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ABSTRACT 

The observation of characteristic A1g and E2g
1  peaks, at around 382 cm-1 and 408 cm-1 respectively, 

in Raman spectroscopy is considered evidence of 2H-structured MoS2, probably the most 
extensively-studied transition-metal dichalcogenide. Here, using a combination of X-ray 
diffraction, X-ray photoelectron spectroscopy, and resonant Raman spectroscopy, we show that 
detection of A1g and E2g

1  modes in Raman spectra alone may not necessarily imply the presence of 
MoS2. A series of Mo-S films, ≈ 20-nm-thick, are grown on single-crystalline Al2O3(0001) 
substrates at 1073 K as a function of H2S partial pressure, pH2S (= 0, 0.01%, 0.1%, and 1% of total 
pressure) via ultra-high vacuum dc magnetron sputtering of a Mo target in 20 mTorr (2.67 Pa) 
Ar/H2S gas mixtures. In pure Ar discharges and with pH2S up to 0.1%, i.e. pH2S ≤ 2.67 × 10-3 Pa, 
we obtain body centered cubic (bcc), 110-textured films with lattice parameter a increasing from 
0.3148 nm (in pure Ar), to 0.3151 nm (at pH2S = 2.67 × 10-4 Pa), and 0.3170 nm (at pH2S = 2.67 × 
10-3 Pa), which we attribute to increased incorporation of S in the Mo lattice. With 1% H2S, i.e. 
pH2S = 2.67 × 10-2 Pa, we obtain 000l oriented 2H-structured MoS2.0±0.1 layers. Raman spectra of 
the thin films grown using 0.1% (and 1%) H2S, show peaks at around 380 cm-1 (382 cm-1) and 412 
cm-1 (408 cm-1), which could be interpreted as A1g and E2g

1  Raman modes for 2H-MoS2. By 
comparing the Raman spectra of MoS2.0±0.1 and Mo:S thin films, we identify differences in A1g and 
E2g

1  peak positions and intensities of defect-sensitive peaks relative to the A1g peaks that can help 
distinguish pure MoS2 from non-stoichiometric MoS2-x and multiphase Mo:S materials. 
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I. INTRODUCTION 

Transition metal dichalcogenides (TMDCs) of the form MX2, where M is a transition metal 

from groups 4, 5, and 6 and X is a chalcogen (S, Se, Te), are van der Waals (vdW) bonded layers 

made of covalently bonded X-M-X sheets. Since the discovery of free-standing graphene, TMDCs 

have generated considerable interest for applications in flexible, low power consumption 

optoelectronics, electrocatalytic hydrogen generation, electron spin and valley based computing 

technologies, and DNA sequencing.1–3 Transition-metal disulfides, such as MoS2 and WS2, are a 

subset of the TMDCs, historically well-known for their chemical properties with a variety of 

catalytic applications, more prominently in the processing and purification of liquid transportation 

fuels.4–11 MoS2 and WS2 are relatively inexpensive and earth-abundant compared to more precious 

Ru-based compounds. MoS2, in particular, has been extensively studied by the catalysis 

community5–7,9–11 due to its attractive properties, and by the tribology community owing to its 

layered structure.12–14 There are two naturally available crystalline forms of MoS2: hexagonal 

structured 2H-MoS2 (P63/mmc, with in-plane and out-of-plane lattice parameters, a = 0.316 nm 

and c = 1.229 nm, respectively) and rhombohedral 3R-MoS2 (R3m, a = 0.316 nm, c = 1.837 nm). 

Bulk 2H-structured MoS2 is an indirect bandgap (1.23 eV) semiconductor; in contrast, one-

molecule-thick 2H-MoS2 layer is a direct bandgap (1.9 eV) semiconductor.15,16 It is predicted that 

the bandgaps of bilayer MoS2 and other TMDCs decrease with increasing applied electric field 

and eventually they exhibit metallic behavior.17 Luminescence quantum efficiency of monolayer 

MoS2 is 104 higher than its bulk counterpart,16,18,19 high carrier mobility,20,21 high Seebeck 

coefficient,22 high photoconductivity,23,24 strong exciton bonding,25 and environment 

sensitivity.26,27 MoS2 and other TMDC layers exhibit quantum spin Hall effect;28 valley Hall 

effect29 and valley polarization1 phenomena, which helped create valleytronics, an exciting new 
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field of physics.30–32 With their ability to form atomically-thin diodes,33–36 exhibit strong size-

dependent morphology and electronic structure,37 and potentially tunable optoelectronic 

properties,38,39 TMDCs are attractive as electrically switchable light sources,40 high-performance 

logic devices,41 atomically-thin electronic21,24,42–46 and optoelectronic devices (e.g., solar cells, 

photodiodes),22–24,33,35,44,47–53 flexible transistors,54–56 chemical sensors,57 and more. 

As one may expect, properties of the 2D layers are sensitive to the layer composition, 

crystallinity, vacancies, substitutional dopants, and domain boundaries, number of layers (i.e. 

thickness), stacking sequence, and relative orientations of the layers. For example, band gaps of 

pseudobinary alloys (e.g., MoS2-ySey, Mo1-xWxS2) made by substitution of either cations (e.g., Mo, 

W) or anions (e.g., S, Se) vary continuously with the alloy composition.58–61 Tunable band gaps 

and photocatalytic activities as well as unique electronic properties (e.g., MoS2/WS2) can be 

achieved by vertical stacking of TMDCs.61 In polydomain (analogous to polycrystallinity in bulk 

crystals) TMDC layers, density and structure of domain boundaries (e.g., zigzag, twin, tilt) 

strongly influence the electronic and optoelectronic properties.62–65 Doping of monolayer MoS2 

affects its structural, electronic and magnetic properties;66 S-vacancies in TMDCs (e.g., MoS2 and 

WS2) increase conductance,67 lead to asymmetry in electron and hole conduction characteristics,68 

and modify optical properties of the layers;69 incorporation of O-atoms in MoS2 affects its 

electronic and optoelectronic characteristics;70–73 H-atom adsorption and point defects in MoS2 

influence its ferromagnetic properties;74 impurities on the substrate supporting MoS2 layers can 

affect the MoS2 surface work function and its electronic conductivity;75,76 moisture and ambient 

light affect MoS2 field-effect transistor performance;27 surface defects (e.g., step edges and step 

structure) dictate thermochemical stability of MoS2 layers.73 Placing graphene on MoS2 can affect 

the MoS2 band gap,77 whose nature and magnitude depends on the interlayer orientation.78 The 
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interlayer interaction strength in multilayer heterostructures can vary with the layer composition.79 

Therefore, accurate knowledge of, and control over the TMDC layer composition and crystallinity 

are critical for the realization of TMDC-based devices with optimal performance. 

Several methods exist for the synthesis of TMDCs, especially MoS2 and WS2.80 Here, we 

list a select few that have been used to grow mono/few-layer TMDCs: (i) Probably the simplest 

method of preparing individual sheets or hetero-layered stacks of TMDCs is via mechanical 

exfoliation followed by layer transfer onto a substrate of choice. A variant to this approach is liquid 

exfoliation process, using which a variety of TMDCs (e.g., MoS2, MoTe2, TaSe2, etc.) are 

dispersed in solution and deposited as individual layers.81 (ii) A more commonly used method for 

the synthesis of TMDC layers is via chemical vapor transport of metal-oxide and elemental S 

powder or H2S gas as precursors.63,82–86 A variant of this method uses metal-halides (e.g., MoCl5, 

WCl6, NbCl5) instead of metal-oxides, and S precursors to grow TMDCs (MoS2, WS2, and 

NbS2),87–90 e.g., MoCl5 + S  MoS2. (iii) Another method involves sulfidation of deposited metal 

(Mo or W) thin films using elemental S or H2S gas to form MoS2 or WS2,91–96  e.g., Mo + S or 

H2S(g)  MoS2. (iv) TMDC layers have also been deposited via decomposition of single-source 

precursors,97–100 e.g., thermolysis of ammonium tetrathiomolybdate ([NH4]2MoS4  MoS2); 

physical vapor deposition (PVD), e.g., sputtering;13,101–103 and evaporation/sublimation of 

TMDCs.104,105 Some of these methods have been successfully used for the large-scale synthesis of 

TMDC layers. However, there are several aspects of the growth processes that are either unknown 

or not well understood. In particular, the extent of O-incorporation in TMDCs (e.g., MoS2-yOy) 

either during growth or during subsequent processing are largely unknown. This knowledge is 

essential because TMDCs can oxidize at fairly low temperatures in presence of moisture.12,14 A 

related poorly understood aspect is the effect of deposition approach on metal-chalcogen content 
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in TMDC layers (e.g., thermolysis of thiomolybdates can result in excess S and sulfurization of 

Mo using H2S can lead to S-vacancies).  

Raman spectroscopy is commonly used for the characterization of 2D layered materials 

including TMDCs.106,107 In case of 2H-MoS2, the characteristic first order Raman signatures of 

bulk, phase pure crystal are observed at ~32 cm-1, the rigid layer mode E2g
2  associated with the 

vibration of adjacent S-Mo-S sheets against each other, at 382~383 cm-1, the E2g
1  mode 

corresponding to in-plane vibration of S and Mo atoms within a sheet, and at 407~408 cm-1, the 

A1g mode due to out-of-plane vibration of S atoms within a sheet. (We note that in the back-

scattering geometry, the characteristic E1g mode at ~285 cm-1 arising from in-plane vibration of S 

atoms within a sheet is forbidden.108–113) The observation of Raman peaks characteristic of the 2D 

layer are generally considered as sufficient evidence for the formation/presence of that material. 

Here, we focus on the validity of such a conclusion. 

In this report, we report on the growth and characterization of Mo-S thin films with varying 

S content sputter-deposited using a Mo target in 20 mTorr (2.67 Pa) Ar/H2S gas mixtures as a 

function of H2S partial pressure, pH2S at 1073 K on Al2O3(0001) substrates. Using X-ray diffraction 

(XRD), we determine that films sputter-deposited in pure Ar are body centered cubic (bcc) Mo 

with 110 texture and those grown using Ar + H2S gas mixtures with pH2S = 2.67 × 10-4 Pa and at 

2.67 × 10-3 Pa are bcc-structured Mo:S solid solutions. Using higher pH2S = 2.67 × 10-2 Pa, we 

obtain basally-oriented 2H-structured MoSx film. Using X-ray photoelectron spectroscopy (XPS), 

we determine S-contents in the films grown using pH2S = 2.67 × 10-3 Pa and 2.67 × 10-2 Pa as  

64.3 at.% and 66.7 at.%, respectively. Interestingly, resonant Raman spectra obtained using 633 

nm laser from both these films show peaks due to the E2g
1  and A1g Raman modes characteristic of 
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MoS2 and peaks associated with structural defects due to longitudinal acoustic (LA) phonons at 

the M point, referred to as LA(M). Based on our results, we suggest that the mere observation of 

the E2g
1  and A1g peaks in Raman spectra may not be sufficient to conclude the existence of phase-

pure, crystalline MoS2. We find differences in E2g
1  and A1g peak positions and relative intensities 

of LA(M)/A1g peaks can help determine the crystalline quality of MoSx phase. Based on our results, 

we suggest that additional characterization maybe necessary to confirm the presence of MoS2 and 

to accurately determine the composition and phase purity of the MoS2-like layers.  

II. EXPERIMENTAL  

The Mo-S thin films are deposited on single-side polished, 10 × 2 × 0.5 mm3, Al2O3(0001) 

substrates (miscut < 0.5°, 99.99% purity, from MTI Corp.) at temperature Ts = 1073 K in an ultra-

high vacuum (UHV, base pressure < 5.0 × 10-9 Torr, 6.67 × 10-7 Pa) system, described in Refs. 114–

116. All the details of the substrate cutting, cleaning, and mounting procedures are presented in Ref. 

114. Prior to deposition, the substrates are degassed at 1273 K in the UHV chamber until the base 

pressure is below 8 × 10-7 Pa. With Ts set to1073 K, we measure up to 100 K differences in 

temperature along the length of the sample.  

We use dc magnetron source with a 50.8 mm diameter × 3.175 mm thick Mo target 

(99.95% pure from ACI Alloys Inc.) for the sputter-deposition of Mo and Mo-S thin films using 

2.67 Pa Ar + H2S gas mixtures with 0, 0.01%, 0.1%, and 1% H2S partial pressures, i.e. pH2S = 0, 

2.67 × 10-4 Pa, 2.67 × 10-3 Pa, and 2.67 × 10-2 Pa, respectively. The deposition time is 30 min. The 

Mo target power is set to 50 W. The target voltages during deposition are 230 ~ 232 V, 243 ~ 248 

V, 256 ~ 258 V, 292 ~ 295 V at pH2S = 0, 2.67 × 10-4, 2.67 × 10-3, and 2.67 × 10-2 Pa, respectively. 

Details of the Mo-S deposition procedure are presented in Ref. 114. 



7 

The as-deposited Mo-S/Al2O3(0001) thin films are characterized using XRD in a Bede D1 

high-resolution X-ray diffractometer, resonant Raman spectroscopy with a 633 nm (1.96 eV) laser 

at 0.4 mW in a Renishaw In-Via Raman confocal microscope system, and XPS in a Kratos 

Analytical AXIS Ultra DLD following the procedures outlined in Ref. 114. The Raman data 

presented here are acquired with a resolution of 2 cm-1. We use Gaussian (Lorentzian) functions 

to extract XRD and Raman peak positions and full widths at half maxima (FWHM).117–119 In our 

Raman measurements, we can access the Raman modes E2g
1  and A1g for MoS2 but not the low 

frequency E2g
2  mode as it is obscured due to Rayleigh scattered light. The Raman excitation energy 

(1.96 eV) corresponds to the direct bandgap of MoS2, ~1.96 eV, at the K point in the Brillouin 

zone (BZ).109,120 This correspondence with an optical transition can be used to enhance Raman 

signal intensities and probe phonon modes that are at the BZ boundary (resonant Raman 

scattering).111 XPS data are obtained from the air-exposed Mo-S samples deposited with pH2S = 

2.67 × 10-3 Pa and 2.67 × 10-4 Pa. The same samples are later sputter-etched with 4 keV Ar+ ions 

rastered across 2 × 2 mm2 with 50 μA extractor current. Casa XPS software package121 was used 

to correct for the background based on Shirley algorithm122 and to determine using a Gaussian 

function with a Lorentzian character [GL(30)] the positions and integrated intensities of Mo 3d 

and S 2p peaks. Using the relative sensitivity factors of 3.32 and 0.668, respectively, for Mo 3d 

and S 2p (from Casa XPS element library), we calculate the S/Mo contents in the films from the 

ratios of the integrated intensities of these peaks.  

III. RESULTS AND DISCUSSION 

Figure 1 is a plot of symmetric XRD 2θ-ω scans obtained from the films deposited using 

different pH2S values with intensities normalized to the intensity of the Al2O3 0006 reflection and 
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plotted on logarithmic scales. The two highest intensity peaks labeled s are Al2O3 0006 and 00012 

reflections at 2θ values 41.68° and 90.74°, respectively, from the 0001-oriented single-crystalline 

α-Al2O3 (R3̅c) substrate. We also find two relatively lower intensity peaks at 2θ values 20.5° and 

64.5° in all the scans due to the forbidden Al2O3 0003 and 0009 reflections, respectively.123  

Table I. X-ray diffraction peak positions (2θ in degrees) tabulated for data shown in Fig. 1. For 

comparison, 2θo values expected for bcc-Mo,124 bulk 2H-MoS2,125 and 3R-MoS2
137 are also 

presented. We define  = 100×(2θ2θo)/2θo as the percentage deviation between the expected and 

observed 2θ values for a given phase. Data in italics and within the parenthesis correspond to the 

3R-MoS2 phase. 

bcc-Mo Mo 
[pure Ar] 

Mo:S 
[0.01% H2S] 

Mo:S 
[0.1% H2S] 

2H-MoS2 
3R-MoS2 

MoSx 
[1% H2S] 

hkl 2θo 
2θ 

Δ % 
2θ 

Δ % 
2θ 

Δ % hkil 2θo 
2θ 

Δ % 

110 40.50 40.46 
-0.1 

40.46 
-0.1 

40.2 
-0.7 

0002 
0003 

14.40 
14.45 

14.36 
-0.3 (-0.6) 

220 87.63 87.58 
-0.06 

87.52 
-0.1 − 0004 

0006 
29.03 
29.14 

28.94 
-0.3 (-0.7) 

222 115.97 116.02 
0.04 

115.72 
-0.2 − 0006 

0009 
44.16 
44.34 

44.04 
-0.3 (-0.7) 

 0008 
00012 

60.16 
60.42 

59.99 
-0.3 (-0.7) 

 

Table I shows 2θ values of all the film peaks observed in the XRD data for all the Mo-S 

samples along with 2θo values expected for bcc bulk Mo (ao = 0.3147 nm)124 and 000l (with l = 2, 

4, 6, and 8) reflections of 2H-MoS2 (co = 1.229 nm).125 The XRD data (black curve in Figure 1) 

from the sample deposited using pure Ar, i.e., pH2S = 0, shows three peaks corresponding to 110, 

220, and 222 reflections of bcc-Mo. Relative intensity of 222 peak with respect to 110 peak is 

0.03, which is lower than the value expected for randomly oriented polycrystalline Mo,124 
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indicative of 110-texture. We measure lattice parameters a from each of the peak positions and 

determine the arithmetic average a to be 0.3148 ± 0.0002 nm. This value is 0.03% larger than the 

ao of bulk bcc Mo,124 suggestive of residual stresses in the film. For the films grown using Ar with 

0.01% and 0.1% H2S, XRD data in Figure 1, green and blue curves respectively, show three, and 

one peaks at slightly lower 2θ values than those expected for pure bcc-Mo (see Table I). We assign 

the peak positions to bcc-structured solids and determine a values as 0.3151 ± 0.0001 nm and 

0.3170 ± 0.0001 nm, respectively, for the films grown using 0.01% and 0.1% H2S. We note that 

these a values are 0.13% and 0.73% higher than ao of compositionally pure bcc-Mo.124 We attribute 

the larger lattice parameters to incorporation of S in the Mo lattice and refer to these films as Mo:S 

solid solutions.126 

The red curve in Figure 1 is a typical XRD scan acquired from the film sputter-deposited 

using pH2S = 2.67 × 10-2 Pa, i.e. Ar + 1% H2S gas mixture. (A portion of this data is presented in 

Ref. 114) We find four peaks at 2θ values comparable to those expected for 2H-MoS2 (see Table I), 

which we identify as 2H-MoS2 000l (l = 2, 4, 6, and 8) reflections, indicative of 0001-oriented 

growth. We rule out the 3R-MoS2 phase based on the differences in the peak positions observed 

between the expected and experimentally obtained 2θ values (see Table I). From each of the peak 

positions, we extract out-of-plane lattice parameters c and calculate the average c value to be 1.233 

± 0.0002 nm, which is 0.3% larger than the co expected for stoichiometric bulk 2H-MoS2.125 Full 

width half maximum of the 0002 peak is 0.56°. We will refer to this film as MoSx/Al2O3(0001).  

In the following sections, we compare and contrast the Raman and XPS spectra obtained 

from two samples, hereto referred to as Mo:S/Al2O3(0001) and MoSx/Al2O3(0001), sputter-

deposited in Ar with 0.1% H2S (pH2S = 2.67 × 10-3 Pa) and 1% H2S (pH2S = 2.67 × 10-2 Pa), 

respectively. Figure 2 shows representative Raman spectra obtained from the Mo:S/Al2O3(0001) 
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(blue curve) and MoSx/Al2O3(0001) (red curve) samples using a 633 nm (1.96 eV) laser excitation. 

The intensities are as measured and plotted without translation on a logarithmic scale. In the Raman 

data of MoSx/Al2O3(0001), we find peaks at ~382 cm-1 and ~408 cm-1, the characteristic E2g
1  and 

A1g Raman modes, respectively for MoS2. Interestingly, Raman spectra from Mo:S/Al2O3(0001) 

show peaks at ~380 cm-1 and at ~412 cm-1, values comparable to those expected for MoS2. 

However, XRD data (Figure 1, blue curve) from the same sample does not show any peaks due to 

MoS2. We note that the E2g
1  and A1g peak intensities are approximately five-fold higher in the 

Raman spectra of MoSx/Al2O3(0001) than in the Raman spectra of Mo:S/Al2O3(0001). For both 

monolayer and multilayer MoS2, the E2g
1  and A1g mode peak positions have been found to be 

sensitive to strain (both modes redshift with increasing strain) and doping (A1g mode broadens and 

redshifts).127–130 Defects induced by ion bombardment128 or by electron irradiation127 lead to an 

increase in the separation Δω (= A1g − E2g
1 ) between the characteristic modes as the E2g

1  mode 

redshifts and the A1g mode blueshifts, along with the activation of M-point phonons that are at the 

center of the BZ boundary. (For reference, Δω is ~19 cm-1 for defect-free monoalyer MoS2 and 

Δω is around 25 cm-1 for multilayer MoS2.120,131) For rf sputtered MoS2 films that are sulfur-

deficient or oxidized, larger values of Δω ( > 25 cm-1) have been observed.132,133 For our 

MoSx/Al2O3(0001), we measure Δω as 26 ± 4 cm-1, comparable to the reference value. For 

Mo:S/Al2O3(0001) layers, we find Δω to be considerably larger, 32 ± 4 cm-1, presumably due to 

defects.  

In addition to the characteristic modes, due to resonant Raman scattering, the curves in 

Figure 2 reveal several peaks at ~179 cm-1, ~229 cm-1, 460 cm-1, ~528 cm-1, ~568 cm-1, ~599 cm-

1, ~640 cm-1, and ~820 cm-1 for MoSx/Al2O3(0001); we find fewer peaks at nearly the same values, 

~183 cm-1, ~227 cm-1, ~459 cm-1, and ~641cm-1, for Mo:S/Al2O3(0001). We note that peaks at 
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~227 cm-1 and at ~820 cm-1 are also associated with MoO3,109,128 but we do not see the other Raman 

modes of MoO3 at ~158 cm-1, ~285 cm-1, ~666 cm-1, and 994 cm-1. We therefore rule out the 

presence of MoO3 and assign the peaks to Raman modes of MoS2 as follows. The intense, 

asymmetric peak at ~459 cm-1 [~460 cm-1] visible in the Raman spectra of Mo:S/Al2O3(0001) 

[MoSx/Al2O3(0001)] is interpreted to be a convolution of two peaks – one from a second order 

phonon process involving the longitudinal acoustic (LA) phonon at the M point, referred to as 

2LA(M) at ~454 cm-1 and another, a first order infrared-active optical phonon A2u at ~465 cm-1. 

The observation of the Raman inactive A2u mode is attributed to resonant excitation.111 The 

frequency of the LA(M) phonon based on that of the 2LA(M) phonon has been calculated to be 

~227 cm-1 and its appearance determined to be due to confinement of phonons due to defects such 

as S-vacancies127 and grain boundaries.111 Other studies have shown that the relative intensity of 

the LA(M) phonon mode with respect to the characteristic peaks of MoS2 increases with structural 

disorder.128,134 Based on these previous studies,109,111,120 we assign the peak at ~459 cm-1 [~460 

cm-1] seen in the Raman spectra of Mo:S/Al2O3(0001) [MoSx/Al2O3(0001)] as due to 2LA(M) + 

A2u phonons; the peaks at ~183 cm-1 [~179 cm-1], ~227 cm-1 [~229 cm-1], and ~641cm-1 [~640 cm-

1] to A1g − LA(M), LA(M), and A1g + LA(M) phonons, respectively; the peaks at ~528 cm-1, ~568 

cm-1, ~599 cm-1, and at ~820 cm-1 only seen in the spectrum of MoSx/Al2O3(0001) can be assigned 

to E1g + LA(M), 2E1g, E2g
1  + LA(M), and 2A1g phonons, respectively. The fact that we observe 

overall higher intensities for all Raman peaks, relatively lower intensity LA(M) phonon peak 

(measured with respect to A1g peak) and additional peaks in the Raman spectrum of the 

MoSx/Al2O3(0001) sample strongly suggests the presence of highly crystalline MoS2 phase. In 

contrast, the higher intensity of the LA(M) phonon peak (compared to the A1g peak) and larger Δω 

for the Mo:S/Al2O3(0001) sample are indicative of higher degree of structural disorder, S-
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vacancies, and/or smaller size MoS2 grains in the film. This is plausible and consistent with the 

absence of XRD peaks associated with MoS2 phase in this sample.  

Figure 3 shows X-ray photoelectron spectra obtained from air-exposed (a) 

Mo:S/Al2O3(0001) and (b) MoSx/Al2O3(0001) samples. In the plots, we find two peaks around 162 

eV associated with S 2p and three peaks at energies between 229 and 236 eV due to Mo 3d peaks. 

The S 2p peaks in the Mo:S/Al2O3(0001) [MoSx/Al2O3(0001)] films at 162.1 eV [161.9 eV] and 

at 163.3 eV [163.1 eV] correspond to S 2p3/2 and 2p1/2 peaks, respectively, as expected for S 2− 

species.135 The observed Mo peaks can be attributed to the presence of Mo +4 and Mo +6 species 

with two sets of Mo 3d5/2 and Mo 3d3/2 doublets: for Mo:S/ Al2O3(0001) [MoSx/Al2O3(0001)], a 

Mo 3d5/2 peak at 229.3 eV [229.1 eV] and Mo 3d3/2 peak at 232.4 eV [232.2 eV] colored in dark 

green and another doublet with Mo 3d5/2 peak at 232.7 eV [232.5 eV], Mo 3d3/2 peak at 235.9 eV 

[235.6 eV] colored in brown. The Mo 3d doublets with peaks at lower (higher) binding energies 

correspond to Mo +4 (Mo +6) species.135 The presence of Mo +4 species can be attributed to MoS2 

and MoO2 while Mo +6 species are associated with MoO3. From earlier studies,136 we know that 

the as-deposited layers in our experiments are free of oxygen. Moreover, we do not detect MoO3 

or MoO2 in both XRD and Raman spectra obtained from these samples. XPS data (not shown) 

obtained from sputter-etched samples do not show any peaks associated with Mo oxides. We 

therefore suggest that any detection of Mo +6 peaks in the samples is likely a result of surface 

oxidation upon air-exposure.  

We note that the XPS of Mo:S/Al2O3(0001) film shows a higher integrated intensity for 

Mo +6 species than the XPS data from MoSx/Al2O3(0001) film suggestive of a higher degree of 

oxidation in the Mo:S/Al2O3(0001) sample. The XPS of the sputter etched Mo:S/Al2O3(0001) 

[MoSx/Al2O3(0001)] film near the Mo 3d binding energy shows an asymmetric Mo 3d doublet 
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with peaks at ~228.2 eV [~227.9 eV] (Mo 3d5/2), ~231.4 eV [~231.1 eV] (Mo 3d3/2) that we identify 

as due to metallic Mo (0) species. For Mo:S/Al2O3(0001), we are unable to resolve the fairly broad 

and noisy signal at energies associated with S 2p peaks; for MoSx/Al2O3(0001), a S 2p3/2 (S 2p1/2) 

peak was resolved at ~162 eV (~163.2 eV). Based on these results, we suggest that the entire Mo 

+4 peak intensity is due to MoS2 and attribute the Mo +6 peaks to surface oxidation of metallic 

Mo and/or Mo:S solid solution. From the peak areas of S and Mo +4, we determine the effective 

sulfide composition of Mo:S/Al2O3(0001) as MoS1.8±0.1 and that of MoSx/Al2O3(0001) as 

MoS2.0±0.1. We note that this quantification approach does not account for metallic Mo present in 

the films and therefore the overall composition of Mo:S/Al2O3(0001) film is likely a combination 

of Mo + MoS1.8±0.1. The fact that we do not see in Fig. 1 any XRD peaks associated with MoS2 but 

only a weak bcc-Mo reflection in the Mo:S/Al2O3(0001) films is consistent with our conclusion.  

IV. CONCLUSIONS 

In summary, using a combination of materials characterization techniques, we show that the 

detection of A1g and E2g
1  Raman modes does not necessarily imply that the material is 2H-MoS2. 

To this purpose, we deposited a series of Mo-S thin films with varying S-contents by reactive 

sputtering of a Mo target in 2.67 Pa Ar/H2S gas mixtures on Al2O3(0001) substrates at 1073 K. 

XRD and XPS measurements indicate the formation of bcc-structured Mo films at pH2S = 0 Pa, 

2.67 × 10-4 Pa, a bcc Mo:S solid solution with 64 at.% S at pH2S = 2.67 × 10-3 Pa, and a 000l 

oriented 2H-MoS2 film at pH2S = 2.67 × 10-2 Pa. Raman spectroscopy results of the films deposited 

at pH2S = 2.67 × 10-3 Pa and 2.67 × 10-2 Pa show characteristic A1g and E2g
1  peaks, commonly 

attributed to 2H-MoS2, however, with noticeable differences in the peak separations (Δω = A1g − 

E2g
1 ) and peak intensities of the A1g, E2g

1 , and the defect sensitive LA(M) phonon modes. Based on 
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these results, we suggest that careful interpretation of Raman spectra along with complementary 

characterization data are highly desirable not only for identification of MoS2 and other TMDCs 

but also for accurate determination of the composition and crystallinity of non-stoichiometric 

compounds.  
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FIGURES 
 
Figure 1. Symmetric 2θ:ω X-ray diffraction (XRD) data plotted on a logarithmic scale, obtained 
from samples sputter deposited in Ar + H2S atmosphere on Al2O3(0001) substrates, with pH2S 
(partial pressure of H2S during sputter deposition) = 0%, 0.01%, 0.1%, and 1% (black, green, blue, 
and red curves) of total gas pressure (2.67 Pa). Film reflections from Mo and MoSx are labeled as 
shown while substrate reflections are denoted by s. A portion of the red curve is adapted with 
permission from A. Deshpande, K. Hojo, K. Tanaka, P. Arias, H. Zaid, M. Liao, M. Goorsky, and 
S.K. Kodambaka, ACS Appl Nano Mater, (2023). Copyright (2023) American Chemical Society. 
 

Figure 2. Raman spectra obtained from MoSx samples sputter deposited with pH2S = 2.67 × 10-3 
Pa (blue) and 2.67 × 10-2 Pa (red), acquired with a 633 nm wavelength laser and plotted on a 
logarithmic scale. The first order modes – E2g

1  (~382 cm-1, red curve; ~380 cm-1 blue curve) and 
A1g (~408 cm-1, red curve; ~412 cm-1, blue curve) are visible in both curves along with second 
order modes excited due to resonant Raman scattering – A1g ± LA(M), 2LA(M) + A2u. The LA(M) 
mode at (~227 cm-1, blue curve; ~229 cm-1, red curve) associated with defects, is observed in both 
curves but with a reduced relative intensity (with respect to the characteristic A1g peak) for the red 
curve. The difference in the peak positions Δω = E2g

1  – A1g for both samples is also labeled. Red 
curve is reprinted with permission from A. Deshpande, K. Hojo, K. Tanaka, P. Arias, H. Zaid, M. 
Liao, M. Goorsky, and S.K. Kodambaka, ACS Appl Nano Mater, (2023). Copyright (2023) 
American Chemical Society. 
 

Figure 3. X-ray photoelectron spectra (XPS) obtained from air-exposed Mo-S films deposited 
with pH2S = (a) 2.67 × 10-3 Pa (blue) and (b) 2.67 × 10-2 Pa (red). Open symbols are raw data while 
Gaussian-Lorentzian (GL (30)) fits to the data, carried out after a Shirley background (green 
dashes) subtraction are shown in solid lines – dark green for Mo +4 (MoSx) and brown for Mo +6 
(MoO3). For pH2S = 2.67 × 10-3 Pa, we determine the film S-content as ~64 at.% and it is more 
oxidized in comparison to the sample sputter-deposited using pH2S = 2.67 × 10-2 Pa, whose 
composition is MoS2.0±0.1. Red curve is reprinted with permission from A. Deshpande, K. Hojo, K. 
Tanaka, P. Arias, H. Zaid, M. Liao, M. Goorsky, and S.K. Kodambaka, ACS Appl Nano Mater, 
(2023). Copyright (2023) American Chemical Society. 


