

1 Size-associated energetic constraints on the seasonal onset
2 of reproduction in a species with indeterminate growth

3

4 **ABSTRACT**

5 The seasonal onset of reproduction is constrained in many systems by a need to
6 first accumulate energetic reserves. Consequently, the observation that larger
7 individuals reproduce earlier may be due to a negative relationship between size and
8 mass-specific basal metabolic rate that is shared across diverse taxa. However, an
9 untested prediction of this hypothesis is that individuals should be metabolically efficient
10 enough to escape energetic constraints above a certain size threshold. Seasonally
11 reproducing species, such as temperate fishes, that must recover winter energy losses
12 before reproduction and exhibit indeterminate growth are ideal models to test this
13 prediction. We harness decade-long behavioral data on parental male smallmouth bass,
14 *Micropterus dolomieu*, to investigate contributions of energetic allometry to differences in
15 reproductive timing. At the population level, peak seasonal reproductive timing (i.e., the
16 median date on which eggs were found in nests each year) was negatively related to
17 degree days—a measure of thermal energy experienced—before reproduction. At the
18 individual level, degree days accumulated by males before reproduction was related to
19 male size and condition in every year, but the impact of temperature on reproductive
20 timing by the largest males was relaxed in most years. Additionally, we used our data to
21 replicate the analyses of two previous studies of *M. dolomieu* populations and found
22 virtually identical negative associations between male body size and degree days
23 accumulated before reproduction. Our results suggest that in smallmouth bass the onset

24 of seasonal reproduction is constrained by basal metabolic rate—as indicated by total
25 length—and that large individuals can escape size-associated energetic constraints. We
26 reveal a more complicated relationship between size and reproductive timing than earlier
27 studies, which may be relevant for many species. Knowledge of this relationship is
28 critical to understanding how a changing climate will influence population dynamics of
29 economically, ecologically, and recreationally important species like *M. dolomieu*.

30

31 **Key words:** **allometry, body size, Centrarchidae, degree days, metabolism,**
32 **phenology, reproductive timing, temperature**

33

34 **INTRODUCTION**

35 Reproductive phenology can have considerable consequences for fitness
36 (Cargnelli and Gross 1996; Post et al. 1998; Post 2003) and is influenced by energetic
37 constraints across a diverse set of taxa, including amphibians, fishes, mammals, and
38 birds (Jørgensen 1982; Danylchuk and Fox 1994; Dobson and Michener 1995;
39 Descamps et al. 2011). The use of proportionately less energy by larger individuals has
40 also been documented across a diverse set of taxa (i.e., they show a negative allometric
41 relationship between body size and mass-specific basal metabolic rate; Kleiber 1947;
42 Lasiewski and Dawson 1967; Cargnelli and Gross 1997; West et al. 1997; Clarke and
43 Johnston 1999; Hurst and Conover 2003; Nagy 2005; Blanckenhorn et al. 2007;
44 Makarieva et al. 2008; Brodeur et al. 2020). Hence, the common observation that larger
45 individuals reproduce before smaller individuals is often attributed to energetic costs that
46 constrain the initiation of reproduction (Tejedo 1992; Danylchuk and Fox 1994; Dobson
47 and Michener 1995; Descamps et al. 2011). This relationship between size and
48 reproductive timing is especially prominent in species with high reproductive costs
49 resulting from, e.g., energetically costly gametes or parental care behavior, including
50 nest construction and defense (Ridgway et al. 1991; Tejedo 1992; Danylchuk and Fox
51 1994; Descamps et al. 2011). The presence of species-specific constants in models of
52 allometric scaling laws leads us to expect similar associations between body size and
53 reproductive timing across different populations if energetics control behavior (West et
54 al. 1997).

55

56 Often, the relationship between size and reproductive timing is described by a
57 linear function or even more simply as a correlation (Tejedo 1992; Danylchuk and Fox

58 1994; Dobson and Michener 1995; Descamps et al. 2011). However, if energetic costs
59 constrain the onset of seasonal reproduction and metabolic efficiency scales positively
60 with size, we predict that above a certain size, individuals could be metabolically efficient
61 enough to initiate reproduction without any delay attributable to the recovery of energetic
62 reserves that have been lost over winter; that is, the relationship between reproductive
63 timing and size should be curvilinear, with a diminished association at larger body sizes.
64 Indeed, log-log or log-untransformed linear regression models that describe a negative
65 relationship between size and reproductive timing imply that the relationship is non-
66 linear, where the effect of energetic constraints is reduced amongst larger individuals
67 (e.g., Ridgway et al. 1991, Wiegmann et al., 1992; Lukas and Orth 1995). In some
68 circumstances, we anticipate large individuals could be unconstrained metabolically and
69 a quadratic function might better describe the relationship between (log-transformed)
70 measures of size and reproductive phenology, where the size threshold at which
71 individuals are released from metabolic constraints may depend on environmental
72 conditions that control the gain or loss of energetic reserves.

73

74 In fishes, indeterminate growth can lead to substantial variation in size among
75 mature adults (Ridgway and Friesen 1992; Knapp et al. 1996; Wiegmann et al. 1997;
76 Dickerson et al. 2005). This situation provides ideal conditions to test the hypothesis that
77 the impact of energetic constraints on reproductive phenology is size dependent. In
78 some species, within-season variation in timing of reproduction is known to have large
79 fitness consequences (Cargnelli and Gross 1996; Post et al. 1998; Post 2003), and in
80 some fishes, a negative allometric relationship to mass-specific basal metabolism has
81 been implicated (Shuter and Post 1990; Cargnelli and Gross 1997; Clarke and Johnston

82 1999). In north-temperate fishes, where males of many species rely almost entirely on
83 stored energy reserves throughout winter (Shuter and Post 1990), a negative allometric
84 relationship could explain why larger males, which lose proportionately less of their
85 winter energy reserves than smaller males, spawn earlier in a season (Post and Evans
86 1989; Ridgway et al. 1991; Fullerton et al. 2000). In freshwater fishes like these,
87 individual thermal history can have a substantial impact on energetic stores and the
88 ability of individuals to recoup winter energy losses. Changing climate makes studies
89 investigating relationships between temperature and reproductive phenology particularly
90 important.

91

92 Here, we use a long-term dataset on an economically and ecologically important
93 species, smallmouth bass, *Micropterus dolomieu*, (Carey et al., 2011; Kim et al., 2022)
94 to test the influence of energetics on reproductive timing. In particular, we followed the
95 reproductive behavior of individual males in a closed population over 10 reproductive
96 seasons to investigate how male body size, condition, and thermal history impact
97 reproductive timing. In northern populations, *M. dolomieu* are dormant in winter and
98 resume activity when water temperatures reach 10 °C, after which males build nests and
99 defend progeny until they disperse (Shuter et al., 1980; Hinch and Collins 1991).

100 Parental males consume little over the care period and there is good evidence that
101 implicates energetics as the primary driver of *M. dolomieu* reproductive timing (Ridgway
102 et al. 1991; Ridgway and Shuter 1994; Gillooly and Baylis 1999; Mackereth et al. 1999).
103 Hence, the distribution of reproductive dates of the population is expected to be sensitive
104 to temperature patterns in early spring that control the rate at which males are able to

105 recoup winter energy losses and reach some threshold energetic reserve that is
106 sufficient to carry them through the nest-guarding period.

107 In this study, we consider how reproductive timing of the population as a whole
108 responds to the rise of spring water temperature and test the hypothesis that timing of
109 peak reproduction is negatively related to the number of degree days—a measure of the
110 thermal energy experienced by an individual—accumulated before the water temperature
111 reaches 15 °C, the temperature threshold associated with the initiation of reproduction in
112 many smallmouth bass populations (Hubbs and Bailey 1938; Shuter et al. 1980). Next,
113 we examine the linear relationship between total body length and the degree days males
114 accumulated before they spawned and compare the slope of this relationship to slopes
115 acquired from two other *M. dolomieu* populations (Ridgway et al. 1991; Lukas and Orth,
116 1995). Finally, we test the prediction, not addressed in prior studies, that there is a size
117 threshold at which the energetic constraint on the seasonal onset of reproduction is
118 relaxed, and explore whether incorporating body condition into our analysis improves our
119 ability to predict reproductive timing.

120

121 Study system natural history

122 Smallmouth bass, *Micropterus dolomieu*, are native to North America and
123 reproduce seasonally, when water temperatures approach 15 °C (Hubbs and Bailey
124 1938; Shuter et al. 1980). Males construct nests in the littoral zone, where females
125 deposit eggs. Typically, males mate with only one female and no sneaker behavior has
126 been reported (Ridgway 1989; Raffetto et al. 1990; Wiegmann et al. 1992). Recent
127 genetic work by Franckowiak et al. (2017) suggests, however, that nests of a small
128 percentage of males contain eggs from multiple females. After spawning, males remain

129 in close proximity to their nest and defend offspring until their fry swim up and disperse,
130 a period that may last several weeks (Hinch and Collins 1991). Parental behavior is
131 costly and leads to a net loss of lean mass, as males rarely feed during this period
132 (Gillooly and Baylis 1999). In northern populations, smallmouth bass activity ceases
133 when water temperatures drop below 10 °C, and over winter individuals are largely
134 dormant, consume little food and engage in limited movement (Hubbs and Bailey 1938;
135 Munther 1970; Oliver et al. 1979; but see Lyons and Kanehl 2002; Schreer and Cooke
136 2002). The energetic cost of parental care in combination with the fact that smaller
137 males may end winter with a proportionately larger energy deficit than larger males may
138 explain the observation that larger males spawn earlier within a season than smaller
139 males, as suggested by the relationships between size and reproductive timing found by
140 Ridgway et al. (1991) and Lukas and Orth (1995).

141

142 MATERIALS AND METHODS

143

144 Study site

145 We conducted this study in 1999 and 2001-2009 on Pallette Lake, a 70-ha
146 research lake in the Northern Highlands Fishery Research Area of north-central
147 Wisconsin (46.067° N/89.604° W). The Wisconsin Department of Natural Resources
148 manages this lake, which is closed to fish migration and has a maximum depth of
149 approximately 20 m and a mean depth of approximately 10 m. Saunders et al. (2002)
150 describe the benthic and limnological characteristics of the lake in detail. Anglers are
151 subject to a mandatory creel census, where caught fish must be reported to ensure
152 regulations are followed. From 1999-2006, regulations required anglers to return to the

153 lake any male less than 41 cm total length and from 2007 onwards all males under 51
154 cm had to be returned. We had significant representation of males larger than 40 cm in
155 our analyses (13.8%).

156

157 **Annual nest census**

158 We initiated surveys each year when the water temperature approached 15 °C,
159 typically in mid to late May, and continued until males ceased nest construction (late
160 June to early July) and progeny in most nests had dispersed. Two to three crew
161 members with snorkels searched for nests as they swam transects running from the
162 shoreline out to a depth of about 4 m. This depth was well beyond both the average 1.7
163 m depth at which nests in the lake were found and the maximum depth of smallmouth
164 bass nests found in studies of other Wisconsin lakes (Bozek et al. 2002). When each
165 nest was discovered, snorkelers placed a numbered tag constructed from a strip of Rite-
166 n-Rain paper tied to a sinker on the edge of the nest and recorded the date, stage of
167 embryos (if present), depth, location and distinctive landmarks that might be useful to
168 relocate nests.

169

170 **Characteristics of parental males**

171 We captured parental males from their nests with hand nets and recorded their
172 total length (cm) and weight (g). Each male was marked with a uniquely numbered Floy
173 FD-67C anchor tag (University of Wisconsin RARC protocol A-48-9700-L00173-2-04-
174 99). These tags allowed us to track individuals across seasons and estimate the total
175 number of males that spawned each year, although analyses on reproductive timing

176 were limited to those males that were found with eggs in their nest to ensure estimates
177 of degree days before reproduction were comparable across individuals (Table 1).

178

179 Temperature and degree days

180 We used temperature data to estimate the thermal energy experienced by males
181 in each year. A thermograph positioned near the shoreline at an approximate depth of 1
182 m recorded the water temperature (°C) hourly when the lake was not covered by ice.
183 Thermograph malfunctions or other disturbances (e.g., removal of the thermograph from
184 the lake by a lake visitor) resulted in some missing temperature records over the 10
185 years. We estimated these records using regression equations that characterized the
186 relationship between water temperature in our study site (Pallette Lake) and nearby
187 Sparkling Lake (46.010° N/89.701° W), a North Temperate Lakes Long-Term Ecological
188 Research lake (64 ha; maximum depth 20 m) that has a nearly identical temperature
189 profile as Pallette Lake (range of adjusted R^2 over the 10-year study: 0.87 – 0.99; $P <$
190 0.0001; Supplementary Figure S1 and Table S1).

191

192 These temperature data were used to compute degree days, a measure of the
193 thermal energy experienced by individuals (Chezik et al. 2014a, b). In particular, we
194 used the sum of positive differences between the average daily water temperature at 1
195 m and the threshold $T_0 = 10$ °C for each day until the date that the average water
196 temperature reached 15 °C, the temperature at which seasonal reproductive activity is
197 typically initiated, to evaluate the population-level reproduction response to temperature
198 each year (Shuter et al. 1980; Ridgway et al. 1991; Lukas and Orth 1995). The sum of
199 degree days each year from the first date on which the water temperature was favorable

200 for energy recuperation (i.e., average exceeded 10 °C) until the date at which eggs were
201 found in the nest of a male was also computed to produce a measure of the seasonal
202 thermal energy experienced by each parental male prior to reproduction and evaluate
203 individual responses to temperature (Shuter et al. 1980; Ridgway et al. 1991). In
204 addition, we calculated the average and maximum temperature of the growth season for
205 every year, defined as the period between the first day the average temperature climbed
206 above 10 °C and the last day before the average temperature dropped below 10 °C, and
207 the duration of winter, defined as the number of days between growth seasons (Shuter
208 et al., 1980; Ridgway et al., 1991; Table 1). These latter measures of thermal energy
209 were used to explore how temperature may control a size threshold at which males are
210 released from energetic constraints on seasonal reproductive phenology.

211

212 Statistical analyses

213 *Estimating body condition*

214 Individual condition, often measured as some function of body mass, may
215 provide an estimate of energetic reserves for individuals of a specified size and, hence,
216 influence reproductive phenology (Kaufman et al. 2007, Schloesser and Fabrizio 2017).
217 Individual condition was calculated as the residual of the relationship between weight
218 (natural log [ln] transformed) and length (ln transformed) for each year, which has been
219 shown to successfully predict energy content in a broad set of fish species (Kaufman et
220 al. 2007, Schloesser and Fabrizio 2017).

221

222 *Population-level responses to thermal energy*

223 We used linear regression to predict annual population response times, the time
224 interval between the date on which the mean water temperature reached 15 °C and the
225 median date on which eggs were found in nests, from the number of degree days
226 accumulated before the first 15 °C day each year. If thermal energy controls individual
227 reproductive readiness, then we expect the slope of this relationship to be negative
228 (Shuter et al. 1980).

229

230 *Individual behavioral response to thermal energy*

231 We first used a linear mixed model structured similarly to those used in prior
232 studies on smallmouth bass reproductive timing, where size was regressed on
233 reproductive timing and year, to generate a comparable measure of the relationship
234 between male total length (ln transformed) and the number of degree days (ln
235 transformed, threshold $T_0 = 10$ °C) that had accumulated up to the date on which a male
236 spawned (i.e., the date a nest was found to contain eggs) (Ridgway et al. 1991; Lukas
237 and Orth, 1995). Individual identifiers were included as a random effect because 316
238 individuals bred in more than one season. If a temperature-dependent metabolic process
239 is the main driver of reproductive timing, species-specific constants in allometric scaling
240 laws predict the slopes of these relationships to be similar across studies (West et al.
241 1997).

242

243 Next, to examine predictions related to the presence of an energetic threshold
244 and to explore whether incorporating condition improves predictions of reproductive
245 timing, we fit and compared a set of models predicting the degree days a male
246 accumulated prior to reproduction. Alternative models included as predictors all

247 combinations of condition, length (ln transformed), and length² (ln transformed), which
248 allowed the effect of body size on reproductive timing to vary. Indicators for years and a
249 random effect for individuals were included in all models. Models were tested with and
250 without year interactions with condition or the two body length terms. Akaike information
251 criterion (AIC) was used to choose between models (Akaike 1973). Some males
252 spawned more than once within a season (N=127). In these cases, we restricted the
253 analysis to the first attempt within a year. We excluded data from approximately one
254 third of males (34.6%) whose nests were discovered after eggs had hatched, because
255 timing of reproduction could not be definitively determined for these males. The mean
256 size and range of sizes of these males was qualitatively very similar to those included in
257 the study so we did not expect this to bias our results. If larger males experience less
258 severe winter energy losses, then the slope of the relationship between male length and
259 degree days accumulated before reproduction is expected to be negative in each year
260 (Ridgway et al. 1991). If there is a size threshold above which males can escape
261 energetic constraints on reproduction, we expected the quadratic length term to be
262 included in the chosen model. Similar models including condition, length (ln
263 transformed), and length² (ln transformed) as predictors of reproductive timing were
264 conducted for each year independently to validate results of our comprehensive model
265 (Supplement; Supplementary Table S3).

266 *Post hoc* linear models were conducted to test the hypothesis that in years where
267 environmental conditions favored the accumulation of greater energetic reserves,
268 energetic constraints on reproduction should be restricted to smaller individuals
269 (Supplementary Table S4). Specifically, we investigated the relationship between the
270 size threshold at which there was no relationship between size and degree days before

271 reproduction in a given year—given by the untransformed body length of the parabolic
272 vertex in the best regression models—and environmental variables that we hypothesized
273 might influence the size threshold at which individuals are released from metabolic
274 constraints (Supplementary Table S4). These environmental variables included the
275 degree days accumulated before 15 °C, the duration (days) of the winter, the duration
276 (days) of the previous season, the number of degree days accumulated during the
277 previous growth season, and the average temperature of the previous growth season.

278

279 **RESULTS**

280 Characteristics of parental males and seasonal temperature variation

281 Males were caught from 2,055 nests throughout the course of the 10-year study,
282 and 847 unique males were tagged. On average, we failed to capture ~5% of parental
283 males from nests discovered to contain eggs or more advanced progeny per year
284 throughout the course of the study. The majority of these instances occurred when
285 offspring died and the nest was abandoned before a male was captured. The number of
286 males on nests each year ranged from 102 to 284, and the nests of 88 to 159 of these
287 individuals contained eggs when they were discovered. The total length of males with
288 known spawn dates ranged from 17 cm to 47.5 cm ($N = 1261$), and the seasonal
289 average ranged from 30.3 ± 0.7 to 35.4 ± 0.5 cm across years. Temperature patterns
290 also varied yearly. The duration of winter ranged from 174 days before the 2001 growth
291 season to 211 days before the 2002 growth season. The mean temperature of the
292 growth season ranged from 17.4 to 20.1 °C (Table 1).

293

294 Responses to thermal energy

295 *Population-level responses*

296 The dates on which peak reproduction occurred (i.e., the median date on which
297 eggs were found in nests each year) ranged from 23 May in 2001 to 10 June in 2004.
298 The degree days accumulated before the first day that temperatures reached an
299 average of 15 °C varied greatly between years—from 13.1 in 2002 to 77.3 in 2009 (Table
300 1). In years where more degree days were accumulated before the first 15 °C day, the
301 population-level response time was shorter ($N = 10$, $R^2 = 0.46$, $P = 0.02$; Figure 1).
302 Indeed, in 2009 peak reproduction actually occurred 3 days before the first day that
303 water temperature reached an average of 15 °C.

304

305 *Individual behavior*

306 A linear mixed model revealed a negative linear relationship between male total
307 length (ln transformed) and the degree days (ln transformed) a male accumulated prior
308 to reproduction in all ten years of the study ($N = 1261$, $R^2 = 0.67$, $P < 0.0001$;
309 Supplement; Supplementary Figure S2). The coefficient that described the relationship
310 between size and degree days before reproduction was $b = -0.375 \pm 0.011$ ($P < 0.0001$).

311

312 A comparison of models predicting the degree days a male accumulated prior to
313 reproduction revealed a single best model, with an AIC weight of 0.83. This model
314 included a linear and quadratic term for male total length (ln transformed), an interaction
315 term between each length term and year, and an effect of condition that was
316 independent of year ($N = 1261$, $R^2 = 0.67$; Figure 2, Table S2). The linear coefficient
317 associated with body size was strongly negative and the quadratic term was positive in
318 every year except for 1999 (mean = -9.183 ± 8.5 , range = -26.44 to 3.94 ; mean = $1.15 \pm$

319 1.2, range = -0.73 to 3.59 respectively). Hence, the effect of body size on reproductive
320 timing was generally reduced amongst larger individuals. The effect of condition on
321 degree days accumulated before reproduction was -0.33 (95% CI: -0.49, -0.17). None of
322 the environmental variables tested in *post hoc* models significantly predicted the size
323 threshold for energetic constraints (Supplementary Table S4).

324

325 **DISCUSSION**

326 Reproductive timing has important fitness consequences (Cargnelli and Gross
327 1996; Post et al. 1998; Post 2003) and is related to size-associated energetic constraints
328 in many animals (Tejedo 1992; Danylchuk and Fox 1994; Dobson and Michener 1995;
329 Descamps et al. 2011). The patterns observed in this 10-year study at both the
330 population and individual level suggest that reproductive timing by male *M. dolomieu* in
331 Pallette Lake is driven by energetic constraints, where the magnitude of the constraint
332 varies amongst individuals of different sizes.

333

334 Population level responses

335 The delay between the temperature threshold associated with the initiation of
336 smallmouth bass reproduction (15 °C) and the date of peak reproduction was shorter in
337 years where more degree days accumulated prior to the temperature threshold, as
338 observed in an earlier study (Figure 1, Shuter et al. 1980). Higher thermal energy
339 experienced by the population in early spring appears to push the peak seasonal
340 distribution of reproduction dates earlier, presumably because males of all sizes are able
341 to recoup winter energy losses and reach some threshold energetic reserve that is
342 sufficient to carry them through the parental period. The pattern likely also depends on

343 female reproductive phenology, which has been little studied but based on spring activity
344 and egg deposition patterns appears to be similarly driven by an association between
345 body size and temperature (Ridgway et al. 1991; Wiegmann et al. 1992; Franckowiak et
346 al., 2017). Population responses to temperature may be particularly important for the
347 prediction of future *M. dolomieu* reproductive patterns given that North American
348 temperate lakes like ours have experienced increases in winter and spring temperatures
349 in the past 35 years associated with advances in other biologically relevant phenomena
350 like ice melt (Hewitt et al. 2018).

351

352 Similarities across smallmouth bass populations

353 Ridgway et al. (1991) and Lukas and Orth (1995) examined the association
354 between male total length and degree days accumulated prior to reproduction in
355 Opeongo Lake, Nipissing District, Ontario and North Anna River, Virginia, over six years
356 and one year, respectively. In these studies, male length was regressed on degree days
357 (both ln transformed) and Lukas and Orth (1995) noted the similarity of the slopes
358 between the two studies: -0.355 and -0.391. The analysis conducted by Ridgway et al.
359 (1991) indicated that the slope of the relationship did not differ significantly across years.

360 We conducted an equivalent regression analysis with our data and found a slope
361 of -0.375 across all years, which is remarkably similar to those found in these two earlier
362 studies (Figure S2). The similarity of slopes that characterize the relationship between
363 male body size and accumulated degree days prior to reproduction in three
364 geographically distinct smallmouth bass systems suggests that reproductive timing is
365 controlled by a conserved metabolic pathway and that a single parameterization based

366 on physiological time—that is, accumulated thermal energy—may control reproductive
367 timing in diverse systems.

368

369 Size threshold for energetic constraints

370 Here, we identify a novel relationship between size and reproductive timing that
371 reflects a differential role of energetic constraints on reproduction in individuals of
372 varying sizes. Assertions that negative allometric relationships with mass specific basal
373 metabolic rate are what allow larger individuals to reproduce earlier in a season (Tejedo
374 1992; Danylchuk and Fox 1994; Dobson and Michener 1995; Descamps et al. 2011)
375 allow for a logical untested prediction: Individuals should be metabolically efficient
376 enough to escape energetic constraints on the seasonal onset of reproduction altogether
377 above a certain size threshold. Indeed, in our population, we found that models with a
378 quadratic length term better explained variation in the timing of reproduction than linear
379 models like those produced by prior studies on smallmouth bass (Ridgway et al. 1991;
380 Lukas and Orth 1995). While the magnitude of the quadratic length term varied across
381 years, it was positive in 9 out of the ten years of our study, which is consistent with the
382 relaxation of energetic constraints on the reproductive timing of larger individuals.

383 The inverse curvature of the relationship between size and reproductive timing in
384 1999 appears to be driven by 11 males that were shorter than 25 cm and among the
385 smallest individuals to reproduce across all years. Reproduction by these males
386 corresponded to a mid-season drop in the average daily temperature to below 15 °C and
387 a subsequent raise to over 19 °C. The 15 °C temperature threshold, which usually
388 marks the start of a reproductive season, likely induced these males, now with recouped
389 energy reserves, to adopt a potentially maladaptive decision and spawn despite the

390 actual short amount of time left in the season. Indeed, studies have found that
391 smallmouth bass fitness is lowest in small parents that reproduce late in the season
392 (Shuter 1980; Wiegmann et al. 1992; Suski and Ridgway 2007).

393 Any environmental factors that influence metabolism or overall energetic
394 reserves of individuals may have been responsible for the differences in size threshold
395 across the years of this study. For example, if the winter preceding reproduction is
396 longer, we would expect a higher size threshold for males to be energetically efficient
397 enough to escape the need to recuperate energetic losses before reproducing. Further,
398 if the preceding growth season (when temperatures are above 10° C) is shorter, or there
399 are few degree days accumulated at the start of a season before the reproductive
400 temperature threshold associated with the start of smallmouth bass reproduction occurs,
401 this could lead to a similar result. However, we found no specific evidence in our study of
402 associations between these or other measures of temperature variability and differences
403 in size threshold across years (Table S4). Other environmental variables that were not
404 measured here, notably food availability, can influence energetic reserves and
405 reproduction in smallmouth bass as well and may explain additional interannual variation
406 or the lack of a relationship between interannual temperature regimes and the curvature
407 of the slope between size and reproductive timing (Ridgway and Shuter 1994).

408

409 The role of condition

410 The influence of condition on reproductive timing may be more pronounced in
411 species with determinate growth, where truncated size of sexually mature adults limits
412 variation in size-associated differences in metabolic rate (Dobson and Michener 1995).

413 In our study, condition was included in our top-ranked model, indicating that this feature

414 of males improved the model fit, but the biological effect appeared to be minor. The
415 difference in reproductive timing between males in the 95th and 5th percentiles of
416 condition was minimal (mean = 1.09 degree days \pm 0.01, range = 1.07 to 1.11; see
417 Figure 2). This supports our expectation that, when growth is indeterminant and there
418 are large differences of body size amongst adults, differences in basal metabolic rate—as
419 indicated by total length—should have a stronger impact on timing of reproduction than
420 differences in individual condition, which may be brought about by stochastic
421 environmental or ecological factors such as recent feeding success. Even in some
422 species with determinate growth, such as arctic seabirds, early empirical evidence has
423 shown that with body condition accounted for, individual rate of energetic gain is the
424 major predictor of breeding phenology (Hennin et al., 2016). Thus, the broad significance
425 of metabolic rate in determining timing of reproduction in species where reproduction is
426 constrained by the accumulation of energetic reserves may explain the outsized
427 importance of length relative to body condition found in this study.

428

429 Alternative hypotheses

430 Recent research has suggested that metabolic scaling in metazoans is predicted by the
431 optimization of growth and reproduction to maximize lifetime reproductive success
432 (White et al. 2022). This raises a number of alternative hypotheses which may explain
433 the patterns of size-associated reproductive timing observed in this study. In particular,
434 there may be some adaptive benefit to smaller males reproducing later in the season,
435 either because conditions are more favorable to their reproduction, or their offspring
436 would gain some advantage from the different temperature environment. One potential
437 benefit to delaying reproduction may be avoiding competition with larger males who

438 reproduce earlier in the season. However, Ridgway et al., (1991) removed large males
439 from a lake population and saw no advancement of reproductive timing among smaller
440 males. Another benefit to delaying reproduction is that less energy may be expended by
441 late reproducers because warmer temperatures later in the season lead to faster
442 maturing fry, which require fewer days of parental care (Ridgway and Friesen, 1992).
443 However, this does not preclude the possibility that patterns of reproductive timing are
444 driven by size-associated differences in energy deficits after winter. Smaller males may
445 end winter with proportionately larger energy deficits and require more time to
446 recuperate energy reserves before reproduction in addition to benefiting from the lower
447 energy requirements of late season parental care. Further, in smallmouth bass,
448 individuals who reproduce late in the season are known to obtain fewer eggs (Ridgway
449 and Friesen, 1992) and produce offspring who are smaller at the onset of winter and
450 have lower survival rates (Oliver et al., 1979; Shuter et al., 1980). Thus, there are many
451 fitness consequences to delaying reproduction which stand contrary to the idea that
452 smaller individuals delay reproduction only to gain an adaptive advantage and not
453 because their reproductive onset is constrained by metabolic factors associated with
454 size.

455

456 Applications for management and conservation

457 In addition to being ecologically relevant as a damaging invasive species,
458 smallmouth bass are one of the world's most popular species for recreational fishing and
459 are responsible for hundreds of millions of dollars of retail sales, wages, and tax revenue
460 in the United States alone each year (Carey et al., 2011; Kim et al., 2022). They have a
461 history of management that stretches back nearly 200 years and the identification of

462 novel relationships between individual phenotype and reproduction may support current
463 efforts focused on the restoration of native populations (Long et al. 2015). In other high
464 latitude North American fishes that experience cold winters, similar relationships
465 between temperature, size and reproductive timing also likely apply (e.g., Cargnelli and
466 Gross 1997; Hurst and Conover 2003). Changing climate conditions have the potential
467 to disrupt the dynamics of reproductive timing, and higher latitude freshwater fish
468 communities are particularly vulnerable to these changes (Visser and Both 2005; Todd
469 et al. 2011; Shuter et al. 2012; Hovel et al. 2017). For example, shorter, less severe
470 winters could relax energetic constraints on smaller individuals and induce a change in
471 control of the onset of seasonal reproduction from one based on the time it takes to
472 become energetically prepared to construct and defend a nest to one more dependent
473 on other ecological factors such as male competitive status, or female mate choice.
474 Because the transfer of thermal heat from the environment to fishes accumulates with
475 time, even small changes in temperature through development could cause significant
476 differences in growth trajectories over the life of an individual (Neuheimer and Taggart
477 2007). Further studies that address how energetic constraints differentially influence
478 phenology and depend on individual phenotype, as well as possible differences between
479 the sexes, will be critical to understanding how population dynamics will change as
480 temperatures continue to shift across the globe. Specifically, the results presented here
481 demonstrate that investigations of reproductive timing may benefit from distinguishing
482 between individuals of different sizes that may experience differential environmental
483 constraints, particularly in species with indeterminate growth.

484

485 Conclusions

486 Across diverse species, size and, in particular, size thresholds, play an important
487 role in determining individual phenotype through ontogeny, control of alternative
488 reproductive tactics, life history decision making, diet shifts and more (Thomas and Ickes
489 1995; Piché et al. 2008; Lucifora et al. 2009; Smallegange 2010; Yasuno et al. 2012;
490 Wilmes et al. 2020). In this study we identify a novel pattern of size-associated
491 reproductive timing and provide further support of an underlying energetic mechanism.
492 Our results suggest the existence of a biological size threshold at which energetic
493 constraints on reproductive phenology are relaxed, a threshold that may become more
494 relevant as global temperatures increase and more individuals are able to escape the
495 energetic constraints that currently dictate their behavior.

496

497 **REFERENCES**

498 Akaike H. 1973. Information theory and an extension of the maximum likelihood
499 principle. Proceedings of the 2nd international symposium on information theory.
500 Second Int Symp Inf Theory.

501 Alcock J. 1994. Body size and its effect on male-male competition in *Hylaeus alcyoneus*
502 (Hymenoptera: Colletidae). J Insect Behav. Doi:10.1007/BF01988901.

503 Angiulli E, Pagliara V, Cioni C, Frabetti F, Pizzetti F, Alleva E, Toni M. 2020. Increase in
504 environmental temperature affects exploratory behaviour, anxiety and social
505 preference in *Danio rerio*. Sci Rep. doi:10.1038/s41598-020-62331-1.

506 Baylis JR, Wiegmann DD, Hoff MH. 1993. Alternating life histories of smallmouth bass.
507 Trans Am Fish Soc. Doi:10.1577/1548-8659(1993)122<0500:alhosb>2.3.co;2.

508 Biro PA, Beckmann C, Stamps JA. 2010. Small within-day increases in temperature
509 affects boldness and alters personality in coral reef fish. Proc R Soc B Biol Sci.
510 doi:10.1098/rspb.2009.1346.

511 Blanckenhorn WU, Fanti J, Reim C. 2007. Size-dependent energy reserves, energy
512 utilization and longevity in the yellow dung fly. Physiol Entomol.
513 Doi:10.1111/j.1365-3032.2007.00589.x.

514 Boesch C, Kohou G, Néné H, Vigilant L. 2006. Male competition and paternity in wild
515 chimpanzees of the Taï forest. Am J Phys Anthropol. Doi:10.1002/ajpa.20341.

516 Bozek MA, Short PH, Edwards CJ, Jennings MJ, Newman SP. 2002. Habitat selection of
517 nesting smallmouth bass *Micropterus dolomieu* in two north temperate lakes. Am
518 Fish Soc Symp. 31:135-148.

519 Brandão ML, Colognesi G, Bolognesi MC, Costa-Ferreira RS, Carvalho TB, Gonçalves-
520 de-Freitas E. 2018. Water temperature affects aggressive interactions in a
521 Neotropical cichlid fish. *Neotrop Ichthyol.* Doi:10.1590/1982-0224-20170081.

522 Brodeur JC, Vera Candioti J, Damonte MJ, Bahl MF, Poliserpi MB, D'Andrea MF. 2020.
523 Frog somatic indices: Importance of considering allometric scaling, relation with
524 body condition and seasonal variation in the frog *Leptodactylus latrans*. *Ecol
525 Indic.* Doi:10.1016/j.ecolind.2020.106496.

526 Burnham,KP, Anderson, DR. 2002. Model Selection and Multimodel Inference A
527 Practical Information-Theoretic Approach. Second. Springer-Verlag, New York,
528 488 p.

529 Candolin U, Voigt HR. 2001. Correlation between male size and territory quality:
530 Consequence of male competition or predation susceptibility? *Oikos.*
531 Doi:10.1034/j.1600-0706.2001.950204.x.

532 Carey MP, Sanderson BL, Friesen TA, Barnas KA, Olden JD. 2011. Smallmouth bass in
533 the pacific northwest: a threat to native species; a benefit for anglers. *Rev. Fish.
534 Sci.* doi:10.1080/10641262.2011.598584.

535 Cargnelli LM, Gross MR. 1996. The temporal dimension in fish recruitment: Birth date,
536 body size, and size-dependent survival in a sunfish (bluegill: *Lepomis
537 macrochirus*). *Can J Fish Aquat Sci.* doi:10.1139/f95-193.

538 Cargnelli LM, Gross MR. 1997. Notes: Fish energetics: larger individuals emerge from
539 winter in better condition. *Trans Am Fish Soc.* Doi:10.1577/1548-
540 8659(1997)126<0153:nfeli>2.3.co;2.

541 Chezik KA, Lester NP, Venturelli PA. 2014a. Fish growth and degree-days II: Selecting a
542 base temperature for an among-population study. *Can J Fish Aquat Sci.*
543 doi:10.1139/cjfas-2013-0615.

544 Chezik KA, Lester NP, Venturelli PA. 2014b. Fish growth and degree-days I: Selecting a
545 base temperature for a within-population study. *Can J Fish Aquat Sci.*
546 doi:10.1139/cjfas-2013-0295.

547 Ciuti S, Apollonio M. 2016. Reproductive timing in a lekking mammal: Male fallow deer
548 getting ready for female estrus. *Behav Ecol.* Doi:10.1093/beheco/arw076.

549 Clarke A, Johnston NM. 1999. Scaling of metabolic rate with body mass and
550 temperature in teleost fish. *J Anim Ecol.* Doi:10.1046/j.1365-2656.1999.00337.x.

551 Colchen T, Teletchea F, Fontaine P, Pasquet A. 2017. Temperature modifies activity,
552 inter-individual relationships and group structure in a fish. *Curr Zool.*
553 Doi:10.1093/cz/zow048.

554 Côte IM, Hunte W. 1989. Male and female mate choice in the redlip blenny: why bigger
555 is better. *Anim Behav.* Doi:10.1016/S0003-3472(89)80067-3.

556 Cuadrado M, Loman J. 1999. The effects of age and size on reproductive timing in
557 female *Chamaeleo chamaeleon*. *J Herpetol.* Doi:10.2307/1565536.

558 Danylchuk AJ, Fox MG. 1994. Age and size-dependent variation in the seasonal timing
559 and probability of reproduction among mature female pumpkinseed, *Lepomis*
560 *gibbosus*. *Environ Biol Fishes.* Doi:10.1007/BF00004929.

561 Descamps S, Bêté J, Love OP, Gilchrist HG. 2011. Individual optimization of
562 reproduction in a long-lived migratory bird: A test of the condition-dependent
563 model of laying date and clutch size. *Funct Ecol.* Doi:10.1111/j.1365-
564 2435.2010.01824.x.

565 Dickerson BR, Brinck KW, Willson MF, Bentzen P, Quinn TP. 2005. Relative importance
566 of salmon body size and arrival time at breeding grounds to reproductive
567 success. *Ecology*. Doi:10.1890/03-625.

568 Dickerson BR, Quinn TP, Willson MF. 2002. Body size, arrival date, and reproductive
569 success of pink salmon, *Oncorhynchus gorbuscha*. *Ethol Ecol Evol*.
570 Doi:10.1080/08927014.2002.9522759.

571 Dobson FS, Michener GR. 1995. Maternal traits and reproduction in Richardson's
572 ground squirrels. *Ecology*. Doi:10.2307/1939350.

573 Dufresne F, Fitzgerald GJ, Lachance S. 1990. Age and size-related differences in
574 reproductive success and reproductive costs in threespine sticklebacks
575 (*Gasterosteus aculeatus*). *Behav Ecol*. Doi:10.1093/beheco/1.2.140.

576 Essington TE, Quinn TP, Ewert VE. 2000. Intra- and inter-specific competition and the
577 reproductive success of sympatric Pacific salmon. *Can J Fish Aquat Sci*.
578 doi:10.1139/f99-198.

579 Franckowiak RP, Ridgway MS, Wilson CC. 2017. Genetic mating system and mate
580 selection in smallmouth bass. *Ecol Evol*. doi:10.1002/ece3.3423

581 Fullerton AH, Garvey JE, Wright RA, Stein RA. 2000. Overwinter growth and survival of
582 largemouth bass: interactions among size, food, origin, and winter severity. *Trans
583 Am Fish Soc*. Doi:10.1577/1548-8659(2000)129<0001:ogasol>2.0.co;2.

584 Gibbons DW. 1989. Seasonal reproductive success of the Moorhen *Gallinula chloropus*:
585 the importance of male weight. *Ibis (Lond 1859)*. Doi:10.1111/j.1474-
586 919X.1989.tb02744.x.

587 Gillooly JF, Baylis JR. 1999. Reproductive success and the energetic cost of parental
588 care in male smallmouth bass. *J Fish Biol*. Doi:10.1006/jfbi.1998.0888.

589 Hennin HL, Bêty J, Legagneux P, Gilchrist HG, Williams TD, Love OP. 2016. Energetic
590 physiology mediates individual optimization of breeding phenology in a migratory
591 arctic seabird. *Am Nat.* doi:10.1086/688044

592 Hewitt BA, Lopez LS, Gaibisels KM, Murdoch A, Higgins SN, Magnuson JJ, Paterson
593 AM, Rusak JA, Yao H, Sharma S. 2018. Historical trends, drivers, and future
594 projections of ice phenology in small north temperate lakes in the Laurentian great
595 lakes region. *Water.* Doi:10.3390/w10010070

596 Hinch SG, Collins NC. 1991. Importance of diurnal and nocturnal nest defense in the
597 energy budget of male smallmouth bass: Insights from direct video observations.
598 *Trans Am Fish Soc.* Doi:10.1080/1548-8659(1991)120[0657:IODANN]2.3.CO;2.

599 Hovel RA, Carlson SM, Quinn TP. 2017. Climate change alters the reproductive
600 phenology and investment of a lacustrine fish, the three-spine stickleback. *Glob
601 Chang Biol.* Doi:10.1111/gcb.13531.

602 Hubbs CL, Bailey RM. 1938. The small-mouthed bass. Cranbrook Institute of Science
603 Bulletin 10. 92 pp.

604 Hurst TP, Conover DO. 2003. Seasonal and interannual variation in the allometry of
605 energy allocation in juvenile striped bass. *Ecology.* Doi:10.1890/02-0562.

606 Jørgensen CB. 1982. Factors controlling the ovarian cycle in a temperate zone anuran,
607 the toad *Bufo bufo*: Food uptake, nutritional state, and gonadotropin. *J Exp Zool.*
608 Doi:10.1002/jez.1402240317

609 Karino K. 1995. Male-male competition and female mate choice through courtship
610 display in the territorial damselfish *Stegastes nigricans*. *Ethology.*
611 Doi:10.1111/j.1439-0310.1995.tb00320.x.

612 Kaufman SD, Johnston TA, Leggett WC, Moles MD, Casselman JM, Schulte-Hostedde
613 Al. 2007. Relationships between body condition indices and proximate
614 composition in adult walleyes. *Trans Am Fish Soc.* Doi:10.1577/T06-262.1

615 Kim D, Taylor AT, Near TJ. 2022. Phylogenomics and species delimitation of the
616 economically important Black Basses (*Micropterus*). *Sci Rep.*
617 doi:10.1038/s41598-022-11743-2

618 Kleiber M. 1947. Body size and metabolic rate. *Physiol Rev.*
619 doi:10.1152/physrev.1947.27.4.511.

620 Knapp RA, Vredenburg VT. 1996. Spawning by California golden trout: characteristics of
621 spawning fish, seasonal and daily timing, redd characteristics, and microhabitat
622 Preferences. *Trans Am Fish Soc.* Doi:10.1577/1548-
623 8659(1996)125<0519:sbcgtc>2.3.co;2.

624 Lane JE, Boutin S, Gunn MR, Coltman DW. 2009. Sexually selected behaviour: Red
625 squirrel males search for reproductive success. *J Anim Ecol.* Doi:10.1111/j.1365-
626 2656.2008.01502.x.

627 Langston NE, Freeman S, Rohwer S, Gori D. 1990. The evolution of female body size in
628 red-winged blackbirds: the effects of timing of breeding, social competition, and
629 reproductive energetics. *Evolution (N Y)*. doi:10.1111/j.1558-
630 5646.1990.tb05247.x.

631 Lasiewski RC, Dawson WR. 1967. A re-examination of the relation between standard
632 metabolic rate and body weight in birds. *Condor.* Doi:10.2307/1366368.

633 Le Boeuf BJ. 1974. Male-male competition and reproductive success in elephant seals.
634 *Integr Comp Biol.* Doi:10.1093/icb/14.1.163.

635 Long J, Allen M, Porak W, Suski C. 2015. A historical perspective of black bass
636 management in the United States. Am Fish Soc Symp.

637 Lucifora LO, García VB, Menni RC, Escalante AH, Hozbor NM. 2009. Effects of body
638 size, age and maturity stage on diet in a large shark: ecological and applied
639 implications. Eco Res. Doi:10.1007/s11284-008-0487-z.

640 Lukas JA, Orth DJ. 1995. Factors affecting nesting success of smallmouth bass in a
641 regulated Virginia stream. Trans Am Fish Soc. Doi:10.1577/1548-
642 8659(1995)124<0726:fansos>2.3.co;2.

643 Lyons J, Kanehl P. 2002. Seasonal movements of smallmouth bass in streams. Am
644 Fish Soc Symp 31, 149-160.

645 Mackereth RW, Noakes DLG, Ridgway MS. 1999. Size-based variation in somatic
646 energy reserves and parental expenditure by male smallmouth bass, *Micropterus*
647 *dolomieu*. Env Biol Fish. Doi:10.1007/978-94-017-3678-7_19

648 [dataset] Magnuson, J., S. Carpenter, and E. Stanley. 2020. North Temperate Lakes
649 LTER: High Frequency Meteorological and Dissolved Oxygen Data – Sparkling
650 Lake Raft 1989 – current ver 32. Environmental Data Initiative.
651 <https://doi.org/10.6073/pasta/101ae920e5b5a97fadd3cb439440ac3f>.

652 Makarieva AM, Gorshkov VG, Li B, Chown SL, Reich PB, Gavrilov VM. 2008. Mean
653 mass-specific metabolic rates are strikingly similar across life's major domains:
654 Evidence for life's metabolic optimum. Proc Natl Acad Sci.
655 <https://doi.org/10.1073/pnas.0802148105>

656 McElligott AG, Gammell MP, Harty HC, Paini DR, Murphy DT, Walsh JT, Hayden TJ.
657 2001. Sexual size dimorphism in fallow deer (*Dama dama*): Do larger, heavier

658 males gain greater mating success? *Behav Ecol Sociobiol.*
659 Doi:10.1007/s002650000293.

660 Munther GL. 1970. Movement and distribution of smallmouth bass in the Middle Snake
661 River. *Trans Am Fish Soc.* Doi:10.1577/1548-
662 8659(1970)99<44:madosb>2.0.co;2.

663 Neuheimer AB, Taggart CT. 2007. The growing degree-day and fish size-at-age: the
664 overlooked metric. *Can J Fish Aquat Sci* 64, 375-385.

665 Nagy KA. 2005. Field metabolic rate and body size. *J Exp Biol.* Doi:10.1242/jeb.01553.

666 Newbolt CH, Acker PK, Neuman TJ, Hoffman SI, Ditchkoff SS, Steury TD. 2017. Factors
667 influencing reproductive success in male white-tailed deer. *J Wildl Manage.*
668 Doi:10.1002/jwmg.21191.

669 Oliver JD, Holeton GF, Chua KE. 1979. Overwinter mortality of fingerling smallmouth
670 bass in relation to size, relative energy stores, and environmental temperature.
671 *Trans Am Fish Soc.* Doi:10.1577/1548-8659(1979)108<130:omofsb>2.0.co;2.

672 Ongarato RJ, Snucins EJ. 1993. Aggression of guarding male smallmouth bass
673 (*Micropterus dolomieu*) towards potential brood predators near the nest. *Can J
674 Zool.* Doi:10.1139/z93-062.

675 Piché J, Hutchings JA, Blanchard W. 2008. Genetic variation in threshold reaction norms
676 for alternative reproductive tactics in male Atlantic salmon, *Salmo salar*. *Proc B.*
677 doi:10.1098/rspb.2008.0251.

678 Post DM. 2003. Individual variation in the timing of ontogenetic niche shifts in
679 largemouth bass. *Ecology.* Doi:10.1890/0012-
680 9658(2003)084[1298:IVITTO]2.0.CO;2.

681 Post DM, Kitchell JF, Hodgson JR. 1998. Interactions among adult demography,
682 spawning date, growth rate, predation, overwinter mortality, and the recruitment
683 of largemouth bass in a northern lake. *Can J Fish Aquat Sci.* doi:10.1139/f98-
684 139.

685 Post JR, Evans DO. 1989. Size-dependent overwinter mortality of young-of-the-year
686 yellow perch (*Perca flavescens*): laboratory, in situ enclosure, and field
687 experiments. *Can J Fish Aquat Sci.* doi:10.1139/f89-246.

688 Raffetto NS, Baylis JR, Serns SL. 1990. Complete estimates of reproductive success in
689 a closed population of smallmouth bass (*Micropterus dolomieu*). *Ecology.*
690 Doi:10.2307/1938289.

691 Ridgway MS. 1988. Developmental stage of offspring and brood defense in smallmouth
692 bass (*Micropterus dolomieu*). *Can J Zool.* Doi:10.1139/z88-248.

693 Ridgway MS, Shuter BJ, Post EE. 1991. The relative influence of body size and
694 territorial behaviour on nesting asynchrony in male smallmouth bass, *Micropterus*
695 *dolomieu* (Pisces: Centrarchidae). *J Anim Ecol.* Doi:10.2307/5304.

696 Ridgway MS, Shuter BJ. 1994. The effects of supplemental food on reproduction in
697 parental male smallmouth bass. *Env Biol Fish.* Doi:10.1007/BF00004938

698 Ridgway MS. 1989. The parental response to brood size manipulation in smallmouth
699 bass (*Micropterus dolomieu*). *Ethology.* Doi:10.1111/j.1439-
700 0310.1989.tb00728.x.

701 Ridgway MS, Friesen TG. 1992. Annual variation in parental care in smallmouth bass,
702 *Micropterus dolomieu*. *Environ Biol Fishes.* Doi:10.1007/BF00001890.

703 Schloesser RW, Fabrizio MC. 2017. Condition indices as surrogates of energy density
704 and lipid content in juveniles of three fish species. *Trans Am Fish Soc.*
705 Doi:10.1080/00028487.2017.1324523

706 Saunders R, Bozek MA, Edwards CJ, Jennings MJ, Newman SP. 2002. Habitat features
707 affecting smallmouth bass *Micropterus dolomieu* nesting success in four northern
708 Wisconsin lakes. *Am Fish Soc Symp* 31, 123-134.

709 Schreer JF, Cooke SJ. 2002. Behavioral and physiological responses to smallmouth
710 bass to a dynamic thermal environment. *Am Fish Soc Symp* 31, 191-203

711 Shuter BJ, Finstad AG, Helland IP, Zweimüller I, Höller F. 2012. The role of winter
712 phenology in shaping the ecology of freshwater fish and their sensitivities to
713 climate change. *Aquat Sci.* doi:10.1007/s00027-012-0274-3.

714 Shuter BJ, Maclean JA, Fry FEJ, Regier HA. 1980. Stochastic simulation of temperature
715 effects on first-year survival of smallmouth bass. *Trans Am Fish Soc.*
716 Doi:10.1577/1548-8659(1980)109<1:ssoteo>2.0.co;2.

717 Shuter BJ, Post JR. 1990. Climate, population viability, and the zoogeography of
718 temperate fishes. *Trans Am Fish Soc.* Doi:10.1577/1548-
719 8659(1990)119<0314:cpvatz>2.3.co;2.

720 Shuter BJ, Ridgway MS. 2002. Bass in time and space: operational definitions of risk.
721 *Am Fish Soc Symp* 31, 235-249.

722 Sih A, Lauer M, Krupa JJ. 2002. Path analysis and the relative importance of male-
723 female conflict, female choice and male-male competition in water striders. *Anim*
724 *Behav.* Doi:10.1006/anbe.2002.2002.

725 Smallegange IM. 2010. Complex environmental effects on the expression of alternative
726 reproductive phenotypes in bulb mite. *Evo Eco.* Doi:10.1007/s10682-010-9446-6.

727 Stiver KA, Alonso SH. 2010. Large males have a mating advantage in a species of
728 darter with smaller, allopaternal males *Etheostoma olmstedi*. Curr Zool.
729 Doi:10.1093/czoolo/56.1.1.

730 Suski CD, Ridgway MS. 2007. Climate and body size influence nest survival in a fish
731 with parental care. J Anim Ecol. Doi:10.1111/j.1365-2656.2007.01242.x

732 Tejedo M. 1992. Effects of body size and timing of reproduction on reproductive success
733 in female natterjack toads (*Bufo calamita*). J Zool. Doi:10.1111/j.1469-
734 7998.1992.tb04454.x.

735 Thomas SC, Ickes K. 1995. Ontogenetic Changes in Leaf Size in Malaysian Rain Forest
736 Trees. Biotrop. Doi:10.2307/2388954.

737 Todd BD, Scott DE, Pechmann JHK, Whitfield Gibbons J. 2011. Climate change
738 correlates with rapid delays and advancements in reproductive timing in an
739 amphibian community. Proc R Soc B Biol Sci. doi:10.1098/rspb.2010.1768.

740 Visser ME, Both C. 2005. Shifts in phenology due to global climate change: The need for
741 a yardstick. Proc R Soc B Biol Sci. doi:10.1098/rspb.2005.3356.

742 Welsh DP, Wiegmann DD, Angeloni LM, Newman SP, Miner JG, Baylis JR. 2017.
743 Condition-dependent reproductive tactics in male smallmouth bass: evidence of
744 an inconsistent birthdate effect on early growth and age at first reproduction. J
745 Zool. Doi:10.1111/jzo.12454.

746 West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric
747 scaling laws in biology. Science (80-). Doi:10.1126/science.276.5309.122.

748 Wiegmann DD, Baylis JR, Hoff MH. 1992. Sexual selection and fitness variation in a
749 population of smallmouth bass, *Micropterus dolomieu* (Pisces: Centrarchidae).
750 Evolution (N Y). doi:10.1111/j.1558-5646.1992.tb01166.x.

751 Wiegmann DD, Baylis JR. 1995. Male body size and paternal behaviour in smallmouth
752 bass, *Micropterus dolomieu* (Pisces: Centrarchidae). *Anim Behav.*
753 Doi:10.1016/0003-3472(95)80010-7.

754 Wiegmann DD, Baylis JR, Hoff MH. 1997. Male fitness, body size and timing of
755 reproduction in smallmouth bass, *Micropterus dolomieu*. *Ecology.*
756 Doi:10.2307/2265983.

757 Wilmes JC, Hoey AS, Pratchett MS. 2020. Contrasting size and fate of juvenile crown-of-
758 thorns starfish linked to ontogenetic diet shifts. *Proc B.*
759 doi:10.1098/rspb.2020.1052.

760 Wong BBM, Candolin U. 2005. How is female mate choice affected by male
761 competition? *Biol Rev Camb Philos Soc.* Doi:10.1017/S1464793105006809.

762 Yasuno N, Chiba Y, Shindo K, Fujimoto Y, Shimada T, Shikano S, Kikuchi E. 2012.
763 Size-dependent ontogenetic diet shifts to piscivory documented from stable
764 isotope analyses in an introduced population of largemouth bass. *Env Bio Fish.*
765 Doi:10.1007/s10641-011-9911-2.

766

767 **FIGURE LEGENDS**

768

769

770 **Figure 1.** Relationship between the degree days accumulated before the first average
771 daily water temperature of 15 °C (dashed line) and the reproductive response time—the
772 days between the date on which the mean water temperature first reached 15 °C and
773 the median date on which eggs were found in nests—of the population each year.

774

775 **Figure 2.** Relationships between parental male length (ln transformed) and the degree
776 days accumulated before eggs were observed in nests (ln transformed) for 1999, 2001-
777 2009. The trend line depicts the projected relationship for males with mean condition
778 while the light blue shading depicts relationships for males from 1st percentile to 99th
779 percentile condition. These far extremes of condition were selected so that the impact of
780 condition could be better visualized, as it was minimal. Data are presented on ln-scaled
781 axes and jittered along the y-axis to reveal overlapping points.

782

783

784 **TABLES AND TABLE LEGENDS**

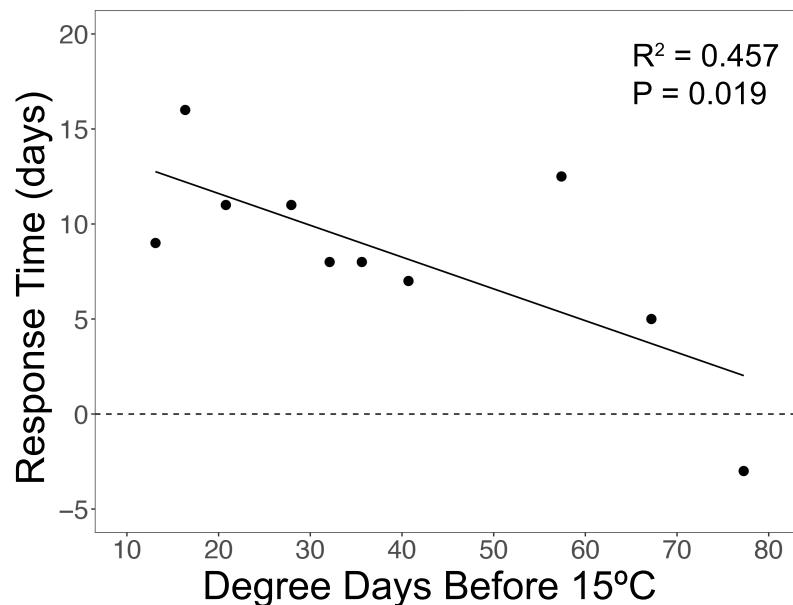
785

786 **Table 1**787 **Male smallmouth bass and temperature characteristics across the 10-year dataset.**

Year	Males on Nests	Males with Eggs	Average Size of Males with Eggs (cm)	Winter Length (days)	Mean Temp (°C)	DD before 15 °C	Size Threshold
1999	102	88	32.0 ± 0.7	—	19.3	57.4	42.2
2001	152	101	30.3 ± 0.7	174	18.9	35.6	41.4
2002	221	147	30.9 ± 0.5	211	20.1	14.8	40.0
2003	234	149	32.5 ± 0.5	192	18.7	47.0	41.6
2004	284	159	32.4 ± 0.6	190	17.4	67.2	42.7
2005	216	110	32.3 ± 0.6	186	19.7	20.8	41.7
2006	188	147	34.3 ± 0.4	186	19.8	27.9	41.3
2007	157	107	34.9 ± 0.5	198	18.7	16.4	42.0
2008	198	139	35.4 ± 0.5	192	18.4	32.1	44.1
2009	176	114	34.0 ± 0.5	180	17.8	36.25	41.4

788 Temperature data for 1998 were not collected and, hence, winter length before the 1999

789 reproductive season was not computed. Degree days (DD) were calculated using the threshold


790 $T_0 = 10$ °C. Temperature and Maximum are abbreviated as Temp and Max.

791

792 **FIGURES**

793

794 **Figure 1.**

795

796

797

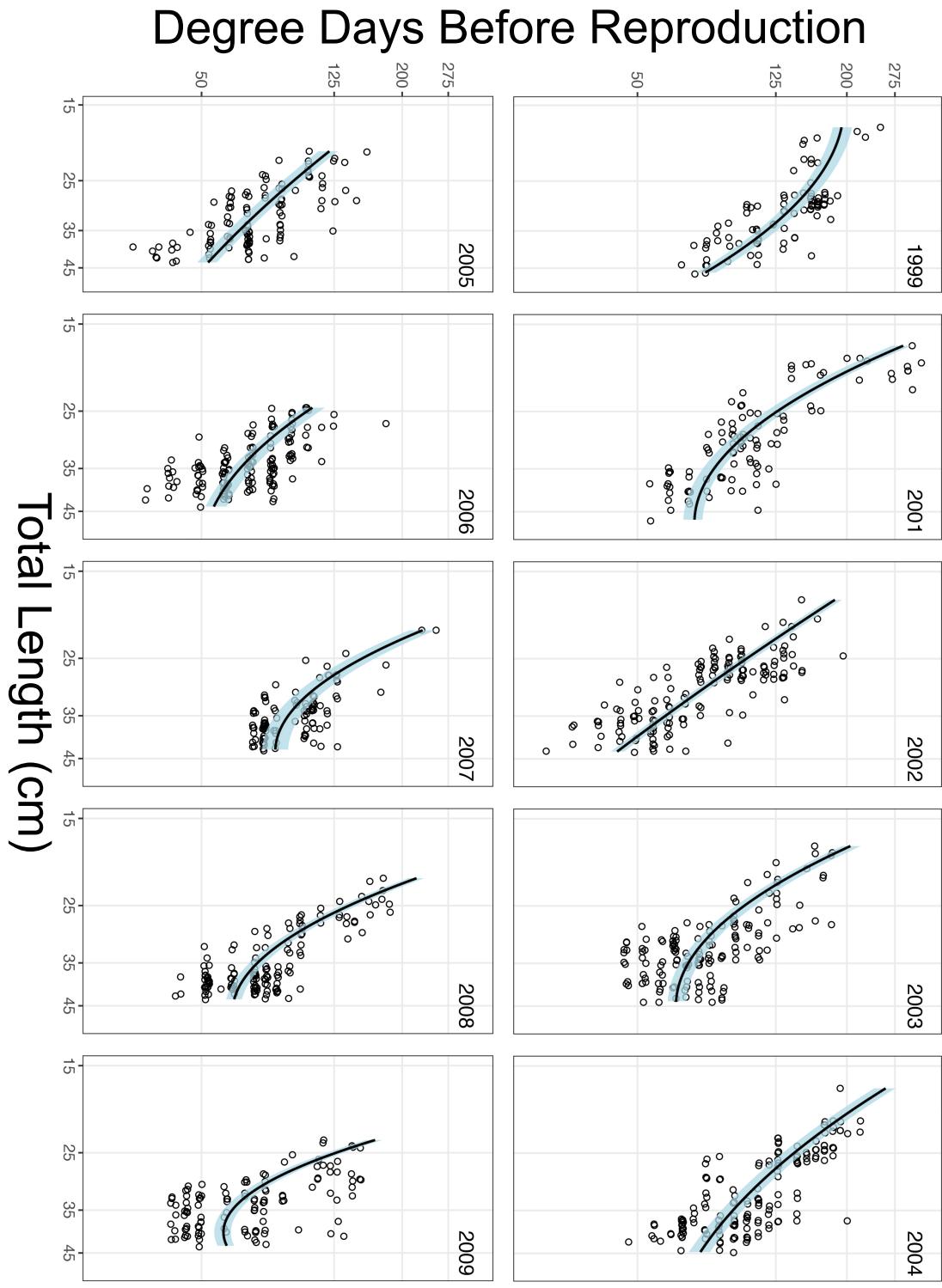
798

799

800

801

802


803

804

805

806

807 **Figure 2.**

808

809