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Abstract 12 

Detecting objects in hospital indoor environments is critical for scene understanding and can have 13 

various applications in healthcare. Deep learning (DL) algorithms have proven to be effective in 14 

object recognition from images or videos, but the availability of annotated datasets plays a crucial 15 

role in their successful application. However, there is a shortage of datasets for object detection in 16 

hospital settings, hindering the advancement of hospital indoor object detection algorithms. In this 17 

paper, we present the Hospital Indoor Object Detection (HIOD) dataset, consisting of 4,417 images 18 

covering 56 object categories. The HIOD dataset represents the frequently encountered objects in 19 

hospitals and comprises 51,809 annotated objects. The dataset is characterized by dense 20 

annotation, with an average of 11.7 objects and 6.8 object categories per image. An object detection 21 

benchmark was established using the HIOD dataset and eight state-of-the-art object detectors. The 22 

benchmark provides a comprehensive evaluation of the performance of the selected object detectors 23 

on a large and diverse set of images of objects commonly seen in hospital environments. The results 24 

of the benchmark can be used to compare and analyze the performance of different object detectors 25 

and identify their strengths and weaknesses for use in hospital environments. In the benchmark, 26 

one-stage detectors have shown superior performance compared to two-stage detectors of similar 27 

parameter sizes. In particular, YOLOv6-L was able to attain a mean average precision (mAP) of 28 

51.7% while operating at a detection speed of 255 FPS. The benchmark and dataset can serve as a 29 

valuable resource for researchers and practitioners in the field of computer vision and robotics, 30 

helping to advance the development of more effective and efficient object detection algorithms for 31 

developing automated operations in hospitals such as robotic disinfection and patient assistance.  32 
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1. Introduction 36 

In the United States, more than 6,000 hospitals handle over 30 million hospital admissions per year 37 

[1]. According to data from the Bureau of Labor Statistics (BLS), 23% of hospitals are suffering from 38 

severe staffing shortages as of February 2022. In particular, the unfilled nursing positions alone will 39 

be more than 200,000 through 2029 [2], significantly affecting the daily operations in hospitals. The 40 

utilization of robots in healthcare services has gained significant attention as a potential solution to 41 

alleviate the labor shortage issues. By performing critical tasks such as disinfection, telepresence, 42 

and medical supply delivery, robots have the ability to increase efficiency and productivity in the 43 

hospital setting [3]. The global market for healthcare service robots was valued at $6.5 billion in 2021 44 

and is projected to grow to $15.8 billion by 2028 [4]. The capability to detect objects in images or 45 

videos is crucial for healthcare service robots to comprehend the surrounding environments. This is 46 

particularly important for various healthcare applications, such as indoor navigation systems for 47 

patients with visual impairment or blindness. These systems must accurately identify objects in the 48 

environment to provide accurate and targeted guidance [5]. Additionally, for robotic disinfection, 49 

recognizing high-touch objects is crucial for a thorough and efficient cleaning process, as it allows for 50 

the identification of surfaces with a high risk of infection transmission [6,7]. However, current 51 

research in this area is limited in its ability to effectively detect and categorize a diverse range of 52 

indoor objects in hospital environments. 53 

 54 

With the advancement of computing capability, deep learning-based (DL-based) algorithms have 55 

achieved superior performance in understanding the semantic meaning of an image. Many recent 56 

studies [8–10] have shown the capability of DL-based algorithms in locating and classifying object 57 

instances in images. A high-quality object detection dataset is essential for training accurate and 58 

robust models. However, there remains a gap in the availability of an image dataset that is 59 

comprehensive, diverse, and reflective of the task of identifying and locating objects within an indoor 60 

hospital environment. The absence of a comprehensive image dataset specifically designed for 61 

object detection in hospital environments is a result of two main challenges. Firstly, obtaining access 62 

to high-quality hospital indoor images is restricted, and images that capture medical equipment, such 63 

as ventilators and incubators, are not as easily accessible as other common objects, such as chairs, 64 

tables, and computers. Secondly, annotating these images to a level of accuracy that meets the 65 

standards for machine learning models can be a complex and demanding task, due to the cluttered 66 

nature of hospital environments, including intensive care units, operating rooms, and patient wards. 67 

The presence of numerous furniture and medical equipment in these spaces makes it difficult to 68 

accurately identify and localize objects in images, which is critical for the effective training and 69 

evaluation of object detection models. 70 



 71 

To overcome the obstacles in creating a comprehensive dataset for object detection in hospitals, this 72 

paper presents a new and innovative solution. The construction of the hospital indoor object 73 

detection (HIOD) dataset underwent a four-step process including the selection of object categories, 74 

collection of images, selection of images, and image annotation. The result of these efforts is a 75 

dataset with 4,417 annotated images spanning 56 object categories and featuring 51,809 annotated 76 

object instances. To validate the effectiveness of the HIOD dataset, a benchmark was established 77 

using eight existing state-of-the-art object detectors. The results of the benchmark demonstrate that 78 

the network trained on the HIOD dataset can localize and classify objects in a hospital environment 79 

with satisfactory accuracy. The authors believe that the creation of the HIOD dataset and benchmark 80 

will serve as a valuable resource for researchers and practitioners in the development of computer 81 

vision-based applications in hospitals. 82 

2. Literature review 83 

2.1 Related studies on object detection dataset 84 

Object detection datasets typically have a considerable number of images, and objects are 85 

annotated with bounding boxes in each image. In the past decade, deep learning algorithms have 86 

become de facto approaches to identifying objects from images or videos. The successful 87 

application of deep learning methods largely benefits from the availability of annotated image 88 

datasets. A number of popular datasets and benchmarks have been developed, driving the 89 

advancement of DL-based algorithms. For example, the Pascal Visual Object Classes (VOC) 90 

dataset is one of the well-known image datasets for object detection in the early development of DL-91 

based algorithms. The first version of the dataset was published in 2007, which is known as 92 

VOC2007 [11]. The dataset consists of 5,000 images covering 20 object categories with a total of 93 

12,000 annotated instances. The latest version of Pascal VOC was published in 2012 (known as 94 

VOC2012). This version increases the image size to 11,530 with 27,450 annotated object instances. 95 

Thereafter, Microsoft released Common Objects in Context (COCO) [12] in 2014 with a significant 96 

improvement, concerning the number of object categories, the number of images, and the number of 97 

annotated instances. Specifically, COCO contains 164,000 images covering 80 object categories 98 

with 897,000 object instances. OpenImages is another large image dataset, which was initially 99 

released in 2018. OpenImages has undergone a series of iterative updates, and the current version 100 

is named OpenImages-v6 [13]. OpenImages-v6 consists of 1,910,098 images that are distributed 101 

across 600 classes with 15,851,536 annotated object instances. In addition to these datasets, there 102 

are several other image-based object detection datasets, such as Objects365 [14]. These datasets 103 

consist of both indoor and outdoor environments and have been widely used as object detection 104 

benchmarks. 105 





Fig. 1. Progression of object detection techniques. This includes traditional approaches [18–20] and 128 

Deep Learning (DL)-based algorithms. The DL-based algorithms can be further categorized into 129 

one-stage detectors [8,9,21–29] and two-stage detectors [30–39]. 130 

The traditional object detectors can be categorized into three steps: informative region selection, 131 

feature extraction, and classification. The informative region selection stage aims to identify 132 

candidate regions of objects using sliding windows. This process is computationally expensive and 133 

could generate a large number of candidate regions. The feature extraction stage focuses on 134 

extracting visual features for each candidate window for classification. The representative feature 135 

extraction methods include Scale-Invariant Feature Transform (SIFT), Histogram of Oriented 136 

Gradients (HOG), and Haar-like features. Finally, the feature classifier is trained to classify extracted 137 

features that are associated with the object in the region. Some well-known classifiers such as 138 

Support Vector Machine (SVM), AdaBoost, and Deformable Part-based Model (DPM) have been 139 

used and achieved fair performance on object classification. However, traditional approaches are 140 

computationally expensive and produce many redundant detections, which are inefficient and 141 

inaccurate in localizing objects. Furthermore, the performance is largely dependent on the selection 142 

of feature extraction methods that are unable to extract complex features in an image.  143 

 144 

A large and growing body of literature has focused on the development of deep learning networks for 145 

the task of object detection. The DL-based approaches have the capability to automatically learn 146 

more complex image features compared to traditional approaches. The DL-based methods can be 147 

categorized into one-stage and two-stage object detection architectures. Specifically, the two-stage 148 

architecture separates the object localization task from the object classification task, which 149 

generates the region proposal first followed by the region classification. The Region-based 150 

Convolutional Neural Network (R-CNN) is the pioneering work for the two-stage detector [39]. R-151 

CNN first generates 2000 region proposals based on the selective search algorithm. The 4096-152 

dimensional features are then extracted for each region proposal using the deep learning network. 153 

Lastly, the features extracted are fed into a trained SVM classifier, and the bounding box regression 154 

is used to fine-tune the object position. As the pioneering work, R-CNN is very slow in region 155 

proposal generation, leading to slow inference speed. In addition, the feature extraction and SVM 156 

classifier are trained separately. To address these shortages, Fast R-CNN [38] and Faster R-CNN 157 

[37] were proposed in the following two years after the release of R-CNN. In recent years, the 158 

development of new algorithms such as Transformer network has significantly increased the 159 

performance of object detection. For example, with a Swin Transformer backbone, DETR with 160 

Improved denoising anchor boxes (DINO) achieved state-of-the-art performance on COCO dataset 161 

[30].  162 

 163 



While these two-stage architectures achieve promising results, the inference speed is rather slow, 164 

which makes them unsuitable for real-time applications such as autonomous indoor robots. 165 

Compared to two-stage architecture, one-stage architecture directly predicts the bounding box over 166 

the images without the region proposal step which allows a faster inference speed. You Only Look 167 

Once (YOLO) is the most popular one-stage architecture, which provides state-of-the-art 168 

performance for real-time object detection. YOLO detector was introduced by Redmon et al. in 2015 169 

[28], which is a unified and real-time detection approach. YOLO architecture is still under active 170 

development by other researchers, such as Jocher et al. [29] and Wang et al. [8]. The latest version 171 

is YOLOv7 with state-of-the-art real-time performance on COCO dataset. In addition, there are some 172 

other one-stage object detection algorithms, such as Single Shot MultiBox Detector (SSD), Precise 173 

Single-stage Detector (PSSD) [40], CornerNet, RetinaNet. The DL-based algorithms have achieved 174 

promising performance for object detection.  175 

 176 

However, one of the main challenges with deep learning is that it often requires large amounts of 177 

data to train models effectively. To address the limited data availability, transfer learning has been 178 

demonstrated to be effective in a variety of tasks and across various domains [41]. Transfer learning 179 

is a technique where a model trained on one task is used as the starting point for a model on a 180 

second, related task. This approach has been widely studied in recent years and has been shown to 181 

be effective in a variety of settings, including computer vision, natural language processing, and 182 

speech recognition. Some examples of transfer learning include using a pre-trained model to classify 183 

images [6], fine-tuning a pre-trained model for a specific NLP task [42], and using a pre-trained 184 

model as a feature extractor for a different task [43]. Research in this area has shown that transfer 185 

learning can improve performance and reduce the amount of data and computation required for 186 

training a new model [41]. In this study, an algorithm benchmark will be established with the newly 187 

introduced hospital indoor object detection dataset. Pre-trained models on COCO dataset are used 188 

to fine-tune object detectors for better performance in the new dataset.  189 

3. Dataset preparation 190 

The preparation of the hospital indoor object detection (HIOD) dataset consists of four steps: object 191 

category selection, image collection, image selection, and image annotation (see Fig. 2). The details 192 

of each step are elaborated below.  193 







compression and brightness alterations, rendering it suitable for the task of duplicate elimination. 238 

The perceptual hashing method generates a 16-character hexadecimal string hash corresponding to 239 

each image within the dataset. Subsequently, the Hamming distance is computed between pairs of 240 

hashes. The Hamming distance, an integer ranging from 0 to 64, characterizes the similarity 241 

between two images, with a smaller value denoting a higher degree of resemblance. In the present 242 

study, the Hamming distance threshold is established at 12. 243 

 244 

Image cleaning. The image cleaning process is necessary to remove low-quality images, such as 245 

blurry and low-resolution images. Superficially, low-resolution images in this study represent images 246 

with a shorter side smaller than 400, which are first removed from the dataset. The resolution criteria 247 

are set to ensure the performance of the deep learning network, especially on small-size objects like 248 

handles. After the initial filtering process, two students were recruited from the University of 249 

Tennessee, Knoxville to further clean the image dataset. This manual process primarily 250 

concentrated on eliminating images that were blurry or devoid of any objects in the scene. After 251 

completing the duplicate removal and image cleaning procedures, the resulting dataset comprised 252 

4,417 images. 253 

3.4 Image annotation 254 

Image bounding box annotation was done by crowdsourcing the task to human labelers on the Scale 255 

AI platform. The crowdsourcing annotation can be summarized into three steps.  256 

1) The bounding box annotation instruction for 56 object categories is created and posted on 257 

the Scale AI platform with a definition and example annotations. The instruction provides the 258 

objective of the task, objects to be labeled, and representative examples to the Scale AI 259 

human labeler. The labeler must review and understand the instruction to get familiar with 260 

the dataset and annotation task. 261 

2) The second step aims to fine-tune the instruction to make it easy to understand for labelers. 262 

30 images are selected as representative samples of the overall dataset, which covers a 263 

variety of indoor scenes in hospitals. These 30 images were published on the Scale AI 264 

platform and the labelers will annotate them and provide feedback on the instruction. The 265 

authors then review and audit the annotation. The overall calibration score will be given after 266 

finishing the audit, which is an indicator of the annotation quality. Per the feedback and 267 

calibration score, the instruction will be updated to resolve the confusion. This step takes 268 

several iterations to ensure the instruction readability and clarity.  269 

3) After refining the instruction, training and evaluation tasks are created to ensure the quality of 270 

labels. Specifically, the 30 representative images are annotated with ground truth. 10 images 271 

are used for the training task and 20 images for the evaluation task. Labelers will complete 272 



before attempting to label images in the production batch. These tasks make up the training 273 

course that all taskers must complete with a certain quality threshold in order to onboard 274 

onto your project. The evaluation task is used to track the quality of the human labelers after 275 

they start the annotation task. The labelers who cannot meet the quality threshold will be 276 

taken off the project. 277 

 278 

The Scale AI annotations are served as our draft version of the dataset, which was audited by an 279 

auditing team, in order to ensure the quality of the dataset. The auditing team consists of six 280 

undergraduate and graduate students recruited from the University of Tennessee, Knoxville. The 281 

auditing team was given comprehensive training before they start to audit the dataset. The training 282 

will enable the team to get familiar with the task and objects to be annotated in the image. The team 283 

is divided into four inspectors and two examiners. The inspector is responsible to inspect all the 284 

annotated images in the draft version of the dataset. The inspector needs to correct falsely labeled 285 

images. The average inspecting speed is around 40 images per hour according to the report from 286 

the four inspectors. The image annotation quality is significantly improved after this process. The 287 

work of the examiner is to conduct a final examination of the dataset to ensure the quality of our 288 

dataset. The examiner requires to make the correction and refine the object bounding box in the 289 

image.  290 

3.5 Data statistics 291 

The annotated image dataset is named as Hospital Indoor Object Detection (HIOD) dataset. The 292 

HIOD consists of 4,417 images with 51,809 annotated object instances. Fig. 4 shows the number of 293 

objects and number of images for each type of indoor object in the HIOD dataset. The number of 294 

instances per object category presents a long-tailed distribution. In particular, Handle (5,951 295 

objects), chair (4,777 objects), and dispenser (2,819 objects) are recognized as the most frequent 296 

indoor objects in HIOD. Whereas press-to-open button (53 objects) and Xray table (57 objects) have 297 

the least number of instances in HIOD. The number of images for each object category also exhibits 298 

a long-tailed distribution. Specifically, a total of 1,812 images contains chair object, however, only 48 299 

images contain press-to-open button. The long-tailed distribution remains a challenging problem for 300 

the task of object detection, which could affect the object detectors’ performance. 301 







58.4% from 43.3%, if the backbone changes from ResNet50 to Swin-L [45]. However, the number of 344 

parameters increases to 210.4 million from 38.8 million, which is not applicable to be deployed in an 345 

embedded system for onboard detection.  346 

Table 1 Object detection algorithms 347 

Algorithm Backbone #Param. (M) Image size FPS mAPa 

One-stageb 

YOLOv5-L [29] Modified CSPNet 46.5 640 × 640 113 49.0 

YOLOX-L [21] Modified CSPNet 54.2 640 × 640 94 49.7 

YOLOv6-L [9] CSPStackRep 58.5 640 × 640 98 52.5 

YOLOv7 [8] E-ELAN 36.9 640 × 640 110 51.2 

Two-stagec 

Faster R-CNN [37] ResNet50+FPN 41.4 1333 × 800 21d 40.3 

Deformable DETR [33] ResNet50 40.9 1333 × 800 19 46.8 

VFNet [32] ResNet50+FPN 33.6 1333 × 800 19 47.8 

DyHead [31] ATSS+ResNet50+FPN 38.8 1333 × 800 14d 43.3 

a The reported mAP is evaluated on COCO2017 val; b The FPS and mAP for one-stage algorithms refer to [9]; c The 348 

mAP for two-stage algorithms refers to mmdetection benchmark [45]. d The FPS refers to mmdetection benchmark 349 

[45].  350 

4.2 Implementation 351 

The network is trained on a workstation running Ubuntu 16.04 with dual Intel Xeon Silver 4114 352 

CPUs, 128 GB RAM, and an NVIDIA RTX A6000 GPU. To optimize time and resources, transfer 353 

learning techniques are employed for network training. Pretrained weights from the COCO dataset 354 

serve as the foundation for all networks. Table 2 outlines the image size, batch size, number of 355 

epochs, initial learning rate, and learning rate schedule. Default values are assigned to other 356 

hyperparameters. The HIOD dataset is randomly partitioned into a training set (70%), a validation 357 

set (10%), and a testing set (20%). The best performance achieved on the validation set is employed 358 

for evaluation on the testing set. The benchmark performance and subsequent analysis are 359 

grounded in the results obtained from the testing set. 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 



Table 2 Training configurations and default values employed for additional hyperparameters 370 

Algorithm Image size Batch size #Epoch Initial lr lr schedule 

One-stage      

YOLOv5-L 640 × 640 32 300 0.01 Cosine decay 

YOLOX-L 640 × 640 32 300 0.005 Cosine decay 

YOLOv6-L 640 × 640 32 300 0.01 Cosine decay 

YOLOv7 640 × 640 32 300 0.01 Cosine decay 

Two-stage      

Faster R-CNN 1333 × 800 24 24 0.02 [16,22]* 

Deformable DETR 1333 × 800 6 50 0.0002 [40]* 

VFNet 1333 × 800 16 24 0.01 [16,22]* 

DyHead 1333 × 800 16 24 0.01 [16,22]* 

* Learning rate decay by a factor of 10 at the specified epoch. 371 

4.3 Evaluation metrics 372 

The COCO Detection Challenge’s mAP metric is viewed as the standard metric to evaluate the 373 

performance of object detection, which is used to evaluate the object detectors’ performance on the 374 

HIOD dataset. The task of object detection consists of object localization and object classification. 375 

The intersection over union (IoU) is used to evaluate object localization by measuring the degree of 376 

overlap between ground-truth and predicted bounding boxes. If the IoU is greater than 0.5, the 377 

prediction can be considered valid. Each bounding box is associated with an object category and a 378 

confidence score. Detection results with confidence scores below a specified threshold are 379 

considered invalid and disregarded in the analysis. The detection is True Positive (TP) only if the 380 

bounding box is valid and the object category is correct. The detection is False Positive (FP) if either 381 

or both of the two conditions cannot meet. False Negative (FN) represents an object that is not 382 

detected by the detector.  383 

 384 

The mAP metric stands for the mean average precision. The definition of average precision (AP) is 385 

the area under the precision-recall curve. The precision and recall are calculated in Eq (1) and Eq. 386 

(2). The precision and recall are very sensitive to the confidence threshold. In particular, a high 387 

confidence threshold could result in a high precision score but a low recall score. AP score is used to 388 

remove the dependency on selecting a specific confidence threshold.   389 precision = 𝑇𝑃𝑇𝑃+𝐹𝑃                                                                    (1) 390 recall = 𝑇𝑃𝑇𝑃+𝐹𝑁                                                                       (2) 391 

AP is defined in Eq. (3), which summarizes the precision-recall curve to one scalar value. AP is 392 

calculated as the average precision over 101 recall levels from 0 to 1. Pr represents precision at 393 

recall level r.  394 



𝐴𝑃 = 1101∑ 𝑃𝑟𝑟𝜖{0,0.01,…,1}                                                                (3)                        395 

IoU threshold is another important parameter, which has a significant impact on the AP score. A 396 

higher IoU threshold results in a smaller AP score. According to COCO detection competition, 397 

AP@[0.5:0.95] for each object category over 10 IoU levels from 0.5 to 0.95 is used to address this 398 

issue, and it is  defined in Eq. (4) The mAP is the average over all the object categories. 399 𝐴𝑃@[0.5: 0.95] = 110∑ 𝐴𝑃𝐼𝑜𝑈𝑟𝜖{0.5,0.55,…,0.95}                                             (4) 400 

In addition to mAP, other AP-variant metrics are also used to evaluate the performance of detectors. 401 

These metrics are summarized in Table 3. 402 

Table 3 Evaluation metrics 403 

Metric Description 

AP50 AP at IoU =0.50 

AP75 AP at IoU =0.75 

APsmall mAP for small objects (area of object < 322 pixels) 

APmedium mAP for medium objects (322 pixels < area of object < 962 

pixels) 

APlarge mAP for large objects (962 pixels < area of object) 

4.4 Benchmark  404 

The performance of the eight algorithms on the testing dataset is detailed in Table 4. All algorithms 405 

achieve an AP50 score above 64%, underscoring the trained network's proficiency in detecting 406 

objects in hospitals using the HIOD dataset. Notably, the one-stage algorithms exhibit superior 407 

performance compared to their two-stage counterparts. In particular, all four one-stage algorithms 408 

manage to achieve an impressive AP75 score exceeding 50%. Among them, YOLOv6-L stands out 409 

with the best performance, achieving an mAP of 51.7%, while YOLOv7 follows closely behind at 410 

50.6%. In contrast, among the two-stage algorithms, VFNet takes the lead with an mAP of 49.5%, 411 

trailed by Deformable DETR at 49.0%. The relatively lower performance of two-stage algorithms can 412 

be primarily ascribed to their smaller backbone size. Additionally, it is crucial to note that network 413 

performance is contingent upon object size. The AP score tends to improve as object size increases, 414 

which can be attributed to the fact that smaller objects generally possess a limited number of 415 

features and provide less information for the network to extract and learn from. Consequently, as the 416 

network encounters larger objects with more distinguishable features, its ability to detect and classify 417 

them accurately is enhanced, leading to better overall performance.  418 

 419 

 420 

 421 

 422 



Table 4 Benchmark performance on the testing dataset 423 

Algorithm mAP AP50 AP75 APsmall APmedium APlarge 

One-stage       

YOLOv5-L 0.473 0.696 0.501 0.193 0.402 0.520 

YOLOX-L 0.484 0.708 0.520 0.178 0.407 0.554 

YOLOv6-L 0.517 0.737 0.553 0.211 0.418 0.597 

YOLOv7 0.506 0.738 0.545 0.201 0.432 0.546 

Two-stage       

Faster R-CNN 0.403 0.646 0.438 0.141 0.327 0.466 

Deformable DETR 0.490 0.741 0.529 0.209 0.406 0.565 

VFNet 0.495 0.711 0.538 0.200 0.420 0.567 

DyHead 0.430 0.645 0.468 0.145 0.345 0.507 

 424 

The confusion matrices for YOLOv6-L and VFNet are shown in Fig. 7 In a confusion matrix, the 425 

diagonal elements represent the number of correctly classified samples for a particular class. The 426 

diagonal values in the confusion matrices for YOLOv6-L and VFNet indicate the recall, which is a 427 

metric that measures the fraction of positive instances that were correctly identified. The high recall 428 

values in the evaluation of the model indicate that it has a low rate of false negatives, which means 429 

that a significant proportion of positive instances have been accurately identified. The confusion 430 

matrix reflects a considerable performance discrepancy between the different object categories. For 431 

instance, the "Xray bed" and "Xray machine" categories obtain a recall of 100% using the YOLOv6-L 432 

network, while the "surgical instrument" category only achieves a recall of 37.5%. On the other hand, 433 

the VFNet network achieved the highest recall score of 86.7% for the "restroom assistant bar" 434 

category, and the lowest recall score was 27.8% for the " surgical instrument" category. To 435 

showcase the performance of the YOLOv6-L network, some detection results are presented in 436 

Figure 8. 437 





The image resolution and network size have significant impacts on the performance of object 444 

detectors regarding both accuracy and speed. Given the superior performance of YOLOv6-L, the 445 

algorithm is selected to investigate the effect of image resolution and network size. Table 5 shows 446 

the performance of the detectors over different image resolutions from 416×416 to 1280×1280. The 447 

results indicate an increasing trend of detection accuracy over increasing image resolutions. This is 448 

because the HIOD dataset contains a lot of small objects such as handles and doorknob. A larger 449 

image resolution could be beneficial for the detection of these small objects [46]. As indicated, the 450 

APsmall has a larger performance increase with increasing image resolutions compared to APmedium 451 

and APlarge. Overall, the network's performance experiences a substantial improvement when the 452 

image size increases from 416x416 to 640x640, resulting in a 4.1% rise in mAP. However, the 453 

enhancement becomes less pronounced as the image size progresses from 640x640 to 832x832, 454 

with only a 0.5% increment in mAP. Note that when the image size is further increased from 455 

832x832 to 1280x1280, there is a slight 0.2% decrease in mAP. On the other hand, the object 456 

detector's inference speed decreases as the image resolution increases, as evaluated on NVIDIA 457 

RTX A6000 GPU. Since the speed is not stable with a batch size of 1, the batch size is set to 32 for 458 

speed evaluation. The testing results indicate that the inference speed decreases with increasing 459 

image resolutions. In specific, the inference speed reaches 561.1 FPS with an image size of 460 

416×416, which is reduced to 65.9 FPS with an image size of 1280×1280. Therefore, the selection 461 

of image size in real-world applications is a tradeoff between speed and accuracy.   462 

Table 5 Effect of image size on YOLOv6-L network 463 

Image size FPS (bs=32) mAP AP50 AP75 APsmall APmedium APlarge 

416×416 561.8 0.476 0.689 0.506 0.130 0.381 0.572 

640×640 255.1 0.517 0.737 0.553 0.211 0.418 0.597 

832×832 147.7 0.522 0.757 0.559 0.209 0.441 0.598 

1280×1280 65.9 0.520 0.756 0.553 0.219 0.448 0.590 

 464 

The size and backbone of the network are also influential factors affecting detectors’ performance. 465 

Table 6 presents the performance comparison of other networks in the family of YOLOv6 and VFNet 466 

with different backbones. The performance of the YOLOv6 network is regulated by two factors: a 467 

depth-multiple and a width-multiple. The results show that the model's performance improves with an 468 

increase in the number of parameters. In particular, the YOLOv6-L model exhibits a 5.3% 469 

improvement in mean average precision (mAP) compared to the YOLOv6-S model. While YOLOv6 470 

produces better performance, the number of parameters is more than three times that of YOLOv6-S. 471 

For VFNet, mAP has an improvement of 2.8% with the ResNeXt101-64x4d+FPN backbone 472 

compared to the network with the ResNet50+FPN backbone. The large network typically requires 473 

more storage and computation cost which hinders its deployment to mobile platforms such as 474 



robots. The small network can achieve a greater detection rate, so as to be integrated into an 475 

embedded system for real-time detection.  476 

Table 6 Effect of backbone on network performance  477 

Network #Params FPS mAP AP50 AP75 APsmall APmedium APlarge 

YOLOv6-S 17.2 763.4* 0.464 0.680 0.499 0.140 0.372 0.557 

YOLOv6-M 34.3 375.9* 0.504 0.734 0.538 0.187 0.414 0.590 

YOLOv6-L 58.5 255.1* 0.517 0.737 0.553 0.211 0.418 0.597 

VFNet (ResNet50+FPN) 33.6 14.1 0.495 0.711 0.538 0.200 0.420 0.567 

VFNet (ResNet101+FPN) 53.7 11.7 0.503 0.726 0.545 0.197 0.425 0.576 

VFNet (ResNeXt101-

64x4d+FPN) 
98.2 5.8 0.523 0.751 0.568 0.226 0.459 0.586 

* The batch size is set to 32 for speed testing. 478 

5. Discussion 479 

5.1 Dataset contributions 480 

In this study, the HIOD dataset was introduced as a first-of-its-kind resource for detecting objects in 481 

hospital environments. With a total of 4,417 images and 51,809 annotated objects across 56 object 482 

categories, the HIOD dataset has the potential to support the development of innovative computer 483 

vision-based applications within the healthcare sector. The dataset represents a significant step 484 

forward in the field as it provides a comprehensive and diverse representation of the objects 485 

commonly seen in hospital environments, making it a valuable resource for researchers and 486 

practitioners alike. The HIOD dataset has been designed to tackle the limitations of previous 487 

datasets, such as the lack of diversity and limited object categories, thus providing a much-needed 488 

resource for advancing the state-of-the-art in hospital object detection. Table 7 provides a 489 

comparison between the HIOD dataset and other available datasets within similar settings. This 490 

comparison highlights the unique features and characteristics of the HIOD dataset and sheds light 491 

on how it stands out from other existing datasets.  492 

Table 7 Comparison with existing datasets within similar settings 493 

Dataset Scenario # of images # of Categories Task 

MCIndoor20000 Marshfield Clinic 2,055 3 Image classification 

MYNursingHome Nursing home 1,950 25 Image classification 

Ours Hospital facilities 4,417 56 Object detection 

 494 

The HIOD dataset has several key features and benefits that make it significant for the field of 495 

computer vision and object detection. These significant features of the HIOD dataset are discussed 496 

in detail below. 497 



Uniqueness. While there are many datasets for indoor object detection, very few, if any, datasets 498 

are developed specifically for hospitals. The hospital environment is unique from other indoor 499 

environments, because it contains a variety of medical equipment, such as ventilators and iv poles. 500 

Consequently, to facilitate the creation of applications in hospital settings, it is imperative that a 501 

dataset incorporates various pieces of medical equipment. However, common object detection 502 

datasets have not geared towards annotating these equipment, making them unsuitable for 503 

applications, such as robotic disinfection. The HIOD is a first-of-its-kind object detection dataset, 504 

providing tremendous opportunities for researchers and practitioners in developing new applications 505 

in hospital indoor environments.  506 

 507 

Image diversity. The HIOD dataset is constructed by collecting a diversity of image and video data 508 

from online sources. In specific, a total of 59 videos from different hospitals were collected. The total 509 

length of these videos is 7hrs, and 24,963 individual frames are extracted. The images were also 510 

collected from a variety of online image search engines, including Google Images, Bing Images, 511 

Getty, and Shutterstock. In combination, a total of 43,197 images were collected in hospital indoor 512 

environments. After carefully cleaning the images that cannot meet requirements, the resulting HIOD 513 

dataset contains a total of 4,417 images, covering a diversity of hospital environments.  514 

 515 

Object category. The HIOD dataset contains 56 object categories, which cover the most commonly 516 

seen objects and equipment found in hospitals. The HIOD dataset stands out in terms of object 517 

instance annotation density and diversity compared to other popular datasets such as COCO, 518 

OpenImages, and VOC. On average, each image in the HIOD dataset contains more objects and a 519 

greater number of object categories than images in these other datasets. This dense annotation 520 

makes it ideal for training and evaluating object detection algorithms. Additionally, the HIOD dataset 521 

provides a unique advantage by separately annotating hospital staff, patients, and visitors. This 522 

information could be extremely useful for developing context-aware human assistance applications 523 

that require an understanding of the hospital environment and the people within it. 524 

 525 

Precise annotation: The image annotation process was outsourced to the Scale AI platform, which 526 

has established rigorous protocols to guarantee the annotation's accuracy. To ensure the 527 

annotation's quality, the Scale AI platform follows a series of meticulous steps during the annotation 528 

process. After the completion of the annotation process, the annotated dataset was carefully 529 

reviewed and evaluated by the research team through extensive training. The research team's 530 

comprehensive training on the annotated dataset served as an additional quality check, ensuring the 531 

dataset was of high accuracy and ready for use in further research and analysis.  532 



5.2 Benchmark performance 533 

A hospital object detection benchmark was created based on the HIOD dataset. The benchmark 534 

provides a baseline performance for future object detection algorithm development in hospitals. The 535 

benchmark results show that all detectors achieve an mAP greater than 40% and an AP50 greater 536 

than 64% on the HIOD dataset. This indicates that the detector trained on the training dataset can 537 

detect objects with satisfactory accuracy. One-stage algorithms achieved better performance in both 538 

detection accuracy and speed compared to two-stage algorithms. For example, YOLOv6-L achieved 539 

an mAP of 51.7% with an inference speed of 255 FPS. For two-stage algorithms, the best mAP is 540 

49.5% with a much smaller inference speed of 14 FPS. Therefore, it is highly recommended to 541 

select one-stage algorithms for computer vision-based application development in hospitals for a 542 

balance between accuracy and speed.  The HIOD dataset demonstrates a marginally lower 543 

benchmark performance in comparison to the COCO dataset. For instance, YOLOv6-L and YOLOv7 544 

exhibit a slightly lower mAP of 51.7% and 50.6% on the HIOD dataset in contrast to their mAP of 545 

52.5% and 51.2% on the COCO dataset. This underscores the effectiveness of the HIOD dataset, 546 

considering the complex and challenging nature of hospital indoor environments. The presence of 547 

small objects, such as handles and doorknobs, in the dataset presents a challenge for the object 548 

detector. Detecting small objects remains a significant challenge for deep learning networks due to 549 

their limited features. To improve object detectors’ performance on the HIOD dataset, it would be 550 

promising to investigate some techniques for small object detection, such as increasing the model’s 551 

input resolution, augmenting data, and auto-learning model anchors.  552 

5.3 Hyperparameters evolution 553 

Hyperparameters are parameters that are set before the training process begins and these 554 

parameters have a significant impact on the accuracy and efficiency of the model. The optimal 555 

values of these parameters can vary depending on the specific application and dataset. In this study, 556 

YOLOv7 is selected for hyperparameter optimization, which contains a total of 30 parameters related 557 

to learning rate, loss function, data augmentation, etc. In this study, genetic algorithm (GA) is used 558 

for YOLOv7 hyperparameter optimization, which is a form of evolutionary computing. The GA 559 

algorithm uses the principle of evolution to optimize hyperparameters by recombining and mutating 560 

the genes in each generation to produce a new population of better-performing candidate solutions. 561 

The fitness of each candidate solution is evaluated based on the performance of the model on a 562 

validation set, and the best-performing hyperparameters are selected for use in the final model. The 563 

fitness function is a weighted combination of mAP contributing 90% of the weight and AP50 564 

contributing the remaining 10%. The mutation-based genetic operator is used with a probability of 565 

0.9 and a variance of 0.04. The number of epochs and iteration are set to 150 and 200, respectively. 566 

Fig. 9 shows example plots for some optimized hyperparameters. Using the evolved parameters, 567 





significant performance improvement, as indicated by the results of the comparison, highlights the 585 

effectiveness of transfer learning for improving object detection performance, and suggests that 586 

using pre-trained models is a valuable technique for improving the performance of object detectors 587 

on the HIOD dataset. 588 

Table 8 Comparative performance of one-stage object detectors with and without the application of 589 

transfer learning 590 

Algorithm 
Transfer learning Scratch 

mAP AP50 AP75 mAP AP50 AP75 

YOLOv5-L 0.473 0.696 0.501 0.414 0.647 0.438 

YOLOX-L 0.484 0.708 0.520 0.393 0.638 0.426 

YOLOv6-L 0.517 0.737 0.553 0.439 0.656 0.470 

YOLOv7 0.506 0.738 0.545 0.455 0.698 0.487 

 591 

6. Conclusions and future research directions 592 

The current research aimed to develop an image dataset for object detection in hospital indoor 593 

environments, recognizing the importance of understanding and improving the functionality of such 594 

environments. To fulfill this aim, a new dataset was created, named HIOD, by collecting images from 595 

various hospital indoor environments. The proposed dataset is comprised of 4,417 images and 596 

51,809 annotated objects, displaying a significant diversity in scale and appearance. The dataset 597 

also includes annotations for 56 object categories, which cover the most frequently seen objects in 598 

hospitals. One of the primary goals of the HIOD dataset is to provide a benchmark for future 599 

algorithms development. To achieve this, the dataset was tested using eight state-of-the-art object 600 

detectors, and the results were evaluated to establish a benchmark for comparison. The benchmark 601 

results indicate that detectors trained on the HIOD dataset are capable of detecting objects from an 602 

image, demonstrating the effectiveness and utility of the dataset. In summary, the HIOD dataset and 603 

accompanying benchmark provide a valuable resource for researchers and practitioners interested 604 

in object detection in hospital indoor environments. The creation of the HIOD dataset presents new 605 

opportunities for exploring and understanding the complexities of these environments and for 606 

improving the functionality of hospitals. The diversity and size of the dataset ensure that future 607 

algorithms will be able to generalize well and be applicable to a wide range of indoor environments 608 

in hospitals. 609 

 610 

This study has several limitations that must be acknowledged. Firstly, the HIOD dataset only 611 

consists of 4,417 images, which is significantly smaller compared to other datasets such as the 612 

COCO dataset which has 164,000 images. The size and diversity of the dataset play a vital role in 613 

determining the validity and generalizability of object detection algorithms. Therefore, it is imperative 614 



to expand the HIOD dataset by collecting more images from various hospital indoor environments to 615 

improve its size and diversity. In addition to the limitations mentioned above, the HIOD dataset also 616 

has some object categories missing. Although the dataset annotated 56 object categories that are 617 

frequently seen in hospitals, some objects and equipment such as walkers, stethoscopes, and 618 

endoscopes may not have been captured in the dataset due to their infrequent appearance. To 619 

address this limitation, a natural next step would be to expand the dataset by including more 620 

categories of objects and collecting more images in the future. This would ensure that the dataset is 621 

comprehensive and captures a wider range of objects and equipment commonly seen in hospital 622 

indoor environments. Finally, the construction of the HIOD dataset is focused on detecting objects in 623 

images using bounding boxes. Hence, the images are annotated using bounding boxes instead of 624 

pixel-wise level annotations. This approach provides coarse detection of objects with a bounding 625 

box, but it is limited in terms of accuracy. Pixel-wise annotations are crucial for achieving a higher 626 

level of accuracy in object detection and enabling object segmentation at the pixel level. In light of 627 

these limitations, it is a promising area for future work to annotate the HIOD dataset at the pixel level 628 

to advance the accuracy of object detection algorithms. This will require additional effort and 629 

resources, but the results will be well worth it, leading to improved performance in object detection in 630 

hospital indoor environments. 631 
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