Alpha smooth muscle actin
LDL Low-density lipoprotein
MCS Monte Carlo step
PECAM-1 Platelet endothelial cell adhesion molecule 1
GAG​ Glycosaminoglycan
BMP Bone morphogenic protein
Wnt Wingless-related integration site
VEC Valvular endothelial cell
VIC Valvular interstitial cell

Table 2   List of mathematical symbols used in the paper

Symbol Meaning

� Model cell
� Model cell type
J Contact energy per unit area
�ij Kronecker delta
Hc Contact energy
Hcst Constraint energy
Hv Volume constraint energy
Hm Motility energy
Hf Force energy
Hch Chemotaxis energy
�v Volume constraint intensity
�ch Chemotaxis intensity
�f Force intensity
v Model cell volume
vt Model cell target volume
Tm Pseudo-temperature in CPM
D Diffusion coefficient
k Chemical decay rate
s Secretion rate
cn MMP-9 concentration in the nucleus
rexp Experimental calcification rate
Rsim Model calcification rate
�

D−N
Fraction of nodule surface area in 

contact with dead cells
� Calcification rate adjusting factor
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One such model, developed by Arzani et al, simulates 
the cascade of mechanosensitive biochemical events that 
occur during aortic valve calcification (Arzani et al. 2017). 
The model combines a cell-scale systems biology model 
with organ-scale hemodynamics to study the trajectory of 
prominent biochemicals and cells involved in CAVD. The 
model comprises a system of ordinary differential equa-
tions that capture the effects of low-density lipoprotein 
(LDL) and TGF� . On the other hand, it does not simulate 
the interaction of cells and ECM or the progression of 
tissue remodeling in CAVD. Weinberg and Mofrad also 
examined the dynamic behavior of the human aortic valve 
at the cell, tissue, and organ length scales (Weinberg and 
Kaazempur Mofrad 2007). They linked simulations at 
different scales by applying deformations of one scale as 
boundary conditions to the other scales. While it provides 
insights into the mechanical properties and deformations 
of the tissue, it lacks cellular responses and systems biol-
ogy analysis of the disease, which are critical to under-
standing the underlying factors for CAVD.

In this study, we aim to develop a novel multiscale mod-
eling framework that integrates systems biology models with 
a tissue scale model to investigate the calcification process in 
CAVD. To achieve this, we incorporate the TGF� signaling 
pathway into the tissue-scale model cells that can undergo 
processes such as EndMT, cell differentiation, fibrosis, and 
calcification. This hybrid discrete-continuous modeling 
approach allows cells and fibers to interact in a discrete 
field, while the concentrations and transport of chemicals are 
modeled by solving ordinary differential equations (ODEs) 
and partial differential equations (PDEs). Although previ-
ous models have simulated aortic valve calcification (Arzani 
et al. 2017; Weinberg and Kaazempur Mofrad 2007), to the 
best of our knowledge, this is the first multiscale modeling 

framework that incorporates cellular responses based on sys-
tems biology models within a discrete tissue model.

2 � Methods

2.1 � Model components

The multiscale modeling framework is composed of three 
major components: the subcellular TGF� signaling pathway 
model, in which series of chemical reactions occur within 
each cell; diffusion fields in which proteins such as TGF� 
and MMP-9 diffuse at the tissue model scale; and the tissue 
scale model in which cell-cell and cell-ECM interactions 
evolve and tissue remodeling occurs. Information between 
these components at different scales is shared to form a com-
prehensive framework (Fig. 1b).

2.2 � Cellular Potts model

The primary component of the multiscale computational 
model is the Cellular Potts model (CPM) which was devel-
oped initially over thirty years ago (Graner and Glazier 
1992). It stems from statistical mechanics models used 
to understand phenomena in solid-state physics. Since its 
inception, the CPM has been used in many studies to simu-
late individual biological cell behavior.

The full theoretical development of the CPM is well 
documented. There have been several computational imple-
mentations of the CPM. The most extensive computational 
framework is provided by the open source software platform 
CompuCell3D (Swat et al. 2012). The software has been used 
in a substantial number of published studies on cell and tissue 
behaviors and its implementation of the CPM is well verified. 

Fig. 1   a schematic comparison between a healthy aortic valve and a 
calcified one, in both opening and closing states. b schematic illustra-
tion of our multiscale modeling framework, which consists of a tissue 
scale model, several diffusion fields, and subcellular models. Infor-
mation is shared among different scales, where cells read cytokine 
concentrations from diffusion fields, and subcellular models generate 

responses. The secretion and uptake of cytokines by cells are repre-
sented as sources and sinks in the diffusion fields. Tissue scale mod-
els implement cell-cell and cell-ECM interactions and processes such 
as fibrosis and calcification. Created with https://​www.​BioRe​nder.​
com

https://www.BioRender.com
https://www.BioRender.com


	 J. Azimi‑Boulali et al.

1 3

Using Compucell3D, the CPM has been validated by simula-
tions of in vitro observations of a variety of biological cell 
behavior (Jafari Nivlouei et al. 2022; Bustamante et al. 2021; 
Fortuna et al. 2020; Nguyen Edalgo et al. 2019; Kumar et al. 
2016). Below we include a brief description of the physical 
basis of the approach.

At the tissue scale, the CPM method is used for cell-cell and 
cell-ECM interactions and tissue remodeling. CPM is a lat-
tice-based, multi-cell, and stochastic framework based on the 
Monte Carlo approach for tissue morphogenesis. Physiologi-
cally relevant simulations are based on a direct proportionality 
between Monte Carlo steps (MCSs) and physical time. In our 
simulations, each MCS is considered as one physical minute 
to match the physical cell time scale to the simulation time 
scale. The overall simulation duration is set to 14 physical 
days, mirroring the in vitro experimental time frame reported 
by Mendoza et al. (Mendoza et al. 2022). The whole simula-
tion domain is divided into model cells (collection of voxels) 
and fiber bundles representative of the ECM. Specific biologi-
cal cell types with distinct characteristics are assigned to the 
model cells. The dynamics of the CPM is governed by the 
Hamiltonian energy functionals, which describe the effective 
energy of a particular configuration of the model cells in the 
lattice. The effective energy is used to approximate biological 
constraints between model components, similar to that of the 
in vivo or in vitro biological systems. It consists of actual phys-
ical energies, such as cell-cell adhesion, along with terms that 
simulate energy-like effects, for instance a cell’s chemotactic 
response to a concentration gradient in its surrounding (Kel-
ler and Segel 1971). By imposing constraints in the form of 
the effective energies, it becomes possible to simulate a wide 
range of cellular properties, including cell volume, membrane 
area, and more. In our simulation framework, three different 
terms contribute to the overall effective energy of a system, H:

where Hc is contact energy associated with interactions 
between different entities, Hcst is constraint energy associ-
ated with change in cell shape and size, and Hm is energy 
related to cell motility.

Contact energies define the adhesive/repulsive dynamics 
of the model cell entities, and lower contact energies lead to 
stronger adhesion (e.g., higher concentration of membrane 
complex such as E-cadherin-�-catenin binding (Ramis-Conde 
et al. 2008)) and vice versa. We denote �i as a generic cell that 
occupies the voxel i, and �

(

�i
)

 as the cell type of the generic 
cell that occupies the voxel i. In the CPM the contact energy 
is defined as:

(1)H ≡ Hc + Hcst + Hm,

(2)Hc =
∑

i,j

J
(

�
(

�i
)

, �
(

�j
))(

1 − �ij
)

,

where i and j are two neightbor voxels, J
(

�
(

�i
)

, �
(

�j
))

 is 
the contact energy per unit area between two neighboring 
model cells �i and �j of given cell types �

(

�i
)

 and �
(

�j
)

 , 
respectively, and �ij is the Kronecker delta. The sum is taken 
over all neighboring pairs of lattice sites i and j. In this study, 
we used 9 different model cell types in the CPM to differ-
entiate between various biological cell types and the ECM 
(Table 3).

In the CPM, the absolute values of the contact energies are 
not as important as the hierarchy of contact energies between 
cells (Swat et al. 2012). We assume that the cells bind to each 
other more strongly than to the fibers (Chowkwale et al. 2019). 
Also, the microstructure of calcified nodules in our recent 
study shows that mineral structures are embedded within the 
fibrous collagen matrix, particularly localized around fiber 
bundles (Mendoza et al. 2022). Thus we use relatively lower 
contact energy for the nodule-fiber interaction. The contact 
energy per unit area hierarchy for our model is as follows:

where Jf−n , Jc−c , Jc−n , and Jc−f  are the contact energy per 
unit area between fiber-nodule, cell-cell, cell-nodule, and 
cell-fiber, respectively. The values of the contact energies are 
determined by experimentation and chosen to keep the cell, 
nodule, and fiber bundle structures physiologically realistic 
and stable (summarized in Table 4).

Constraint energies in the CPM act like penalty functions 
which are minimized to satisfy the constraint. If the value of 
a parameter diverges from the pre-defined target value, the 
constraint energy increases. As the parameter value gets closer 
to the target value, the constraint energy approaches zero. The 
general form of constraint energy is expressed as

where q denotes the value of the quantity being analyzed, qt 
signifies the target value for q, and �q represents the inten-
sity or strength of the constraint for q. A large value of �q 

(3)Jf−n < Jc−c = Jc−n < Jc−f ,

(4)Hcst =
∑

�

�q(�(�))[q(�) − qt(�(�))]
2,

Table 3   List of model cell types used in this study

Model cell type Explanation

qVEC quiescent valvular endothelial cell
aVEC activated valvular endothelial cell
qVIC quiescent valvular interstitial cell
aVIC activated valvular interstitial cell
OST osteoblast-like cell
iFiber initial fiber bundle
fFiber fibrotic fiber bundle
DEAD dead cell
CaNod calcium nodule
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prevents q from significantly deviating from qt . Because the 
CPM algorithm tries to minimize the effective energy of the 
system, it automatically drives any configuration toward one 
that satisfies the constraint.

Using this formulation, we employ a volume constraint 
for the model cells in the form of

where �v represents the intensity of the volume constraint, 
v denotes the volume of the model cell, and vt signifies the 
target volume of the model cell. Lower values of �v makes 
the model cells more flexible for deformations and easier 
to migrate during the index-copying steps, while at higher 
�v values the cells are more rigid and more fixed in their 
positions. For instance, quiescent valvular endothelial cells 

(5)Hv =
∑

�

�v(�(�))
[

v(�) − vt(�(�))
]2
,

(qVECs) uniformly cover the surface layer of the tissue, and 
thus we use relatively high value of �v to constraint them 
to their initial positions during the simulation. In contrast, 
a lower �v value is suitable for dead cells because they can 
easily change form and disintegrate into apoptotic fragments 
(Table 5).

The process of calcium nodule (CaNod) nucleation begins 
with the random generation of a single voxel around oste-
oblastic-like cells (OSTs). Over time, the calcium nodules 
gradually increase in size. The width of the fiber bundles is 
limited to a single voxel. These small entities are prone to 
deletion by index copy attempts and thus a higher �v value 
is assigned to prevent such occurrence. Trial testing showed 
that �v = 2000 for the calcium nodules and �v = 15,000 for 
fiber bundles will prevent undesirable index copies and 
ensure their existence.

Table 4   CPM parameter values Parameter Value Comment

Temperature 100 Estimated
Monte Carlo Step 1 min (Chowkwale et al. 2019)
Voxel (side) 2 μm (Kumar et al. 2016)
Voxel (volume) 8 μm3 (Kumar et al. 2016)
Lattice dimensions 300 × 100 × 300 Chosen
Jc−c, Jc−n 40 Estimated
Jc−f 200 Estimated
Jf−n 30 Estimated
�v for qVEC 500 Estimated
�v for aVEC, qVIC, OST 10 Estimated
�v for DEAD 8 Estimated
�v for iFiber, fFiber 15,000 Estimated
�v for CaNod 2000 Estimated
�ch for aVEC, aVIC, qVIC, OST 10000 Estimated
�f  for aVEC, aVIC −160 ∼ 160 Estimated

Table 5   Diffusion parameters Parameter Value Comment

D (MMP-9) 6 μm2/min  Computational (Collier et al. 2011; Kumar et al. 
2016; Anderson 2005; Franssen et al. 2019)

k (MMP-9) 0.0048 min−1  Empirical (Chowkwale et al. 2022)
s0 (MMP-9) 1.2 × 10−11 nM/(cell⋅min)  Empirical (Chowkwale et al. 2022)
� (MMP-9) 1.5 × 10−12  Empirical (Chowkwale et al. 2022)
D (TGF�) 186 μm2/min  Empirical (Son et al. 2017)
k (TGF�) 0.22 min−1  Empirical (Wakefield et al. 1990)
s (TGF�) 3.5 × 10−11 nM/(cell⋅min)  Empirical (Chowkwale et al. 2022)
TGF� input concentration 0.001 to 0.1 nM  Empirical (Ahamed et al. 2008; Abdelhalim 2011)
D (Fiber) 2 μm2/min  Estimated
k (Fiber) 0.5 min−1  Estimated
Pseudo-concentration 

value for a fiber bundle
1 (arbitrary unit) Assumed pseudo-parameter
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The last contributing energy term, Hm , accounts for the 
motility of the model cells due to chemotaxis and other 
directional movements. While cell migration is a compli-
cated process, in computational models it can be represented 
as a random walk (Thampatty and Wang 2007). We incor-
porated an energy associated with chemotaxis of model 
cells toward collagen fibers (O’Brien et al. 2010), Hch , and 
a random force Hf  was additionally applied to model cells 
exhibiting higher motility characteristics, such that

Chemotaxis is expressed in the form of a change in energy:

where �ch the strength and direction of chemotaxis, and c(i) 
and c(j) are the concentration field values of target voxel 
and source voxel, respectively, during index-copy attempts. 
Fiber bundle interaction tests showed that with �ch = 10000 
cells become attracted to the fiber bundles in their surround-
ings. Low �ch values hinder cell-fiber interaction, promoting 
straight cell movement, while high �ch values cause cells 
to bind strongly to fibers, impeding movement and causing 
them to get stuck easily. For cells with higher migratory 
properties, an additional force is incorporated in the form of

where �f  the strength and direction of the force, and p(i) 
and p(j) are the positions of target voxel and source voxel, 
respectively, during index-copy attempts. Assuming a maxi-
mum velocity of 0.3 μm/min for the cells (Kick et al. 2016), 
the cell velocity trial tests indicated that the maximum �f  
value that could be employed would be approximately 160. 
The value of �f  for the activated cells is determined by its 
proportionality to the concentration of the �SMA protein in 
the subcellular model, a known indicator of increased migra-
tory potential in myofibroblasts (Kawamoto et al. 1997). The 
sign of the force is chosen randomly in three dimensional 
space to generate random walk behavior in the simulation.

In the CPM the model cells move their boundaries by 
emulating cytoskeletally driven cell motility through index 
copy attempts that change the effective energy. These 
attempts are stochastically accepted or rejected with a prob-
ability that depends on the resulting change of the overall 
effective energy H based on the Boltzmann acceptance func-
tion (Chen et al. 2007):

where Tm does not reflect any conventional thermal tempera-
ture; instead, it represents the strength of noise in the dynam-
ics and can be regarded as the amplitude of cell-membrane 

(6)Hm = Hch + Hf .

(7)ΔHch = −�ch(c(i) − c(j)),

(8)ΔHf = −�f (p(i) − p(j)),

(9)P
(

𝜎i → 𝜎j
)

=

{

e−(ΔH∕Tm) if ΔH > 0

1 if ΔH ≤ 0

fluctuations (Kabla 2012; Swat et al. 2012). At lower Tm val-
ues, there is little change in the cell membrane and the cells 
tend to retain their initial shapes without displacements. At 
high Tm values, however, there are significant fluctuations 
in the cell membrane which can lead to cell disintegration 
instead of motion. Trial tests show that a value of Tm = 100 
provides an appropriate level of fluctuations in the cell 
boundary for motility. The details of the CPM setup used in 
our Compucell3D simulations are provided in Supplemental 
Information.

2.3 � Diffusion fields

The CPM methodology can be extended to include other 
physical components such as diffusion fields, which can be 
utilized to simulate the secretion, uptake, and transport of 
cytokines within the domain (Swat et al. 2012). Here, three 
separate diffusion fields are included: TGF� , MMP-9, and 
fiber bundles. These fields are governed by the diffusion 
equation

where c is the field concentration and D, k and s denote 
the diffusion coefficient, decay constant and secretion rate, 
respectively.

A Dirichlet boundary condition is set at the surface of 
the qVEC (i.e., the blood vessel lumen) with a fixed value 
of 0.08 nM for the TGF� concentration, while zero gradi-
ent Neumann boundary conditions are imposed on the other 
boundaries of the tissue domain. The diffusion coefficient 
and decay rate for active TGF� are set to be 186 μm2/min 
and 0.22 min−1 , respectively (Son et al. 2017; Wakefield 
et al. 1990). Upon activation, cells secrete TGF� at a rate of 
3.5 × 10−11 nM/(cell⋅min) (Chowkwale et al. 2022). MMP-
9’s diffusion coefficient and decay rate are 6 μm2/min and 
0.0048 min−1 , respectively (Collier et al. 2011; Kumar et al. 
2016; Anderson 2005; Franssen et al. 2019). Since only acti-
vated cells within the tissue secrete MMP-9, we apply zero 
gradient at all tissue boundaries. While an MMP-9 secretion 
rate of 1.2 × 10−11 nM/(cell⋅min) has been suggested in the 
literature (Chowkwale et al. 2022), we allow the cells to 
secrete MMP-9 at a rate that is linearly proportional to the 
MMP-9 concentration in the nucleus from the subcellular 
model,

where s0 = 1.2 × 10−11 nM/(cell⋅min), cn is the concentration 
in the nucleus, and c0 = 8.3 nM is the maximum MMP-9 
concentration value attainable in the subcellular model (as 
shown in Fig. 3).

(10)
�c

�t
= D∇2c − kc + s,

(11)s = s0

(

cn

c0

)
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The cells in tissues are anchored to collagenous struc-
tures, indicating a higher adhesion between cells and fibers 
(Heino 2007). However, applying a lower contact energy in 
the CPM method does not realistically simulate the obstruc-
tion of fibers when cells move past them, as it results in 
a higher index copy acceptance when cells come in con-
tact with fibers. To overcome this, we considered a higher 
contact energy between cells and fibers and model the pro-
pensity of cells to attach to fiber bundles by dedicating a 
pseudo-diffusion field for fiber bundles to attract cells toward 
the fiber bundles through chemotaxis. This agrees with pre-
vious work that has shown collagen to have chemoattractant 
properties (O’Brien et al. 2010). To ensure the effective-
ness of chemotaxis and avoid interference with nearby fiber 
bundles, we assumed a diffusion coefficient of 2 μm2/min 
and a decay rate of 0.5 min−1 for this field, which results in 
a range of two to four voxels with a nonzero local pseudo-
concentration gradient. Additionally, we used a fixed con-
stant concentration value of unity as a boundary condition 
for all fiber bundles and set all tissue domain boundaries to a 
zero gradient boundary condition. By combining an overall 
attraction of the cells to the fibers and a low probability of 
index copy acceptance of cells to the immediately adjacent 
fiber bundle voxels, we can simulate realistic cell movement 
behavior around the fibers.

2.4 � Calcification model

EndMT: Endothelial-to-mesenchymal transition (EndMT) 
is an intricate cellular differentiation process whereby 
endothelial cells lose endothelial markers like platelet 
endothelial cell adhesion molecule-1 (PECAM-1) and 
detach and migrate into the deeper parts of the tissue and 
express mesenchymal markers such as alpha smooth muscle 
actin ( �-SMA). Previous studies showed that the EndMT and 
epithelial-to-mesenchymal transition (EMT) are key regula-
tors in diseases such as kidney fibrosis, cancer and cardio-
vascular diseases (Dongre and Weinberg 2019) (Sánchez-
Duffhues et al. 2018). Accumulating evidence indicates that 
EndMT plays a role in the pathogenesis of CAVD (Mahler 
et al. 2013) (Ma et al. 2020) .

In our model, the top layer of the simulated tissue is cov-
ered by quiescent valvular endothelial cells (qVECs), which 
can become stimulated based on the amount of TGF� in their 
surroundings (Fig. 2). Experimental studies have shown 
that approximately 1% of valvular endothelial cells (VECs) 
undergo the EndMT process in healthy valves, and upon 
TGF� stimulation. However, However, up to 9% of endothe-
lial cells can undergo EndMT (Bischoff 2019). In our model, 
we assume that 5% of eligible VECs, determined based on 
their PECAM-1 protein levels, undergo the EndMT process. 
The PECAM-1 protein level in the subcellular model is uti-
lized to trigger the transition from the qVEC to the activated 

valvular endothelial cell (aVEC) state, where the threshold 
for activation of VECs is set to half of the initial PECAM-1 
level. Furthermore, aVECs can return to the quiescent state 
if the PECAM-1 level falls below the threshold, except in 
the case of a prolonged activity of the aVEC defined by a 
continuous active time period exceeding 48 h (Chowkwale 
et al. 2019).

Quiescent valvular interstitial cells (qVICs) are randomly 
scattered inside the tissue and can be activated by the TGF� 
protein (Fig. 2). We use the �SMA protein level from the 
subcellular models for activation and deactivation of VICs 
to switch the state from qVIC to aVIC and vice versa. The 
threshold for activation of VICs is set to half of the maxi-
mum �SMA concentration, which is 4.2 nM. Moreover, 
aVICs can return to the quiescent state if the concentration 
of �SMA drops below the threshold, unless the duration of 
activity exceeds 48 h (Chowkwale et al. 2019). aVECs and 
aVICs exhibit fibrosis activity by depositing collagen fiber 
bundles at a rate of 3.2 × 10−10 mg/(cell.min) (Kumarswamy 
et al. 2012; Masur et al. 1996; O’Brien et al. 2005). They are 
also programmed to exhibit a higher migratory property that 
is proportional to the concentration of �SMA in the subcel-
lular calculations.

Shear stress to TGF� concentration: Studies conducted 
both in vivo and in vitro have shown that shear forces can 
trigger the activation of latent TGF� in blood (Ahamed et al. 
2008). Excessive or abnormal mechanical stress can also 
trigger the activation of latent TGF� within the tissue by 
disrupting its complex, thus releasing active TGF� into the 
tissue (Sarper et al. 2016; Dayawansa et al. 2022). In this 
study, for model simplicity we are solely addressing TGF� 
activation through blood shear stress, while postponing the 
consideration of TGF� activation within the tissue induced 
by mechanical stress to future model development. By utiliz-
ing shear stress and shear rate conversion methods (Abdel-
halim 2011), we can determine the concentration of active 
TGF� . For instance, a shear stress of 20 dyne/cm2 (Butcher 
et al. 2006; Mendoza et al. 2022) is indicative of active 
TGF� concentrations of approximately 0.08 nM, which is 
used as a boundary condition for TGF� diffusion field in 
the tissue model.

Cell Death: Fibrotic activity results in stiffening of the 
heart valve, reduced nutrient diffusion, and eventually leads 
to cell death (Piek et al. 2016). In our model, we determine 
necrosis by measuring fraction of the cell surface area 
exposed to the medium, and if this fraction drops below 
10%, the model cell dies and changes type to dead cell 
(DEAD). Furthermore, if a cell become trapped in an area 
with a high level of fibrosis or calcification and its mobility 
is limited, cell death is likely to occur (Fig. 2). We assess 
the intensity of fibrosis with the fiber field value and use 
75% of the maximum fiber field value as a threshold. For 
cells trapped in calcified or fibrotic regions, we use a cell 
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velocity threshold of 0.003 μm/min (1% of the maximum 
cell velocity) for determining insignificant cell movement 
(Nekolla et al. 2016).

Osteoblastic differentiation: Interstitial cells in the valve 
undergo osteoblastic differentiation in response to TGF� 
(Osman et al. 2006). An experimental study by Hjortnaes 
et al. showed that osteogenic differentiation markers such as 
Runx2, osteopontin and osteocalcin significantly increase, 
and EndMT markers such as �SMA expression decreases in 
osteoblastic-like interstitial cells (Hjortnaes 2015). There-
fore, osteoblastic differentiation is modeled when activated 
cells exhibit prolonged activity and �SMA concentration 
starts to decrease. Additionally, Hjortnaes et al. suggested 

that VICs inhibit the osteogenesis of VECs (Hjortnaes 
2015). To model this inhibitory behavior, the surface area 
of each aVEC is examined before differentiation to the oste-
oblastic-like type, ensuring that there is no contact between 
aVECs and VICs.

Calcification: Both ossification and dystrophic calcifi-
cation have been theorized to contribute to the calcification 
of the valve tissue. In the active ossification, the osteogenic 
differentiation of the interstitial cells give rise to the calcific 
nodules. (Masjedi et al. 2017). To simulate this process in the 
computational model, OST cells are coded to initiate calci-
fication nucleation. In the passive dystrophic calcification, 
dead and damaged interstitial cells are a significant source of 

Fig. 2   Schematic illustration of the tissue model consisting of three 
layers: the Fibrosa, Spongiosa, and Ventricularis layers. The Fibrosa 
layer is the outermost layer of the valve, covered by qVECs, and pri-
marily composed of collagen fibers. The Spongiosa layer is the mid-
dle layer of the valve and mainly composed of proteoglycans and 
glycosaminoglycans (GAGs). The Ventricularis layer is the inner-
most layer of the valve, predominantly composed of elastic fibers 
and covered by qVECs. qVECs can undergo EndMT transition upon 
PECAM-1 downregulation, becoming aVECs, while qVICs can be 

activated by upregulating aSMA and becoming aVICs. Both aVECs 
and aVICs secrete MMP-9 and TGF� and deposit fFibers during the 
fibrosis process. Prolonged activity and downregulation of aVECs 
and aVICs can lead to differentiation into OSTs, resulting in calcium 
nodule nucleation and growth. VICs can inhibit the differentiation of 
aVECs into OSTs when they are in close proximity. Cells can die by 
becoming trapped in high fibrotic or calcified areas, and the resulting 
dead bodies can act as feeding sites for CaNods. Created with https://​
www.​BioRe​nder.​com

https://www.BioRender.com
https://www.BioRender.com
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calcium deposits and calcification and form calcific nodules 
(Steitz et al. 2002; Butcher et al. 2011). In the computational 
model this process is captured by the setting that, when a cal-
cified nodule is in contact with DEAD cells, the DEAD cells 
are considered as feeding sites and the calcification rate for 
the nodule would increase based on the nodule surface ratio 
in contact with the DEAD cells. Based on our in vitro study, 
we calculated the experimental calcification rate r

exp
 to be 0.1  

μm3/(min⋅nodule), assuming a constant rate over the course of 
the experiment (Mendoza et al. 2022).

In order to incorporate the influence of different sources 
on the calcification rate, we make an assumption that approxi-
mately half of the calcification rate is attributed to the proxim-
ity of DEAD cells, while the other half is dependent on other 
biological processes not captured in our model. Leveraging the 
in vitro data, we express the model calcification rate Rsim as

where �
D−N

 represents the fraction of a CaNod surface area 
that is in contact with DEADs, and � is an adjustable weight-
ing factor. The range of �

D−N
 is between 0 and 1, where 0 

indicates no surface area in contact with any DEADs, and 1 
indicates the entire nodule surface is surrounded by DEADs. 
Since rexp represents a target calcification rate for a CaNod, 
through trial-and-error we have found that � = 10 provides 
a reasonable result for Rsim.

(12)Rsim =
rexp

2
�

D−N
� +

rexp

2
,

Table 6 summarizes all parameter values used in our 
simulations.

2.5 � TGFˇ signaling pathway

The TGF� signaling pathway is used in the subcellular mod-
eling within each model cell and is integrated with the CPM 
and the rest of the simulation framework. In Supplemental 
Information, the model details are provided in Antimony 
language (Chowkwale 2019). The TGF� concentration from 
the diffusion field is used as an input for the subcellular 
model in each cell. The values of PECAM-1 and �SMA 
obtained in the subcellular models are used for cell type 
differentiation, and if cells are activated, MMP-9 and TGF� 
proteins are secreted into their surroundings in the diffusion 
fields. The subcellular models are deterministically solved 
using libRoadRunner, which is a simulation engine in a C++ 
library used for simulating and analyzing systems of differ-
ential equations (Welsh et al. 2023). The CVODE integra-
tion method is chosen, which uses a backward differentiation 
formula solver for stiff ODE problems.

2.6 � ECM and tissue composition

The noncellular portion of connective tissues is known as 
the extracellular matrix (ECM), a complex meshwork of 
insoluble fibrillar proteins and signaling factors interacting 
together to provide physical scaffolding and instructional 

Table 6   Model parameter values

Parameter Value Comment

Initial VIC density 107 cell/ml  Empirical (Mendoza et al. 2022)
Initial VEC density 106 cell/cm2  Empirical (Mendoza et al. 2022)
Initial collagen concentration 1.5 mg/ml  Empirical (Mendoza et al. 2022)
Collagen fiber density 1.3 mg/ml  Empirical (O’Brien et al. 2005)
Fibrosis rate 0.32 pg/(cell⋅min)  Empirical (Kumarswamy et al. 2012; Masur et al. 

1996; O’Brien et al. 2005)
Calcification rate 0.1 μm3 /(min⋅nodule)  Empirical (Mendoza et al. 2022)
MMP-9 threshold for fiber degradation 3.6 × 10−11 nM  Computational (Chowkwale et al. 2022)
Cell doubling time 1800 min  Empirical (Rush 2018; Pho et al. 2008)
Maximum cell velocity 0.3 μm/min  Empirical (Nekolla et al. 2016)
Initial cell size 10 μ m × 10 μ m × 10 μm  Empirical (Bosse et al. 2013)
Fiber bundle length 50 μm  Computational (Lee et al. 2014; Kumar et al. 2016)
Fiber bundle thickness 2 μm  Computational (Kumar et al. 2016)
Fiber field criterion for cell death > 75% Assumed: 75% of parameter range
Medium exposure criterion for cell death < 10 % of cell surface area Assumed: 10% of parameter range
Medium Exposure criterion for cell growth and mitosis > 50 % of cell surface area Assumed: average of parameter range
�SMA field threshold for VIC activation 4.2 nM Assumed: average of parameter range
Velocity criterion for insignificant movement leading to cell 

death
< 0.003 μm/min  Empirical (Nekolla et al. 2016)

EndMT-derived activation rate of qVECs 1 to 10%  Empirical (Bischoff 2019)
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cues to the surrounding cells. In our modeling framework, 
the ECM is modeled as randomly generated fiber bun-
dles within the domain, which contains several diffusion 
fields responsible for transporting signaling proteins. In 
the aortic valve fibrosa collagen I is the most abundant 
ECM protein (Taylor 2007), and since it has a typical 
length of 20–200 μ m and a typical thickness of 200–350 
nm (Lee et al. 2014), we chosen each fiber bundle in our 
model to be 50 μ m in length and 2 μ m in thickness simi-
lar to those used by (Kumar et al. 2016). By assuming a 
collagen concentration of 1.5 mg/ml as in the previously 
reported in vitro experiment (Mendoza et al. 2022) and a 
collagen fiber density of 1.3 mg/ml (O’Brien et al. 2005), 
we determined and set the number of fiber bundles in our 
computational tissue domain. Two types of fiber bundles, 
iFiber and fFiber, are specifically defined to differentiate 
between the fiber bundles that already exist at the start 
of the simulation (iFiber) and the fiber bundles that are 
formed during fibrosis simulations (fFiber).

At the start of the simulation, the tissue consisted of 
only qVECs, qVICs, and iFibers. The cells are assumed to 
be cubic in shape with dimensions of 10 μ m. The qVECs 
cover the top part of the tissue with a concentration of 106 
cell/cm2 , assuming confluency. qVICs, on the other hand, 
are randomly scattered within the ECM with a concentra-
tion of 107 cell/cm3 (Mendoza et al. 2022).

2.7 � Fibrosis

Fibrosis is typically caused by the abnormal accumula-
tion of ECM components, particularly collagen, within 
tissues. The presence of fibrosis is associated with calcifi-
cation and contributes to valve obstruction, as evidenced 
by contrast-enhanced CT and histology images (Cartlidge 
et al. 2021). It is known that TGF� can induce fibrosis 
through myofibroblast activation which results in exces-
sive production of ECM components (ming Meng et al. 
2016). The typical collagen concentration in a heart valve 
is around 5 mg/ml, which can increase up to 13 times due 
to fibrosis induced by TGF� (Kumarswamy et al. 2012). 
Moreover, the cell concentration in a typical heart ranges 
from 0.5 to 1 × 108 cells/cm3 , and about 5% of the cells 
undergo myofibroblast differentiation upon TGF� stimula-
tion (Masur et al. 1996). Using these data, we estimated 
the fibrosis rate in the heart valve to be approximately 
3 × 10−10 mg/(cell⋅min). In our simulation model, once 
cells become activated they initiate fibrosis by randomly 
generating fiber bundles around them. Using a fiber den-
sity of 1.3 g/ml (O’Brien et al. 2005), the model calcu-
lates the fiber bundle volume and generates fiber bundles 
accordingly, with a maximum bundle length of 50 μ m and 
a bundle thickness of 2 μm.

2.8 � ECM degradation

In addition to synthesizing collagen, myofibroblasts are also 
the primary source of MMPs that degrade matrix proteins 
(Horn and Trafford 2016). Activated cells in the model start 
secreting matrix degrading enzymes based on the concentra-
tion of MMP-9 protein in the subcellular model calculations. 
Upon secretion, MMP-9 molecules diffuse throughout the 
ECM. If the concentration of MMP-9 around a fiber bundle 
exceeds a certain threshold, degradation of the fiber bun-
dle is initiated. We set the threshold to be 3.6 × 10−11 nM, 
which is three times the maximum secretion concentration 
of MMP-9 by activated cells (Chowkwale et al. 2022).

2.9 � Mitosis

Mitosis is a process of cell duplication during which one cell 
splits into two genetically identical daughter cells. Nutrients 
are essential for cell growth and DNA synthesis in mitosis 
(Gottesman 2014). In our model, we approximate a cell’s 
access to nutrients by calculating the fraction of the cell’s 
surface area in contact with the medium. If this fraction is 
more than 50%, the cell will grow and proceed with the 
mitosis process. Reported experimental studies showed that 
the doubling time for myofibroblast with higher expression 
of �SMA in heart valve interstitial cells is around 30 h (Rush 
2018; Pho et al. 2008). Thus, we use this value for mitosis 
of activated cells when they have access to enough nutrients 
in their surroundings.

3 � Results and discussion

3.1 � Subcellular model

The concentrations of PECAM-1, �SMA and MMP-9 were 
used in our subcellular model. PECAM-1 helps distinguish 
between qVEC and aVEC, MMP-9 is responsible for the 
degradation of ECM, and �SMA plays a role in the dif-
ferentiation to OST and in the change of cells between the 
quiescent and the activated states. Depending on the local 
TGF� concentration as an input to the subcellular model, 
cells may exhibit varying behaviors. Quiescent cells with 
less movement receive TGF� similar to a continuous input 
while activated cells with higher migratory properties expe-
rience a TGF� field similar to an initial input at the begin-
ning when moving toward lower concentrations. Although 
the cells may experience TGF� as a combination of an initial 
input and continuous inputs, analyzing the subcellular model 
separately helps associate input types with cell behaviors. 
The results of the TGF� subcellular model for an initial input 
and continuous inputs at different concentration levels are 
shown in Fig. 3.
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It is found that higher TGF� concentrations increase �
SMA and MMP-9 concentration levels, while decreasing 
PECAM-1 protein. In the case of an initial input (Fig. 3a–c), 
higher TGF� concentrations intensify and prolong protein 
expression, which are characteristics of activated cells. 
Except for very low concentrations of TGF� that are insuf-
ficient to trigger pathway reactions, all protein expressions 
follow a similar pattern with different active time scale even 
under varying TGF� concentration levels. In the case of con-
tinuous inputs of TGF� (depicted in Fig. 3d–f), the protein 
expressions exhibit a consistent pattern across different lev-
els of TGF� concentration, with the exception of very low 
concentrations that are not enough to initiate pathway reac-
tions. The subcellular models provide protein concentration 
values for each cell, which are utilized to assess the cells’ 
states and guide their differentiation, mirroring their behav-
iors observed in in vitro studies.

3.2 � Tissue model

Figure 4 presents snapshots of the tissue taken at various 
time instances after the start of the simulation. At the outset 
of the simulation, the top layer of the domain is covered 
by qVECs while qVICs are dispersed inside. Initial fiber 
bundles are created and randomly oriented throughout the 
domain. As the simulation progresses, quiescent cells can 

become activated from being exposed to TGF� and begin 
to produce matrix-degrading enzymes (MMP-9). They can 
also move more quickly and deposit collagen fiber bundles, 
resulting in fibrosis. At the 50-hour mark, an early stage 
of fibrosis is visible, as illustrated by activated cells hav-
ing deposited fiber bundles colored in light green (Fig. 4). 
Exposure of activated cells to lower concentrations of TGF� 
can revert the cells back to the quiescent state. However, 
prolonged status as activated cells can trigger their differ-
entiation into OSTs, which initiate the calcification process. 
An early stage of calcification can be observed in Fig. 4 at 
the 100-hour mark. Moreover, higher fiber deposition at that 
time stimulates cell death in highly fibrotic regions. As nod-
ules continue to grow, more cells die, which in turn further 
elevates the nodules’ growth rate. Eventually, the major-
ity of cells in highly fibrotic or calcified regions are dead, 
as depicted in Fig. 4 at 333 h. To provide a more detailed 
visualization of the tissue remodeling, we created separate 
figures for VICs, VECs, OSTs, DEADs, iFibers, fFibers, as 
well as diffusion fields associated with MMP-9 and TGF-� . 
These additional figures can be found in the Supplemental 
Information section.

Activated fibroblasts or myofibroblasts are characterized 
by their increased expression of ECM proteins and fibro-
genic cytokines, which contribute to the mechanical proper-
ties of affected tissues (Phan 2008). In CAVD, osteogenic 

Fig. 3   Subcellular model responses with different concentration lev-
els of TGF� and input types. The first row a–c are protein concentra-
tions with a TGF� input pulse at the start of the simulation (Time = 
0 h). The second row d–f are protein concentrations under a continu-

ous TGF� input since the start of the simulation. a and d are concen-
trations of �SMA. b and e are concentrations of PECAM-1. c and f 
are concentrations of MMP-9
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differentiation has been observed, and dead cells are a major 
source of calcification (Steitz et al. 2002; Butcher et al. 
2011). Thus, tracking the population of cell types during 
tissue remodeling is crucial for understanding disease pro-
gression and developing potential treatment methods. How-
ever, monitoring cells’ differentiation steps experimentally 
can be difficult, and this is where computational models are 
beneficial. By keeping a record of each cell’s evolutionary 
path, these models can provide insight into the dynamics of 
tissue remodeling.

In this simulation, cell differentiation into various types 
was counted and presented in Fig. 5 as a fraction of all cells 
during the simulation. The results indicate that approxi-
mately 9.6% of all quiescent cells became activated, of 
which about 4.7% returned to the quiescent state. A smaller 

proportion of aVECs became quiescent compared to aVICs, 
which could be due to the exposure of VECs to higher TGF� 
concentrations near the boundary while the VICs were 
exposed to lower TGF� concentrations at deeper parts of 
the tissue. Depending on the protein concentration, activated 
cells can differentiate into osteoblast-like cells, return to the 
quiescent state, or become trapped among calcified nodules 
or fibrotic fibers and die.

During the simulation, it was observed that about 7.4% 
of the activated cells differentiated into osteoblast-like cells, 
which initiated the formation of calcified sites around them. 
As time passed, these sites grew in size, and the osteoblast-
like cells became trapped inside them. Eventually, the major-
ity of these cells died due to a lack of nutrients. Overall, 
the simulation showed that 21.8% of the cells died, getting 

Fig. 4   Remodeling of the tissue at different time points. Different cell 
types, fibers and nodules are presented in different colors. Brown, red, 
blue, and pink are related to qVEC, aVEC, qVIC, and aVIC, respec-

tively. Initial fiber bundles are white and fibrotic fiber bundles are 
light green. Calcium nodules, dead cells and osteobalst-like cells are 
yellow, gray, and dark green, respectively
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trapped in either fibrotic or calcified areas (Fig. 5). The 
apoptotic bodies from the dead cells contributed to the cal-
cification process by serving as feeding sites.

Figure 6a displays the cell count ratio for each cell type at 
the beginning and end of the simulation. The figure reveals a 
decrease in the number of quiescent cells and an emergence 
of dead cells toward the end of the simulation. Furthermore, 
it indicates that there were no significant numbers of aVEC, 

aVIC, and OST at the beginning and the end of the simu-
lation. However, by plotting the cell population data over 
time, one can monitor the dynamics of different cell types 
as illustrated in Fig. 7. 

Activated cells grow and proliferate through the process 
of mitosis, depending on the availability of nutrients in their 
vicinity. Figure 6b illustrates the mitosis of activated cells, 
wherein new daughter cells are produced during the simula-
tion. The figure highlights that the number of mitotic aVICs 
is greater than that of aVECs. This disparity is attributed to 
the higher number of VIC activations compared to VECs, 
as depicted in Fig. 5.

Activated cells exhibit higher migratory properties, 
allowing them to reach deeper parts of the tissue and set-
tle in regions with lower TGF� concentrations, which can 
cause them to revert to a quiescent state. This phenomenon 
explains the observed jump in the qVIC population at 60 to 
70 h mark (Fig. 7b) and the corresponding drop in the aVIC 
population at around the the same time (Fig. 7e). Moreover, 
activated cells proliferate new daughter cells through mito-
sis, resulting in sudden increases in the activated cell popu-
lations, as depicted in Fig. 7d, e. If these cells survive, they 
eventually either revert to the quiescent state or differentiate 
into osteoblast-like cells.

The population of osteoblast-like cells increases as more 
cells differentiate from activated cells. However, the exces-
sive growth of nodules around them can lead to insufficient 
access to surrounding nutrients, resulting in cell death and a 
decrease in the population around 120 h after the start of the 
simulation (Fig. 7c). The DEAD cell population increases 
over time as more fiber bundles and nodules appear due 
to fibrosis and calcification, respectively, as illustrated in 
Fig. 7f.

3.3 � Fibrosis

In the simulation, fiber bundles are classified as initial or 
fibrotic. While initial fiber bundles were randomly distrib-
uted throughout the ECM domain at the beginning of the 
simulation, fibrotic fibers were formed through the process 
of fibrosis during the simulation. The initial fibers were 
degraded by MMP-9 secreted from aVICs and aVECs. Fig-
ure 8a shows the distribution of initial fiber bundles (iFibers) 
throughout the tissue depth at different times. It is revealed 
that degradation of fibers occurred up to a depth of approxi-
mately 100 μ m, and there was no significant fiber degrada-
tion after about 90 h. Approximately 23.4% of the iFibers 
were degraded during the simulation.

The aVICs and aVECs secrete ECM components such 
as collagen fibers based on the �SMA concentration in their 
subcellular models. The distribution of fibrotic fibers is 
shown in Fig. 8b, which indicates an accumulation of fibers 
over time. The presence of aVICs and aVECs drove fibrosis 

Fig. 5   Cells phenotype transition during the simulation from six sim-
ulation runs with different random seedings

Fig. 6   Cell count statistics from six simulation runs with different 
random seedings. a Cell count ratio comparison for different types at 
the start and end of the simulation. b Generated cells due to the mito-
sis activity of aVIC and aVEC
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Fig. 7   Cell count ratio of different types during the simulation from 
six runs with different random seedings. a qVECs, b qVICs, c OSTs, 
d aVECs, e aVICs, f DEADs. Cell count ratio for a specific cell type 

is calculated by dividing the number of each specific cell type by the 
total number of cells in the model at a given time

Fig. 8   Fiber bundles statistics from the simulations. a distribution of 
iFibers within the tissue over time; b distribution of fFibers generated 
by the fibrosis activities of aVICs and aVECs over time; c distribu-

tion of all fiber bundles (iFibers plus fFibers) over time; d compari-
son of the average fiber bundle depth at the start and the end of the 
simulations
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by secretion of collagen fibers, and the fibrosis activity was 
high up to around 150 h and became low beyond 250 h. This 
is consistent with the population of activated cells shown in 
Fig. 7d, e.

Figure 8c shows the distribution of all fiber bundles in 
the tissue, including both iFibers and fFibers. The accumu-
lation of fibrotic fibers shifted the overall distribution of all 
fibers in the tissue, resulting in a peak around 45 μ m depth. 
Figure 8d shows the average fiber depths at the start and the 
end of the simulation. For iFibers, the average depth shifted 
toward deeper regions as a result of iFiber degradation in 
the shallower areas. Fibrotic fibers, on the other hand, were 
mostly generated in the shallower depths. In fact, during the 
simulation the fibrosis activities deposited about 5.5 times 
more fiber bundles than the number of iFibers at the start of 
the simulation. Because of the abundance of generated fFib-
ers in the shallower regions, the average depth of all fibers 
decreased from about 110 to 60 μm.

3.4 � Calcification

Calcium nodule formation is initiated by the osteoblast-like 
cells, and apoptotic bodies and cell fragments serve as feed-
ing sites for the nodules to grow. The nodule density in the 
tissue over time is depicted in Fig. 9a, showing that the first 
nodules appear after approximately 50 h and increase gradu-
ally. This finding is consistent with a previous calcification 
experiment treated with TGF� (Clark-Greuel et al. 2007). 
The number of new nodule formation is dependent on the 
OST population, and as this population decreases, the nodule 
density does not increase further and reaches a plateau.

The growth rate of nodule size can vary depending on 
the location of the nodule and its proximity to apoptotic 
bodies. These cell fragments release factors that stimulate 
calcification (Hutcheson et al. 2013), and nodules with more 
common surface area in contact with apoptotic bodies grow 
faster than those without cell fragments nearby. This vari-
ability in nodule size increased over time, evident in Figs. 9b 
and 10a. The average nodule size is approximately 2000 μm3 
at 336 h after the start of the simulation, which is consistent 
with reported experimental results, showing about 79 per-
cent agreement with our computational findings. (Mendoza 
et al. 2022).

Figure 10b displays the distribution of nodules across the 
depth of the tissue at different time points. The graph illus-
trates that at the early stages of the simulation the nodules 
initially appeared in shallower regions of the tissue, but as 
time progressed the distribution shifted toward the deeper 
regions. The observed trend can be explained by the migra-
tory behavior of activated cells. Due to the presence of the 
endothelial cell layer acting as a nonpenetrable barrier, the 
activated cells were biased toward migrating to the deeper 
parts of the tissue. Once in the deeper regions, the activated 
cells had the potential to undergo differentiation into osteo-
blast-like cells, resulting in more nodule formation.

The results from an experimental study by Stephens et al. 
(2011) show that prenodules tend to form at the shallower 
parts of aortic tissue, predominantly in the fibrosa section. 
Our simulation results support these findings, suggesting 
that this phenomenon primarily stems from the interplay 
between the diffusion and decay of TGF� in the tissue, 
where the presence of TGF� at certain depths serves as a 
trigger for the activation of fibroblasts, ultimately leading 
to fibrosis and calcification in specific regions.

Fig. 9   Nodule data in six simulation runs with different random seed-
ings. a Nodule density, calculated as the total number of nodules per 
volume of the tissue domain. b Nodule size, defined as volume per 
nodule. The line trace represents the average nodule size while the 
shaded area represents the nodule size standard deviation

Fig. 10   Time evolution of nodule size distribution. a Nodule size dis-
tribution. b Nodule location distribution in terms of depth in tissue
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3.5 � Limitations

To the best of our knowledge, this model for calcification 
in CAVD using CPM is a pioneering effort. While the cur-
rent model provides a novel tool for simulating CAVD and 
other similarly intricate biological processes, there remain 
limitations. Given that the CPM does not rely on tradi-
tional stress–strain formulations, it is not able to capture 
the mechanical responses of the tissue during remodeling. 
Consequently, this study does not consider the activation 
of TGF� within the tissue in response to structural stress. 
Additionally, beyond the TGF� signaling pathway, other 
hypothesized factors that may play a role in initiating and 
regulating the calcification process in CAVD. BMP, LDL, 
monocytes, for example, are not addressed in this study. Our 
model will require further development to incorporate other 
relevant signaling pathways to better mirror real-life human 
conditions.

For most of the model’s parameters, we sourced them 
from reported experimental and computational studies. 
However, in cases where pertinent parameters and their val-
ues were readily unavailable in the literature, we either chose 
them through numerical experimentation to ensure their 
physiological relevance or employed heuristic reasoning to 
make estimation. This involved using the averaged result or 
a qualitative assessment of what appeared to be most appro-
priate within the context of our study. We plan to continue 
development of our models by expanding the parameter sets 
with additional experimentation to better capture the human 
CAVD process.

4 � Conclusion

This study describes a multiscale computational model and 
simulation of calcification in aortic valve tissue, with a focus 
on the role of TGF� stimulation. The model includes a sub-
cellular component of the TGF� signaling pathway for each 
cell, as well as a tissue-scale component that incorporates 
interactions between cells, ECM proteins, and diffusing 
cytokines. The model tracks changes in cell population and 
phenotype, including transitions between different types and 
states. The ECM is represented as fiber bundles with asso-
ciated diffusion fields, and fibrosis activity is quantified by 
measuring the deposition of fiber bundles. Following the 
differentiation of osteoblast-like cells, calcification occurs 
through nucleation and growth over time. According to the 
results, MMP-9 secreted by aVECs and aVICs contributes 
to the degradation of the initially present fibers while also 
depositing collagen fibers through fibrosis. Additionally, the 
occurrence of fibrosis and calcification processes is preva-
lent at shallower regions of the tissue. The deposition of 
fibers during fibrosis and the appearance of calcified nodules 

restrict the cells’ access to nutrients and contribute to cell 
death. The fragments of dead cells further fuel the formation 
of calcium nodules, contributing to diverse nodule sizes. The 
calcification results show that the location and average size 
of the nodules are consistent with the experimental findings.

The multiscale model presented in this study has the 
potential to unravel the complexity of CAVD by incorporat-
ing various subcellular models and integrating them with a 
fiber-based tissue-scale model. This methodology enables 
comprehensive studies of tissue remodeling, not only in 
CAVD but also in diseases related to cell mechanobiology, 
such as cancer .
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