

# Object Detection in Hospital Facilities: A Comprehensive Dataset and Performance Evaluation

Da Hu<sup>1</sup>, Shuai Li<sup>2,\*</sup>, Mengjun Wang<sup>2</sup>

<sup>1</sup> Department of Civil and Environmental Engineering, Kennesaw State University, Marietta, GA, 30060

<sup>2</sup> Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996

\* Corresponding Author, Shuai Li, email: [sli48@utk.edu](mailto:sli48@utk.edu)

## Abstract

13 Detecting objects in hospital indoor environments is critical for scene understanding and can have  
14 various applications in healthcare. Deep learning (DL) algorithms have proven to be effective in  
15 object recognition from images or videos, but the availability of annotated datasets plays a crucial  
16 role in their successful application. However, there is a shortage of datasets for object detection in  
17 hospital settings, hindering the advancement of hospital indoor object detection algorithms. In this  
18 paper, we present the Hospital Indoor Object Detection (HIOD) dataset, consisting of 4,417 images  
19 covering 56 object categories. The HIOD dataset represents the frequently encountered objects in  
20 hospitals and comprises 51,809 annotated objects. The dataset is characterized by dense  
21 annotation, with an average of 11.7 objects and 6.8 object categories per image. An object detection  
22 benchmark was established using the HIOD dataset and eight state-of-the-art object detectors. The  
23 benchmark provides a comprehensive evaluation of the performance of the selected object detectors  
24 on a large and diverse set of images of objects commonly seen in hospital environments. The results  
25 of the benchmark can be used to compare and analyze the performance of different object detectors  
26 and identify their strengths and weaknesses for use in hospital environments. In the benchmark,  
27 one-stage detectors have shown superior performance compared to two-stage detectors of similar  
28 parameter sizes. In particular, YOLOv6-L was able to attain a mean average precision (mAP) of  
29 51.7% while operating at a detection speed of 255 FPS. The benchmark and dataset can serve as a  
30 valuable resource for researchers and practitioners in the field of computer vision and robotics,  
31 helping to advance the development of more effective and efficient object detection algorithms for  
32 developing automated operations in hospitals such as robotic disinfection and patient assistance.

34 **Keywords:** object detection; hospital; deep learning; image dataset

35

36 **1. Introduction**

37 In the United States, more than 6,000 hospitals handle over 30 million hospital admissions per year  
38 [1]. According to data from the Bureau of Labor Statistics (BLS), 23% of hospitals are suffering from  
39 severe staffing shortages as of February 2022. In particular, the unfilled nursing positions alone will  
40 be more than 200,000 through 2029 [2], significantly affecting the daily operations in hospitals. The  
41 utilization of robots in healthcare services has gained significant attention as a potential solution to  
42 alleviate the labor shortage issues. By performing critical tasks such as disinfection, telepresence,  
43 and medical supply delivery, robots have the ability to increase efficiency and productivity in the  
44 hospital setting [3]. The global market for healthcare service robots was valued at \$6.5 billion in 2021  
45 and is projected to grow to \$15.8 billion by 2028 [4]. The capability to detect objects in images or  
46 videos is crucial for healthcare service robots to comprehend the surrounding environments. This is  
47 particularly important for various healthcare applications, such as indoor navigation systems for  
48 patients with visual impairment or blindness. These systems must accurately identify objects in the  
49 environment to provide accurate and targeted guidance [5]. Additionally, for robotic disinfection,  
50 recognizing high-touch objects is crucial for a thorough and efficient cleaning process, as it allows for  
51 the identification of surfaces with a high risk of infection transmission [6,7]. However, current  
52 research in this area is limited in its ability to effectively detect and categorize a diverse range of  
53 indoor objects in hospital environments.

54

55 With the advancement of computing capability, deep learning-based (DL-based) algorithms have  
56 achieved superior performance in understanding the semantic meaning of an image. Many recent  
57 studies [8–10] have shown the capability of DL-based algorithms in locating and classifying object  
58 instances in images. A high-quality object detection dataset is essential for training accurate and  
59 robust models. However, there remains a gap in the availability of an image dataset that is  
60 comprehensive, diverse, and reflective of the task of identifying and locating objects within an indoor  
61 hospital environment. The absence of a comprehensive image dataset specifically designed for  
62 object detection in hospital environments is a result of two main challenges. Firstly, obtaining access  
63 to high-quality hospital indoor images is restricted, and images that capture medical equipment, such  
64 as ventilators and incubators, are not as easily accessible as other common objects, such as chairs,  
65 tables, and computers. Secondly, annotating these images to a level of accuracy that meets the  
66 standards for machine learning models can be a complex and demanding task, due to the cluttered  
67 nature of hospital environments, including intensive care units, operating rooms, and patient wards.  
68 The presence of numerous furniture and medical equipment in these spaces makes it difficult to  
69 accurately identify and localize objects in images, which is critical for the effective training and  
70 evaluation of object detection models.

71  
72 To overcome the obstacles in creating a comprehensive dataset for object detection in hospitals, this  
73 paper presents a new and innovative solution. The construction of the hospital indoor object  
74 detection (HIOD) dataset underwent a four-step process including the selection of object categories,  
75 collection of images, selection of images, and image annotation. The result of these efforts is a  
76 dataset with 4,417 annotated images spanning 56 object categories and featuring 51,809 annotated  
77 object instances. To validate the effectiveness of the HIOD dataset, a benchmark was established  
78 using eight existing state-of-the-art object detectors. The results of the benchmark demonstrate that  
79 the network trained on the HIOD dataset can localize and classify objects in a hospital environment  
80 with satisfactory accuracy. The authors believe that the creation of the HIOD dataset and benchmark  
81 will serve as a valuable resource for researchers and practitioners in the development of computer  
82 vision-based applications in hospitals.

83 **2. Literature review**

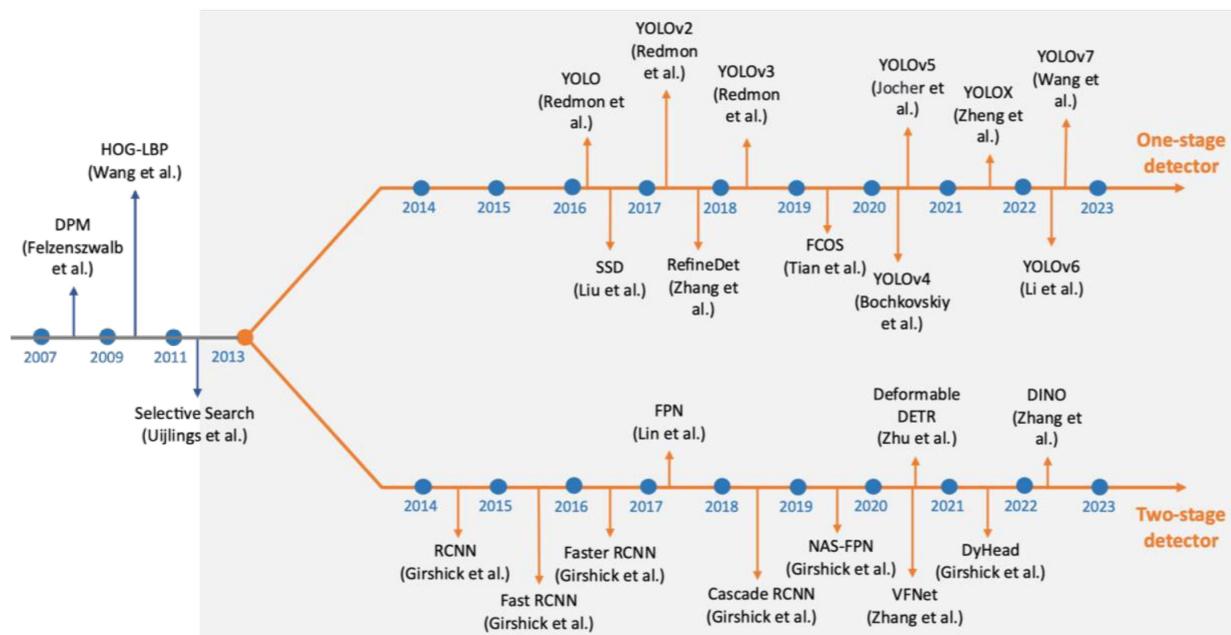
84 **2.1 Related studies on object detection dataset**

85 Object detection datasets typically have a considerable number of images, and objects are  
86 annotated with bounding boxes in each image. In the past decade, deep learning algorithms have  
87 become de facto approaches to identifying objects from images or videos. The successful  
88 application of deep learning methods largely benefits from the availability of annotated image  
89 datasets. A number of popular datasets and benchmarks have been developed, driving the  
90 advancement of DL-based algorithms. For example, the Pascal Visual Object Classes (VOC)  
91 dataset is one of the well-known image datasets for object detection in the early development of DL-  
92 based algorithms. The first version of the dataset was published in 2007, which is known as  
93 VOC2007 [11]. The dataset consists of 5,000 images covering 20 object categories with a total of  
94 12,000 annotated instances. The latest version of Pascal VOC was published in 2012 (known as  
95 VOC2012). This version increases the image size to 11,530 with 27,450 annotated object instances.  
96 Thereafter, Microsoft released Common Objects in Context (COCO) [12] in 2014 with a significant  
97 improvement, concerning the number of object categories, the number of images, and the number of  
98 annotated instances. Specifically, COCO contains 164,000 images covering 80 object categories  
99 with 897,000 object instances. OpenImages is another large image dataset, which was initially  
100 released in 2018. OpenImages has undergone a series of iterative updates, and the current version  
101 is named OpenImages-v6 [13]. OpenImages-v6 consists of 1,910,098 images that are distributed  
102 across 600 classes with 15,851,536 annotated object instances. In addition to these datasets, there  
103 are several other image-based object detection datasets, such as Objects365 [14]. These datasets  
104 consist of both indoor and outdoor environments and have been widely used as object detection  
105 benchmarks.

106 In the context of hospitals, there are very few image datasets specifically developed for object  
 107 detection. In recent years, Bashiri et al. [15] proposed an object classification dataset named  
 108 MCIndoor20000 using images collected from the Marshfield Clinic. The dataset contains a total of  
 109 2,055 images with only three object categories: doors, stairs, and hospital signs. More recently,  
 110 Issmail et al. [16] created an image classification dataset (MYNursingHome) using a total of 37,500  
 111 images collected in several nursing homes. The dataset contains 25 object categories, such as  
 112 cabinet, call bell, and television. However, MCIndoor20000 and MYNursingHome datasets are  
 113 developed for image classification with an object class associated with each image. Object detection  
 114 is more complex and computationally intensive because it requires not only recognizing the object,  
 115 but also localizing it in the image. the limited object categories in these datasets, such as the  
 116 absence of commonly seen objects like ventilator and door handle, limits their usefulness for real-  
 117 world object detection tasks. To overcome these limitations, this study introduces a new dataset,  
 118 which includes a total of 56 object categories and is specifically designed for object detection in  
 119 hospital indoor environments.

## 120 **2.2 Related studies on object detection algorithms**

121 Object detection algorithms are developed to detect and identify objects (e.g., chair, table, and  
 122 human) within an image. Object detection is a combination of image classification and object  
 123 localization. Object detection algorithms can be characterized as traditional and DL-based  
 124 algorithms. Fig. 1 shows the evolution of object detection algorithms. Before 2013, traditional object  
 125 detectors were primarily used to detect objects in digital images. Since that, DL-based algorithms  
 126 have dominated the research on object detection given their superior performance.



128 **Fig. 1.** Progression of object detection techniques. This includes traditional approaches [18–20] and  
129 Deep Learning (DL)-based algorithms. The DL-based algorithms can be further categorized into  
130 one-stage detectors [8,9,21–29] and two-stage detectors [30–39].

131 The traditional object detectors can be categorized into three steps: informative region selection,  
132 feature extraction, and classification. The informative region selection stage aims to identify  
133 candidate regions of objects using sliding windows. This process is computationally expensive and  
134 could generate a large number of candidate regions. The feature extraction stage focuses on  
135 extracting visual features for each candidate window for classification. The representative feature  
136 extraction methods include Scale-Invariant Feature Transform (SIFT), Histogram of Oriented  
137 Gradients (HOG), and Haar-like features. Finally, the feature classifier is trained to classify extracted  
138 features that are associated with the object in the region. Some well-known classifiers such as  
139 Support Vector Machine (SVM), AdaBoost, and Deformable Part-based Model (DPM) have been  
140 used and achieved fair performance on object classification. However, traditional approaches are  
141 computationally expensive and produce many redundant detections, which are inefficient and  
142 inaccurate in localizing objects. Furthermore, the performance is largely dependent on the selection  
143 of feature extraction methods that are unable to extract complex features in an image.

144

145 A large and growing body of literature has focused on the development of deep learning networks for  
146 the task of object detection. The DL-based approaches have the capability to automatically learn  
147 more complex image features compared to traditional approaches. The DL-based methods can be  
148 categorized into one-stage and two-stage object detection architectures. Specifically, the two-stage  
149 architecture separates the object localization task from the object classification task, which  
150 generates the region proposal first followed by the region classification. The Region-based  
151 Convolutional Neural Network (R-CNN) is the pioneering work for the two-stage detector [39]. R-  
152 CNN first generates 2000 region proposals based on the selective search algorithm. The 4096-  
153 dimensional features are then extracted for each region proposal using the deep learning network.  
154 Lastly, the features extracted are fed into a trained SVM classifier, and the bounding box regression  
155 is used to fine-tune the object position. As the pioneering work, R-CNN is very slow in region  
156 proposal generation, leading to slow inference speed. In addition, the feature extraction and SVM  
157 classifier are trained separately. To address these shortages, Fast R-CNN [38] and Faster R-CNN  
158 [37] were proposed in the following two years after the release of R-CNN. In recent years, the  
159 development of new algorithms such as Transformer network has significantly increased the  
160 performance of object detection. For example, with a Swin Transformer backbone, DETR with  
161 Improved denoising anchor boxes (DINO) achieved state-of-the-art performance on COCO dataset  
162 [30].

163

164 While these two-stage architectures achieve promising results, the inference speed is rather slow,  
165 which makes them unsuitable for real-time applications such as autonomous indoor robots.  
166 Compared to two-stage architecture, one-stage architecture directly predicts the bounding box over  
167 the images without the region proposal step which allows a faster inference speed. You Only Look  
168 Once (YOLO) is the most popular one-stage architecture, which provides state-of-the-art  
169 performance for real-time object detection. YOLO detector was introduced by Redmon et al. in 2015  
170 [28], which is a unified and real-time detection approach. YOLO architecture is still under active  
171 development by other researchers, such as Jocher et al. [29] and Wang et al. [8]. The latest version  
172 is YOLOv7 with state-of-the-art real-time performance on COCO dataset. In addition, there are some  
173 other one-stage object detection algorithms, such as Single Shot MultiBox Detector (SSD), Precise  
174 Single-stage Detector (PSSD) [40], CornerNet, RetinaNet. The DL-based algorithms have achieved  
175 promising performance for object detection.

176  
177 However, one of the main challenges with deep learning is that it often requires large amounts of  
178 data to train models effectively. To address the limited data availability, transfer learning has been  
179 demonstrated to be effective in a variety of tasks and across various domains [41]. Transfer learning  
180 is a technique where a model trained on one task is used as the starting point for a model on a  
181 second, related task. This approach has been widely studied in recent years and has been shown to  
182 be effective in a variety of settings, including computer vision, natural language processing, and  
183 speech recognition. Some examples of transfer learning include using a pre-trained model to classify  
184 images [6], fine-tuning a pre-trained model for a specific NLP task [42], and using a pre-trained  
185 model as a feature extractor for a different task [43]. Research in this area has shown that transfer  
186 learning can improve performance and reduce the amount of data and computation required for  
187 training a new model [41]. In this study, an algorithm benchmark will be established with the newly  
188 introduced hospital indoor object detection dataset. Pre-trained models on COCO dataset are used  
189 to fine-tune object detectors for better performance in the new dataset.

190 **3. Dataset preparation**

191 The preparation of the hospital indoor object detection (HIOD) dataset consists of four steps: object  
192 category selection, image collection, image selection, and image annotation (see Fig. 2). The details  
193 of each step are elaborated below.



Fig. 2. Flowchart of dataset preparation

### 3.1 Object category selection

In hospital settings, there is an abundance of furnishings and apparatus aimed at serving both patients and healthcare professionals. It is of utmost importance for a robot to be able to perceive and recognize these elements in order to comprehend the surrounding environment and make informed plans accordingly. The development of a diverse and comprehensive dataset is essential for enabling robots to accurately perceive their environment in hospital settings. To accomplish this, our dataset encompasses a broad range of objects commonly found in hospitals, such as ventilators, chairs, tables, and sofas, with a total of 56 object categories annotated. Furthermore, the dataset considers the importance of human context by annotating various types of individuals present in the hospital, including healthcare workers, patients, and visitors. If the type of person cannot be determined from the image, they are annotated as a separate human category.

### 3.2 Image collection

Image data were collected from online image search engines, including Google Images, Bing Images, Getty, and Shutterstock. Video data was also collected from online video-sharing websites like YouTube. The images and videos were obtained using a list of keywords related to hospital indoor environments, such as “intensive care unit,” “operating room,” “hospital consulting room,” “hospital tour,” “hospital waiting room,” and more. In total, 18,234 images were collected from the online image search engine in the context of hospitals. Furthermore, 59 videos were collected from video-sharing websites. The video data was initially transformed into separate frames, and a single frame was selected from a minimum of 30 consecutive frames to attain a dataset with more visual diversity. This process converts videos into 24,963 images. The collected images cover a variety of indoor environments within the hospitals. Fig. 3 shows some examples of hospital indoor scenes in the dataset.

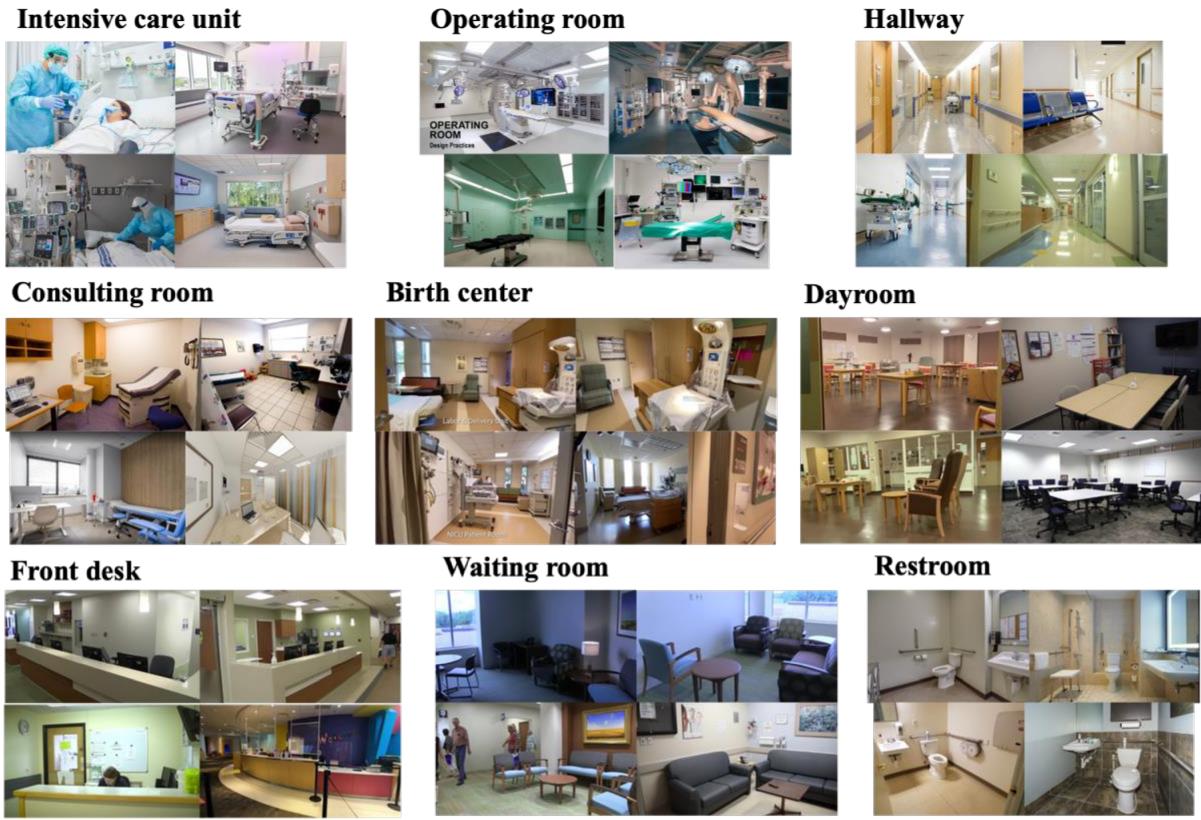


Fig. 3. Example indoor scenes in hospitals

219

220

221 **3.3 Image selection**

222 Following the image collection phase, a total of over 40,000 images were accumulated within the  
 223 hospital environment. To maintain the quality of the dataset, duplicate images were removed, and a  
 224 thorough cleaning process was performed on the collected images. The following steps outline the  
 225 procedures involved in these processes.

226

227 **Duplicates removal.** As some images in the dataset were obtained from video data, it is inevitable  
 228 that the dataset might contain images from similar scenes. These similar images, also referred to as  
 229 near-duplicate and duplicate images, give rise to two issues for the dataset. First, the near-  
 230 duplicates and duplicates introduce bias in the dataset, which could drive CNN to learn the pattern.  
 231 Second, the generalizability of the trained network on unknown images could be compromised.  
 232 Therefore, In the study, the near-duplicate and duplicate images are removed, in order to ensure the  
 233 diversity of the dataset, and the generalizability of the network trained on the dataset.

234

235 The duplicate detection consists of two steps. Initially, image encodings are generated utilizing the  
 236 perceptual hashing method as delineated in reference [44]. This technique is specifically designed to  
 237 remain relatively invariant in response to minor discrepancies between images, such as

238 compression and brightness alterations, rendering it suitable for the task of duplicate elimination.  
239 The perceptual hashing method generates a 16-character hexadecimal string hash corresponding to  
240 each image within the dataset. Subsequently, the Hamming distance is computed between pairs of  
241 hashes. The Hamming distance, an integer ranging from 0 to 64, characterizes the similarity  
242 between two images, with a smaller value denoting a higher degree of resemblance. In the present  
243 study, the Hamming distance threshold is established at 12.

244

245 ***Image cleaning.*** The image cleaning process is necessary to remove low-quality images, such as  
246 blurry and low-resolution images. Superficially, low-resolution images in this study represent images  
247 with a shorter side smaller than 400, which are first removed from the dataset. The resolution criteria  
248 are set to ensure the performance of the deep learning network, especially on small-size objects like  
249 handles. After the initial filtering process, two students were recruited from the University of  
250 Tennessee, Knoxville to further clean the image dataset. This manual process primarily  
251 concentrated on eliminating images that were blurry or devoid of any objects in the scene. After  
252 completing the duplicate removal and image cleaning procedures, the resulting dataset comprised  
253 4,417 images.

254 ***3.4 Image annotation***

255 Image bounding box annotation was done by crowdsourcing the task to human labelers on the Scale  
256 AI platform. The crowdsourcing annotation can be summarized into three steps.

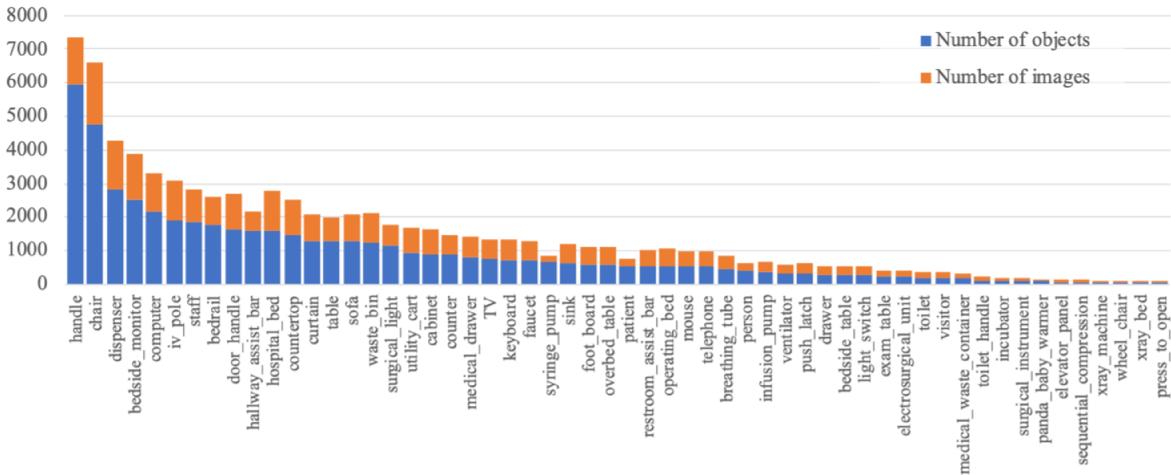
- 257 1) The bounding box annotation instruction for 56 object categories is created and posted on  
258 the Scale AI platform with a definition and example annotations. The instruction provides the  
259 objective of the task, objects to be labeled, and representative examples to the Scale AI  
260 human labeler. The labeler must review and understand the instruction to get familiar with  
261 the dataset and annotation task.
- 262 2) The second step aims to fine-tune the instruction to make it easy to understand for labelers.  
263 30 images are selected as representative samples of the overall dataset, which covers a  
264 variety of indoor scenes in hospitals. These 30 images were published on the Scale AI  
265 platform and the labelers will annotate them and provide feedback on the instruction. The  
266 authors then review and audit the annotation. The overall calibration score will be given after  
267 finishing the audit, which is an indicator of the annotation quality. Per the feedback and  
268 calibration score, the instruction will be updated to resolve the confusion. This step takes  
269 several iterations to ensure the instruction readability and clarity.
- 270 3) After refining the instruction, training and evaluation tasks are created to ensure the quality of  
271 labels. Specifically, the 30 representative images are annotated with ground truth. 10 images  
272 are used for the training task and 20 images for the evaluation task. Labelers will complete

273 before attempting to label images in the production batch. These tasks make up the training  
274 course that all taskers must complete with a certain quality threshold in order to onboard  
275 onto your project. The evaluation task is used to track the quality of the human labelers after  
276 they start the annotation task. The labelers who cannot meet the quality threshold will be  
277 taken off the project.

278  
279 The Scale AI annotations are served as our draft version of the dataset, which was audited by an  
280 auditing team, in order to ensure the quality of the dataset. The auditing team consists of six  
281 undergraduate and graduate students recruited from the University of Tennessee, Knoxville. The  
282 auditing team was given comprehensive training before they start to audit the dataset. The training  
283 will enable the team to get familiar with the task and objects to be annotated in the image. The team  
284 is divided into four inspectors and two examiners. The inspector is responsible to inspect all the  
285 annotated images in the draft version of the dataset. The inspector needs to correct falsely labeled  
286 images. The average inspecting speed is around 40 images per hour according to the report from  
287 the four inspectors. The image annotation quality is significantly improved after this process. The  
288 work of the examiner is to conduct a final examination of the dataset to ensure the quality of our  
289 dataset. The examiner requires to make the correction and refine the object bounding box in the  
290 image.

291 **3.5 Data statistics**

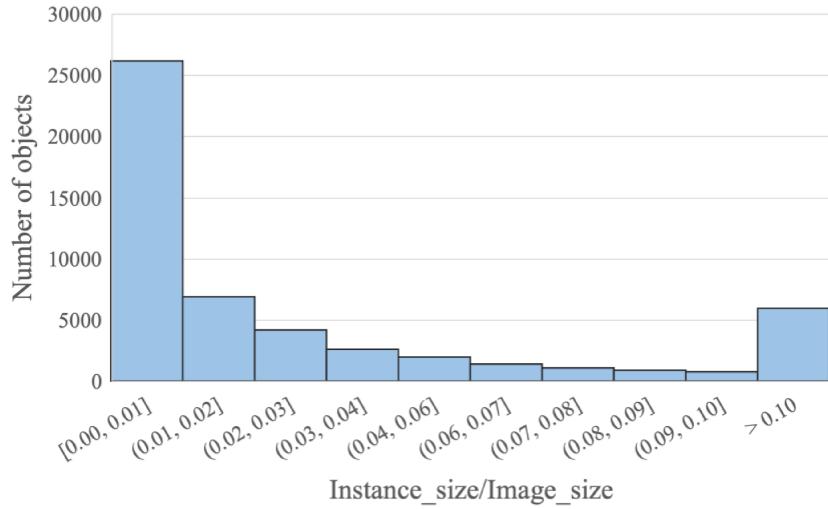
292 The annotated image dataset is named as Hospital Indoor Object Detection (HIOD) dataset. The  
293 HIOD consists of 4,417 images with 51,809 annotated object instances. Fig. 4 shows the number of  
294 objects and number of images for each type of indoor object in the HIOD dataset. The number of  
295 instances per object category presents a long-tailed distribution. In particular, Handle (5,951  
296 objects), chair (4,777 objects), and dispenser (2,819 objects) are recognized as the most frequent  
297 indoor objects in HIOD. Whereas press-to-open button (53 objects) and Xray table (57 objects) have  
298 the least number of instances in HIOD. The number of images for each object category also exhibits  
299 a long-tailed distribution. Specifically, a total of 1,812 images contains chair object, however, only 48  
300 images contain press-to-open button. The long-tailed distribution remains a challenging problem for  
301 the task of object detection, which could affect the object detectors' performance.



302

303 **Fig. 4.** Number of objects and number of images for each type of indoor object in the HIOD dataset.

304 Fig. 5 presents the distribution of bounding boxes over image size in the HIOD dataset. The statistic  
 305 indicates that around 50% of objects occupy a pixel area representing less than 1% of the entire  
 306 image. This is because the HIOD dataset contains many small objects, such as handles, dispensers,  
 307 and door handles, which occupy only a small portion of an image. In addition, around 10% of objects  
 308 occupy a pixel area greater than 10% of an image.

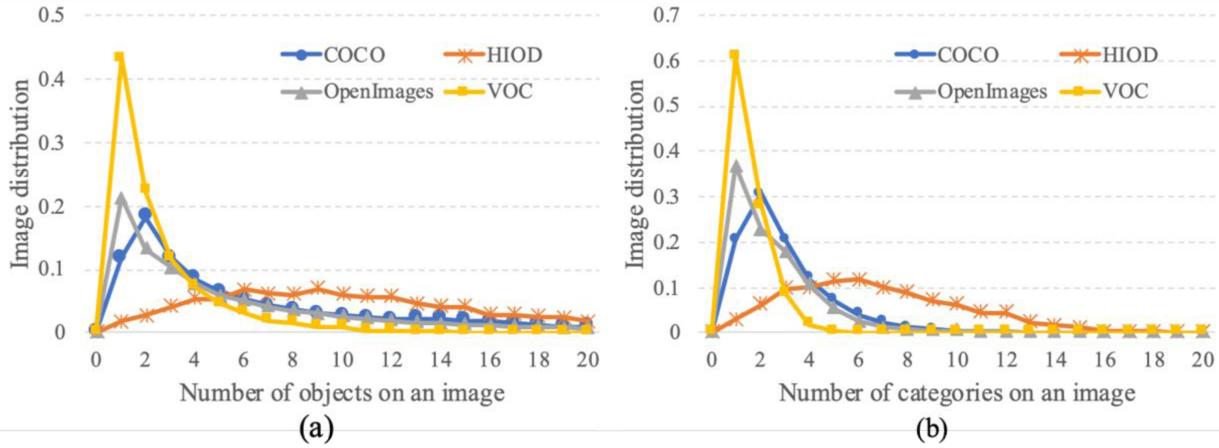


309

310 **Fig. 5** Distribution of the bounding box size in the HIOD dataset

311 The number of objects and categories per image in the HIOD dataset is further analyzed and  
 312 compared to other typical object detection benchmarks. Fig. 6 shows the statistics and comparison  
 313 with COCO, VOC, and OpenImages. The HIOD is found to be denser and more diverse than COCO,  
 314 VOC, and OpenImages with regard to the number of objects and categories on an image.  
 315 Quantitatively, our HIOD dataset has an average and median of 11.7 and 10 objects on an image,  
 316 respectively. In comparison, the average number of objects per image for COCO, VOC, and  
 317 OpenImages are 7.3, 8.2, and 2.7, respectively. The median number of objects per image for

318 COCO, VOC, and OpenImages are 4, 2, and 4, respectively. On the other hand, our HIOD dataset  
 319 contains an average and median of 6.8 and 6 object categories per image, respectively, which are  
 320 both significantly greater than other benchmarks. The abundant instance density and broad category  
 321 diversity in the HIOD dataset lay a solid foundation for building a robust object detector in hospital  
 322 settings.



323  
 324 **Fig. 6.** Comparison of the number of objects and categories per image with COCO, VOC, and  
 325 OpenImages. (a) number of objects; and (b) number of categories

#### 326 **4. Object detection algorithm**

##### 327 **4.1 Algorithm selection**

328 In this study, five one-stage and five two-stage object detection algorithms are selected and  
 329 evaluated on the HIOD dataset (shown in Table 1). For one-stage algorithms, the YOLO series is  
 330 selected including YOLOv5-L, YOLOX-L, YOLOv6-L, and YOLOv7. For two-stage algorithms, Faster  
 331 R-CNN, Deformable DETR, VFNet, and DyHead are selected. Note that the performance of these  
 332 algorithms is largely dependent on the selection of backbone. Generally, the larger the backbone,  
 333 the better the performance. On the other hand, a large network could result in a slow inference  
 334 speed. The selection of the backbone network is a trade-off between accuracy and speed. For a fair  
 335 comparison between different detectors, the number of network parameters ranges from 33.6 to 65.3  
 336 million. All of the one-stage algorithms achieve a fast inference speed with an FPS over 94. One  
 337 interesting point to mention is that state-of-the-art one-stage algorithms such as YOLOv6 and  
 338 YOLOv7 outperform two-stage algorithms by a large margin with similar sizes of object detection  
 339 networks. The inference speed is also much higher for one-stage algorithms compared to two-stage  
 340 algorithms. In addition, the image size for the two-stage algorithms is greater than for one-stage  
 341 algorithms. This is because the development of two-stage algorithms is mainly focused on prediction  
 342 accuracy instead of speed. The performance of two-stage algorithms could be much better with a  
 343 larger backbone network. For example, the mean average precision (mAP) of DyHead increases to

344 58.4% from 43.3%, if the backbone changes from ResNet50 to Swin-L [45]. However, the number of  
345 parameters increases to 210.4 million from 38.8 million, which is not applicable to be deployed in an  
346 embedded system for onboard detection.

347 Table 1 Object detection algorithms

| Algorithm                    | Backbone          | #Param. (M) | Image size | FPS             | mAP <sup>a</sup> |
|------------------------------|-------------------|-------------|------------|-----------------|------------------|
| <b>One-stage<sup>b</sup></b> |                   |             |            |                 |                  |
| YOLOv5-L [29]                | Modified CSPNet   | 46.5        | 640 × 640  | 113             | 49.0             |
| YOLOX-L [21]                 | Modified CSPNet   | 54.2        | 640 × 640  | 94              | 49.7             |
| YOLOv6-L [9]                 | CSPStackRep       | 58.5        | 640 × 640  | 98              | 52.5             |
| YOLOv7 [8]                   | E-ELAN            | 36.9        | 640 × 640  | 110             | 51.2             |
| <b>Two-stage<sup>c</sup></b> |                   |             |            |                 |                  |
| Faster R-CNN [37]            | ResNet50+FPN      | 41.4        | 1333 × 800 | 21 <sup>d</sup> | 40.3             |
| Deformable DETR [33]         | ResNet50          | 40.9        | 1333 × 800 | 19              | 46.8             |
| VFNet [32]                   | ResNet50+FPN      | 33.6        | 1333 × 800 | 19              | 47.8             |
| DyHead [31]                  | ATSS+ResNet50+FPN | 38.8        | 1333 × 800 | 14 <sup>d</sup> | 43.3             |

348 <sup>a</sup> The reported mAP is evaluated on COCO2017 val; <sup>b</sup> The FPS and mAP for one-stage algorithms refer to [9]; <sup>c</sup> The  
349 mAP for two-stage algorithms refers to mmdetection benchmark [45]. <sup>d</sup> The FPS refers to mmdetection benchmark  
350 [45].

351 **4.2 Implementation**

352 The network is trained on a workstation running Ubuntu 16.04 with dual Intel Xeon Silver 4114  
353 CPUs, 128 GB RAM, and an NVIDIA RTX A6000 GPU. To optimize time and resources, transfer  
354 learning techniques are employed for network training. Pretrained weights from the COCO dataset  
355 serve as the foundation for all networks. Table 2 outlines the image size, batch size, number of  
356 epochs, initial learning rate, and learning rate schedule. Default values are assigned to other  
357 hyperparameters. The HIOD dataset is randomly partitioned into a training set (70%), a validation  
358 set (10%), and a testing set (20%). The best performance achieved on the validation set is employed  
359 for evaluation on the testing set. The benchmark performance and subsequent analysis are  
360 grounded in the results obtained from the testing set.

361

362

363

364

365

366

367

368

369

370 Table 2 Training configurations and default values employed for additional hyperparameters

| Algorithm        | Image size | Batch size | #Epoch | Initial lr | lr schedule  |
|------------------|------------|------------|--------|------------|--------------|
| <b>One-stage</b> |            |            |        |            |              |
| YOLOv5-L         | 640 × 640  | 32         | 300    | 0.01       | Cosine decay |
| YOLOX-L          | 640 × 640  | 32         | 300    | 0.005      | Cosine decay |
| YOLOv6-L         | 640 × 640  | 32         | 300    | 0.01       | Cosine decay |
| YOLOv7           | 640 × 640  | 32         | 300    | 0.01       | Cosine decay |
| <b>Two-stage</b> |            |            |        |            |              |
| Faster R-CNN     | 1333 × 800 | 24         | 24     | 0.02       | [16,22]*     |
| Deformable DETR  | 1333 × 800 | 6          | 50     | 0.0002     | [40]*        |
| VFNet            | 1333 × 800 | 16         | 24     | 0.01       | [16,22]*     |
| DyHead           | 1333 × 800 | 16         | 24     | 0.01       | [16,22]*     |

371 \* Learning rate decay by a factor of 10 at the specified epoch.

372 **4.3 Evaluation metrics**

373 The COCO Detection Challenge's mAP metric is viewed as the standard metric to evaluate the  
 374 performance of object detection, which is used to evaluate the object detectors' performance on the  
 375 HIOD dataset. The task of object detection consists of object localization and object classification.  
 376 The intersection over union (IoU) is used to evaluate object localization by measuring the degree of  
 377 overlap between ground-truth and predicted bounding boxes. If the IoU is greater than 0.5, the  
 378 prediction can be considered valid. Each bounding box is associated with an object category and a  
 379 confidence score. Detection results with confidence scores below a specified threshold are  
 380 considered invalid and disregarded in the analysis. The detection is True Positive (TP) only if the  
 381 bounding box is valid and the object category is correct. The detection is False Positive (FP) if either  
 382 or both of the two conditions cannot meet. False Negative (FN) represents an object that is not  
 383 detected by the detector.

384

385 The mAP metric stands for the mean average precision. The definition of average precision (AP) is  
 386 the area under the precision-recall curve. The precision and recall are calculated in Eq (1) and Eq.  
 387 (2). The precision and recall are very sensitive to the confidence threshold. In particular, a high  
 388 confidence threshold could result in a high precision score but a low recall score. AP score is used to  
 389 remove the dependency on selecting a specific confidence threshold.

$$390 \text{precision} = \frac{TP}{TP+FP} \quad (1)$$

$$391 \text{recall} = \frac{TP}{TP+FN} \quad (2)$$

392 AP is defined in Eq. (3), which summarizes the precision-recall curve to one scalar value. AP is  
 393 calculated as the average precision over 101 recall levels from 0 to 1.  $P_r$  represents precision at  
 394 recall level  $r$ .

395 
$$AP = \frac{1}{101} \sum_{r \in \{0, 0.01, \dots, 1\}} P_r \quad (3)$$

396 IoU threshold is another important parameter, which has a significant impact on the AP score. A  
 397 higher IoU threshold results in a smaller AP score. According to COCO detection competition,  
 398 AP@[0.5:0.95] for each object category over 10 IoU levels from 0.5 to 0.95 is used to address this  
 399 issue, and it is defined in Eq. (4) The mAP is the average over all the object categories.

400 
$$AP@[0.5:0.95] = \frac{1}{10} \sum_{r \in \{0.5, 0.55, \dots, 0.95\}} AP_{IoU} \quad (4)$$

401 In addition to mAP, other AP-variant metrics are also used to evaluate the performance of detectors.  
 402 These metrics are summarized in Table 3.

403 Table 3 Evaluation metrics

| Metric               | Description                                                                               |
|----------------------|-------------------------------------------------------------------------------------------|
| AP <sub>50</sub>     | AP at IoU = 0.50                                                                          |
| AP <sub>75</sub>     | AP at IoU = 0.75                                                                          |
| AP <sub>small</sub>  | mAP for small objects (area of object < 32 <sup>2</sup> pixels)                           |
| AP <sub>medium</sub> | mAP for medium objects (32 <sup>2</sup> pixels < area of object < 96 <sup>2</sup> pixels) |
| AP <sub>large</sub>  | mAP for large objects (96 <sup>2</sup> pixels < area of object)                           |

404 **4.4 Benchmark**

405 The performance of the eight algorithms on the testing dataset is detailed in Table 4. All algorithms  
 406 achieve an AP<sub>50</sub> score above 64%, underscoring the trained network's proficiency in detecting  
 407 objects in hospitals using the HIOD dataset. Notably, the one-stage algorithms exhibit superior  
 408 performance compared to their two-stage counterparts. In particular, all four one-stage algorithms  
 409 manage to achieve an impressive AP<sub>75</sub> score exceeding 50%. Among them, YOLOv6-L stands out  
 410 with the best performance, achieving an mAP of 51.7%, while YOLOv7 follows closely behind at  
 411 50.6%. In contrast, among the two-stage algorithms, VFNet takes the lead with an mAP of 49.5%,  
 412 trailed by Deformable DETR at 49.0%. The relatively lower performance of two-stage algorithms can  
 413 be primarily ascribed to their smaller backbone size. Additionally, it is crucial to note that network  
 414 performance is contingent upon object size. The AP score tends to improve as object size increases,  
 415 which can be attributed to the fact that smaller objects generally possess a limited number of  
 416 features and provide less information for the network to extract and learn from. Consequently, as the  
 417 network encounters larger objects with more distinguishable features, its ability to detect and classify  
 418 them accurately is enhanced, leading to better overall performance.

419

420

421

422

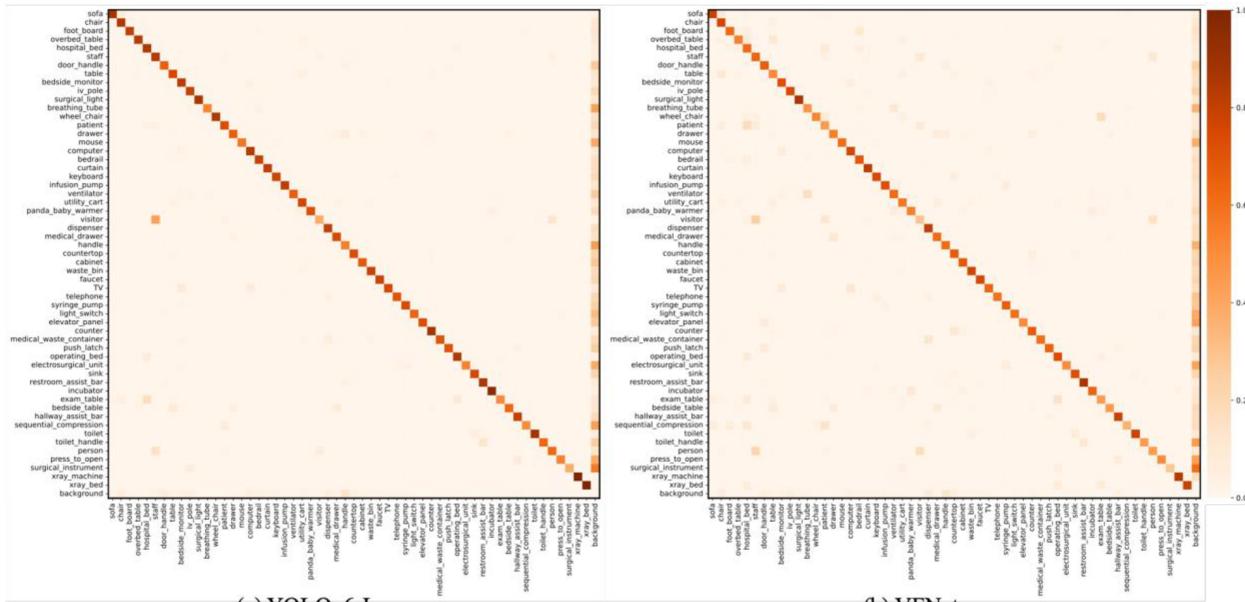
423

Table 4 Benchmark performance on the testing dataset

| Algorithm        | mAP   | AP <sub>50</sub> | AP <sub>75</sub> | AP <sub>small</sub> | AP <sub>medium</sub> | AP <sub>large</sub> |
|------------------|-------|------------------|------------------|---------------------|----------------------|---------------------|
| <b>One-stage</b> |       |                  |                  |                     |                      |                     |
| YOLOv5-L         | 0.473 | 0.696            | 0.501            | 0.193               | 0.402                | 0.520               |
| YOLOX-L          | 0.484 | 0.708            | 0.520            | 0.178               | 0.407                | 0.554               |
| YOLOv6-L         | 0.517 | 0.737            | 0.553            | 0.211               | 0.418                | 0.597               |
| YOLOv7           | 0.506 | 0.738            | 0.545            | 0.201               | 0.432                | 0.546               |
| <b>Two-stage</b> |       |                  |                  |                     |                      |                     |
| Faster R-CNN     | 0.403 | 0.646            | 0.438            | 0.141               | 0.327                | 0.466               |
| Deformable DETR  | 0.490 | 0.741            | 0.529            | 0.209               | 0.406                | 0.565               |
| VFNet            | 0.495 | 0.711            | 0.538            | 0.200               | 0.420                | 0.567               |
| DyHead           | 0.430 | 0.645            | 0.468            | 0.145               | 0.345                | 0.507               |

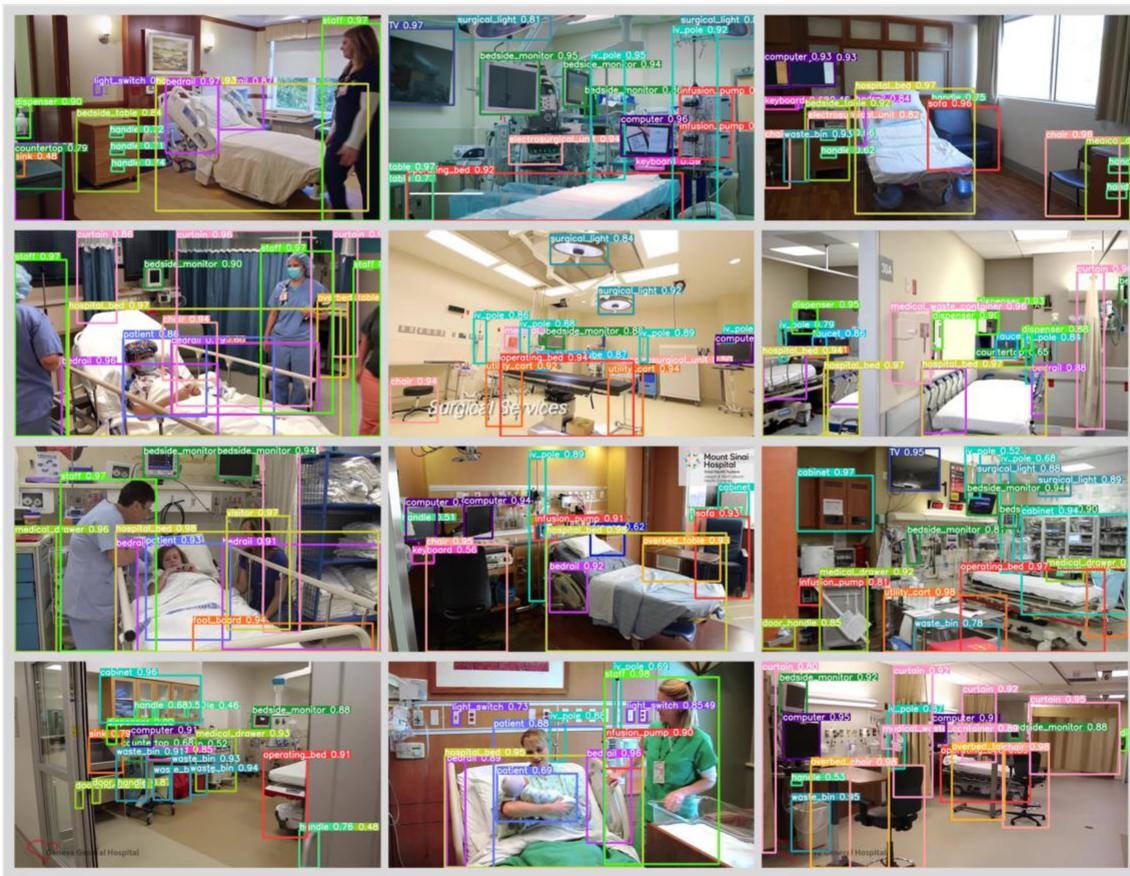
424

425 The confusion matrices for YOLOv6-L and VFNet are shown in Fig. 7. In a confusion matrix, the  
 426 diagonal elements represent the number of correctly classified samples for a particular class. The  
 427 diagonal values in the confusion matrices for YOLOv6-L and VFNet indicate the recall, which is a  
 428 metric that measures the fraction of positive instances that were correctly identified. The high recall  
 429 values in the evaluation of the model indicate that it has a low rate of false negatives, which means  
 430 that a significant proportion of positive instances have been accurately identified. The confusion  
 431 matrix reflects a considerable performance discrepancy between the different object categories. For  
 432 instance, the "Xray bed" and "Xray machine" categories obtain a recall of 100% using the YOLOv6-L  
 433 network, while the "surgical instrument" category only achieves a recall of 37.5%. On the other hand,  
 434 the VFNet network achieved the highest recall score of 86.7% for the "restroom assistant bar"  
 435 category, and the lowest recall score was 27.8% for the "surgical instrument" category. To  
 436 showcase the performance of the YOLOv6-L network, some detection results are presented in  
 437 Figure 8.



438

439 **Fig. 7.** Confusion matrix for YOLOv6-L and VFNet. Diagonal value represents recall for each object  
440 category



441

442 **Fig. 8** Sample detection results using YOLOv6-L, displaying bounding boxes with associated  
443 category labels and confidence levels

444 The image resolution and network size have significant impacts on the performance of object  
445 detectors regarding both accuracy and speed. Given the superior performance of YOLOv6-L, the  
446 algorithm is selected to investigate the effect of image resolution and network size. Table 5 shows  
447 the performance of the detectors over different image resolutions from 416×416 to 1280×1280. The  
448 results indicate an increasing trend of detection accuracy over increasing image resolutions. This is  
449 because the HIOD dataset contains a lot of small objects such as handles and doorknob. A larger  
450 image resolution could be beneficial for the detection of these small objects [46]. As indicated, the  
451 AP<sub>small</sub> has a larger performance increase with increasing image resolutions compared to AP<sub>medium</sub>  
452 and AP<sub>large</sub>. Overall, the network's performance experiences a substantial improvement when the  
453 image size increases from 416x416 to 640x640, resulting in a 4.1% rise in mAP. However, the  
454 enhancement becomes less pronounced as the image size progresses from 640x640 to 832x832,  
455 with only a 0.5% increment in mAP. Note that when the image size is further increased from  
456 832x832 to 1280x1280, there is a slight 0.2% decrease in mAP. On the other hand, the object  
457 detector's inference speed decreases as the image resolution increases, as evaluated on NVIDIA  
458 RTX A6000 GPU. Since the speed is not stable with a batch size of 1, the batch size is set to 32 for  
459 speed evaluation. The testing results indicate that the inference speed decreases with increasing  
460 image resolutions. In specific, the inference speed reaches 561.1 FPS with an image size of  
461 416×416, which is reduced to 65.9 FPS with an image size of 1280×1280. Therefore, the selection  
462 of image size in real-world applications is a tradeoff between speed and accuracy.

463 Table 5 Effect of image size on YOLOv6-L network

| Image size | FPS (bs=32) | mAP   | AP <sub>50</sub> | AP <sub>75</sub> | AP <sub>small</sub> | AP <sub>medium</sub> | AP <sub>large</sub> |
|------------|-------------|-------|------------------|------------------|---------------------|----------------------|---------------------|
| 416×416    | 561.8       | 0.476 | 0.689            | 0.506            | 0.130               | 0.381                | 0.572               |
| 640×640    | 255.1       | 0.517 | 0.737            | 0.553            | 0.211               | 0.418                | 0.597               |
| 832×832    | 147.7       | 0.522 | 0.757            | 0.559            | 0.209               | 0.441                | 0.598               |
| 1280×1280  | 65.9        | 0.520 | 0.756            | 0.553            | 0.219               | 0.448                | 0.590               |

464  
465 The size and backbone of the network are also influential factors affecting detectors' performance.  
466 Table 6 presents the performance comparison of other networks in the family of YOLOv6 and VFNet  
467 with different backbones. The performance of the YOLOv6 network is regulated by two factors: a  
468 depth-multiple and a width-multiple. The results show that the model's performance improves with an  
469 increase in the number of parameters. In particular, the YOLOv6-L model exhibits a 5.3%  
470 improvement in mean average precision (mAP) compared to the YOLOv6-S model. While YOLOv6  
471 produces better performance, the number of parameters is more than three times that of YOLOv6-S.  
472 For VFNet, mAP has an improvement of 2.8% with the ResNeXt101-64x4d+FPN backbone  
473 compared to the network with the ResNet50+FPN backbone. The large network typically requires  
474 more storage and computation cost which hinders its deployment to mobile platforms such as

475 robots. The small network can achieve a greater detection rate, so as to be integrated into an  
476 embedded system for real-time detection.

477 Table 6 Effect of backbone on network performance

| Network                      | #Params | FPS    | mAP   | AP <sub>50</sub> | AP <sub>75</sub> | AP <sub>small</sub> | AP <sub>medium</sub> | AP <sub>large</sub> |
|------------------------------|---------|--------|-------|------------------|------------------|---------------------|----------------------|---------------------|
| YOLOv6-S                     | 17.2    | 763.4* | 0.464 | 0.680            | 0.499            | 0.140               | 0.372                | 0.557               |
| YOLOv6-M                     | 34.3    | 375.9* | 0.504 | 0.734            | 0.538            | 0.187               | 0.414                | 0.590               |
| YOLOv6-L                     | 58.5    | 255.1* | 0.517 | 0.737            | 0.553            | 0.211               | 0.418                | 0.597               |
| VFNet (ResNet50+FPN)         | 33.6    | 14.1   | 0.495 | 0.711            | 0.538            | 0.200               | 0.420                | 0.567               |
| VFNet (ResNet101+FPN)        | 53.7    | 11.7   | 0.503 | 0.726            | 0.545            | 0.197               | 0.425                | 0.576               |
| VFNet (ResNeXt101-64x4d+FPN) | 98.2    | 5.8    | 0.523 | 0.751            | 0.568            | 0.226               | 0.459                | 0.586               |

478 \* The batch size is set to 32 for speed testing.

479 **5. Discussion**

480 **5.1 Dataset contributions**

481 In this study, the HIOD dataset was introduced as a first-of-its-kind resource for detecting objects in  
482 hospital environments. With a total of 4,417 images and 51,809 annotated objects across 56 object  
483 categories, the HIOD dataset has the potential to support the development of innovative computer  
484 vision-based applications within the healthcare sector. The dataset represents a significant step  
485 forward in the field as it provides a comprehensive and diverse representation of the objects  
486 commonly seen in hospital environments, making it a valuable resource for researchers and  
487 practitioners alike. The HIOD dataset has been designed to tackle the limitations of previous  
488 datasets, such as the lack of diversity and limited object categories, thus providing a much-needed  
489 resource for advancing the state-of-the-art in hospital object detection. Table 7 provides a  
490 comparison between the HIOD dataset and other available datasets within similar settings. This  
491 comparison highlights the unique features and characteristics of the HIOD dataset and sheds light  
492 on how it stands out from other existing datasets.

493 Table 7 Comparison with existing datasets within similar settings

| Dataset       | Scenario            | # of images | # of Categories | Task                 |
|---------------|---------------------|-------------|-----------------|----------------------|
| MCIndoor20000 | Marshfield Clinic   | 2,055       | 3               | Image classification |
| MYNursingHome | Nursing home        | 1,950       | 25              | Image classification |
| Ours          | Hospital facilities | 4,417       | 56              | Object detection     |

494  
495 The HIOD dataset has several key features and benefits that make it significant for the field of  
496 computer vision and object detection. These significant features of the HIOD dataset are discussed  
497 in detail below.

498 **Uniqueness.** While there are many datasets for indoor object detection, very few, if any, datasets  
499 are developed specifically for hospitals. The hospital environment is unique from other indoor  
500 environments, because it contains a variety of medical equipment, such as ventilators and iv poles.  
501 Consequently, to facilitate the creation of applications in hospital settings, it is imperative that a  
502 dataset incorporates various pieces of medical equipment. However, common object detection  
503 datasets have not geared towards annotating these equipment, making them unsuitable for  
504 applications, such as robotic disinfection. The HIOD is a first-of-its-kind object detection dataset,  
505 providing tremendous opportunities for researchers and practitioners in developing new applications  
506 in hospital indoor environments.

507

508 **Image diversity.** The HIOD dataset is constructed by collecting a diversity of image and video data  
509 from online sources. In specific, a total of 59 videos from different hospitals were collected. The total  
510 length of these videos is 7hrs, and 24,963 individual frames are extracted. The images were also  
511 collected from a variety of online image search engines, including Google Images, Bing Images,  
512 Getty, and Shutterstock. In combination, a total of 43,197 images were collected in hospital indoor  
513 environments. After carefully cleaning the images that cannot meet requirements, the resulting HIOD  
514 dataset contains a total of 4,417 images, covering a diversity of hospital environments.

515

516 **Object category.** The HIOD dataset contains 56 object categories, which cover the most commonly  
517 seen objects and equipment found in hospitals. The HIOD dataset stands out in terms of object  
518 instance annotation density and diversity compared to other popular datasets such as COCO,  
519 OpenImages, and VOC. On average, each image in the HIOD dataset contains more objects and a  
520 greater number of object categories than images in these other datasets. This dense annotation  
521 makes it ideal for training and evaluating object detection algorithms. Additionally, the HIOD dataset  
522 provides a unique advantage by separately annotating hospital staff, patients, and visitors. This  
523 information could be extremely useful for developing context-aware human assistance applications  
524 that require an understanding of the hospital environment and the people within it.

525

526 **Precise annotation:** The image annotation process was outsourced to the Scale AI platform, which  
527 has established rigorous protocols to guarantee the annotation's accuracy. To ensure the  
528 annotation's quality, the Scale AI platform follows a series of meticulous steps during the annotation  
529 process. After the completion of the annotation process, the annotated dataset was carefully  
530 reviewed and evaluated by the research team through extensive training. The research team's  
531 comprehensive training on the annotated dataset served as an additional quality check, ensuring the  
532 dataset was of high accuracy and ready for use in further research and analysis.

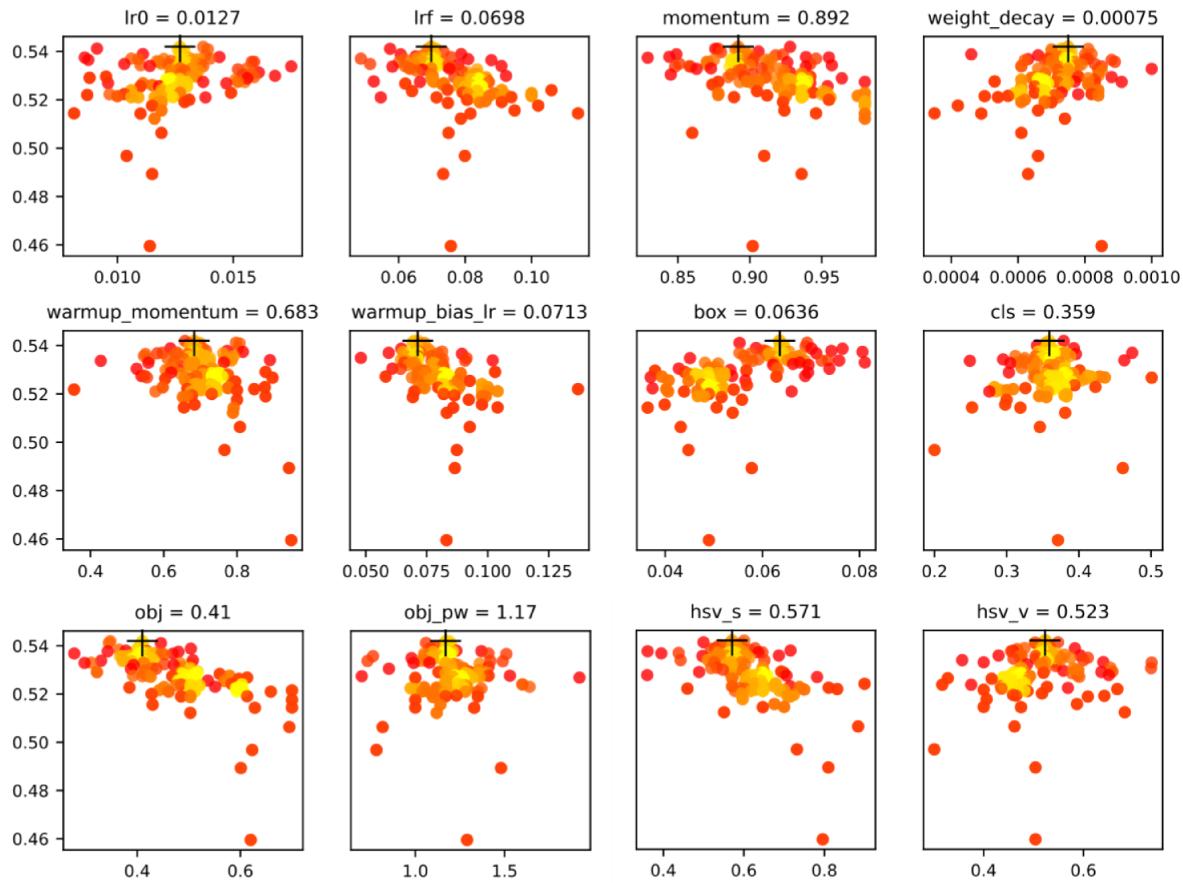
533 **5.2 Benchmark performance**

534 A hospital object detection benchmark was created based on the HIOD dataset. The benchmark  
535 provides a baseline performance for future object detection algorithm development in hospitals. The  
536 benchmark results show that all detectors achieve an mAP greater than 40% and an AP<sub>50</sub> greater  
537 than 64% on the HIOD dataset. This indicates that the detector trained on the training dataset can  
538 detect objects with satisfactory accuracy. One-stage algorithms achieved better performance in both  
539 detection accuracy and speed compared to two-stage algorithms. For example, YOLOv6-L achieved  
540 an mAP of 51.7% with an inference speed of 255 FPS. For two-stage algorithms, the best mAP is  
541 49.5% with a much smaller inference speed of 14 FPS. Therefore, it is highly recommended to  
542 select one-stage algorithms for computer vision-based application development in hospitals for a  
543 balance between accuracy and speed. The HIOD dataset demonstrates a marginally lower  
544 benchmark performance in comparison to the COCO dataset. For instance, YOLOv6-L and YOLOv7  
545 exhibit a slightly lower mAP of 51.7% and 50.6% on the HIOD dataset in contrast to their mAP of  
546 52.5% and 51.2% on the COCO dataset. This underscores the effectiveness of the HIOD dataset,  
547 considering the complex and challenging nature of hospital indoor environments. The presence of  
548 small objects, such as handles and doorknobs, in the dataset presents a challenge for the object  
549 detector. Detecting small objects remains a significant challenge for deep learning networks due to  
550 their limited features. To improve object detectors' performance on the HIOD dataset, it would be  
551 promising to investigate some techniques for small object detection, such as increasing the model's  
552 input resolution, augmenting data, and auto-learning model anchors.

553 **5.3 Hyperparameters evolution**

554 Hyperparameters are parameters that are set before the training process begins and these  
555 parameters have a significant impact on the accuracy and efficiency of the model. The optimal  
556 values of these parameters can vary depending on the specific application and dataset. In this study,  
557 YOLOv7 is selected for hyperparameter optimization, which contains a total of 30 parameters related  
558 to learning rate, loss function, data augmentation, etc. In this study, genetic algorithm (GA) is used  
559 for YOLOv7 hyperparameter optimization, which is a form of evolutionary computing. The GA  
560 algorithm uses the principle of evolution to optimize hyperparameters by recombining and mutating  
561 the genes in each generation to produce a new population of better-performing candidate solutions.  
562 The fitness of each candidate solution is evaluated based on the performance of the model on a  
563 validation set, and the best-performing hyperparameters are selected for use in the final model. The  
564 fitness function is a weighted combination of mAP contributing 90% of the weight and AP<sub>50</sub>  
565 contributing the remaining 10%. The mutation-based genetic operator is used with a probability of  
566 0.9 and a variance of 0.04. The number of epochs and iteration are set to 150 and 200, respectively.  
567 Fig. 9 shows example plots for some optimized hyperparameters. Using the evolved parameters,

568 YOLOv7 attains a mean average precision (mAP) of 52.0% and 50.9% on the validation and testing  
 569 datasets, respectively. This represents a slight improvement of 0.6% and 0.3%, compared to the  
 570 performance achieved using the original hyperparameters. Although the increase in mAP is modest,  
 571 it underscores the significance of hyperparameter tuning in optimizing the performance of object  
 572 detectors on HIOD dataset.



573  
 574 **Fig. 9** Optimized YOLOv7 hyperparameters utilized for network training

#### 575 **5.4 Effect of transfer learning**

576 In the benchmark, the transfer learning technique is used to improve performance and reduce the  
 577 amount of data and computation to learn from scratch. Specifically, pre-trained weights on large  
 578 COCO dataset are used to initialize the weights of a model for object detection in healthcare  
 579 facilities. The effect of transfer learning on the object detector's performance on HIOD dataset is  
 580 evaluated in this section. One-stage algorithms are selected for performance comparison with and  
 581 without pre-trained models, and the results are shown in Table 8. The results of this comparison  
 582 indicate that the performance of object detectors on HIOD dataset is significantly improved using  
 583 pre-trained models. Specifically, the utilization of pre-trained weights in object detectors results in a  
 584 noticeable mAP improvement of performance by a range of 5.1% to 9.1% on the HIOD dataset. The

585 significant performance improvement, as indicated by the results of the comparison, highlights the  
586 effectiveness of transfer learning for improving object detection performance, and suggests that  
587 using pre-trained models is a valuable technique for improving the performance of object detectors  
588 on the HIOD dataset.

589 Table 8 Comparative performance of one-stage object detectors with and without the application of  
590 transfer learning

| Algorithm | Transfer learning |                  |                  | Scratch |                  |                  |
|-----------|-------------------|------------------|------------------|---------|------------------|------------------|
|           | mAP               | AP <sub>50</sub> | AP <sub>75</sub> | mAP     | AP <sub>50</sub> | AP <sub>75</sub> |
| YOLOv5-L  | 0.473             | 0.696            | 0.501            | 0.414   | 0.647            | 0.438            |
| YOLOX-L   | 0.484             | 0.708            | 0.520            | 0.393   | 0.638            | 0.426            |
| YOLOv6-L  | 0.517             | 0.737            | 0.553            | 0.439   | 0.656            | 0.470            |
| YOLOv7    | 0.506             | 0.738            | 0.545            | 0.455   | 0.698            | 0.487            |

591

## 592 6. Conclusions and future research directions

593 The current research aimed to develop an image dataset for object detection in hospital indoor  
594 environments, recognizing the importance of understanding and improving the functionality of such  
595 environments. To fulfill this aim, a new dataset was created, named HIOD, by collecting images from  
596 various hospital indoor environments. The proposed dataset is comprised of 4,417 images and  
597 51,809 annotated objects, displaying a significant diversity in scale and appearance. The dataset  
598 also includes annotations for 56 object categories, which cover the most frequently seen objects in  
599 hospitals. One of the primary goals of the HIOD dataset is to provide a benchmark for future  
600 algorithms development. To achieve this, the dataset was tested using eight state-of-the-art object  
601 detectors, and the results were evaluated to establish a benchmark for comparison. The benchmark  
602 results indicate that detectors trained on the HIOD dataset are capable of detecting objects from an  
603 image, demonstrating the effectiveness and utility of the dataset. In summary, the HIOD dataset and  
604 accompanying benchmark provide a valuable resource for researchers and practitioners interested  
605 in object detection in hospital indoor environments. The creation of the HIOD dataset presents new  
606 opportunities for exploring and understanding the complexities of these environments and for  
607 improving the functionality of hospitals. The diversity and size of the dataset ensure that future  
608 algorithms will be able to generalize well and be applicable to a wide range of indoor environments  
609 in hospitals.

610

611 This study has several limitations that must be acknowledged. Firstly, the HIOD dataset only  
612 consists of 4,417 images, which is significantly smaller compared to other datasets such as the  
613 COCO dataset which has 164,000 images. The size and diversity of the dataset play a vital role in  
614 determining the validity and generalizability of object detection algorithms. Therefore, it is imperative

615 to expand the HIOD dataset by collecting more images from various hospital indoor environments to  
616 improve its size and diversity. In addition to the limitations mentioned above, the HIOD dataset also  
617 has some object categories missing. Although the dataset annotated 56 object categories that are  
618 frequently seen in hospitals, some objects and equipment such as walkers, stethoscopes, and  
619 endoscopes may not have been captured in the dataset due to their infrequent appearance. To  
620 address this limitation, a natural next step would be to expand the dataset by including more  
621 categories of objects and collecting more images in the future. This would ensure that the dataset is  
622 comprehensive and captures a wider range of objects and equipment commonly seen in hospital  
623 indoor environments. Finally, the construction of the HIOD dataset is focused on detecting objects in  
624 images using bounding boxes. Hence, the images are annotated using bounding boxes instead of  
625 pixel-wise level annotations. This approach provides coarse detection of objects with a bounding  
626 box, but it is limited in terms of accuracy. Pixel-wise annotations are crucial for achieving a higher  
627 level of accuracy in object detection and enabling object segmentation at the pixel level. In light of  
628 these limitations, it is a promising area for future work to annotate the HIOD dataset at the pixel level  
629 to advance the accuracy of object detection algorithms. This will require additional effort and  
630 resources, but the results will be well worth it, leading to improved performance in object detection in  
631 hospital indoor environments.

### 632 **Declaration of Competing Interest**

633 The authors declare that they have no known competing financial interests or personal  
634 relationships that could have appeared to influence the work reported in this paper.

### 635 **Acknowledgments**

636 This research was funded by the US National Science Foundation (NSF) via Grant numbers:  
637 2026719, 1952140, and 2038967. This research also received support from the Science Alliance at  
638 the University of Tennessee Knoxville (UTK) via the Joint Directed Research and Development  
639 Program. The authors gratefully acknowledge support from NSF and UTK. Any opinions, findings,  
640 recommendations, and conclusions in this paper are those of the authors and do not necessarily  
641 reflect the views of NSF and UTK.

### 642 **Data availability**

643 The dataset constructed in this study can be downloaded from the following link:  
644 [https://github.com/Wangmmstar/Hospital\\_Scene\\_Data](https://github.com/Wangmmstar/Hospital_Scene_Data)

### 645 **References**

646 [1] American Hospital Association, Fast Facts on U.S. Hospitals, 2022.  
647 <https://www.aha.org/statistics/fast-facts-us-hospitals> (accessed September 28, 2022).

648 [2] American Association of Critical-Care Nurses, Hear Us Out Campaign Reports Nurses'  
649 COVID-19 Reality, (2021). <https://www.aacn.org/newsroom/hear-us-out-campaign-reports-nurses-covid-19-reality> (accessed September 28, 2022).

650

651 [3] J. Holland, L. Kingston, C. McCarthy, E. Armstrong, P. O'Dwyer, F. Merz, M. McConnell,  
652 Service Robots in the Healthcare Sector, *Robotics*. 10 (2021) 47.  
653 <https://doi.org/10.3390/robotics10010047>.

654 [4] VynZ Research, Healthcare Service Robots Market, (2022).  
655 <https://www.vynzresearch.com/healthcare/healthcare-service-robots-market> (accessed  
656 September 30, 2022).

657 [5] F.S. Bashiri, E. LaRose, J.C. Badger, R.M. D'Souza, Z. Yu, P. Peissig, Object Detection to  
658 Assist Visually Impaired People: A Deep Neural Network Adventure, in: International  
659 Symposium on Visual Computing, Springer, 2018: pp. 500–510. [https://doi.org/10.1007/978-3-030-03801-4\\_44](https://doi.org/10.1007/978-3-030-03801-4_44).

660

661 [6] D. Hu, S. Li, Recognizing object surface materials to adapt robotic disinfection in  
662 infrastructure facilities, *Computer-Aided Civil and Infrastructure Engineering*. (2022).  
663 <https://doi.org/10.1111/mice.12811>.

664 [7] D. Hu, H. Zhong, S. Li, J. Tan, Q. He, Segmenting areas of potential contamination for  
665 adaptive robotic disinfection in built environments, *Build Environ.* 184 (2020) 107226.  
666 <https://doi.org/10.1016/j.buildenv.2020.107226>.

667 [8] C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, YOLOv7: Trainable bag-of-freebies sets new  
668 state-of-the-art for real-time object detectors, *ArXiv Preprint ArXiv:2207.02696*. (2022).  
669 <http://arxiv.org/abs/2207.02696>.

670 [9] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y. Li, B. Zhang,  
671 Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, X. Wei, YOLOv6: A Single-Stage Object Detection  
672 Framework for Industrial Applications, *ArXiv Preprint ArXiv:2209.02976*. (2022).  
673 <http://arxiv.org/abs/2209.02976>.

674 [10] D. Hu, S. Li, J. Du, J. Cai, Automating Building Damage Reconnaissance to Optimize Drone  
675 Mission Planning for Disaster Response, *Journal of Computing in Civil Engineering*. 37 (2023)  
676 04023006. [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0001061](https://doi.org/10.1061/(ASCE)CP.1943-5487.0001061).

677 [11] M. Everingham, L. van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The Pascal Visual Object  
678 Classes (VOC) Challenge, *Int J Comput Vis.* 88 (2010) 303–338.  
679 <https://doi.org/10.1007/s11263-009-0275-4>.

680 [12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick,  
681 Microsoft COCO: Common Objects in Context, in: European Conference on Computer Vision,  
682 Springer, 2014: pp. 740–755. [https://doi.org/10.1007/978-3-319-10602-1\\_48](https://doi.org/10.1007/978-3-319-10602-1_48).

683 [13] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov,  
684 M. Malloci, A. Kolesnikov, T. Duerig, V. Ferrari, The Open Images Dataset V4, *Int J Comput*  
685 *Vis.* 128 (2020) 1956–1981. <https://doi.org/10.1007/s11263-020-01316-z>.

686 [14] S. Shao, Z. Li, T. Zhang, C. Peng, G. Yu, X. Zhang, J. Li, J. Sun, Objects365: A large-scale,  
687 high-quality dataset for object detection, in: *Proceedings of the IEEE/CVF International*  
688 *Conference on Computer Vision*, 2019: pp. 8430–8439.

689 [15] F.S. Bashiri, E. LaRose, P. Peissig, A.P. Tafti, MCIndoor20000: A fully-labeled image dataset  
690 to advance indoor objects detection, *Data Brief.* 17 (2018) 71–75.  
691 <https://doi.org/10.1016/j.dib.2017.12.047>.

692 [16] A. Ismail, S.A. Ahmad, A. Che Soh, M.K. Hassan, H.H. Harith, MYNursingHome: A fully-  
693 labelled image dataset for indoor object classification, *Data Brief.* 32 (2020) 106268.  
694 <https://doi.org/10.1016/j.dib.2020.106268>.

695 [17] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional  
696 neural networks, *Commun ACM.* 60 (2017) 84–90. <https://doi.org/10.1145/3065386>.

697 [18] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, A.W.M. Smeulders, Selective Search for  
698 Object Recognition, *Int J Comput Vis.* 104 (2013) 154–171. <https://doi.org/10.1007/s11263-013-0620-5>.

700 [19] X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in:  
701 2009 IEEE 12th International Conference on Computer Vision, IEEE, 2009: pp. 32–39.

702 [20] P. Felzenszwalb, D. McAllester, D. Ramanan, A discriminatively trained, multiscale,  
703 deformable part model, in: 2008 IEEE Conference on Computer Vision and Pattern  
704 Recognition, IEEE, 2008: pp. 1–8. <https://doi.org/10.1109/CVPR.2008.4587597>.

705 [21] Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, YOLOX: Exceeding YOLO Series in 2021, *ArXiv Preprint*  
706 *ArXiv:2107.08430.* (2021). <http://arxiv.org/abs/2107.08430>.

707 [22] A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, YOLOv4: Optimal Speed and Accuracy of Object  
708 Detection, *ArXiv Preprint ArXiv:2004.10934.* (2020). <http://arxiv.org/abs/2004.10934>.

709 [23] Z. Tian, C. Shen, H. Chen, T. He, FCOS: Fully Convolutional One-Stage Object Detection, in:  
710 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, 2019: pp. 9626–  
711 9635. <https://doi.org/10.1109/ICCV.2019.00972>.

712 [24] S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-Shot Refinement Neural Network for Object  
713 Detection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,  
714 IEEE, 2018: pp. 4203–4212. <https://doi.org/10.1109/CVPR.2018.00442>.

715 [25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, SSD: Single Shot  
716 MultiBox Detector, in: European Conference on Computer Vision, Springer, 2016: pp. 21–37.  
717 [https://doi.org/10.1007/978-3-319-46448-0\\_2](https://doi.org/10.1007/978-3-319-46448-0_2).

718 [26] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE  
719 Conference on Computer Vision and Pattern Recognition, 2017: pp. 7263–7271.  
720 <https://doi.org/10.1109/CVPR.2017.690>.

721 [27] J. Redmon, A. Farhadi, YOLOv3: An Incremental Improvement, ArXiv Preprint  
722 ArXiv:1804.02767. (2018). <http://arxiv.org/abs/1804.02767>.

723 [28] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time  
724 Object Detection, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition  
725 (CVPR), IEEE, 2016: pp. 779–788. <https://doi.org/10.1109/CVPR.2016.91>.

726 [29] G. Jocher, A. Stoken, A. Chaurasia, N. Jirka Borovec, TaoXie, Y. Kwon, K. Michael, C. Liu, J.  
727 Fang, A. V, L. Tkianai, YxNONG, P. Skalski, A. Hogan, J. Nadar, L.M. Imyhxy,  
728 ultralytics/yolov5: v6.0 - YOLOv5n “Nano” models, Roboflow integration, TensorFlow export,  
729 OpenCV DNN support (v6.0), Zenodo. (2021). <https://doi.org/10.5281/zenodo.5563715>.

730 [30] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L.M. Ni, H.-Y. Shum, DINO: DETR with  
731 Improved DeNoising Anchor Boxes for End-to-End Object Detection, ArXiv Preprint  
732 ArXiv:2203.03605. (2022). <http://arxiv.org/abs/2203.03605>.

733 [31] X. Dai, Y. Chen, B. Xiao, D. Chen, M. Liu, L. Yuan, L. Zhang, Dynamic Head: Unifying Object  
734 Detection Heads with Attentions, in: 2021 IEEE/CVF Conference on Computer Vision and  
735 Pattern Recognition (CVPR), IEEE, 2021: pp. 7369–7378.  
736 <https://doi.org/10.1109/CVPR46437.2021.00729>.

737 [32] H. Zhang, Y. Wang, F. Dayoub, N. Sunderhauf, VarifocalNet: An IoU-aware Dense Object  
738 Detector, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition  
739 (CVPR), IEEE, 2021: pp. 8510–8519. <https://doi.org/10.1109/CVPR46437.2021.00841>.

740 [33] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai, Deformable DETR: Deformable Transformers for  
741 End-to-End Object Detection, ArXiv Preprint ArXiv:2010.04159. (2020).  
742 <http://arxiv.org/abs/2010.04159>.

743 [34] G. Ghiasi, T.-Y. Lin, Q. v. Le, NAS-FPN: Learning Scalable Feature Pyramid Architecture for  
744 Object Detection, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern  
745 Recognition (CVPR), IEEE, 2019: pp. 7029–7038. <https://doi.org/10.1109/CVPR.2019.00720>.

746 [35] Z. Cai, N. Vasconcelos, Cascade R-CNN: Delving Into High Quality Object Detection, in: 2018  
747 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: pp. 6154–  
748 6162. <https://doi.org/10.1109/CVPR.2018.00644>.

749 [36] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature Pyramid Networks  
750 for Object Detection, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition  
751 (CVPR), IEEE, 2017: pp. 936–944. <https://doi.org/10.1109/CVPR.2017.106>.

752 [37] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-Time Object Detection with  
753 Region Proposal Networks, *IEEE Trans Pattern Anal Mach Intell.* 39 (2017) 1137–1149.  
754 <https://doi.org/10.1109/TPAMI.2016.2577031>.

755 [38] R. Girshick, Fast R-CNN, in: 2015 IEEE International Conference on Computer Vision (ICCV),  
756 IEEE, 2015: pp. 1440–1448. <https://doi.org/10.1109/ICCV.2015.169>.

757 [39] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies for Accurate Object  
758 Detection and Semantic Segmentation, in: 2014 IEEE Conference on Computer Vision and  
759 Pattern Recognition, IEEE, 2014: pp. 580–587. <https://doi.org/10.1109/CVPR.2014.81>.

760 [40] A. Chandio, G. Gui, T. Kumar, I. Ullah, R. Ranjbarzadeh, A.M. Roy, A. Hussain, Y. Shen,  
761 Precise Single-stage Detector, *ArXiv Preprint ArXiv:2210.04252*. (2022).  
762 <http://arxiv.org/abs/2210.04252>.

763 [41] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A Comprehensive Survey  
764 on Transfer Learning, *Proceedings of the IEEE.* 109 (2021) 43–76.  
765 <https://doi.org/10.1109/JPROC.2020.3004555>.

766 [42] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, X. Huang, Pre-trained models for natural language  
767 processing: A survey, *Sci China Technol Sci.* 63 (2020) 1872–1897.  
768 <https://doi.org/10.1007/s11431-020-1647-3>.

769 [43] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural  
770 networks?, *Adv Neural Inf Process Syst.* 27 (2014).

771 [44] A. Buldas, A. Kroonmaa, R. Laanoja, Keyless Signatures' Infrastructure: How to Build Global  
772 Distributed Hash-Trees, in: Nordic Conference on Secure IT Systems, Springer, 2013: pp.  
773 313–320. [https://doi.org/10.1007/978-3-642-41488-6\\_21](https://doi.org/10.1007/978-3-642-41488-6_21).

774 [45] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang,  
775 D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W.  
776 Ouyang, C.C. Loy, D. Lin, MMDetection: Open MMLab Detection Toolbox and Benchmark,  
777 *ArXiv Preprint ArXiv:1906.07155*. (2019). <http://arxiv.org/abs/1906.07155>.

778 [46] Z. Liu, G. Gao, L. Sun, Z. Fang, HRDNet: High-Resolution Detection Network for Small  
779 Objects, in: 2021 IEEE International Conference on Multimedia and Expo (ICME), IEEE,  
780 2021: pp. 1–6. <https://doi.org/10.1109/ICME51207.2021.9428241>.

781