

Borazine promoted growth of highly-oriented thin films

Koichi Tanaka^{†,¶*}, Pedro Arias[†], Koki Hojo^{†,‡}, Tomoyasu Watanabe^{†,‡}, Michael E. Liao[†], Angel Aleman[§], Hicham Zaid[†], Mark S. Goorsky[†], and Suneel Kodambaka^{†,#}

[†]Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA

[§]Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA

[‡]Graduate Department of Micro-Nano Mechanical Science and Engineering,
Nagoya University, Furo-cho, Nagoya, Japan

[#]Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

[¶]Present Address: Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637

*Corresponding author

19 We report on a phenomenon, where thin films sputter-deposited on single-crystalline
20 $\text{Al}_2\text{O}_3(0001)$ substrates exposed to borazine -- a precursor commonly used for the synthesis of
21 hexagonal boron nitride layers -- are more highly-oriented than those grown on bare $\text{Al}_2\text{O}_3(0001)$
22 under the same conditions. We observed this phenomenon in face-centered cubic Pd, body-
23 centered cubic Mo, and trigonal Ta_2C thin films grown on $\text{Al}_2\text{O}_3(0001)$. Interestingly, intermittent
24 exposure to borazine during the growth of Ta_2C thin films on Ta_2C yields better crystallinity than
25 direct deposition of monolithic Ta_2C . We attribute these rather unusual results to a combination of
26 both enhanced adatom mobilities on, and epitaxial registry with, surfaces exposed to borazine
27 during the deposition. We expect that our approach can potentially help improve crystalline quality
28 of thin films deposited on a variety of substrates.

31 Crystallinity is an important characteristic that often dictates properties and life-time
32 performance of materials. Microstructural evolution during the growth of thin films on solid
33 substrates is often considered to be determined by two critical parameters, surface mass transport
34 and deposition flux.¹ High fluxes and low diffusivity result in far-from-equilibrium
35 microstructures while the opposite yield near-equilibrium, thermodynamically favorable
36 microstructures. In general, by increasing substrate temperature (T_s) one can grow single-
37 crystalline thin films by depositing at low rates. In practice, however, the depositing material may
38 decompose, desorb, or react with the substrate upon increasing T_s .

39 An alternate approach to increasing T_s is *via* reducing substrate-deposit interactions. Three-
40 dimensional (3D) substrate surfaces have dangling bonds that interfere with adatom diffusion. For
41 epitaxial growth on such surfaces, lattice match between the film and the substrate is desirable. In
42 contrast, van der Waals (vdW) surfaces, with weak out-of-plane bonds facilitate easy surface
43 diffusion and 'free' nucleation. Koma and co-workers^{2,3} demonstrated over three decades ago that
44 heteroepitaxial growth can be achieved without the need for lattice match using vdW-bonded
45 materials (e.g., NbSe₂/MoS₂), which they referred to as vdW-epitaxy.⁴⁻⁹ This concept was later
46 extended to grow vdW layers on 3D solids [e.g., MoSe₂/CaF₂(111)],¹⁰ *vice versa* [e.g.,
47 CdTe/WSe₂],¹¹⁻¹⁴ 3D/3D using vdW buffer layers (e.g. GaAs/GaSe/Si,
48 Cu/graphene/Al₂O₃(0001)),¹⁵⁻¹⁸ and crystalline thin films on amorphous substrates with vdW
49 buffer layers (e.g., CdTe/graphene/glass).^{13, 19-22} Kim and co-workers reported on 'remote-
50 epitaxy',^{23, 24} homoepitaxial growth of GaN on graphene-covered single-crystalline GaN(001).²⁵⁻
51 ²⁸ An important distinction between remote-epitaxy and vdW-epitaxy is that there exists definite
52 crystallographic orientation relation between the film and the substrate in the former, whereas such
53 requirement is relaxed in case of the latter.

54 Here, we present data that seemingly demonstrate a new phenomenon, wherein exposing the
55 growth surfaces to borazine, a precursor used to grow hBN, yields thin films that are *more* highly
56 oriented than homoepitaxially grown films. Our observations are not to be mistaken as vdW-
57 epitaxy or remote-epitaxy, because neither of these phenomena have been associated with
58 improvement in crystallinity of the deposits on substrates either covered with vdW buffer layers
59 or exposed to precursors of such layers.

60 Using Al₂O₃(0001) as a model substrate, chosen for its high thermochemical stability²⁹ and
61 because hBN layers can be grown using borazine,³⁰ we tested the generality of this phenomenon

62 using materials with different crystal structures and bonding: catalytically-active, face-centered-
63 cubic (fcc) Pd, refractory body-centered-cubic (bcc) Mo and VNbTaMoW, and ultrahigh-
64 temperature ceramics (trigonal-Ta₂C and B1-TaC) used in high-temperature structural
65 applications. We chose VNbTaMoW because it is isostructural (bcc) to Mo with nearly the same
66 lattice parameters³¹ but is expected to be more sluggish and hence may exhibit different growth
67 kinetics compared to Mo.

68 As a first step, we exposed Al₂O₃(0001) substrates to borazine at high-temperatures.
69 Experimental details and the results are summarized in Figure S1 of the Supporting Information
70 (SI). Briefly, Al₂O₃(0001) is exposed to 1.2×10^5 L borazine ($p_{\text{borazine}} = 2.0 \times 10^{-4}$ Torr for 600 s)
71 at $T_s = 1373$ K. Based on Auger electron spectroscopy (AES) (Figure S1A) and low-energy
72 electron diffraction (LEED) (Figures S1B, C) data acquired *in situ* from Al₂O₃(0001) before and
73 after exposure to borazine, we conclude that hBN layers form on Al₂O₃(0001). From the LEED
74 pattern in Figure S1C, we identify in-plane orientation of one of the hBN domains with respect to
75 Al₂O₃(0001) as $[10\bar{1}0]_{\text{hBN}} \parallel [2\bar{1}\bar{1}0]_{\text{Al}_2\text{O}_3}$. Although we detect hBN in both LEED and AES data
76 from within ~1-mm-wide spot sizes across the sample, we do not know the exact thickness, size,
77 or the areal coverage of the hBN domains. Raman spectroscopy and scanning transmission electron
78 microscopy (STEM) data (details in the SI) of the borazine-exposed substrates before and after
79 thin film deposition did not reveal any indication of hBN. Therefore, in the following sections, we
80 use the notation (hBN) to indicate borazine-exposure.

81 All the metal (Mo, Pd, and VNbTaMoW) and compound (Ta₂C and TaC) thin films are grown
82 on Al₂O₃(0001) substrates at the desired T_s via ultra-high vacuum (UHV, base pressure $< 6.0 \times 10^{-9}$ Torr)
83 direct current (dc) magnetron sputtering of the respective metal (Mo, Pd, and VNbTaMoW)
84 and compound (TaC) targets³²⁻³⁴ in a custom-designed, triple-source UHV deposition system.³⁵⁻³⁷
85 All the experimental details are presented in the SI.

86 In the following sections, we compare and contrast the crystallinity of Ta₂C films grown on
87 bare and borazine-covered Al₂O₃(0001) substrates [hereafter referred to as (hBN)/Al₂O₃(0001)].
88 Figures 1A and S2 are representative LEED patterns obtained *in situ* from ~6-nm-thick Ta₂C layers
89 sputter-deposited on (hBN)/Al₂O₃(0001) and bare Al₂O₃(0001), respectively. For Ta₂C on
90 (hBN)/Al₂O₃(0001), we find six-fold symmetric diffraction spots, which we attribute to the
91 formation of highly ordered, smooth Ta₂C(0001)-(1×1) surface. In contrast, LEED pattern (see
92 Figure S2) of Ta₂C/Al₂O₃(0001) does not show any diffraction spots, suggestive of relatively

93 poorer quality surface. Figure 1B shows typical 2θ - ω X-ray diffraction (XRD) scans, red and black
94 curves, respectively obtained from the same set of samples. For $\text{Ta}_2\text{C}/\text{Al}_2\text{O}_3(0001)$, XRD data
95 reveal only one peak at $2\theta = 36.46^\circ$ due to 0002 reflection of trigonal α - Ta_2C ($\text{P}\bar{3}\text{m}1$);³⁸ we note
96 that this peak is not visible when the same data are plotted on linear scale, shown as inset in Figure
97 2B. In comparison, for $\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$, we see two peaks, at $2\theta = 36.61^\circ$ and 77.68° ,
98 respectively due to 0002 and 0004 reflections of α - Ta_2C , indicative of better crystallinity. The c
99 values measured from the XRD data are comparable to those reported previously and deviations
100 from the bulk value are to be expected in sputter-deposited Ta_2C thin films.^{32, 34} We note that the
101 0002 peak appears broad with satellite peaks. As we show below, the Ta_2C layer on
102 ($\text{hBN})/\text{Al}_2\text{O}_3(0001)$ is single-crystalline and the satellite peaks are Laue oscillations associated
103 with high-quality Ta_2C layers with abrupt interfaces. Normalized intensity I_{0002} of the α - Ta_2C 0002
104 peak, measured as a ratio of the α - Ta_2C 0002 and Al_2O_3 0006 peak intensities, is $3700\times$ higher for
105 $\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$ than for $\text{Ta}_2\text{C}/\text{Al}_2\text{O}_3(0001)$ sample. Clearly, borazine-exposure
106 promotes highly 0001-oriented growth of Ta_2C layers.

107 Figures 1C and D are representative high-resolution bright-field TEM and high-angle
108 annular dark-field STEM images, respectively acquired from the same $\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$
109 sample as in Figures 1A,B. The images and the Fourier transform (FT) in Figure 1C inset reveal
110 highly-ordered lattice, indicative of single-crystallinity. From the FTs of the film and the substrate
111 (not shown), we determine the orientation relation as $(0001)_{\text{Ta}_2\text{C}} \parallel (0001)_{\text{Al}_2\text{O}_3}$ and $[10\bar{1}0]_{\text{Ta}_2\text{C}} \parallel$
112 $[11\bar{2}0]_{\text{Al}_2\text{O}_3}$; as we show later, Ta_2C layers deposited using the same parameters on bare
113 $\text{Al}_2\text{O}_3(0001)$ bear the same orientation relationship, consistent with previous studies.³⁴
114 Furthermore, the STEM image in Figure 1D reveals uniform contrast across the thickness of the
115 film, suggestive of compositional homogeneity in the film.

116 We provide additional evidence in support of this phenomenon in Figure S3, which shows
117 XRD and XTEM data obtained from thicker (≈ 17 nm) $\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$ and
118 $\text{Ta}_2\text{C}/\text{Al}_2\text{O}_3(0001)$ films deposited for $t = 5$ min. The 2θ - ω XRD scans in Figure S3A reveal that
119 I_{0002} is over $17\times$ higher for $\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$ than that for the $\text{Ta}_2\text{C}/\text{Al}_2\text{O}_3(0001)$ film.
120 Furthermore, Laue oscillations around 0002 peak are observed in the XRD scan of the
121 $\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$ but not in the other, indicative of higher crystalline quality of the film.
122 XTEM image in Figure S3B and the associated FT in the inset of the $\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$
123 sample reveal that the layer is highly 0002-oriented. Electron energy loss spectra and energy

124 dispersive spectra (not shown) acquired from the Ta₂C/(hBN)/Al₂O₃(0001) samples are
125 inconclusive regarding the C content in the film and the presence of hBN layers at the interface.
126 We speculate that the lack of direct evidence in support of the hBN layer could be due to
127 decomposition of the hBN domains during sputter-deposition and/or due to the difficulty in
128 distinguishing B and N atoms from C (in Ta₂C) and O (in Al₂O₃) atoms present at the interface.
129 Nevertheless, the LEED pattern (Figure 1A), XRD scans (Figures 1B, S3A), along with TEM and
130 STEM data (Figures 1C,D and S3B) all support the idea that borazine-exposed Al₂O₃(0001)
131 substrates enhance the crystallinity and promote the growth of highly-oriented Ta₂C thin films.

132 We tested the generality of this phenomenon in the growth of materials with different
133 crystal structures: 2H-MoS₂,³⁰ fcc-Pd,³⁷ bcc-Mo and VNbTaMoW, and B1-TaC. Figures 2A-D are
134 typical 2θ-ω XRD scans obtained from A) Pd, B) Mo, C) VNbTaMoW, and D) TaC thin films
135 sputter-deposited on bare Al₂O₃(0001) and (hBN)/Al₂O₃(0001). For the Pd/Al₂O₃(0001), Figure
136 2A shows high intensity peaks due to 111 and 222 Pd reflections, along with a peak due to Pd 220
137 reflection. For Mo/Al₂O₃(0001), we observe nearly equal intensity peaks associated with 110 and
138 222 reflections (Figure 2B). In comparison, XRD scans of Pd and Mo thin films on
139 (hBN)/Al₂O₃(0001) substrates show peaks due to only one orientation, 111 and 222 reflections for
140 Pd and 110 and 220 for Mo. For Mo/(hBN)/Al₂O₃(0001), pole figure in Figure S4 shows additional
141 relatively weaker intensity spots due to 111-oriented grains. That is, with the same set of deposition
142 parameters, we obtain polycrystalline Pd and Mo thin films on Al₂O₃(0001) and highly-oriented
143 Mo(110) and Pd(111) layers on (hBN)/Al₂O₃(0001). XRD pole figures in Figure S4 provide
144 further evidence in support of this claim.

145 In Figure 2C, XRD scans obtained from VNbTaMoW thin films indicate the growth of
146 single-phase, bcc-structured alloy with 110 texture on both Al₂O₃(0001) and (hBN)/Al₂O₃(0001).
147 We note the presence of both 110 and 220 peaks in the XRD scan from VNbTaMoW/Al₂O₃(0001)
148 but only 110 peak in the XRD of VNbTaMoW/hBN/Al₂O₃(0001); the absence of 220 peak is likely
149 due to poorer crystallinity of the film. XRD data in Figure 2D from TaC/Al₂O₃(0001) and
150 TaC/(hBN)/Al₂O₃(0001) layers show B1-TaC 111 peaks with similar shapes and intensities.
151 However, we do not observe any clear effect of hBN buffer layer on the TaC film crystallinity.
152 The results presented in Figures 2C and D suggest that the phenomenon of borazine-promoted
153 crystal growth is not universal and may not be applicable to all materials.

154 To understand the limitations of our approach, we carried out additional growth
155 experiments using Ta₂C as the model material. We prepared three different types of Ta₂C samples
156 labeled, *A*, *B*, and *C*, and their schematics are shown in Figure 3.

157 In Figure 3A, we compare and contrast XRD 2θ-ω scans obtained from Sample *A* with
158 those from thinner Ta₂C/(hBN)/Al₂O₃(0001) layers deposited for *t* = 2 and 5 min., red curves in
159 Figures 2B and S3A, respectively. The XRD and TEM data in Figures 2 and S3 indicate that the
160 thinner samples are highly 0001-oriented. In contrast, XRD data from sample *A* reveal multiple
161 peaks at 2θ = 38.35°, 59.62°, and 82.20°, respectively, corresponding to α-Ta₂C 10̄11, 2̄1̄0, and
162 20̄2 reflections, in addition to those due to α-Ta₂C 000*l*, with *l* = 2, 3, and 4, reflections at 2θ =
163 36.30°, 55.72°, and 77.11°, respectively. That is, the monolithic Ta₂C films deposited for *t* = 30
164 min. are polycrystalline. These results reveal that under the same set of deposition conditions, Ta₂C
165 layers grow heteroepitaxially for at least the first 5 minutes on (hBN)/Al₂O₃(0001);
166 polycrystallinity develops in thicker Ta₂C films grown for *t* = 30 min.

167 We now present XRD 2θ-ω scans, solid green and blue curves, respectively, from samples
168 *B* and *C* in Figure 4B. The XRD data for sample *B* shows primarily α-Ta₂C 0002 and 0004
169 reflections at 2θ = 36.27° and 77.03°, respectively. (We also observe weaker intensity peaks at 2θ
170 around 34° and at ~73.2°, which are likely due to 111 and 222 reflections of B1-TaC.) XRD pole
171 figure (Figure S5) obtained from this sample indicates that the Ta₂C is highly oriented with 0001
172 texture with the following orientation relationship with respect to Al₂O₃(0001): (0001)_{Ta₂C} ||
173 (0001)_{Al₂O₃} and [10̄10]_{Ta₂C} || [11̄20]_{Al₂O₃}. XRD results from sample *C* show all the α-Ta₂C
174 reflections at nearly the same 2θ values as in sample *A* and an additional peak at 2θ = 33.28° due
175 to α-Ta₂C 10̄10 reflection. That is, sample *C* is polycrystalline. So, while depositing Ta₂C layers
176 on borazine-exposed Al₂O₃(0001) promotes 0001-oriented growth, continuous or intermittent
177 deposition for longer times yield polycrystalline Ta₂C films. However, exposing to borazine at
178 regular intervals continues to promote highly 0001-oriented α-Ta₂C growth.

179 Surprisingly, φ scans (see Figure 4C) acquired from the samples *A*, *B*, and *C* reveal that the
180 Ta₂C films in all the three samples bear the *same* in-plane orientation, [10̄10]_{Ta₂C} || [11̄20]_{Al₂O₃},
181 with underlying (hBN)/Al₂O₃(0001), as that observed (see the φ scan in Figure S6) in Ta₂C layers
182 deposited using the same parameters on bare Al₂O₃(0001) for *t* = 30 min. (We find that this is also
183 the case for Pd and Mo thin films, see Figure S4.) These results indicate that 0001-oriented Ta₂C

184 grains bear the *same* orientation relation with $\text{Al}_2\text{O}_3(0001)$ irrespective of the crystallinity (highly-
185 oriented or polycrystalline) of the films grown with and without borazine exposure.

186 The above data in Figures 1, S3, and 3 indicate that borazine-exposure promotes
187 heteroepitaxial growth of $\text{Ta}_2\text{C}(0001)$ on $\text{Al}_2\text{O}_3(0001)$, however, up to a certain thickness.
188 Remarkably, continued Ta_2C deposition with or without interruptions on these heteroepitaxial
189 $\text{Ta}_2\text{C}(0001)$ /(hBN)/ $\text{Al}_2\text{O}_3(0001)$ thin films result in polycrystalline Ta_2C . Highly 0001-oriented
190 Ta_2C films can only be grown on borazine-exposed Ta_2C surfaces. To reiterate, under our
191 deposition conditions, highly 0001-oriented growth of Ta_2C is observed on (hBN)/ $\text{Ta}_2\text{C}(0001)$
192 surfaces but homoepitaxial growth of Ta_2C on $\text{Ta}_2\text{C}(0001)$ is not favored.

193 To explain these rather unusual results, we propose that borazine-exposure enhances
194 surface mobilities of adspecies during deposition leading to nucleation and growth of highly-
195 oriented crystalline thin films. While the exact mechanisms underlying this behavior are not clear,
196 we envision two scenarios: i) borazine chemically modifies the surface but does not alter the
197 surface structure. This is consistent with the fact that substrate-film orientation relationships are
198 unaffected by borazine-exposure (see Figures 3, S4-S6). ii) Borazine decomposes to form hBN, a
199 vdW layered material, that is likely to interact weakly with the deposit and hence promote surface
200 diffusion. The latter is plausible especially on transition-metals^{39, 40} and we have some evidence of
201 hBN formation on $\text{Al}_2\text{O}_3(0001)$, see Figure S1. However, we do not know if borazine-exposure
202 results in hBN formation on Ta_2C surfaces. In case there exists an hBN layer on the growth surfaces
203 [$\text{Al}_2\text{O}_3(0001)$ and Ta_2C], then in order for the thin films to maintain the same in-plane orientation
204 as those grown on bare $\text{Al}_2\text{O}_3(0001)$, either remote-epitaxy is operational or both the film and the
205 hBN layer bear the same orientation relations with $\text{Al}_2\text{O}_3(0001)$. Our XRD pole figures along with
206 LEED data from Figure 1 support such a possibility. We realize that this is rather unique and
207 maybe specific to our growth conditions and the choice of materials.

208 Finally, we address the factors influencing the generality of the observed phenomena. As
209 hypothesized above, weak interactions between the deposit and the vdW layer increase surface
210 mobility of the adspecies resulting in highly-oriented film growth as is the case with Pd and Mo
211 films on (hBN)/ $\text{Al}_2\text{O}_3(0001)$ (Figures 2A, B). Qualitatively similar results have been reported for
212 2H- MoS_2 thin films reactively sputter-deposited on borazine-exposed $\text{Al}_2\text{O}_3(0001)$.³⁰ Given that
213 2H- MoS_2 is a vdW layered material, one would expect weak interactions between MoS_2 and
214 $\text{Al}_2\text{O}_3(0001)$. Yet, results reported in Ref. [30] support the idea that borazine-exposure further

215 weakens the interactions between MoS₂ and the substrate. However, stronger deposit/vdW-layer
216 interactions can suppress surface mobility and affect the crystallinity. It is also possible that the
217 substrate-deposit interactions, and hence mobilities of adspecies, are unaffected by the borazine-
218 exposure under a given set of deposition conditions, in which case our approach will have little
219 effect on the crystallinity of the deposited material (see for example Figures 2C, D). Therefore, we
220 expect that the strength of surface/film interactions after borazine exposure, and hence the surface
221 adatom mobilities, are likely to be material specific. Furthermore, it is to be seen if the observed
222 enhancement in crystallinity is general and independent of substrate crystal orientation. That is,
223 would similar heteroepitaxial growth occur for Pd or Ta₂C thin films, for example, on borazine-
224 covered (001)-oriented substrates? Finally, it is to be determined whether similar phenomenon
225 would be observed with precursors, e.g., ethylene, ammonium thiomolybdate, etc., respectively
226 used for the growth of other vdW materials such as graphene and MoS₂, or even with
227 mechanically-transferred hBN layers. Clearly, additional investigations of crystal growth on vdW
228 surfaces,⁴¹ for example *in situ* microscopy studies⁴² of the nucleation and growth kinetics, are
229 essential for understanding the mechanisms leading to vdW-epitaxy, remote-epitaxy, and the
230 phenomena observed in our experiments.

231 In conclusion, we demonstrated an approach involving the use of borazine to enhance
232 crystallinity and orientation of sputter-deposited thin films. Our approach yields highly-oriented
233 fcc-Pd(111), bcc-Mo(110), and α -Ta₂C(0001) thin films on borazine-exposed Al₂O₃(0001)
234 compared to those grown on bare Al₂O₃(0001) substrates. Sputter-deposition of bcc-VNbMoTaW
235 and B1-TaC thin films on borazine-exposed Al₂O₃(0001) substrates did not yield similar results.
236 A series of growth experiments conducted using Ta₂C revealed that the positive effect of borazine-
237 exposure is limited to a finite film thickness beyond which polycrystallinity develops. We show
238 that this issue can be overcome by intermittent exposure to borazine. Surprisingly, this approach
239 facilitates epitaxial thin film growth under the deposition conditions that do not favor
240 homoepitaxy. We attribute these observations to a combination of enhanced surface mobilities of
241 the adspecies and epitaxial registry between the deposit and the substrate during sputter-deposition
242 on surfaces exposed to borazine. While our observations maybe material-specific, we expect that
243 similar enhancement in crystalline quality can be achieved in a variety of materials with the
244 appropriate choice of the precursor and the deposition parameters.

245

246 **AUTHOR CONTRIBUTIONS**

247 S.K. and K.T. conceived the research. K.T. and P.A. conducted borazine depositions. K.T., H.Z.,
248 K.H., A.A., and T.W. synthesized and characterized sputter-deposited samples. K.T. and M.E.L.
249 performed XRD under supervision from M.S. S.K. supervised and managed the project. S.K. and
250 K.T. wrote the paper with contribution from all the authors. All authors discussed the results and
251 analysis.

252

253 **ASSOCIATED CONTENT**

254 **Supporting Information (SI):** Additional LEED, AES, XRD, and TEM data of the borazine-
255 exposures, Ta₂C thin films, and XRD pole figures of Pd and Mo thin films.

256

257 **NOTES**

258 The authors declare no competing financial interests.

259

260 **ACKNOWLEDGEMENTS**

261 We gratefully acknowledge support from the AFOSR (Dr. Ali Sayir) under Grant# FA9550-14-1-
262 0106, FA9550-18-1-0050, and FA9550-20-1-0184, the NSF for Award# 2211350 (Dr. James
263 Edgar), and the ONR (Dr. Chagaan Baatar) for Grant # N00014-12-1-0518. KT thanks the
264 Japanese Student Service Organization (L1611111026) and the UCLA Department of Materials
265 Science and Engineering for financial assistance. KH and TW are supported by the Japan US
266 Advanced Collaborative Education Program (JUACEP). The authors acknowledge the use of
267 facilities and instrumentation at the UC Irvine Materials Research Institute (IMRI), which is
268 supported in part by the NSF through the UC Irvine Materials Research Science and Engineering
269 Center (DMR-2011967). We thank Dr. Toshihiro Aoki for assistance with STEM and Mr. Noah
270 Bodzin at the Nanoelectronics Research Facility in the UCLA Henry Samueli School of
271 Engineering for assistance with FIB.

272

273 **REFERENCES**

274 1. Greene, J. E. Epitaxial Crystal Growth by Sputter Deposition: Applications to
275 Semiconductors. Part 2. *Critical Reviews in Solid State and Materials Sciences* **1983**, 11 (3),
276 189-227.

277 2. Koma, A.; Sunouchi, K.; Miyajima, T. Fabrication and Characterization of
278 Heterostructures with Subnanometer Thickness. *Microelectronic Engineering* **1984**, 2 (1), 129-
279 136.

280 3. Koma, A. Summary Abstract: Fabrication of Ultrathin Heterostructures with Van Der
281 Waals Epitaxy. *Journal of Vacuum Science & Technology B: Microelectronics and Nanometer*
282 *Structures* **1985**, 3 (2).

283 4. Koma, A.; Yoshimura, K. Ultrasharp Interfaces Grown with Van Der Waals Epitaxy.
284 *Surface Science* **1986**, 174 (1), 556-560.

285 5. Saiki, K.; Ueno, K.; Shimada, T.; Koma, A. Application of Van Der Waals Epitaxy to
286 Highly Heterogeneous Systems. *Journal of Crystal Growth* **1989**, 95 (1), 603-606.

287 6. Ohuchi, F. S.; Parkinson, B. A.; Ueno, K.; Koma, A. Van Der Waals Epitaxial Growth
288 and Characterization of Mose2thin Films on Sns2. *Journal of Applied Physics* **1990**, 68 (5),
289 2168-2175.

290 7. Koma, A. Van Der Waals Epitaxy - a New Epitaxial Growth Method for a Highly
291 Lattice-Mismatched System. *Thin Solid Films* **1992**, 216, 72-76.

292 8. Koma, A. New Epitaxial Growth Method for Modulated Structures Using Van Der Waals
293 Interactions. *Surface Science* **1992**, 267 (1), 29-33.

294 9. Koma, A. Van Der Waals Epitaxy for Highly Lattice-Mismatched Systems. *J. Cryst.*
295 *Growth* **1999**, 201-202, 236-241.

296 10. Koma, A.; Saiki, K.; Sato, Y. Heteroepitaxy of a Two-Dimensional Material on a Three-
297 Dimensional Material. *Appl. Surf. Sci.* **1990**, 41-42, 451-456.

298 11. Sun, X.; Lu, Z.; Xiang, Y.; Wang, Y.; Shi, J.; Wang, G. C.; Washington, M. A.; Lu, T.
299 M. Van Der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline
300 Graphene. *ACS Nano* **2018**, 12 (6), 6100-6108.

301 12. Löher, T.; Tomm, Y.; Klein, A.; Su, D.; Pettenkofer, C.; Jaegermann, W. Highly
302 Oriented Layers of the Three - Dimensional Semiconductor Cdte on the Two - Dimensional
303 Layered Semiconductors Mote2 and Wse2. *Journal of Applied Physics* **1996**, 80 (10), 5718-
304 5722.

305 13. Mohanty, D.; Xie, W.; Wang, Y.; Lu, Z.; Shi, J.; Zhang, S.; Wang, G.-C.; Lu, T.-M.;
306 Bhat, I. B. Van Der Waals Epitaxy of Cdte Thin Film on Graphene. *Applied Physics Letters*
307 **2016**, 109 (14), 143109.

308 14. Littlejohn, A. J.; Xiang, Y.; Rauch, E.; Lu, T. M.; Wang, G. C. Van Der Waals Epitaxy of
309 Ge Films on Mica. *Journal of Applied Physics* **2017**, 122 (18), 185305.

310 15. Palmer, J. E.; Saitoh, T.; Yodo, T.; Tamura, M. Growth and Characterization of
311 Gaas/Gase/Si Heterostructures. *Jpn. J. Appl. Phys.* **1993**, 32 (Part 2, No. 8B), L1126-L1129.

312 16. Löher, T.; Ueno, K.; Koma, A. Van Der Waals Type Buffer Layers: Epitaxial Growth of
313 the Large Lattice Mismatch System Cds/Inse/H-Si(111). *Appl. Surf. Sci.* **1998**, 130-132, 334-
314 339.

315 17. Löher, T.; Koma, A. Epitaxial Growth of Znse on Si(111) with Lattice-Matched Layered
316 Inse Buffer Layers. *Jpn. J. Appl. Phys.* **1998**, 37 (Part 2, No. 9A/B), L1062-L1064.

317 18. Lu, Z.; Sun, X.; Xie, W.; Littlejohn, A.; Wang, G.-C.; Zhang, S.; Washington, M. A.; Lu,
318 T.-M. Remote Epitaxy of Copper on Sapphire through Monolayer Graphene Buffer.
319 *Nanotechnology* **2018**, 29 (44), 445702.

320 19. Saito, Y.; Fons, P.; Kolobov, A. V.; Tominaga, J. Self-Organized Van Der Waals Epitaxy
321 of Layered Chalcogenide Structures. *physica status solidi (b)* **2015**, 252 (10), 2151-2158.

322 20. Sun, X.; Chen, Z.; Wang, Y.; Lu, Z.; Shi, J.; Washington, M.; Lu, T.-M. Van Der Waals
323 Epitaxial ZnTe Thin Film on Single-Crystalline Graphene. *Journal of Applied Physics* **2018**, 123
324 (2), 025303.

325 21. Sun, X.; Lu, Z.; Xie, W.; Wang, Y.; Shi, J.; Zhang, S.; Washington, M. A.; Lu, T.-M.
326 Van Der Waals Epitaxy of CdS Thin Films on Single-Crystalline Graphene. *Applied Physics
327 Letters* **2017**, 110 (15), 153104.

328 22. Rajbhandari, P. P.; Chaudhari, A.; Dhakal, T. P. Substrate Independent Oriented 2d
329 Growth of Sns Thin Films from Sputtering. *Materials Research Express* **2019**, 6 (11), 116427.

330 23. Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.;
331 Heidelberger, C.; Kong, W.; Choi, S.; Qiao, K.; Almansouri, I.; Fitzgerald, E. A.; Kong, J.;
332 Kolpak, A. M.; Hwang, J.; Kim, J. Remote Epitaxy through Graphene Enables Two-Dimensional
333 Material-Based Layer Transfer. *Nature* **2017**, 544 (7650), 340-343.

334 24. Kong, W.; Li, H.; Qiao, K.; Kim, Y.; Lee, K.; Nie, Y.; Lee, D.; Osadchy, T.; Molnar, R.
335 J.; Gaskill, D. K.; Myers-Ward, R. L.; Daniels, K. M.; Zhang, Y.; Sundram, S.; Yu, Y.; Bae, S.
336 H.; Rajan, S.; Shao-Horn, Y.; Cho, K.; Ougazzaden, A.; Grossman, J. C.; Kim, J. Polarity
337 Governs Atomic Interaction through Two-Dimensional Materials. *Nat Mater* **2018**, 17 (11), 999-
338 1004.

339 25. Jeong, J.; Jin, D. K.; Cha, J.; Kang, B. K.; Wang, Q.; Choi, J.; Lee, S. W.; Mikhailovskii,
340 V. Y.; Neplokh, V.; Amador-Mendez, N.; Tchernycheva, M.; Yang, W. S.; Yoo, J.; Kim, M. J.;
341 Hong, S.; Hong, Y. J. Selective-Area Remote Epitaxy of ZnO Microrods Using Multilayer-
342 Monolayer-Patterned Graphene for Transferable and Flexible Device Fabrications. *ACS Applied
343 Nano Materials* **2020**.

344 26. Jia, R.; Kum, H. S.; Sun, X.; Guo, Y.; Wang, B.; Fang, P.; Jiang, J.; Gall, D.; Lu, T.-M.;
345 Washington, M.; Kim, J.; Shi, J. Van Der Waals Epitaxy and Remote Epitaxy of Linbo3 Thin
346 Films by Pulsed Laser Deposition. *Journal of Vacuum Science & Technology A* **2021**, 39 (4).

347 27. Journot, T.; Okuno, H.; Mollard, N.; Michon, A.; Dagher, R.; Gergaud, P.; Dijon, J.;
348 Kolobov, A. V.; Hyot, B. Remote Epitaxy Using Graphene Enables Growth of Stress-Free Gan.
349 *Nanotechnology* **2019**, 30 (50), 505603.

350 28. Lu, Z.; Sun, X.; Xie, W.; Littlejohn, A.; Wang, G. C.; Zhang, S.; Washington, M. A.; Lu,
351 T. M. Remote Epitaxy of Copper on Sapphire through Monolayer Graphene Buffer.
352 *Nanotechnology* **2018**, 29 (44), 445702.

353 29. Kodambaka, S.; Israeli, N.; Barenco, J.; Swiech, W.; Ohmori, K.; Petrov, I.; Greene, J. E.
354 Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on Tin(111).
355 *Surface Science* **2004**, 560 (1-3), 53-62.

356 30. Aryeetey, F.; Ignatova, T.; Aravamudhan, S. Quantification of Defects Engineered in
357 Single Layer MoS2. *RSC Advances* **2020**, 10 (39), 22996-23001.

358 31. Zaid, H.; Stremfel, J. W.; Tanaka, K.; Liao, M.; Goorsky, M. S.; Yang, J.-M.;
359 Kodambaka, S. Mechanical Properties of Compositionally-Rich Body-Centered Cubic
360 Vnbtamow Alloy. *Materialia* **2020**, 12, 100746.

361 32. Tanaka, K.; Aleman, A.; Liao, M. E.; Wang, Y.; Goorsky, M. S.; Kodambaka, S. Effects
362 of Ultra-Low Ethylene Partial Pressure on Microstructure and Composition of Reactively
363 Sputter-Deposited Ta-C Thin Films. *Thin Solid Films* **2019**, 688, 137440.

364 33. Tanaka, K.; Liao, M. E.; Aleman, A.; Zaid, H.; Goorsky, M. S.; Kodambaka, S. Growth
365 of Heterolayered [Cubic-Tac(111) + rhombohedral-Ta3c2(0001)] Nanocomposite Thin Films on
366 Al2o3(0001). *Acta Mater.* **2021**, 204, 116499.

367 34. Tanaka, K.; Aleman, A.; Zaid, H.; Liao, M. E.; Hojo, K.; Wang, Y.; Goorsky, M. S.;
368 Kodambaka, S. Ultra-High Vacuum Dc Magnetron Sputter-Deposition of 0001-Textured
369 Trigonal A-Ta₂c/Al₂O₃(0001) Thin Films. *Materialia* **2020**, 13, 100838.

370 35. Fankhauser, J.; Sato, M.; Yu, D.; Ebnenasir, A.; Kobashi, M.; Goorsky, M. S.;
371 Kodambaka, S. Growth and Characterization of Epitaxial Zr(0001) Thin Films on Al₂O₃(0001).
372 *Journal of Vacuum Science & Technology A* **2016**, 34 (5), 050606.

373 36. Tanaka, K.; Fankhauser, J.; Zaid, H.; Aleman, A.; Sato, M.; Yu, D.; Ebnenasir, A.; Li,
374 C.; Kobashi, M.; Goorsky, M. S.; Kodambaka, S. Kinetics of Zr-Al Intermetallic Compound
375 Formation During Ultra-High Vacuum Magnetron Sputter-Deposition of Zr/Al₂O₃(0001) Thin
376 Films. *Acta Mater.* **2018**, 152, 34-40.

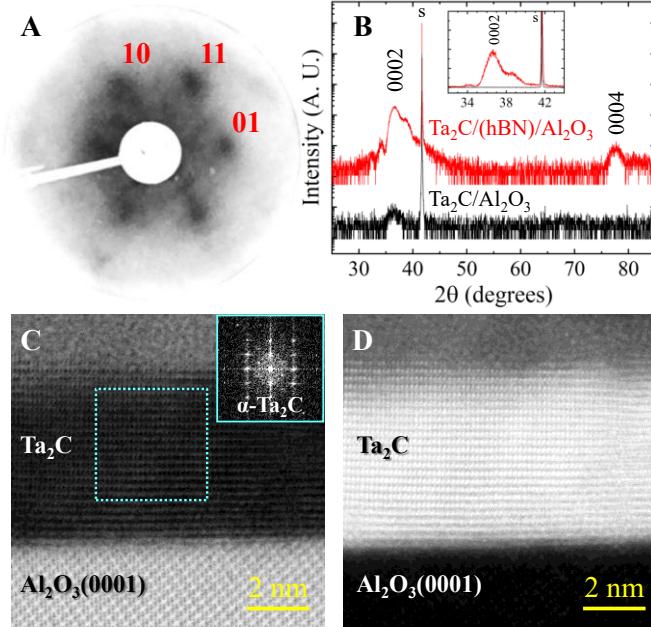
377 37. Aleman, A.; Li, C.; Zaid, H.; Kindlund, H.; Fankhauser, J.; Prikhodko, S. V.; Goorsky,
378 M. S.; Kodambaka, S. Ultrahigh Vacuum Dc Magnetron Sputter-Deposition of Epitaxial
379 Pd(111)/Al₂O₃(0001) Thin Films. *Journal of Vacuum Science & Technology A: Vacuum,
380 Surfaces, and Films* **2018**, 36 (3), 030602.

381 38. Bowman, A. L.; Wallace, T. C.; Yarnell, J. L.; Wenzel, R. G.; Storms, E. K. The Crystal
382 Structures of V₂c and Ta₂c. *Acta Crystallographica* **1965**, 19, 6.

383 39. Arias, P.; Abdulslam, A.; Ebnenasir, A.; Ciobanu, C. V.; Kodambaka, S. Bifurcation
384 and Orientation-Dependence of Corrugation of 2d Hexagonal Boron Nitride on Palladium. *2D
385 Materials* **2018**, 5 (4), 045001.

386 40. Arias, P.; Ebnenasir, A.; Ciobanu, C. V.; Kodambaka, S. Growth Kinetics of Two-
387 Dimensional Hexagonal Boron Nitride Layers on Pd(111). *Nano Lett.* **2020**, 20 (4), 2886-2891.

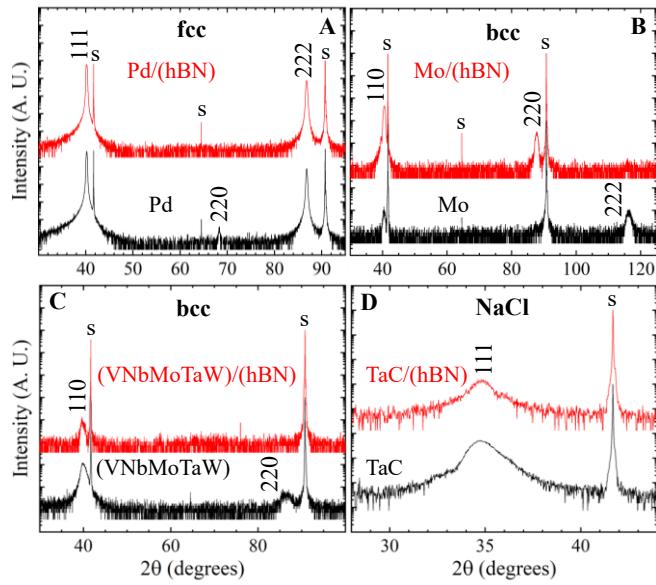
388 41. Xin, W.; Severino, J.; De Rosa, I. M.; Yu, D.; McKay, J.; Ye, P.; Yin, X.; Yang, J.-M.;
389 Carlson, L.; Kodambaka, S. One-Step Synthesis of Tunable-Size Gold Nanoplates on Graphene
390 Multilayers. *Nano Lett.* **2018**, 18 (3), 1875-1881.


391 42. Mok, H. S.; Ebnenasir, A.; Murata, Y.; Nie, S.; McCarty, K. F.; Ciobanu, C. V.;
392 Kodambaka, S. Kinetics of Monolayer Graphene Growth by Segregation on Pd(111). *Applied
393 Physics Letters* **2014**, 104 (10), 101606.

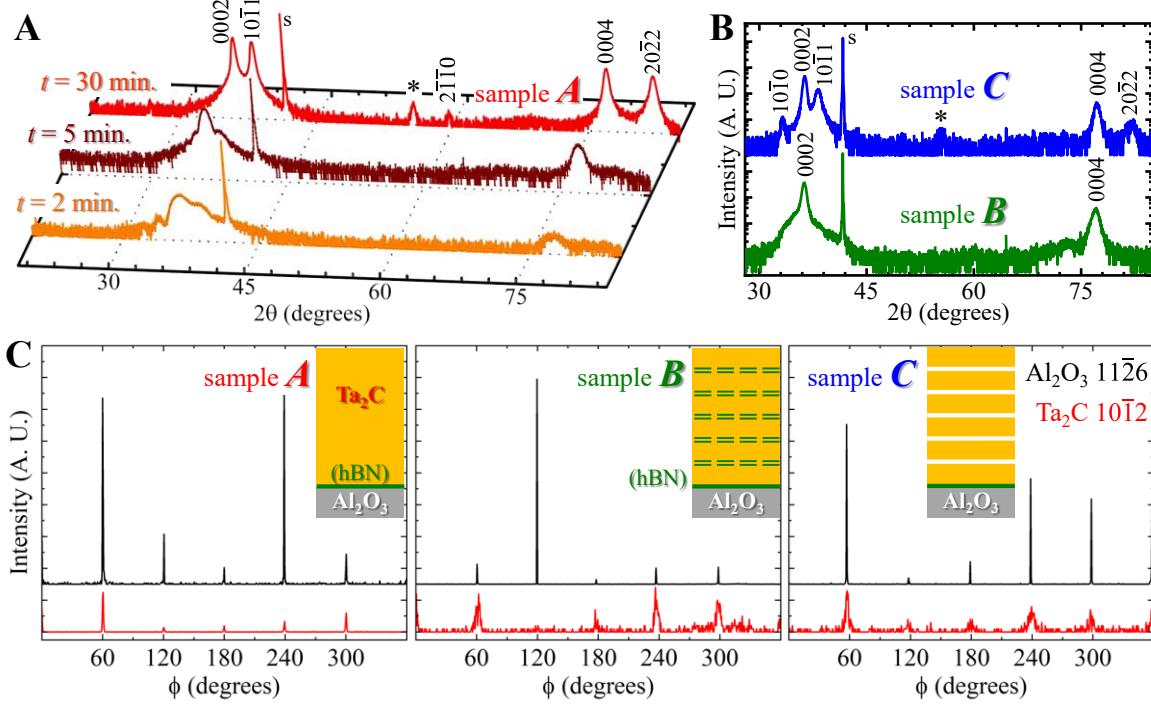
394

395

396 **Figures**


397

398


399

400 **Figure 1.** (A) Representative LEED pattern, (B) $2\theta-\omega$ XRD scan (red curve), and (C) bright field
 401 and (D) high-angle annular dark field cross-sectional TEM images obtained from an \sim 6-nm-thick
 402 $\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$ film. Black curve in B is an XRD scan obtained from $\text{Ta}_2\text{C}/\text{Al}_2\text{O}_3(0001)$.
 403 LEED pattern of this $\text{Ta}_2\text{C}/\text{Al}_2\text{O}_3(0001)$ is shown in Figure S2. Intensities in each of the XRD
 404 curves are normalized to those of the Al_2O_3 0006 reflections (labeled s) and are plotted on a
 405 logarithmic scale. Ta_2C film reflections are labeled as shown. Inset in B shows the same XRD data
 406 plotted with intensities on linear scale. Inset in C is a Fourier transform (FT) of the region
 407 highlighted by a cyan-dotted square in C. From the observed symmetry of the reflections, we
 408 determine the zone axis as $[10\bar{1}0]_{\text{Ta}_2\text{C}}$ and index all the observed reflections as due to $\{000 2l\}$,
 409 $\{11\bar{2} 2l\}$, and $\{\bar{1}\bar{1}2 2l\}$ planes. In this experiment, Ta_2C is sputter-deposited for $t = 2$ min. at $T_s =$
 410 1373 K and hBN layers are grown using borazine ($p_{\text{borazine}} = 2.0 \times 10^{-4}$ Torr) for $t = 10$ min. at the
 411 same T_s . Incident electron beam energy E used for LEED is 214 eV.

412
413

414 **Figure 2.** XRD 2θ - ω scans, with intensities normalized to those of the Al_2O_3 0006 reflections and
415 plotted on a logarithmic scale, obtained from (A) Pd, (B) Mo, (C) VNbMoTaW, and (D) TaC thin
416 films deposited on (hBN)/ Al_2O_3 (0001) (red curves) and bare Al_2O_3 (0001) (black curves),
417 following the procedure described in the SI. Al_2O_3 000*l* (with *l* = 6, 9, and 12) reflections are
418 denoted by s.

419
420

421 **Figure 3.** (A, B) Typical XRD 20- ω scans, with intensities normalized to those of the Al_2O_3 0006
422 reflections and plotted on a logarithmic scale, obtained from: (A) Ta_2C thin films deposited for
423 $t = 2, 5$, and 30 min. (sample A) on (hBN)/ $\text{Al}_2\text{O}_3(0001)$ and (B) samples B and C. s denotes Al_2O_3
424 0006 reflections. Asterisk indicates a peak, likely due to $\alpha\text{-Ta}_2\text{C}$ 0003 reflection. (C) XRD phi
425 scans of (red curves) Ta_2C 101̄2 and (black curves) Al_2O_3 112̄6 reflections from samples A, B, and
426 C, schematics of which are shown as insets. A, B, and C are all grown on borazine-exposed
427 $\text{Al}_2\text{O}_3(0001)$ substrates using the same parameters for the *same* total time $t = 30$ min. Sample A is
428 a relatively thick Ta_2C film deposited on (hBN)/ $\text{Al}_2\text{O}_3(0001)$ without any interruptions for $t = 30$
429 min. Sample B is made of six Ta_2C thin films, with each layer sputter-deposited for $t = 5$ min. after
430 exposure to borazine with $p_{\text{borazine}} = 1.0 \times 10^{-6}$ Torr for 10 min at the same T , i.e. sample B \equiv
431 $5 \times [\text{Ta}_2\text{C}/(\text{hBN})]/\text{Ta}_2\text{C}/(\text{hBN})/\text{Al}_2\text{O}_3(0001)$. The total time elapsed between each Ta_2C deposition
432 due to borazine exposure is 15 min. Sample C is also made of six Ta_2C layers as in B with each
433 layer grown for $t = 5$ min., but instead of exposing the surfaces to borazine, the sample is held in
434 20 mTorr Ar at the same T for 15 min., i.e. the same time as required for the borazine exposures
435 in sample B. The observed differences in relative peak intensities within the phi scans are due to
436 differences in effective irradiation of the X-ray beam during data acquisition and are not indicative
437 of sample quality.