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Abstract

Detecting objects in hospital indoor environments is critical for scene understanding and can have
various applications in healthcare. Deep learning (DL) algorithms have proven to be effective in
object recognition from images or videos, but the availability of annotated datasets plays a crucial
role in their successful application. However, there is a shortage of datasets for object detection in
hospital settings, hindering the advancement of hospital indoor object detection algorithms. In this
paper, we present the Hospital Indoor Object Detection (HIOD) dataset, consisting of 4,417 images
covering 56 object categories. The HIOD dataset represents the frequently encountered objects in
hospitals and comprises 51,809 annotated objects. The dataset is characterized by dense
annotation, with an average of 11.7 objects and 6.8 object categories per image. An object detection
benchmark was established using the HIOD dataset and eight state-of-the-art object detectors. The
benchmark provides a comprehensive evaluation of the performance of the selected object detectors
on a large and diverse set of images of objects commonly seen in hospital environments. The results
of the benchmark can be used to compare and analyze the performance of different object detectors
and identify their strengths and weaknesses for use in hospital environments. In the benchmark,
one-stage detectors have shown superior performance compared to two-stage detectors of similar
parameter sizes. In particular, YOLOvV6-L was able to attain a mean average precision (mAP) of
51.7% while operating at a detection speed of 255 FPS. The benchmark and dataset can serve as a
valuable resource for researchers and practitioners in the field of computer vision and robotics,
helping to advance the development of more effective and efficient object detection algorithms for

developing automated operations in hospitals such as robotic disinfection and patient assistance.
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1. Introduction

In the United States, more than 6,000 hospitals handle over 30 million hospital admissions per year
[1]. According to data from the Bureau of Labor Statistics (BLS), 23% of hospitals are suffering from
severe staffing shortages as of February 2022. In particular, the unfilled nursing positions alone will
be more than 200,000 through 2029 [2], significantly affecting the daily operations in hospitals. The
utilization of robots in healthcare services has gained significant attention as a potential solution to
alleviate the labor shortage issues. By performing critical tasks such as disinfection, telepresence,
and medical supply delivery, robots have the ability to increase efficiency and productivity in the
hospital setting [3]. The global market for healthcare service robots was valued at $6.5 billion in 2021
and is projected to grow to $15.8 billion by 2028 [4]. The capability to detect objects in images or
videos is crucial for healthcare service robots to comprehend the surrounding environments. This is
particularly important for various healthcare applications, such as indoor navigation systems for
patients with visual impairment or blindness. These systems must accurately identify objects in the
environment to provide accurate and targeted guidance [5]. Additionally, for robotic disinfection,
recognizing high-touch objects is crucial for a thorough and efficient cleaning process, as it allows for
the identification of surfaces with a high risk of infection transmission [6,7]. However, current
research in this area is limited in its ability to effectively detect and categorize a diverse range of

indoor objects in hospital environments.

With the advancement of computing capability, deep learning-based (DL-based) algorithms have
achieved superior performance in understanding the semantic meaning of an image. Many recent
studies [8—10] have shown the capability of DL-based algorithms in locating and classifying object
instances in images. A high-quality object detection dataset is essential for training accurate and
robust models. However, there remains a gap in the availability of an image dataset that is
comprehensive, diverse, and reflective of the task of identifying and locating objects within an indoor
hospital environment. The absence of a comprehensive image dataset specifically designed for
object detection in hospital environments is a result of two main challenges. Firstly, obtaining access
to high-quality hospital indoor images is restricted, and images that capture medical equipment, such
as ventilators and incubators, are not as easily accessible as other common objects, such as chairs,
tables, and computers. Secondly, annotating these images to a level of accuracy that meets the
standards for machine learning models can be a complex and demanding task, due to the cluttered
nature of hospital environments, including intensive care units, operating rooms, and patient wards.
The presence of numerous furniture and medical equipment in these spaces makes it difficult to
accurately identify and localize objects in images, which is critical for the effective training and

evaluation of object detection models.



71
72
73
74
75
76
77
78
79
80
81
82

83

84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

To overcome the obstacles in creating a comprehensive dataset for object detection in hospitals, this
paper presents a new and innovative solution. The construction of the hospital indoor object
detection (HIOD) dataset underwent a four-step process including the selection of object categories,
collection of images, selection of images, and image annotation. The result of these efforts is a
dataset with 4,417 annotated images spanning 56 object categories and featuring 51,809 annotated
object instances. To validate the effectiveness of the HIOD dataset, a benchmark was established
using eight existing state-of-the-art object detectors. The results of the benchmark demonstrate that
the network trained on the HIOD dataset can localize and classify objects in a hospital environment
with satisfactory accuracy. The authors believe that the creation of the HIOD dataset and benchmark
will serve as a valuable resource for researchers and practitioners in the development of computer

vision-based applications in hospitals.
2. Literature review
2.1 Related studies on object detection dataset

Object detection datasets typically have a considerable number of images, and objects are
annotated with bounding boxes in each image. In the past decade, deep learning algorithms have
become de facto approaches to identifying objects from images or videos. The successful
application of deep learning methods largely benefits from the availability of annotated image
datasets. A number of popular datasets and benchmarks have been developed, driving the
advancement of DL-based algorithms. For example, the Pascal Visual Object Classes (VOC)
dataset is one of the well-known image datasets for object detection in the early development of DL-
based algorithms. The first version of the dataset was published in 2007, which is known as
VOC2007 [11]. The dataset consists of 5,000 images covering 20 object categories with a total of
12,000 annotated instances. The latest version of Pascal VOC was published in 2012 (known as
VOC2012). This version increases the image size to 11,530 with 27,450 annotated object instances.
Thereafter, Microsoft released Common Objects in Context (COCO) [12] in 2014 with a significant
improvement, concerning the number of object categories, the number of images, and the number of
annotated instances. Specifically, COCO contains 164,000 images covering 80 object categories
with 897,000 object instances. Openimages is another large image dataset, which was initially
released in 2018. Openlmages has undergone a series of iterative updates, and the current version
is named Openlmages-v6 [13]. Openlmages-v6 consists of 1,910,098 images that are distributed
across 600 classes with 15,851,536 annotated object instances. In addition to these datasets, there
are several other image-based object detection datasets, such as Objects365 [14]. These datasets
consist of both indoor and outdoor environments and have been widely used as object detection

benchmarks.
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In the context of hospitals, there are very few image datasets specifically developed for object
detection. In recent years, Bashiri et al. [15] proposed an object classification dataset named
MCIndoor20000 using images collected from the Marshfield Clinic. The dataset contains a total of
2,055 images with only three object categories: doors, stairs, and hospital signs. More recently,
Issmail et al. [16] created an image classification dataset (MYNursingHome) using a total of 37,500
images collected in several nursing homes. The dataset contains 25 object categories, such as
cabinet, call bell, and television. However, MCIndoor20000 and MYNursingHome datasets are
developed for image classification with an object class associated with each image. Object detection
is more complex and computationally intensive because it requires not only recognizing the object,
but also localizing it in the image. the limited object categories in these datasets, such as the
absence of commonly seen objects like ventilator and door handle, limits their usefulness for real-
world object detection tasks. To overcome these limitations, this study introduces a new dataset,
which includes a total of 56 object categories and is specifically designed for object detection in

hospital indoor environments.
2.2 Related studies on object detection algorithms

Object detection algorithms are developed to detect and identify objects (e.g., chair, table, and
human) within an image. Object detection is a combination of image classification and object
localization. Object detection algorithms can be characterized as traditional and DL-based
algorithms. Fig. 1 shows the evolution of object detection algorithms. Before 2013, traditional object
detectors were primarily used to detect objects in digital images. Since that, DL-based algorithms
have dominated the research on object detection given their superior performance.
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Fig. 1. Progression of object detection techniques. This includes traditional approaches [18-20] and
Deep Learning (DL)-based algorithms. The DL-based algorithms can be further categorized into
one-stage detectors [8,9,21-29] and two-stage detectors [30-39].

The traditional object detectors can be categorized into three steps: informative region selection,
feature extraction, and classification. The informative region selection stage aims to identify
candidate regions of objects using sliding windows. This process is computationally expensive and
could generate a large number of candidate regions. The feature extraction stage focuses on
extracting visual features for each candidate window for classification. The representative feature
extraction methods include Scale-Invariant Feature Transform (SIFT), Histogram of Oriented
Gradients (HOG), and Haar-like features. Finally, the feature classifier is trained to classify extracted
features that are associated with the object in the region. Some well-known classifiers such as
Support Vector Machine (SVM), AdaBoost, and Deformable Part-based Model (DPM) have been
used and achieved fair performance on object classification. However, traditional approaches are
computationally expensive and produce many redundant detections, which are inefficient and
inaccurate in localizing objects. Furthermore, the performance is largely dependent on the selection

of feature extraction methods that are unable to extract complex features in an image.

A large and growing body of literature has focused on the development of deep learning networks for
the task of object detection. The DL-based approaches have the capability to automatically learn
more complex image features compared to traditional approaches. The DL-based methods can be
categorized into one-stage and two-stage object detection architectures. Specifically, the two-stage
architecture separates the object localization task from the object classification task, which
generates the region proposal first followed by the region classification. The Region-based
Convolutional Neural Network (R-CNN) is the pioneering work for the two-stage detector [39]. R-
CNN first generates 2000 region proposals based on the selective search algorithm. The 4096-
dimensional features are then extracted for each region proposal using the deep learning network.
Lastly, the features extracted are fed into a trained SVM classifier, and the bounding box regression
is used to fine-tune the object position. As the pioneering work, R-CNN is very slow in region
proposal generation, leading to slow inference speed. In addition, the feature extraction and SVM
classifier are trained separately. To address these shortages, Fast R-CNN [38] and Faster R-CNN
[37] were proposed in the following two years after the release of R-CNN. In recent years, the
development of new algorithms such as Transformer network has significantly increased the
performance of object detection. For example, with a Swin Transformer backbone, DETR with
Improved denoising anchor boxes (DINO) achieved state-of-the-art performance on COCO dataset
[30].
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While these two-stage architectures achieve promising results, the inference speed is rather slow,
which makes them unsuitable for real-time applications such as autonomous indoor robots.
Compared to two-stage architecture, one-stage architecture directly predicts the bounding box over
the images without the region proposal step which allows a faster inference speed. You Only Look
Once (YOLO) is the most popular one-stage architecture, which provides state-of-the-art
performance for real-time object detection. YOLO detector was introduced by Redmon et al. in 2015
[28], which is a unified and real-time detection approach. YOLO architecture is still under active
development by other researchers, such as Jocher et al. [29] and Wang et al. [8]. The latest version
is YOLOv7 with state-of-the-art real-time performance on COCO dataset. In addition, there are some
other one-stage object detection algorithms, such as Single Shot MultiBox Detector (SSD), Precise
Single-stage Detector (PSSD) [40], CornerNet, RetinaNet. The DL-based algorithms have achieved

promising performance for object detection.

However, one of the main challenges with deep learning is that it often requires large amounts of
data to train models effectively. To address the limited data availability, transfer learning has been
demonstrated to be effective in a variety of tasks and across various domains [41]. Transfer learning
is a technique where a model trained on one task is used as the starting point for a model on a
second, related task. This approach has been widely studied in recent years and has been shown to
be effective in a variety of settings, including computer vision, natural language processing, and
speech recognition. Some examples of transfer learning include using a pre-trained model to classify
images [6], fine-tuning a pre-trained model for a specific NLP task [42], and using a pre-trained
model as a feature extractor for a different task [43]. Research in this area has shown that transfer
learning can improve performance and reduce the amount of data and computation required for
training a new model [41]. In this study, an algorithm benchmark will be established with the newly
introduced hospital indoor object detection dataset. Pre-trained models on COCO dataset are used

to fine-tune object detectors for better performance in the new dataset.
3. Dataset preparation

The preparation of the hospital indoor object detection (HIOD) dataset consists of four steps: object
category selection, image collection, image selection, and image annotation (see Fig. 2). The details

of each step are elaborated below.
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Fig. 2. Flowchart of dataset preparation
3.1 Object category selection

In hospital settings, there is an abundance of furnishings and apparatus aimed at serving both
patients and healthcare professionals. It is of utmost importance for a robot to be able to perceive
and recognize these elements in order to comprehend the surrounding environment and make
informed plans accordingly. The development of a diverse and comprehensive dataset is essential
for enabling robots to accurately perceive their environment in hospital settings. To accomplish this,
our dataset encompasses a broad range of objects commonly found in hospitals, such as ventilators,
chairs, tables, and sofas, with a total of 56 object categories annotated. Furthermore, the dataset
considers the importance of human context by annotating various types of individuals present in the
hospital, including healthcare workers, patients, and visitors. If the type of person cannot be

determined from the image, they are annotated as a separate human category.
3.2 Image collection

Image data were collected from online image search engines, including Google Images, Bing
Images, Getty, and Shutterstock. Video data was also collected from online video-sharing websites
like YouTube. The images and videos were obtained using a list of keywords related to hospital

” o«

indoor environments, such as “intensive care unit,” “operating room,” “hospital consulting room,”
“hospital tour,” “hospital waiting room,” and more. In total, 18,234 images were collected from the
online image search engine in the context of hospitals. Furthermore, 59 videos were collected from
video-sharing websites. The video data was initially transformed into separate frames, and a single
frame was selected from a minimum of 30 consecutive frames to attain a dataset with more visual
diversity. This process converts videos into 24,963 images. The collected images cover a variety of
indoor environments within the hospitals. Fig. 3 shows some examples of hospital indoor scenes in

the dataset.
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Fig. 3. Example indoor scenes in hospitals

3.3 Image selection

Following the image collection phase, a total of over 40,000 images were accumulated within the
hospital environment. To maintain the quality of the dataset, duplicate images were removed, and a
thorough cleaning process was performed on the collected images. The following steps outline the
procedures involved in these processes.

Duplicates removal. As some images in the dataset were obtained from video data, it is inevitable
that the dataset might contain images from similar scenes. These similar images, also referred to as
near-duplicate and duplicate images, give rise to two issues for the dataset. First, the near-
duplicates and duplicates introduce bias in the dataset, which could drive CNN to learn the pattern.
Second, the generalizability of the trained network on unknown images could be compromised.
Therefore. In the study, the near-duplicate and duplicate images are removed, in order to ensure the

diversity of the dataset, and the generalizability of the network trained on the dataset.

The duplicate detection consists of two steps. Initially, image encodings are generated utilizing the
perceptual hashing method as delineated in reference [44]. This technique is specifically designed to

remain relatively invariant in response to minor discrepancies between images, such as
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compression and brightness alterations, rendering it suitable for the task of duplicate elimination.
The perceptual hashing method generates a 16-character hexadecimal string hash corresponding to
each image within the dataset. Subsequently, the Hamming distance is computed between pairs of
hashes. The Hamming distance, an integer ranging from 0 to 64, characterizes the similarity
between two images, with a smaller value denoting a higher degree of resemblance. In the present

study, the Hamming distance threshold is established at 12.

Image cleaning. The image cleaning process is necessary to remove low-quality images, such as
blurry and low-resolution images. Superficially, low-resolution images in this study represent images
with a shorter side smaller than 400, which are first removed from the dataset. The resolution criteria
are set to ensure the performance of the deep learning network, especially on small-size objects like
handles. After the initial filtering process, two students were recruited from the University of
Tennessee, Knoxville to further clean the image dataset. This manual process primarily
concentrated on eliminating images that were blurry or devoid of any objects in the scene. After
completing the duplicate removal and image cleaning procedures, the resulting dataset comprised

4,417 images.
3.4 Image annotation

Image bounding box annotation was done by crowdsourcing the task to human labelers on the Scale
Al platform. The crowdsourcing annotation can be summarized into three steps.

1) The bounding box annotation instruction for 56 object categories is created and posted on
the Scale Al platform with a definition and example annotations. The instruction provides the
objective of the task, objects to be labeled, and representative examples to the Scale Al
human labeler. The labeler must review and understand the instruction to get familiar with
the dataset and annotation task.

2) The second step aims to fine-tune the instruction to make it easy to understand for labelers.
30 images are selected as representative samples of the overall dataset, which covers a
variety of indoor scenes in hospitals. These 30 images were published on the Scale Al
platform and the labelers will annotate them and provide feedback on the instruction. The
authors then review and audit the annotation. The overall calibration score will be given after
finishing the audit, which is an indicator of the annotation quality. Per the feedback and
calibration score, the instruction will be updated to resolve the confusion. This step takes
several iterations to ensure the instruction readability and clarity.

3) After refining the instruction, training and evaluation tasks are created to ensure the quality of
labels. Specifically, the 30 representative images are annotated with ground truth. 10 images

are used for the training task and 20 images for the evaluation task. Labelers will complete
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before attempting to label images in the production batch. These tasks make up the training
course that all taskers must complete with a certain quality threshold in order to onboard
onto your project. The evaluation task is used to track the quality of the human labelers after
they start the annotation task. The labelers who cannot meet the quality threshold will be

taken off the project.

The Scale Al annotations are served as our draft version of the dataset, which was audited by an
auditing team, in order to ensure the quality of the dataset. The auditing team consists of six
undergraduate and graduate students recruited from the University of Tennessee, Knoxville. The
auditing team was given comprehensive training before they start to audit the dataset. The training
will enable the team to get familiar with the task and objects to be annotated in the image. The team
is divided into four inspectors and two examiners. The inspector is responsible to inspect all the
annotated images in the draft version of the dataset. The inspector needs to correct falsely labeled
images. The average inspecting speed is around 40 images per hour according to the report from
the four inspectors. The image annotation quality is significantly improved after this process. The
work of the examiner is to conduct a final examination of the dataset to ensure the quality of our
dataset. The examiner requires to make the correction and refine the object bounding box in the

image.
3.5 Data statistics

The annotated image dataset is named as Hospital Indoor Object Detection (HIOD) dataset. The
HIOD consists of 4,417 images with 51,809 annotated object instances. Fig. 4 shows the number of
objects and number of images for each type of indoor object in the HIOD dataset. The number of
instances per object category presents a long-tailed distribution. In particular, Handle (5,951
objects), chair (4,777 objects), and dispenser (2,819 objects) are recognized as the most frequent
indoor objects in HIOD. Whereas press-to-open button (53 objects) and Xray table (57 objects) have
the least number of instances in HIOD. The number of images for each object category also exhibits
a long-tailed distribution. Specifically, a total of 1,812 images contains chair object, however, only 48
images contain press-to-open button. The long-tailed distribution remains a challenging problem for

the task of object detection, which could affect the object detectors’ performance.
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Fig. 4. Number of objects and number of images for each type of indoor object in the HIOD dataset.
Fig. 5 presents the distribution of bounding boxes over image size in the HIOD dataset. The statistic
indicates that around 50% of objects occupy a pixel area representing less than 1% of the entire
image. This is because the HIOD dataset contains many small objects, such as handles, dispensers,
and door handles, which occupy only a small portion of an image. In addition, around 10% of objects
occupy a pixel area greater than 10% of an image.
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Fig. 5 Distribution of the bounding box size in the HIOD dataset
The number of objects and categories per image in the HIOD dataset is further analyzed and
compared to other typical object detection benchmarks. Fig. 6 shows the statistics and comparison
with COCO, VOC, and Openlmages. The HIOD is found to be denser and more diverse than COCO,
VOC, and Openlmages with regard to the number of objects and categories on an image.
Quantitatively, our HIOD dataset has an average and median of 11.7 and 10 objects on an image,
respectively. In comparison, the average number of objects per image for COCO, VOC, and

Openlmages are 7.3, 8.2, and 2.7, respectively. The median number of objects per image for
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COCO, VOC, and Openlmages are 4, 2, and 4, respectively. On the other hand, our HIOD dataset
contains an average and median of 6.8 and 6 object categories per image, respectively, which are
both significantly greater than other benchmarks. The abundant instance density and broad category

diversity in the HIOD dataset lay a solid foundation for building a robust object detector in hospital

settings.
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Fig. 6. Comparison of the number of objects and categories per image with COCO, VOC, and

Openlmages. (a) number of objects; and (b) number of categories
4. Object detection algorithm
4.1 Algorithm selection

In this study, five one-stage and five two-stage object detection algorithms are selected and
evaluated on the HIOD dataset (shown in Table 1). For one-stage algorithms, the YOLO series is
selected including YOLOvV5-L, YOLOX-L, YOLOvV6-L, and YOLOvV7. For two-stage algorithms, Faster
R-CNN, Deformable DETR, VFNet, and DyHead are selected. Note that the performance of these
algorithms is largely dependent on the selection of backbone. Generally, the larger the backbone,
the better the performance. On the other hand, a large network could result in a slow inference
speed. The selection of the backbone network is a trade-off between accuracy and speed. For a fair
comparison between different detectors, the number of network parameters ranges from 33.6 to 65.3
million. All of the one-stage algorithms achieve a fast inference speed with an FPS over 94. One
interesting point to mention is that state-of-the-art one-stage algorithms such as YOLOv6 and
YOLOV7 outperform two-stage algorithms by a large margin with similar sizes of object detection
networks. The inference speed is also much higher for one-stage algorithms compared to two-stage
algorithms. In addition, the image size for the two-stage algorithms is greater than for one-stage
algorithms. This is because the development of two-stage algorithms is mainly focused on prediction
accuracy instead of speed. The performance of two-stage algorithms could be much better with a

larger backbone network. For example, the mean average precision (mAP) of DyHead increases to
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58.4% from 43.3%, if the backbone changes from ResNet50 to Swin-L [45]. However, the number of
parameters increases to 210.4 million from 38.8 million, which is not applicable to be deployed in an
embedded system for onboard detection.

Table 1 Object detection algorithms

Algorithm Backbone #Param. (M) Image size FPS mAP?
One-stage®

YOLOV5-L [29] Modified CSPNet 46.5 640 x 640 113 49.0
YOLOX-L [21] Modified CSPNet 54.2 640 x 640 94 49.7
YOLOV6-L [9] CSPStackRep 58.5 640 x 640 98 52.5
YOLOV7 [8] E-ELAN 36.9 640 x 640 110 51.2
Two-stage®

Faster R-CNN [37] ResNet50+FPN 41.4 1333 x 800 21¢ 40.3
Deformable DETR [33] ResNet50 40.9 1333 x 800 19 46.8
VFNet [32] ResNet50+FPN 33.6 1333 x 800 19 47.8
DyHead [31] ATSS+ResNet50+FPN 38.8 1333 x 800 14d 43.3

a The reported mAP is evaluated on COC0O2017 val; ® The FPS and mAP for one-stage algorithms refer to [9]; ¢ The
mAP for two-stage algorithms refers to mmdetection benchmark [45]. ¢ The FPS refers to mmdetection benchmark
[45].

4.2 Implementation

The network is trained on a workstation running Ubuntu 16.04 with dual Intel Xeon Silver 4114
CPUs, 128 GB RAM, and an NVIDIA RTX A6000 GPU. To optimize time and resources, transfer
learning techniques are employed for network training. Pretrained weights from the COCO dataset
serve as the foundation for all networks. Table 2 outlines the image size, batch size, number of
epochs, initial learning rate, and learning rate schedule. Default values are assigned to other
hyperparameters. The HIOD dataset is randomly partitioned into a training set (70%), a validation
set (10%), and a testing set (20%). The best performance achieved on the validation set is employed
for evaluation on the testing set. The benchmark performance and subsequent analysis are

grounded in the results obtained from the testing set.
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Table 2 Training configurations and default values employed for additional hyperparameters

Algorithm Image size  Batch size #Epoch Initial Ir Ir schedule
One-stage

YOLOvV5-L 640 x 640 32 300 0.01 Cosine decay
YOLOX-L 640 x 640 32 300 0.005 Cosine decay
YOLOvV6-L 640 x 640 32 300 0.01 Cosine decay
YOLOv7 640 x 640 32 300 0.01 Cosine decay
Two-stage

Faster R-CNN 1333 x 800 24 24 0.02 [16,22]
Deformable DETR 1333 x 800 6 50 0.0002 [4or
VFNet 1333 x 800 16 24 0.01 [16,22]
DyHead 1333 x 800 16 24 0.01 [16,22]

" Learning rate decay by a factor of 10 at the specified epoch.

4.3 Evaluation metrics

The COCO Detection Challenge’s mAP metric is viewed as the standard metric to evaluate the
performance of object detection, which is used to evaluate the object detectors’ performance on the
HIOD dataset. The task of object detection consists of object localization and object classification.
The intersection over union (loU) is used to evaluate object localization by measuring the degree of
overlap between ground-truth and predicted bounding boxes. If the loU is greater than 0.5, the
prediction can be considered valid. Each bounding box is associated with an object category and a
confidence score. Detection results with confidence scores below a specified threshold are
considered invalid and disregarded in the analysis. The detection is True Positive (TP) only if the
bounding box is valid and the object category is correct. The detection is False Positive (FP) if either
or both of the two conditions cannot meet. False Negative (FN) represents an object that is not

detected by the detector.

The mAP metric stands for the mean average precision. The definition of average precision (AP) is
the area under the precision-recall curve. The precision and recall are calculated in Eq (1) and Eq.
(2). The precision and recall are very sensitive to the confidence threshold. In particular, a high
confidence threshold could result in a high precision score but a low recall score. AP score is used to

remove the dependency on selecting a specific confidence threshold.
TP
TP+FP (1)
TP
TP+FN (2)

AP is defined in Eq. (3), which summarizes the precision-recall curve to one scalar value. AP is

precision =

recall =

calculated as the average precision over 101 recall levels from 0 to 1. P represents precision at

recall level r.
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AP = mzre{o,om,...,ﬂ P 3)

loU threshold is another important parameter, which has a significant impact on the AP score. A
higher IoU threshold results in a smaller AP score. According to COCO detection competition,
AP@[0.5:0.95] for each object category over 10 loU levels from 0.5 to 0.95 is used to address this

issue, and it is defined in Eq. (4) The mAP is the average over all the object categories.

1
AP@[0.5:0.95] = 1_027‘6{0.5,0.55,...,0.95}APIOU (4)

In addition to mAP, other AP-variant metrics are also used to evaluate the performance of detectors.
These metrics are summarized in Table 3.
Table 3 Evaluation metrics

Metric Description

APsy AP at loU =0.50

AP7s AP at loU =0.75

APsmall mAP for small objects (area of object < 322 pixels)

APmedium mAP for medium objects (322 pixels < area of object < 962
pixels)

APlarge mAP for large objects (962 pixels < area of object)

4.4 Benchmark

The performance of the eight algorithms on the testing dataset is detailed in Table 4. All algorithms
achieve an APsq score above 64%, underscoring the trained network's proficiency in detecting
objects in hospitals using the HIOD dataset. Notably, the one-stage algorithms exhibit superior
performance compared to their two-stage counterparts. In particular, all four one-stage algorithms
manage to achieve an impressive AP7s5 score exceeding 50%. Among them, YOLOv6-L stands out
with the best performance, achieving an mAP of 51.7%, while YOLOV7 follows closely behind at
50.6%. In contrast, among the two-stage algorithms, VFNet takes the lead with an mAP of 49.5%,
trailed by Deformable DETR at 49.0%. The relatively lower performance of two-stage algorithms can
be primarily ascribed to their smaller backbone size. Additionally, it is crucial to note that network
performance is contingent upon object size. The AP score tends to improve as object size increases,
which can be attributed to the fact that smaller objects generally possess a limited number of
features and provide less information for the network to extract and learn from. Consequently, as the
network encounters larger objects with more distinguishable features, its ability to detect and classify

them accurately is enhanced, leading to better overall performance.
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Table 4 Benchmark performance on the testing dataset

Algorithm mAP APsp AP7s5 APsmai APmedium APiarge
One-stage

YOLOvV5-L 0.473 0.696 0.501 0.193 0.402 0.520
YOLOX-L 0.484 0.708 0.520 0.178 0.407 0.554
YOLOv6-L 0.517 0.737 0.553 0.211 0.418 0.597
YOLOv7 0.506 0.738 0.545 0.201 0.432 0.546
Two-stage

Faster R-CNN 0.403 0.646 0.438 0.141 0.327 0.466
Deformable DETR 0.490 0.741 0.529 0.209 0.406 0.565
VFNet 0.495 0.711 0.538 0.200 0.420 0.567
DyHead 0.430 0.645 0.468 0.145 0.345 0.507

The confusion matrices for YOLOv6-L and VFNet are shown in Fig. 7 In a confusion matrix, the
diagonal elements represent the number of correctly classified samples for a particular class. The
diagonal values in the confusion matrices for YOLOv6-L and VFNet indicate the recall, which is a
metric that measures the fraction of positive instances that were correctly identified. The high recall
values in the evaluation of the model indicate that it has a low rate of false negatives, which means
that a significant proportion of positive instances have been accurately identified. The confusion
matrix reflects a considerable performance discrepancy between the different object categories. For
instance, the "Xray bed" and "Xray machine" categories obtain a recall of 100% using the YOLOv6-L
network, while the "surgical instrument" category only achieves a recall of 37.5%. On the other hand,
the VFNet network achieved the highest recall score of 86.7% for the "restroom assistant bar"
category, and the lowest recall score was 27.8% for the " surgical instrument" category. To
showcase the performance of the YOLOvV6-L network, some detection results are presented in

Figure 8.
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444  The image resolution and network size have significant impacts on the performance of object

445  detectors regarding both accuracy and speed. Given the superior performance of YOLOv6-L, the
446  algorithm is selected to investigate the effect of image resolution and network size. Table 5 shows
447  the performance of the detectors over different image resolutions from 416x416 to 1280%1280. The
448  results indicate an increasing trend of detection accuracy over increasing image resolutions. This is
449  because the HIOD dataset contains a lot of small objects such as handles and doorknob. A larger
450 image resolution could be beneficial for the detection of these small objects [46]. As indicated, the
451  APgsmal has a larger performance increase with increasing image resolutions compared to AP medium
452  and APiarge. Overall, the network's performance experiences a substantial improvement when the
453  image size increases from 416x416 to 640x640, resulting in a 4.1% rise in mAP. However, the

454  enhancement becomes less pronounced as the image size progresses from 640x640 to 832x832,
455  with only a 0.5% increment in mAP. Note that when the image size is further increased from

456  832x832 to 1280x1280, there is a slight 0.2% decrease in mAP. On the other hand, the object

457  detector's inference speed decreases as the image resolution increases, as evaluated on NVIDIA
458 RTX A6000 GPU. Since the speed is not stable with a batch size of 1, the batch size is set to 32 for
459  speed evaluation. The testing results indicate that the inference speed decreases with increasing
460 image resolutions. In specific, the inference speed reaches 561.1 FPS with an image size of

461  416x416, which is reduced to 65.9 FPS with an image size of 1280%1280. Therefore, the selection

462  of image size in real-world applications is a tradeoff between speed and accuracy.

463 Table 5 Effect of image size on YOLOvV6-L network
Image size FPS (bs=32) mAP APso AP75 APsmai  APmedium APlarge
416%416 561.8 0.476 0.689 0.506 0.130 0.381 0.572
640x640 2551 0.517 0.737 0.553 0.211 0.418 0.597
832x832 147.7 0.522 0.757 0.559 0.209 0.441 0.598
1280%1280 65.9 0.520 0.756 0.553 0.219 0.448 0.590
464

465  The size and backbone of the network are also influential factors affecting detectors’ performance.
466  Table 6 presents the performance comparison of other networks in the family of YOLOv6 and VFNet
467  with different backbones. The performance of the YOLOvV6 network is regulated by two factors: a
468  depth-multiple and a width-multiple. The results show that the model's performance improves with an
469  increase in the number of parameters. In particular, the YOLOv6-L model exhibits a 5.3%

470 improvement in mean average precision (mAP) compared to the YOLOvV6-S model. While YOLOv6
471  produces better performance, the number of parameters is more than three times that of YOLOV6-S.
472  For VFNet, mAP has an improvement of 2.8% with the ResNeXt101-64x4d+FPN backbone

473  compared to the network with the ResNet50+FPN backbone. The large network typically requires

474  more storage and computation cost which hinders its deployment to mobile platforms such as
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robots. The small network can achieve a greater detection rate, so as to be integrated into an
embedded system for real-time detection.

Table 6 Effect of backbone on network performance

Network #Params FPS mAP APsy AP75  APsmai  APmedium APlarge
YOLOvV6-S 17.2 763.4° 0.464 0.680 0.499 0.140 0.372 0.557
YOLOvV6-M 34.3 375.9° 0.504 0.734 0.538 0.187 0.414 0.590
YOLOvV6-L 58.5 255.1" 0.517 0.737 0.553 0.211 0.418 0.597
VFNet (ResNet50+FPN) 33.6 141 0495 0.711 0538 0.200 0.420 0.567
VFNet (ResNet101+FPN) 53.7 11.7 0503 0.726 0.545 0.197 0.425 0.576
VFNet (ResNeXt101-

64x4d+FPN) 98.2 5.8 0523 0.751 0.568 0.226 0.459 0.586

" The batch size is set to 32 for speed testing.

5. Discussion
5.1 Dataset contributions

In this study, the HIOD dataset was introduced as a first-of-its-kind resource for detecting objects in
hospital environments. With a total of 4,417 images and 51,809 annotated objects across 56 object
categories, the HIOD dataset has the potential to support the development of innovative computer
vision-based applications within the healthcare sector. The dataset represents a significant step
forward in the field as it provides a comprehensive and diverse representation of the objects
commonly seen in hospital environments, making it a valuable resource for researchers and
practitioners alike. The HIOD dataset has been designed to tackle the limitations of previous
datasets, such as the lack of diversity and limited object categories, thus providing a much-needed
resource for advancing the state-of-the-art in hospital object detection. Table 7 provides a
comparison between the HIOD dataset and other available datasets within similar settings. This
comparison highlights the unique features and characteristics of the HIOD dataset and sheds light
on how it stands out from other existing datasets.

Table 7 Comparison with existing datasets within similar settings

Dataset Scenario # ofimages  # of Categories Task
MCIndoor20000 Marshfield Clinic 2,055 3 Image classification
MYNursingHome Nursing home 1,950 25 Image classification
Ours Hospital facilities 4,417 56 Object detection

The HIOD dataset has several key features and benefits that make it significant for the field of
computer vision and object detection. These significant features of the HIOD dataset are discussed

in detail below.
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Uniqueness. While there are many datasets for indoor object detection, very few, if any, datasets
are developed specifically for hospitals. The hospital environment is unique from other indoor
environments, because it contains a variety of medical equipment, such as ventilators and iv poles.
Consequently, to facilitate the creation of applications in hospital settings, it is imperative that a
dataset incorporates various pieces of medical equipment. However, common object detection
datasets have not geared towards annotating these equipment, making them unsuitable for
applications, such as robotic disinfection. The HIOD is a first-of-its-kind object detection dataset,
providing tremendous opportunities for researchers and practitioners in developing new applications

in hospital indoor environments.

Image diversity. The HIOD dataset is constructed by collecting a diversity of image and video data
from online sources. In specific, a total of 59 videos from different hospitals were collected. The total
length of these videos is 7hrs, and 24,963 individual frames are extracted. The images were also
collected from a variety of online image search engines, including Google Images, Bing Images,
Getty, and Shutterstock. In combination, a total of 43,197 images were collected in hospital indoor
environments. After carefully cleaning the images that cannot meet requirements, the resulting HIOD

dataset contains a total of 4,417 images, covering a diversity of hospital environments.

Object category. The HIOD dataset contains 56 object categories, which cover the most commonly
seen objects and equipment found in hospitals. The HIOD dataset stands out in terms of object
instance annotation density and diversity compared to other popular datasets such as COCO,
Openlmages, and VOC. On average, each image in the HIOD dataset contains more objects and a
greater number of object categories than images in these other datasets. This dense annotation
makes it ideal for training and evaluating object detection algorithms. Additionally, the HIOD dataset
provides a unique advantage by separately annotating hospital staff, patients, and visitors. This
information could be extremely useful for developing context-aware human assistance applications

that require an understanding of the hospital environment and the people within it.

Precise annotation: The image annotation process was outsourced to the Scale Al platform, which
has established rigorous protocols to guarantee the annotation's accuracy. To ensure the
annotation's quality, the Scale Al platform follows a series of meticulous steps during the annotation
process. After the completion of the annotation process, the annotated dataset was carefully
reviewed and evaluated by the research team through extensive training. The research team's
comprehensive training on the annotated dataset served as an additional quality check, ensuring the

dataset was of high accuracy and ready for use in further research and analysis.
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5.2 Benchmark performance

A hospital object detection benchmark was created based on the HIOD dataset. The benchmark
provides a baseline performance for future object detection algorithm development in hospitals. The
benchmark results show that all detectors achieve an mAP greater than 40% and an APsg greater
than 64% on the HIOD dataset. This indicates that the detector trained on the training dataset can
detect objects with satisfactory accuracy. One-stage algorithms achieved better performance in both
detection accuracy and speed compared to two-stage algorithms. For example, YOLOv6-L achieved
an mAP of 51.7% with an inference speed of 255 FPS. For two-stage algorithms, the best mAP is
49.5% with a much smaller inference speed of 14 FPS. Therefore, it is highly recommended to
select one-stage algorithms for computer vision-based application development in hospitals for a
balance between accuracy and speed. The HIOD dataset demonstrates a marginally lower
benchmark performance in comparison to the COCO dataset. For instance, YOLOv6-L and YOLOv7
exhibit a slightly lower mAP of 51.7% and 50.6% on the HIOD dataset in contrast to their mAP of
52.5% and 51.2% on the COCO dataset. This underscores the effectiveness of the HIOD dataset,
considering the complex and challenging nature of hospital indoor environments. The presence of
small objects, such as handles and doorknobs, in the dataset presents a challenge for the object
detector. Detecting small objects remains a significant challenge for deep learning networks due to
their limited features. To improve object detectors’ performance on the HIOD dataset, it would be
promising to investigate some techniques for small object detection, such as increasing the model’s

input resolution, augmenting data, and auto-learning model anchors.

5.3 Hyperparameters evolution

Hyperparameters are parameters that are set before the training process begins and these
parameters have a significant impact on the accuracy and efficiency of the model. The optimal
values of these parameters can vary depending on the specific application and dataset. In this study,
YOLOV7 is selected for hyperparameter optimization, which contains a total of 30 parameters related
to learning rate, loss function, data augmentation, etc. In this study, genetic algorithm (GA) is used
for YOLOV7 hyperparameter optimization, which is a form of evolutionary computing. The GA
algorithm uses the principle of evolution to optimize hyperparameters by recombining and mutating
the genes in each generation to produce a new population of better-performing candidate solutions.
The fitness of each candidate solution is evaluated based on the performance of the model on a
validation set, and the best-performing hyperparameters are selected for use in the final model. The
fithess function is a weighted combination of mAP contributing 90% of the weight and APsg
contributing the remaining 10%. The mutation-based genetic operator is used with a probability of
0.9 and a variance of 0.04. The number of epochs and iteration are set to 150 and 200, respectively.

Fig. 9 shows example plots for some optimized hyperparameters. Using the evolved parameters,
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YOLOvV7 attains a mean average precision (mAP) of 52.0% and 50.9% on the validation and testing
datasets, respectively. This represents a slight improvement of 0.6% and 0.3%, compared to the
performance achieved using the original hyperparameters. Although the increase in mAP is modest,
it underscores the significance of hyperparameter tuning in optimizing the performance of object

detectors on HIOD dataset.
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Fig. 9 Optimized YOLOvV7 hyperparameters utilized for network training

5.4 Effect of transfer learning

In the benchmark, the transfer learning technique is used to improve performance and reduce the
amount of data and computation to learn from scratch. Specifically, pre-trained weights on large
COCO dataset are used to initialize the weights of a model for object detection in healthcare
facilities. The effect of transfer learning on the object detector’'s performance on HIOD dataset is
evaluated in this section. One-stage algorithms are selected for performance comparison with and
without pre-trained models, and the results are shown in Table 8. The results of this comparison
indicate that the performance of object detectors on HIOD dataset is significantly improved using
pre-trained models. Specifically, the utilization of pre-trained weights in object detectors results in a

noticeable mAP improvement of performance by a range of 5.1% to 9.1% on the HIOD dataset. The
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significant performance improvement, as indicated by the results of the comparison, highlights the
effectiveness of transfer learning for improving object detection performance, and suggests that
using pre-trained models is a valuable technique for improving the performance of object detectors
on the HIOD dataset.

Table 8 Comparative performance of one-stage object detectors with and without the application of

transfer learning

Transfer learning Scratch
Algorithm
mAP APso AP7s mAP APso AP7s
YOLOv5-L 0.473 0.696 0.501 0.414 0.647 0.438
YOLOX-L 0.484 0.708 0.520 0.393 0.638 0.426
YOLOvV6-L 0.517 0.737 0.553 0.439 0.656 0.470
YOLOv7 0.506 0.738 0.545 0.455 0.698 0.487

6. Conclusions and future research directions

The current research aimed to develop an image dataset for object detection in hospital indoor
environments, recognizing the importance of understanding and improving the functionality of such
environments. To fulfill this aim, a new dataset was created, named HIOD, by collecting images from
various hospital indoor environments. The proposed dataset is comprised of 4,417 images and
51,809 annotated objects, displaying a significant diversity in scale and appearance. The dataset
also includes annotations for 56 object categories, which cover the most frequently seen objects in
hospitals. One of the primary goals of the HIOD dataset is to provide a benchmark for future
algorithms development. To achieve this, the dataset was tested using eight state-of-the-art object
detectors, and the results were evaluated to establish a benchmark for comparison. The benchmark
results indicate that detectors trained on the HIOD dataset are capable of detecting objects from an
image, demonstrating the effectiveness and utility of the dataset. In summary, the HIOD dataset and
accompanying benchmark provide a valuable resource for researchers and practitioners interested
in object detection in hospital indoor environments. The creation of the HIOD dataset presents new
opportunities for exploring and understanding the complexities of these environments and for
improving the functionality of hospitals. The diversity and size of the dataset ensure that future
algorithms will be able to generalize well and be applicable to a wide range of indoor environments

in hospitals.

This study has several limitations that must be acknowledged. Firstly, the HIOD dataset only
consists of 4,417 images, which is significantly smaller compared to other datasets such as the
COCO dataset which has 164,000 images. The size and diversity of the dataset play a vital role in

determining the validity and generalizability of object detection algorithms. Therefore, it is imperative
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to expand the HIOD dataset by collecting more images from various hospital indoor environments to
improve its size and diversity. In addition to the limitations mentioned above, the HIOD dataset also
has some object categories missing. Although the dataset annotated 56 object categories that are
frequently seen in hospitals, some objects and equipment such as walkers, stethoscopes, and
endoscopes may not have been captured in the dataset due to their infrequent appearance. To
address this limitation, a natural next step would be to expand the dataset by including more
categories of objects and collecting more images in the future. This would ensure that the dataset is
comprehensive and captures a wider range of objects and equipment commonly seen in hospital
indoor environments. Finally, the construction of the HIOD dataset is focused on detecting objects in
images using bounding boxes. Hence, the images are annotated using bounding boxes instead of
pixel-wise level annotations. This approach provides coarse detection of objects with a bounding
box, but it is limited in terms of accuracy. Pixel-wise annotations are crucial for achieving a higher
level of accuracy in object detection and enabling object segmentation at the pixel level. In light of
these limitations, it is a promising area for future work to annotate the HIOD dataset at the pixel level
to advance the accuracy of object detection algorithms. This will require additional effort and
resources, but the results will be well worth it, leading to improved performance in object detection in

hospital indoor environments.
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