
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

ASSESSING TRANSMISSION RISKS OF SARS-COV-2 OMICRON VARIANT IN U.S.
SCHOOL FACILITIES AND MITIGATION MEASURES

Yifang Xu
Shuai Li
Qiang He

Department of Civil and Environmental
Engineering

University of Tennessee, Knoxville
851 Neyland Drive

Knoxville, TN 37996, USA

Siyao Zhu

Department of Civil and Systems Engineering
Johns Hopkins University

3400 N. Charles St
Baltimore, MD 21218, USA

Jiannan Cai

School of Civil & Environmental Engineering, and Construction Management
The University of Texas at San Antonio

501 W César E Chávez Blvd
San Antonio, TX 78207, USA

ABSTRACT

The emergence of the SARS-CoV-2 Omicron variant raises concerns for school operations worldwide. The
Omicron variant spread faster than other variants that cause COVID-19, and breakthrough infections are
reported in vaccinated people. Schools are hotbeds for the transmission of the highly contagious virus.
Therefore it is crucial to understand the risks of Omicron transmission and the effectiveness of different
measures to prevent the surge of infection cases. This study estimates the risks of airborne transmission and
fomite transmission of Omicron variants using simulations and the data of 11,485 public and private schools
in the U.S. It also analyzes the impact of different mitigation measures on limiting airborne transmission
and fomite transmission risks in schools. It was found that the Omicron variant caused relatively high
infection risks in schools. The risk of airborne transmission is nine times higher than fomite transmission.
The effective mitigation measures can significantly decrease the transmission risk.

1 INTRODUCTION

The original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain was first identified as
the virus that causes the outbreak of the coronavirus disease 2019 (COVID-19). The outbreak of COVID-19
spread rapidly around the world, and the coronavirus is continuously evolving during the pandemic. The
Omicron variant is an emerging variant of SARS-CoV-2 and has become the dominant variant that accounts
for the spread of COVID-19 against all other variants. The variant was first detected in South Africa in
2021(WHO 2021), and resulted in an unprecedented outbreak in SARS-CoV-2 cases around the world.
Compared with the Delta variant, the other rapidly spread coronavirus variant, Omicron multiplied around
70 times faster in the bronchi (Hui et al. 2022), and is found to be 2 to 3 times more contagious (Klompas
and Karan 2022). Although generally, Omicron infection causes less severe cases than other variants, the
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hyper-transmissibility in the crowd could overwhelm the healthcare system since some of the cases may
develop severe symptoms and need hospitalization. Particularly, schools are identified at high risk of
Omicron transmission due to the crowded and poorly-ventilated environment, and the inevitable contact
and communication activities among students and teachers. The potential outbreak of COVID-19 during
the Omicron surge triggers concerns about student health and school environment, and proper actions are
needed to control the Omicron transmission in schools. It is reported that the current vaccines are effective at
preventing severe symptoms such as hospitalizations and deaths due to infection with the Omicron
variant, CDC indicates that breakthrough infections can occur and develop symptoms even for fully
vaccinated people (CDC 2022a). Besides, the immunity through vaccination remains unclear since some
variants reduce the efficacy of vaccines and lead to reinfection (Jimenez et al. 2022). Thus, despite getting
vaccinated, other mitigation measures are required to curb the transmission of SARS-CoV-2 variants in K-12
schools.

Several studies have demonstrated that the Omicron variant, like other SARS-CoV-2 variants, can be
transmitted via air (Cheng et al. 2022) and fomite touching (Pitol and Julian 2021; Sobolik et al. 2022). For
airborne transmission, the infectious aerosols travel over long distances through the air, and susceptible
hosts may get infected by inhaling the infectious aerosols (WHO 2020). The mitigation measures to reduce
airborne transmission include increasing air ventilation to dilute the aerosols, implementing filters in HVAC
systems, and adopting social distance measures such as partial online learning. For the fomite-mediated
transmission, an infected person’s shedding or touching contaminated a surface. Susceptible hosts may get
infected by touching the contaminated surface and pass the pathogens to the susceptible sites such as
mucous membranes. The mitigation measures to curb fomite-based transmission include surface cleaning,
hand cleaning, and dedensification measures to reduce the number of index cases, such as partial online
learning. However, as an emerging variant, there are lack of data and relevant studies regarding Omicron
transmission in nationwide schools.

To close the gap, this study estimated the airborne infection and fomite-based transmission risk of
Omicron variant for 111,485 public and private U.S. schools, and evaluated the impact of different
mitigation measures to control the transmission of Omicron variant. Simulation methods were used to
model the two pathways, including airborne transmission route and fomite transmission route to
comprehensively demonstrate the transmission of the new variant in school environment. For each
transmission route, several commonly-used mitigation measures are selected to illustrate the effectiveness
of different school operation strategies. The results of this study provide insights for school and government
policymakers regarding the effective mitigation measures based on current local epidemic situation and
school characteristics, and provide recommendations to control the airborne and fomite transmission of the
SARS-CoV-2 Omicron variant in school environment.

2 METHODOLOGY

2.1 Data Retrieval

More than 110,000 K-12 schools across the U.S. were analyzed in this study. The characteristics of each
school was retrieved from the statistical data acquired from National Center for Education Statistics (NCES
2021). Public schools were categorized into five school levels and private schools were categorized into
three school levels. The school buildings’ occupant density was manually collected and estimated from
typical schools, and the detailed process was introduced in our previous paper (Xu et al. 2021). The current
pandemic situation was identified by the latest data of COVID-19 cases reported by the CDC (2022b). CDC
indicated that Omicron is the current dominant variant among all SARS-CoV-2 variants and accounts for
almost all the COVID-19 cases (CDC 2022c).

2.2 Airborne Transmission Modeling
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2.2.1 Airborne Infection Risks Assessment

The infection risk of airborne transmission was defined as the probability of a susceptible student being
infected by inhaling infectious aerosols in the air after one school day. The airborne infection risk was
modeled using Gammaitoni–Nucci (G-N) equation (Gammaitoni and Nucci 1997). The G-N equation
computes the airborne infection risk (ᵄ� ) using equation (1), where ᵃ� is the number of index cases, ᵄ� is the
school volume (ᵅ�3), ᵄ� is the virus removal rate (ℎᵅ�−1), ᵆ� is the school operation hour (ℎᵅ�), ᵅ� is the student
breathing rate (ᵅ�3/ℎᵅ�), and ᵱ� is the quanta generation rate (ᵅ�ᵆ�ᵄ�ᵅ�ᵆ�ᵄ�/ℎᵅ�).

ᵅ�ᵃ�ᵱ� ᵄ�ᵆ�+ᵅ�−ᵄ�ᵆ�−1

ᵄ� = 1 − ᵅ� ᵄ� ᵄ�2 (1)

In this study, ᵃ� was estimated based on current COVID-19 cases, and was computed as the product of
school population and the current county infection rate. ᵄ� was retrieved from school data. ᵆ� was the school
operation hour retrieved from the state data (NCES 2008). ᵄ� is the virus removal rate, including the virus
removal due to air ventilation (ᵰ�ᵆ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ�) and air filtration (ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ�) if filters are implemented in the
HVAC system. The baseline ᵰ�ᵆ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ� was set as 2 ℎᵅ�−1 (Batterman et al. 2017). ᵅ� was estimated based
on the age group in a school. ᵱ� was computed using equation (2) (Buonanno et al. 2020), where ᵯ� is the
conversion factor of the transmissibility between new variants and the original SARS-CoV-2 strain. ᵅ�ᵆ� is
the viral load in sputum, ᵅ�ᵅ� is a unit conversion factor, indicating the ratio between the quantum and dose,
ᵄ� ,ᵅ� is the volume of a droplet calculated based on droplet diameter distribution, and ᵄ�ᵅ�,ᵅ�,ᵅ� is the
concentration of the droplet size ᵅ� regarding the expiratory activity ᵅ�.

ᵱ� = ᵯ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�(∑ᵅ�=1     ᵅ�,ᵅ�ᵄ�ᵅ�,ᵅ�,ᵅ�) (2)

To describe the hyper-transmissibility of the Omicron variant, a new parameter ᵯ� was introduced in the
model. ᵯ� was set to be 3.3 to reflect the increased transmissibility of the Omicron variant compared with
the original SARS-CoV-2 strain (Lyngse et al. 2022); ᵅ�ᵆ� was set as 109 RNA virus copies ᵅ�ᵃ�−1, and ᵅ�ᵅ�
was set as 0.02 (Buonanno et al. 2020); ᵅ� is the student breathing rate estimated based on school level
(ᵅ�3/ℎ). Generally, ᵅ� increases as the student age increases; ᵄ�ᵅ�,ᵅ�,ᵅ� was estimated as the droplet viral
concentration of for speaking activity. The speaking activity was considered as the activity between voiced
counting and unmodulated vocalization.

2.2.2 Airborne Transmission Control Measures

The impact of three mitigation measures and the impact of the combination of the mitigation measures was
evaluated in this study. The mitigation measures including: 1. Implementing MERV 13 filters to HVAC
systems (AM1); 2. Increasing air ventilation rate (ᵰ�ᵆ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ� ) by 100% (AM2); 3. Adopting hybrid
learning and ask 50% of the students learning online (AM3); 4. Combination of mitigation measures,
including AM1 + AM2, AM1 + AM3, AM2 + AM3, and AM1 + AM2 + AM3.

The impact of AM1 was modeled by modifying the particle filtering rate caused by filtration
(ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ�) in equation (1). ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ� can be computed using equation (3) (Buonanno et al. 2020), where
ᵰ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ� indicates the flow rate of the air recirculated through HVAC filters , set as 6.4 ℎᵅ� (Azimi
and Stephens 2013), and ᵰ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ� is the filtration efficiency of the filters. ᵰ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ� can be estimated according to
the minimum efficiency reporting value (MERV) of the filter and the particle size based on ASHRAE
standard (Standard 52.2-2017).

ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ� = ᵰ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ� ᵰ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ� (3)
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The MERV 13 filter’s filtration efficiency was set to be 67.5%, assuming that half the particle
distribution is 50% from 0.3 to 1 ᵰ�ᵅ� in size and 50% are 1 to 3 ᵰ�ᵅ�. The assumption is based on an
experimental result that more than 50% of the aerosols of SARS-CoV-2 are smaller than 2.5 ᵰ�ᵅ� (Morawska
and Cao 2020). The impact of M3 was modeled by reducing half of the number of infectors while increasing
occupancy density by 100%.

2.3 Fomite-Mediated Transmission Modeling

2.3.1 Fomite-Mediated Transmission Risk Assessment

The risk of fomite-based transmission in this study indicated the probability of susceptible students getting
infected by fomite-mediated pathways. For the fomite-mediated transmission, a surface is contaminated
when infected people shed or touch on the surface of objects in the school, such as desks and doorknobs.
Susceptible hosts may get infected by touching the contaminated surface and inoculate the pathogens
through mucous membranes via actions such as mouth touching. Susceptible hosts with contaminated hands
can also spread the pathogens via hand-surface contacts. In this study, an Environmental Infection
Transmission System (EITS) modeling framework (Kraay et al. 2018) was employed to analyze the spread
of Omicron via fomite transmission. The EITS model divided individuals to be susceptible (ᵄ�), infectious
(ᵃ�), and removed (ᵄ�) hosts. The pathogens surviving in the environment are either contaminate a fomite
(ᵃ�) or hands (ᵃ�). Pathogen exchange occurs through hand touching behavior. Pathogens are shed to Hands
of I (ᵃ�ᵃ�) via excretion (e.g., cough, sneeze). The pathogens excreted on ᵃ�ᵃ� can be further transferred to
object surfaces by fomite touching behavior. The hands of ᵄ� and ᵄ� (ᵃ� , ᵃ�ᵄ�) become contaminated by
touching the contaminated surface. Pathogens are transmitted dynamically between ᵃ� and ᵃ�. ᵄ� may get
infected by self-inoculation via contaminated ᵃ� . The epidemic dynamics can be modeled by ordinary
differential equations, and the risk of fomite-mediated transmission in a typical school day (ᵄ� ) can be
expressed using equation (4) (modified based on Kraay et al. 2018).

ᵃ�
ᵃ�ᵃ�

ᵄ�

+

−

ᵃ�

ᵃ�

ᵃ�

ᵃ�ᵃ� = ᵆ�ᵃ�ᵄ�ᵃ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�
′(0)

ᵃ�ᵃ� = ᵆ�ᵃ�ᵄ�ᵃ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵄ�’(0)
ᵰ�ᵱ�

ᵅ�
ᵅ�ᵅ�ᵅ�ᵆ�

ᵅ�
ᵄ�
ᵆ�ᵅ�ᵅ�
ᵅ� ᵰ�ᵃ�+ᵰ�ᵃ�ᵃ�+ᵰ�ᵱ�+ᵰ�ᵃ� (4)

ᵄ�ᵰ�ᵃ�ᵃ�

ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ� ᵄ�ᵰ�ᵃ�

ᵄ�

ᵃ�

ᵰ�ᵃ�ᵃ�+ᵰ�ᵃ�+ᵰ�ᵃ�
ᵰ�ᵃ�ᵃ�

(ᵄ�ᵰ�ᵃ�ᵃ�+ᵰ�ᵃ�+ᵰ�ᵃ�) (ᵰ�ᵃ�+ᵰ�ᵃ�ᵃ�+ᵰ�ᵱ�+ᵰ�ᵃ�)

{ ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ� =
ᵰ�ᵃ�+ᵰ�ᵃ�ᵃ�+ᵰ�ᵱ�+ᵰ�ᵃ�

In this model, ᵄ� may get infected via two fomite transmission routes, the direct fomite contamination
route (ᵃ�ᵄ�ᵃ�) and the hand-fomite contamination route (ᵃ�ᵄ�ᵃ�). ᵃ�ᵃ� indicates the number of ᵄ� getting infected
via ᵃ�ᵄ�ᵃ�, ᵃ�ᵃ� is the number of ᵄ� getting infected via ᵃ�ᵄ�ᵃ�. ᵄ� is defined as the proportion of ᵄ� being infected
via fomite-mediated transmission (ᵃ�ᵄ�ᵃ� and ᵃ�ᵄ�ᵃ�) after ᵆ� hours of exposure. ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵄ�ᵆ�ᵅ�ᵅ�ᵅ� is the proportion of
chance that the susceptible people get self-inoculation; ᵄ� ᵅ�ᵅ�ᵅ�ᵆ�ᵅ� is the pathogens picked up by hands from
the contaminate surface in percentage; ᵄ� ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ� is the proportion of pathogens excreted to hands that are
transmitted to the fomites via touching behavior. ᵄ� (0) indicates the infectivity of the pathogens.

To simulate the fomite transmission of the Omicron variant, the parameters of SARS-CoV-2 original
strain were used for most of the pathogen-specific parameters, while the increased transmissibility of the
Omicron variant was considered as 10-fold viral shedding concentrations (Sobolik et al. 2022). The
increased shedding concentrations are employed to estimate the viral shedding rate of the Omicron variant. In
this study, the main way of virus shedding was coughing. The number of viruses shed via coughing from



ᵅ�

ᵅ�

ᵄ� ᵃ�

ᵅ�

Xu, Zhu, Li, Cai, and He

the respiratory tract per hour per infectious individual is defined as the shedding rate. Equation (5) (Li et
al. 2021) shows how the shedding rate was calculated, where ᵄ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� is the volume of an infectious droplet,
ᵃ� ᵅ�ᵆ�ᵅ�ℎ is the frequency of coughing, ᵄ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� is the amount of shed drops per cough, and ᵃ� is the viral load
in saliva.

ᵯ� = ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� × ᵅ�ᵅ�ᵆ�ᵅ�ℎ × ᵄ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� × ᵃ� (5)

The viral load of SARS-CoV-2 Omicron variant is set to be 7.8 ᵅ�ᵅ�ᵅ�10 ᵄ�ᵄ�ᵃ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�/ᵅ�ᵃ� (Sobolik et al.
2022), and the diameter of the infectious droplet was assumed to be 100 µᵅ�, 12 times per hour was set for
ᵃ� ᵅ�ᵆ�ᵅ�ℎ, and ᵄ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� was set to be 2000 per cough. The viral shedding rate of Omicron was computed as
7.93E5. The information on other pathogen-specific parameters could be found in Table 1.

Table 1: Input parameters to the airborne transmission model.

Parameter
ᵆ�

ᵯ�

ᵰ�

µᵃ�

ᵰ�ᵃ�

ᵰ�ᵃ�ᵃ�

ᵰ�ᵃ�ᵃ�
ᵱ�ᵃ�
ᵱ�ᵃ�
ᵰ�

ᵰ�ᵃ�
ᵰ�ᵃ�

ᵄ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�

ᵄ�ᵃ�

ᵄ�ᵃ�

ᵰ�

ᵰ�ᵄ�

Units

hr
Pathogens/

(hr ×people)

/min

/day

/min

proportion

proportion
proportion
proportion

unitless
/hr
/hr

m2
Pathogens/ (hr

×people)
Pathogens/ (hr

×people)
proportion

/day

Description

Exposure time
Infectious individuals excrete

pathogens at rate ᵯ�

Inoculation

Viral decay rate on ᵃ�

Viral decay rate on ᵃ�

Viral transfer fraction from ᵃ� to ᵃ�

Viral transfer fraction from ᵃ� to ᵃ�
Pathogen excreted to ᵃ�
Pathogen excreted to ᵃ�

Dose-response parameter
Frequency of fomite cleaning

Frequency of hand cleaning
Surface area of three finger

tips touching a surface

rate pathogens added to ᵃ�

rate pathogens added to ᵃ�
accessible surface

rate of fomite touching

Values

School day

7.93E05

0.8
0.18

(0.14, 0.22)
1.195

(0.92, 1.47)
0.217

(0.067,0.367)

0.025
0.15

1 − ᵱ�ᵃ�

6.58E-06
0 (0, 1)
0 (0, 1)

0.00042

ᵯ�ᵱ�ᵃ�

ᵯ�ᵱ�ᵃ�
0.3

60

References

(NCES 2008)

Calculation
(Sobolik et al.

2022)

(Kwon et al. 2021)
(Nicas and Best

2008)

(Lopez et al. 2013)
(Nicas and Jones

2009)
(Kraay et al. 2018)

Estimation
Estimation

(Bouwknegt et al.
2015)

(Kraay et al. 2018)

(Kraay et al. 2018)

(Kraay et al.
2018)

2.3.2 Fomite-Mediated Transmission Control Measures

The impact of three mitigation measures and the impact of the combination of the mitigation measures on
fomite transmission control was evaluated in this study. The mitigation measures including: 1. Building
hygiene once per day (FM1); 2. Hand washing once per hour (FM2); 3. 50% of students learning online; 4.
Combination of mitigation measures, including FM1 + FM2, FM1 + FM3, FM2 + FM3, and FM1 + FM2
+ FM3.
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3 RESULTS

3.1 Assessment of School Airborne Infection Risk

Figure 2 presents the Omicron airborne infection risk of each state under different control measures. The
average airborne infection risks of counties within a state were used to calculate the mean airborne infection
risk of the state. The range of the state airborne infection risk represents the difference between the
maximum and minimum airborne infection risks of that state. Outliers exceeding four times the standard
deviation of the counties in a state were removed before generating the range. The county level airborne
infection risk was computed based on the current Omicron epidemic situation and the school characteristics.
For all states, schools using baseline ventilation rate have higher average airborne infection risk, and the
overall average airborne infection risk under this scenario was 4.51%. A wider range of airborne infection
risks was revealed in the baseline situation as well. More than 90% of the states had a greater than 2% of
average airborne infection risk, which is higher than the infection risks in previous epidemic situations (e.g.,
the prevalence for original SARS-CoV-2 strain). This result indicates the necessity of implementing
interventions to reduce the airborne infection risk of Omicron.

Kruskal–Wallis one-way analysis of variance (ANOVA) test was conducted to figure out if the impact
of modeled mitigation measures was statistically significant (Kruskal and Wallis 1952). The One-way
Kruskal–Wallis test is a nonparametric method for analyzing if there is a difference of the population
medians among all the groups under one categorical variable. In this study, the groups were identified as
different mitigation measures, and the categorical variable was the airborne infection risks. A Kruskal–
Wallis test was conducted to demonstrate the significance of different mitigation strategies. The p-value of
the test was nearly 0, indicating that the null-hypothesis of same median among all groups can be rejected.
The result demonstrated that there were significant differences among the mitigation strategies within 99%
confidence interval (CI). A Conover squared ranks test was conducted as the post-hoc comparison to
identify significant differences between pairs of groups (Conover and Iman 1981). The result indicated that
among all the pairs of strategies, the difference between two combined control measures were insignificant
with a p-value of 0.2809. The two combined measures are: implementing MERV 13 filtration and half of
students studying remotely (AM1+AM3), and doubling the ventilation rate and half of students study
remotely (AM2+AM3). All other pairs of strategies were found to be significantly different within 99% CI.

The impact of implementing MERV 13 filtration (AM1) indicated a significant improvement in
reducing the airborne infection risk. The overall average airborne infection risk was reduced to 1.55% and
the variation range of all states was reduced, which was illustrated by the smaller ranges. Airborne infection
risk in more than 90% of states decreased to less than 2% under this control intervention. This control
measure outperformed all three interventions as well. Double the ventilation rate (AM2) displayed a similar
result as half of students study remotely (AM3). The overall average airborne infection risks under these
two control measures were 2.40% and 2.30%, respectively. About 70% of states had the airborne infection
risk lessen to 2%. The variation in airborne infection risk was reduced for all states as well.

Several states exhibited high average airborne infection risk. The result was mainly caused by the high
county prevalence of the counties in the states. Specifically, states such as Alaska, Idaho, Kentucky, Maine,
Rhode Island, and Vermont had more than twice the overall average airborne infection. Vermont exposed
the highest average airborne infection risk among all states, which was 17.19% under baseline ventilation
situations. The control measures reduced the airborne infection risk for all states, but the states with higher
airborne infection risk still exceed the others under all three interventions.

School characteristics are another important aspect of influencing the county's airborne infection risk
of Omicron, especially for the school levels. For instance, the infection risks vary among different school
levels due to the difference of student beathing rate and school occupant density. Figure 1 shows the
airborne infection risks of different school levels under various airborne transmission control measures.
The risk was computed based on the nationwide school data and the range indicates the maximum and
minimum risk for each school level. Data of more than two times the standard deviation from the mean
were treated as outliers and removed before generating the result. The figure indicates that high school had
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the highest median airborne infection risk of 4.29% and the highest interquartile range (IQR) among all six
levels of schools that were considered in this study. Elementary school showed the lowest median airborne
infection risk and the lowest IQR among all school levels. Distinct control measures indicated a diverse
impact on airborne infection risk. For individual controls, similar results are shown in Figure 2. MERV 13
(AM1) had the best solo control performance among all school levels. The median risk was reduced to
1.46% using AM1 in high school. The combination of AM1, AM2, and AM3 revealed the best performance
among all control measures at all school levels. The median airborne infection risk in high school decreased to
0.56% under this combined control measure.

Figure 1: Airborne infection risks of different school levels under various airborne transmission control
measures.

Figure 2: State airborne infection risk with distinct control measures: (a) the baseline situation; (b) applying
MERV 13 filtration; (c) increasing the baseline air ventilation rate by 100%; (d) half students learning
remotely.
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3.2 Assessment of School Fomite Infection Risk

A similar analysis was performed on the fomite transmission data of Omicron. Figure 4 demonstrates the
average fomite infection risk of all states in the U.S. Compared with the results in Figure 2, the overall
average risk was less than the average airborne infection risk in all states. Under the baseline scenario of no
surface cleaning and hand cleaning, more than 90% of states have less than 1% of average fomite
infection risk. About 60% of the states had less than 0.5% of average fomite infection risk. The average
fomite infection risk of all counties under the baseline scenario was 0.48%. This result indicates that for
Omicron, people are more likely to get infected via airborne transmission than via fomite transmission.
Similar with the statistical analysis for the airborne transmission control strategies, a one-way Kruskal–
Wallis test and a post-hoc comparison were conducted. The p-value of the test was nearly 0, indicating that
the mitigation strategies for the control of fomite transmission were statistically significant within 99% CI.
The result of the pairwise comparison indicated that all the pairs of strategies were significantly different
from others.

For different control measures, hand cleaning once per hour (FM2) and 50% of student learning online
(FM3) showed similar results. The average fomite infection risks among all counties under FM2 and FM3
were 0.44% and 0.47%, respectively. There was no significant change in average fomite infection risk after
applying FM2 and FM3. However, surface cleaning once per day (FM1) exhibited an evident impact on
reducing the average fomite infection risk. The overall average fomite infection risk decreased to 0.22%
when applying FM1. About 95% of states had less than 0.5% average infection risk and 100% of counties
had less than 1% average fomite infection risk under this control measure. States with high average airborne
infection risk also resulted in high average fomite infection risk. Vermont, Maine, Alaska, Idaho, Rhode
Island, and Kentucky ranked top six on highest infection risk for both airborne and fomite transmission.

School characteristics were analyzed, and the result is illustrated in Figure 3. Unlike airborne
transmission, there was no obvious difference displayed between school levels for fomite infection risk
under the baseline scenario. The median fomite infection risks of all school levels were all-around 0.32%.
The combined control measure of FM1 + FM2 + FM3 exhibited the best performance in reducing fomite
infection risk for all school levels, which is similar to the airborne transmission result. A small distinction
can be observed among different school levels after applying the combined intervention strategy.
Prekindergarten reached the lowest median fomite infection risk of 0.039% and high school had the highest
median fomite infection risk of 0.11%.

Figure 3: Fomite infection risks of different school levels under various fomite transmission control
measures.



Xu, Zhu, Li, Cai, and He

Figure 4: State fomite infection risk with distinct control measures: (a) the baseline situation; (b) surface
cleaning once per day; (c) hand cleaning once per hour; and (d) half of students learning remotely.

4 DISCUSSION AND CONCLUSION

Two transmission pathways of the Omicron variant were simulated in this study due to the characteristics of
schools and students. Schools are identified as crowded and poorly ventilated environments, which
increase the risk of airborne transmission of various respiratory viruses, including SARS-CoV-2. Therefore,
the airborne transmission route of Omicron was estimated, and the widely used operation strategies
regarding the decrease of airborne infection risks during pandemics were included in the simulation and
evaluated in the study. The operation strategies include ventilation increase, social distancing, filtration,
and the combination of different strategies. Results indicate that county prevalence and school
characteristics are the main features that affect the airborne infection risk. Under baseline ventilation, all
states are exposed to high airborne infection risks, with an average infection risk of 4.51% of all states. Six
states have way higher average airborne infection risk than other states. Meanwhile, school levels have an
obvious impact on airborne infection risk. High schools showed the highest while elementary schools
displayed the lowest median airborne infection risk among the six considered school levels. All the
operation strategies resulted in significant improvement in decreasing airborne infection risk. Ventilation
increase and social distancing demonstrated similar performance in reducing the infection risk, while
filtration shows the best performance. This result is valid for all states and all school levels. All combined
operation strategies showed better results than any individual operation strategy, while the combination of



Xu, Zhu, Li, Cai, and He

all three strategies exhibit the best performance and successfully reduced the median airborne infection risk
to less than 0.5%.

Despite airborne transmission, since students at a young age are more liable to interact with their
surrounding environment, viruses on the object surface are likely to transfer between hands and
contaminated surfaces and occur self-inoculation. Thus, the fomite transmission route of Omicron was
considered, and the effectiveness of mitigation measures such as surface cleaning, hand cleaning, and
hybrid learning was assessed using a dynamic environmental infection transmission system. Results
demonstrated that fomite transmission of Omicron has less impact on the infection risk than airborne
transmission. Under the baseline scenario of no surface cleaning and hand washing, the average fomite
infection risk in all states is 0.48%. The states with high average airborne infection risk still ranked as the top
states with the highest average fomite infection risk. Mitigation measures of hand cleaning and 50%
remote study showed similar but poor results on reducing the fomite infection risk when being applied
individually. Surface cleaning exhibit significant improvement in reducing fomite infection risk, which
halved the average fomite infection risk solely. The combined control measures displayed small
improvements in decreasing fomite infection risk when compared to the performance of surface cleaning.
There was no obvious evidence to show that school level has an impact on the fomite infection risk under the
baseline situation, but prekindergarten showed better improvement after applying the mitigation
methods.

It is concluded that the Omicron spreads fast in U.S. schools, especially via airborne transmission. For
instance, the average airborne infection risk is 4.51% without any mitigation measures, emphasizing the
significance of mitigation measures to reduce the infection risks at lower level. Among the considered
mitigation measures, the impact of implementing MERV 13 filtration indicated a significant improvement in
reducing the airborne infection risk, and the overall average airborne infection risk was reduced to 1.55%.
High schools are exposed to the highest airborne infection risk amongst all school levels. The impact of
ventilation increase and partial online learning is similar, with the infection risk of 2.40% and 2.30%,
respectively. The spread via fomite route was insignificant compared with airborne route, with an average
infection risk of 0.48%. The transmission risk nearly the same for different school level. To further
eliminate the fomite transmission, the most effective mitigation measure is surface cleaning, reducing the
transmission infection risk to 0.22%.
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