

hBN layer promoted heteroepitaxy in reactively sputter-deposited $\text{MoS}_{x \approx 2}$ (0001)/ Al_2O_3 (0001) thin films

Aditya Deshpande¹, Koki Hojo², Koichi Tanaka¹, Pedro Arias¹, Hicham Zaid¹, Michael Liao¹,
Mark Goorsky¹, and Suneel Kodambaka^{1,3}*

¹Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA

²Graduate Department of Micro-Nano Mechanical Science and Engineering, Nagoya University,
Nagoya, Japan

³Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

12 *Corresponding author

17 KEYWORDS: molybdenum disulfide, hexagonal boron nitride, reactive sputtering, van der Waals
18 epitaxy, buffer layers

19 **ABSTRACT**

20 We show that van der Waals (vdW) bonded hexagonal boron nitride (hBN) promotes
21 heteroepitaxial growth of $\text{MoS}_x(0001)$ ($x = 2.0 \pm 0.1$) thin films on $\text{Al}_2\text{O}_3(0001)$ substrates. hBN
22 layers are grown on $\text{Al}_2\text{O}_3(0001)$ via pyrolytic cracking of borazine ($\sim 6 \times 10^4$ L) at 1373 K. The
23 MoS_x layers are deposited in an ultrahigh vacuum system via reactive direct current magnetron
24 sputtering of Mo in Ar/H₂S gas mixture at 1073 K on bare and hBN-covered $\text{Al}_2\text{O}_3(0001)$. Using
25 *in situ* low-energy electron diffraction and Auger electron spectroscopy along with *ex situ* X-ray
26 diffraction, X-ray photoelectron and Raman spectroscopies, and transmission electron microscopy,
27 we determine the as-deposited MoS_x layer composition and crystallinity. We obtain highly 0001-
28 oriented 2H-structured MoS_x thin films with better crystalline quality on hBN/ $\text{Al}_2\text{O}_3(0001)$ than
29 on $\text{Al}_2\text{O}_3(0001)$. We suggest that hBN layers enhance surface diffusion, compared to bare
30 $\text{Al}_2\text{O}_3(0001)$, leading to the observed improvement in crystallinity of MoS_x layers.

31

32 **INTRODUCTION**

33 The isolation of free-standing graphene layers from bulk graphite led to a surge in the discovery
34 and synthesis of atomically thin, two-dimensional (2D) crystals of van der Waals (vdW) bonded
35 layers. Among numerous vdW solids identified in addition to graphite, hexagonal boron nitride
36 (hBN), and molybdenum disulfide (MoS₂), are well-known as solid lubricants. Bulk MoS₂
37 (molybdenite) has two naturally occurring polytypes - hexagonal structured 2H-MoS₂ (P6₃/mmc,
38 $a = 0.316$ nm, $c = 1.229$ nm) and rhombohedral 3R-MoS₂ (R3m, $a = 0.316$ nm, $c = 1.837$ nm).¹⁻⁵
39 Bulk 2H-structured MoS₂ is semiconducting with an indirect bandgap of 1.23 eV; in contrast, a
40 single-molecule thick 2H-MoS₂ layer has a direct band gap of 1.9 eV.^{6,7} hBN (P6₃/mmc, $a = 0.250$
41 nm, $c = 0.665$ nm) is an insulator with similar thickness-dependent indirect and direct bandgaps of
42 5.95 eV and 6.1 eV, respectively, for the bulk and the monolayer.^{8,9}

43 Recent studies indicate that lateral and vertical stacks of vdW materials¹⁰⁻¹² offer new properties
44 and are attractive for a variety of applications including but not limited to, flexible and low-power
45 field effect transistors, optoelectronic devices, gas sensors, twistronics, and quantum information
46 processing.¹⁰⁻¹⁵ As a result, synthesis of stacked layers of dissimilar vdW solids of desired
47 thickness, composition, crystallinity, and relative orientation over large areas has been a key focus
48 of the 2D layered materials community. MoS₂/graphene and MoS₂/hBN vertical heterostructures
49 have been synthesized *via* both chemical and physical vapor deposition (CVD & PVD) methods.¹⁶⁻
50 ²⁰ In these experiments, nanometer- to centimeter-scale MoS₂ monolayer or bilayer domains were
51 grown using ammonium tetrathiomolybdate $[(\text{NH}_4)_2\text{MoS}_4]$,¹⁶ with MoCl₅ or MoO₃ and sulfur as
52 Mo and S precursors, respectively^{17,18} and, *via* sulfurization of Mo in H₂S atmospheres^{19,20} on
53 CVD-grown graphene or hBN layers.

54 While there has been considerable interest in the synthesis of vdW multilayer stacks, relatively
55 few studies²¹ have investigated the effect of vdW layers on the growth-related aspects of
56 overlayers. Van der Waals epitaxy, a term coined by Koma and coworkers, where heteroepitaxial
57 growth of a vdW layer proceeds on another vdW-bonded substrate or on a 3D solid substrate (with
58 covalent, ionic, and/or metallic bonding) and *vice versa* has been demonstrated in a variety of
59 materials.²²⁻²⁸ Koma and coworkers suggested that vdW bonding across, and the lack of dangling
60 bonds on, the substrate surface weaken interactions between the adatoms and the substrate,
61 enhancing the mobility of the adspecies and resulting in better crystallinity of the deposited film.
62 Kim and coworkers have reported on remote epitaxy, where a film (e.g., GaN) grown on a
63 covalently bonded substrate [e.g., GaN(0001)] covered with a monolayer of exfoliated graphene
64 maintains epitaxial registry with the substrate despite the presence of the vdW layer.^{29,30} With
65 graphene as a growth template for MoS₂, an earlier study found that strain, wrinkling, and defects
66 in the template affect the nucleation density of MoS₂ domains influencing layer coverage and large
67 area growth.³¹ Here, we focus on the growth of MoS₂ layers on hBN-covered Al₂O₃(0001)
68 [hereafter referred to as hBN/Al₂O₃(0001)] substrates.

69 In this article, we present results from the microstructural characterization of reactively sputter-
70 deposited MoS_x thin films on Al₂O₃(0001) and hBN/Al₂O₃(0001) substrates. From X-ray
71 photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron
72 microscopy (TEM) data obtained from the as-deposited samples, we determine the S/Mo ratio x
73 as 2.0 ± 0.1 and that the MoS_x layers are highly 0001-oriented with 2H-structure. Using a
74 combination of XRD and Raman spectroscopy measurements, we show that MoS_x thin films on
75 hBN/Al₂O₃(0001) are of better crystalline quality than those grown on bare Al₂O₃(0001). Our
76 results indicate that hBN layers enhance 0001 orientated growth of MoS_x ($x = 2.0 \pm 0.1$). We

77 suggest that hBN and possibly other vdW-bonded layers can facilitate similar improvements in
78 crystallinity of thin films of a variety of other materials.

79 **EXPERIMENTAL SECTION**

80 **Thin Film Deposition**

81 All the depositions are carried out on single-side polished, $10 \times 2 \times 0.5$ mm³, Al₂O₃(0001)
82 substrates in a custom-built, dual-chamber, ultra-high vacuum (UHV, base pressure $< 5.0 \times 10^{-9}$
83 Torr, 6.67×10^{-7} Pa) system, described in Refs. ^{32–34}. First, the Al₂O₃(0001) substrates are cut from
84 10 × 10 × 0.5 mm³ Al₂O₃(0001) single crystals (miscut $< 0.5^\circ$, 99.99% purity, from MTI Corp.),
85 cleaned *via* sonication for 600 s sequentially in acetone, isopropyl alcohol, and distilled water,
86 blown dry with compressed nitrogen, and baked in air at 473 K for 12 h in an oven. Each of these
87 substrates is mounted on a heating holder, with Mo foil as the resistive heater, described in Ref.
88 ³², and is introduced into the UHV deposition system through the load-lock chamber, where it is
89 held for ≈ 2700 s while being evacuated by a 66 l/s turbomolecular pump. The sample holder
90 assembly is then transferred to the main chamber and degassed at 1273 K until the base pressure
91 of the main chamber is $< 6 \times 10^{-9}$ Torr (8×10^{-7} Pa). The substrate temperatures T_s are measured
92 prior to the depositions, i.e., on bare Al₂O₃(0001), using an IMPAC IS-8GS pyrometer placed
93 outside the chamber, approximately 0.4 m away from the sample. Since Al₂O₃(0001) is optically
94 transparent, we set the pyrometer emissivity to 0.15, the expected emissivity of Mo foil that is
95 behind the substrates. In our experiments, we measure variations in T_s up to 100 K (at $T_s = 1073$
96 K) and 200 K (at $T_s = 1373$ K) along the length of the sample.

97 The CVD of hBN layers is carried out *via* pyrolytic cracking of borazine on Al₂O₃(0001) at T_s
98 = 1373 K in the same deposition chamber following the procedure described in Refs. ^{49,50}. First,
99 the liquid borazine ([B₃N₃H₆], vapor pressure ≈ 283 Torr (3.77×10^4 Pa) at 300 K)⁵¹ from Gelest

100 Inc. is vacuum-transferred to a 20 ml UHV-compatible domed glass tube (Accu-Glass Products
101 Inc.) and purified by freeze-evacuate-thaw cycles (Refs. ^{49,50}). Then, the Al₂O₃(0001) substrate is
102 exposed to $\approx 2.0 \times 10^{-4}$ Torr (2.67×10^{-2} Pa) of borazine for 300 s, i.e., for a cumulative dose of 6
103 $\times 10^4$ L, at 1373 K, after which the chamber is evacuated and the T_s set to 1073 K for the deposition
104 of MoS_x films.

105 All the MoS_x films are grown on bare Al₂O₃(0001) and hBN/Al₂O₃(0001) substrates at T_s =
106 1073 K *via* dc magnetron sputtering of a 50.8 mm diameter \times 3.175 mm thick Mo target (99.95%
107 pure from ACI Alloys Inc.) in 20 mTorr Ar (2.67 Pa) with 1% H₂S gas mixture at 50 W. First, H₂S
108 gas (99.5% pure) is introduced into the main chamber through a UHV leak valve, and its partial
109 pressure is set to 2.0×10^{-4} Torr (2.67×10^{-2} Pa). Then, Ar gas (99.999% pure) is added through a
110 separate UHV leak valve and the total pressure of Ar + H₂S gas mixture is adjusted to 20 mTorr
111 (2.67 Pa). Before each deposition, the Mo target is sputter-cleaned for 120 s with the target shutter
112 closed. MoS_x films are grown for times t = 300 and 1800 s, yielding \approx 3 and 20 nm thick layers,
113 respectively. (During these experiments, the target voltage varied from 292 \sim 295 V.) After the
114 deposition, gas flow is stopped, and the samples are cooled passively to room temperature by
115 switching off the substrate heater current. *In situ* low-energy electron diffraction (LEED) and
116 Auger electron spectroscopy (AES) data are acquired from thinner MoS_x films and *ex situ* XRD,
117 XPS, Raman spectroscopy, and TEM characterizations are carried out using thicker MoS_x layers
118 as described in the following section.

119 **Thin Film Characterization**

120 The Al₂O₃(0001) substrate, hBN layers, and ultrathin (\approx 3 nm) MoS_x films are characterized *in*
121 *situ* using UHV-compatible LEED/AES hybrid system RVL2000 (LK Technologies). AES spectra
122 are acquired in derivative mode using a 1500 eV primary beam and kinetic energies between 70

123 and 550 eV with a step size of 0.1 eV and a dwell time of 1 s. LEED patterns are obtained at
124 incident electron energies between 200 and 250 eV using a screen voltage of 4 kV.

125 XPS characterization of an air-exposed $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ sample is conducted in a Kratos
126 Analytical AXIS Ultra DLD machine. High resolution S $2p$ and Mo $3d$ spectra are acquired with
127 a step size of 0.1 eV. Binding energies are calibrated using O 1s peak set to 530.6 eV. We do not
128 sputter-etch the surface to avoid preferential etching of anions (in this case, sulfur) from the film.⁵²
129 ⁵⁵ Spectral peak positions and integrated intensities are determined using a Gaussian function with
130 a Lorentzian character [GL(30)] in Casa XPS software package⁵⁶ after correcting for the
131 background based on Shirley algorithm.⁵⁷ Ratios of the integrated intensities of S $2p$ and Mo $3d$
132 peaks, respectively, corrected by their relative sensitivity factors 0.668 and 3.32 (from Casa XPS
133 element library) are used to estimate the film composition.

134 XRD $2\theta:\omega$ scans are obtained from $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ and $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ using a
135 Bede D1 high-resolution diffractometer. The samples are mounted on a miscut Si(001) wafer to
136 eliminate background signals from the diffractometer stage. The detector and X-ray optics are
137 aligned to achieve maximum direct-beam intensity. The sample and stage are calibrated with
138 respect to ω and χ (out-of-plane rotation perpendicular to ω) using the Al_2O_3 0006 reflection at 2θ
139 $= 41.68^\circ$. $2\theta:\omega$ symmetric scans are acquired for 2θ values between 10 and 120° using double-axis
140 diffraction with a step size of 0.02° and a dwell time of 1 s. ω rocking curves of MoS_x 0002
141 reflections from samples grown on $\text{Al}_2\text{O}_3(0001)$ and $\text{hBN}/\text{Al}_2\text{O}_3(0001)$ are obtained around $\theta =$
142 7.18° over a range of 5.55° with a step size of 10 arcsecond and a dwell time of 1 s. $2\theta:\omega$
143 asymmetric scans for the $10\bar{1}3$ reflection from both samples are acquired in skew-symmetric
144 geometry over a range of 4.5° with a step size of 0.05° , and a dwell time of 700 s. For these
145 measurements, we use Al_2O_3 $11\bar{2}6$ reflection at $2\theta = 57.52^\circ$ as reference.

146 Two sets of Raman spectra are acquired at room temperature from the $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ and
147 $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ thin films using a Horiba LABRAM HR Evolution Confocal Microscope
148 system equipped with a 532 nm wavelength laser at 0.6 mW power (and a Renishaw In-Via Raman
149 Confocal Microscope system equipped with a 633 nm laser at 0.4 mW), over $100 \text{ cm}^{-1} - 1800 \text{ cm}^{-1}$
150 ($100 \text{ cm}^{-1} - 1500 \text{ cm}^{-1}$) spectral range with 0.5 cm^{-1} (2 cm^{-1}) resolution. Laser spot sizes for both
151 sets of measurements are $1 \mu\text{m}$. Prior to each measurement, the instruments are calibrated using a
152 Si substrate with a known Raman peak of 520.1 cm^{-1} . The MoS_x samples are then placed on the
153 stage and Raman spectra are obtained from regions of interest identified using an optical
154 microscope attached to the system. Peak positions and full widths at half maxima (FWHM) in
155 XRD and Raman spectroscopy measurements are obtained by fitting the data using Gaussian
156 (Lorentzian) functions.⁵⁸⁻⁶⁰

157 An electron transparent $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ sample for cross-sectional transmission
158 electron microscopy (XTEM) measurement is prepared *via* FIB milling carried out in a FEI Nova
159 600 NanoLab DualBeam SEM/FIB system using 30 kV Ga^+ ions. Prior to milling, the film surface
160 is protected by deposition of a thin, electron beam assisted Pt layer, which also prevents damage
161 from a subsequent deposition of a thicker, ion beam assisted Pt layer, for a total thickness of ~ 1.5
162 μm . TEM images of the film are acquired in a JEOL JEM-2800 scanning TEM (S/TEM) operated
163 at 200 kV for imaging.

164 **RESULTS AND DISCUSSION**

165 Figures 1a-c are representative room-temperature LEED patterns obtained *in situ* from (a) bare
166 $\text{Al}_2\text{O}_3(0001)$ substrate (incident electron energy $E = 230 \text{ eV}$), (b) after exposure to borazine ($E =$
167 253 eV), and (c) after the deposition of 3-nm-thick MoS_x film ($E = 254 \text{ eV}$). Figure 1a shows a
168 six-fold symmetric LEED pattern, characteristic of $\text{Al}_2\text{O}_3(0001)-(1\times 1)$ unreconstructed surface,

169 indicative of a clean surface.³² We measure the periodicity of the LEED spots, which is
170 proportional to the reciprocal lattice spacing of Al₂O₃(0001) surface lattice, and use it to calibrate
171 the other LEED patterns and extract in-plane lattice spacings *d* as described in the Supplementary
172 Information (SI). We observe similar six-fold symmetric LEED patterns (Figs. 1b and c) after the
173 growth of hBN and MoS_x layers. From the diffraction spot spacings, we extract *d*₀₁ values of 2.16
174 ± 0.06 Å along [2̄1̄0] for hBN/Al₂O₃(0001) and 2.67 ± 0.08 Å for MoS_x/hBN/Al₂O₃(0001), which
175 are in fair agreement with the *d*₀₁ values of 2.17 Å and 2.73 Å, respectively, expected for
176 hBN(0001) and MoS₂(0001)-(1×1) surfaces.^{4,9} We note that the LEED pattern (not shown) from a
177 similarly thick MoS_x film grown on bare Al₂O₃(0001), using the same deposition parameters, does
178 not show any diffraction spots.

179 Figure 1d shows AES data obtained from the same sample after borazine exposure (black curve)
180 and after the deposition of the MoS_x film (red curve). We observe Auger electron peaks at 169 eV,
181 377 eV, and 503 eV corresponding to boron, nitrogen, and oxygen, respectively, after borazine
182 exposure. The presence of B and N peaks in the AES data is indicative of borazine adsorption on
183 the Al₂O₃(0001) surface and is consistent with the detection of LEED spots characteristic of hBN
184 layer in Fig. 1b. We attribute the O peak in the spectrum to the Al₂O₃(0001) substrate and suggest
185 that the hBN layer is very thin and/or that it does not cover the surface completely. After the
186 deposition of MoS_x film, we observe Auger electron peaks at 118 eV, 185 eV, and 222 eV all due
187 to Mo and at 150 eV due to S. We note that within the detection limits of our measurements, the
188 O signal is absent, indicative of O-free sputter deposition.

189 Figure 2 shows XPS data obtained from an air-exposed MoS_x/Al₂O₃(0001) sample. We find two
190 S 2p peaks, at 161.9 eV due to S 2p_{3/2} and at 163.1 eV due to S 2p_{1/2}, and three peaks due to Mo.
191 With the assumption (justified below) that there are molybdenum oxides (e.g., MoO₂ and MoO₃)

192 in addition to MoS_x , we fit the three Mo peaks with two sets of Mo $3d_{5/2}$ and Mo $3d_{3/2}$ doublet
193 peaks, colored red and green in the plot. From the red curve, we identify a Mo $3d_{5/2}$ peak at 229.1
194 eV and a Mo $3d_{3/2}$ peak at 232.2 eV. The green curve fit to the XPS data at higher binding energies
195 shows a Mo $3d_{5/2}$ peak at 232.6 eV and a Mo $3d_{3/2}$ peak at 235.7 eV. Based on the reference values
196 for Mo found in the NIST XPS database,³⁵ we attribute the Mo $3d$ doublet peaks at lower and
197 higher binding energies to Mo +4 and Mo +6 oxidation states, respectively. The detection of peaks
198 associated with Mo +6 oxidation state suggests the presence of MoO_3 . While the Mo +4 peaks are
199 associated with MoS_2 and MoO_2 , we cannot determine the exact contributions from MoO_2 to the
200 peak intensities from our XPS data. However, as we show below, we do not observe any peaks
201 corresponding to MoO_2 in XRD and Raman spectra, based on which we assume that the Mo (+4)
202 peaks are all due to MoS_x . From the S and Mo (+4) peaks, we determine the S/Mo ratio x to be 2.0
203 ± 0.1 .

204 Figures 3a-d are XRD data obtained from the same set of MoS_x thin films grown for $t = 1800$ s
205 on bare $\text{Al}_2\text{O}_3(0001)$ (black curves) and on hBN/ $\text{Al}_2\text{O}_3(0001)$ (red curves). Figure 3a is a plot of
206 symmetric XRD $2\theta:\omega$ scans from the two samples, with intensities plotted on logarithmic scale. In
207 both the scans, we find highest intensity peaks, labeled **s**, at $2\theta = 41.68^\circ$ due to Al_2O_3 0006
208 reflections of the single-crystalline $\alpha\text{-Al}_2\text{O}_3(0001)$ ($\text{R}\bar{3}\text{c}$) substrate and two relatively weaker
209 intensity peaks at $2\theta = 20.48^\circ$ and 64.52° , corresponding to forbidden Al_2O_3 0003 and 0009
210 reflections, respectively.³⁶ For direct comparison of the relative intensities of the film peaks in
211 both samples, all the intensity values in each of the XRD scans are normalized to the intensity of
212 the Al_2O_3 0006 reflection. The XRD of $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ [$\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$] reveal four
213 film peaks at $2\theta = 14.36^\circ$ [14.36°], 28.94° [28.92°], 44.04° [43.98°], and 59.99° [59.94°]; the XRD
214 of $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ shows an additional peak at $2\theta = 77.26^\circ$, suggestive of highly oriented

215 growth. Based on the peak positions, in comparison with the expected 2θ values for bulk 2H and
216 3R phases of MoS_2 (see Table I in the SI), we identify the observed peaks as $000l$ reflections with
217 $l = 2, 4, 6, 8$, and 10 of 2H- MoS_2 , indicative of highly 0001-oriented growth. From the $000l$
218 reflection peak positions, we determine out-of-plane lattice parameters $c = 1.233 \pm 0.0002$ nm
219 [1.234 ± 0.0006 nm] for $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ [$\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$], which are 0.3% [0.4%]
220 larger than $c_o = 1.229$ nm, the value expected for bulk, stoichiometric 2H- MoS_2 .⁴ (Here, c is the
221 arithmetic average of the values extracted from each of the $000l$ peaks.) Figure 3b shows
222 asymmetric XRD $2\theta:\omega$ scans of the $10\bar{1}3$ reflection, with intensities plotted on a linear scale,
223 obtained from the two samples. We find $10\bar{1}3$ reflection peaks at $2\theta = 39.2^\circ$ [39.45°] for
224 $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ [$\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$], from which, using the c values measured from
225 symmetric XRD $2\theta:\omega$ scans (Fig. 3a), we determine in-plane lattice parameters a as $0.3197 \pm$
226 0.0009 nm [0.3168 ± 0.0005 nm] that are 1.2% [0.3%] larger than the in-plane lattice constant a_o
227 = 0.3160 nm of bulk, stoichiometric 2H- MoS_2 .⁴ Based on the measured lattice parameters, we
228 conclude that the MoS_x crystals on hBN/ $\text{Al}_2\text{O}_3(0001)$ are relatively less distorted compared to
229 those on $\text{Al}_2\text{O}_3(0001)$.

230 Figure 3c shows higher magnification plots of 2H- MoS_x 0002 reflection peaks around $2\theta = 14.4^\circ$
231 in the XRD data (Fig. 3a) from the two samples, superposed for comparison. For
232 $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$, 0002 reflection peak intensity is $3.6\times$ times higher than that observed for
233 $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$. FWHM of the MoS_x 0002 peaks are 0.56° [0.45°] for the $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$
234 [$\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$] samples. Furthermore, the XRD of $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ shows
235 satellite peaks around the MoS_x 0002 peak; these are Laue oscillations,³⁷ characteristic of highly
236 ordered crystalline thin films. From the positions of the satellite peaks, we estimate the film
237 thickness t_{film} as 19 ± 1 nm using the relation³⁷ $t_{film} = \frac{\lambda}{2(\sin \theta_i - \sin \theta_{i+1})}$, where $\lambda = 0.154056$ nm is the

238 X-ray wavelength and θ_i is the angle corresponding to the i^{th} satellite peak adjacent to the 0002
239 reflection peak. The calculated t_{film} value, as we show below, is in good agreement with the film
240 thickness measured from the XTEM images.

241 Figure 3d shows ω -rocking curves for the 2H-MoS_x 0002 reflections obtained from
242 MoS_x/Al₂O₃(0001) (black) and MoS_x/hBN/Al₂O₃(0001) (red), superposed with intensities plotted
243 on linear scale. We find $\sim 5 \times$ higher intensity and sharper peak for the MoS_x layers on
244 hBN/Al₂O₃(0001) compared to the peak from MoS_x/Al₂O₃(0001); FWHM of the peaks are 618
245 arcseconds [140 arcseconds] for MoS_x/Al₂O₃(0001) [MoS_x/hBN/Al₂O₃(0001)]. Our XRD data
246 clearly indicate that the MoS_x layers grown on hBN/Al₂O₃(0001) are of superior crystalline quality
247 compared to those deposited on bare Al₂O₃(0001).

248 Figure 4a is a typical bright field XTEM image of the MoS_x film deposited for $t = 1800$ s on
249 hBN/Al₂O₃(0001). We find that the film is ~ 20 nm thick with fairly smooth surface and interface,
250 consistent with the Laue oscillations observed in Fig. 3c. We observe lamellar structure within the
251 film and lattice fringes in the Al₂O₃(0001) substrate. (We do not however have any evidence of
252 the hBN layer at the interface.) As we show below, these lamellae are basal planes of MoS_x. While
253 most MoS_x(0001) layers are aligned nearly parallel to the interface, we find a few that appear
254 wavy, suggestive of relative misorientation along the growth direction. However, we do not see
255 any edge oriented growth, Type I texture,³⁸ where the basal planes are oriented normal to the
256 interface, over the entire film thickness.

257 Figures 4b and c are Fourier transforms (FT) of the film and substrate, respectively, obtained
258 from regions highlighted by red and green squares in Fig. 4a. The FT of the film (Fig. 4b) shows
259 a spot pattern that is characteristic of reciprocal space image of (0002) planes with [2̄1̄0] zone
260 axis (ZA) in a hexagonal lattice.³⁹ From the measured spot periodicity, we calculate an interplanar

261 spacing $d \approx 0.62$ nm, which is within measurement uncertainties the same as d_{0002} , i.e. $c = 2d_{0002}$
262 = 1.24 nm, of MoS_x . From the observed symmetry in the FT of the corundum-structured
263 $\text{Al}_2\text{O}_3(0001)$ (Fig. 4c), we determine the ZA to be $[2\bar{1}\bar{1}0]$. From these results, we conclude that the
264 wavy lamellae observed in the XTEM image are 0001 oriented MoS_x layers with the following
265 crystallographic orientation relationship: $(0001)_{\text{MoS}_2} \parallel (0001)_{\text{Al}_2\text{O}_3}$ and $[2\bar{1}\bar{1}0]_{\text{MoS}_2} \parallel [2\bar{1}\bar{1}0]_{\text{Al}_2\text{O}_3}$.

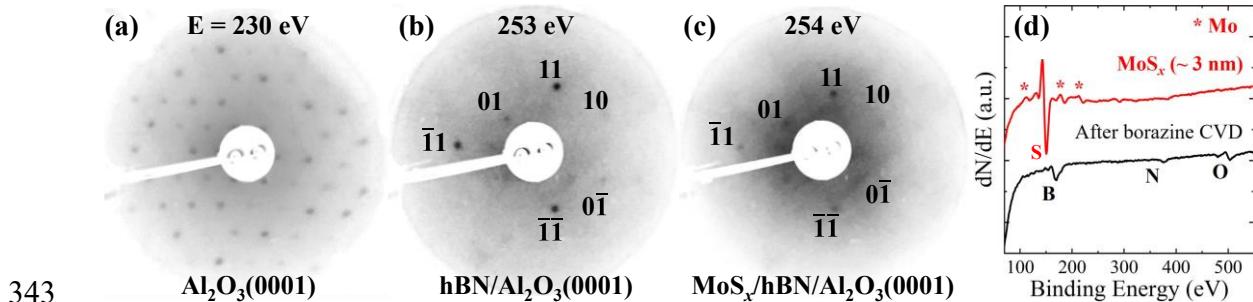
266 Figures 5a and b are representative Raman and resonant Raman (RR) spectra, respectively,
267 obtained from MoS_x films using 532 nm (2.33 eV) and 633 nm (1.96 eV) wavelength lasers. In
268 both the plots, black and red curves correspond to MoS_x layers on $\text{Al}_2\text{O}_3(0001)$ and on
269 hBN/ $\text{Al}_2\text{O}_3(0001)$, respectively. In Fig. 5a, we see peaks at 383 cm^{-1} and at 408 cm^{-1} for both the
270 samples; these peak positions are, respectively, comparable to the characteristic, first-order, in-
271 plane vibration mode, E_{2g}^1 ($382\text{--}383 \text{ cm}^{-1}$), and out-of-plane vibration mode, A_{1g} ($407\text{--}408 \text{ cm}^{-1}$),
272 of bulk, phase-pure 2H- MoS_2 .⁴⁰⁻⁴² FWHM of the E_{2g}^1 and A_{1g} mode peaks are, respectively, $\sim 5 \text{ cm}^{-1}$
273 and $\sim 4.4 \text{ cm}^{-1}$ [4.2 cm^{-1} and 3.9 cm^{-1}] for $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ [$\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$]. We note
274 that both the Raman peaks are sharper and of higher intensity for MoS_x layers on hBN/ $\text{Al}_2\text{O}_3(0001)$
275 than on $\text{Al}_2\text{O}_3(0001)$. Ratios of integrated intensities I of the two modes, $I_{A_{1g}}/I_{E_{2g}^1}$, are ~ 2.3 [2.5]
276 for $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ [$\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$]. (Here, I is calculated as the area under a given
277 peak.) The reduction in FWHM of the characteristic modes and an increase in $I_{A_{1g}}/I_{E_{2g}^1}$, observed
278 in $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ compared to $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$, are considered as indicators of
279 improvement in MoS_2 film crystallinity.⁴³

280 In Fig. 5b, we present RR spectra from the same set of samples. For the MoS_x layers on
281 $\text{Al}_2\text{O}_3(0001)$ [$\text{hBN}/\text{Al}_2\text{O}_3(0001)$], we find two characteristic peaks, E_{2g}^1 at $\sim 382 \text{ cm}^{-1}$ [384 cm^{-1}]
282 and A_{1g} at $\sim 412 \text{ cm}^{-1}$ [408 cm^{-1}], and multiple peaks at $\sim 179 \text{ cm}^{-1}$ [181 cm^{-1}], 460 cm^{-1} [464 cm^{-1}],

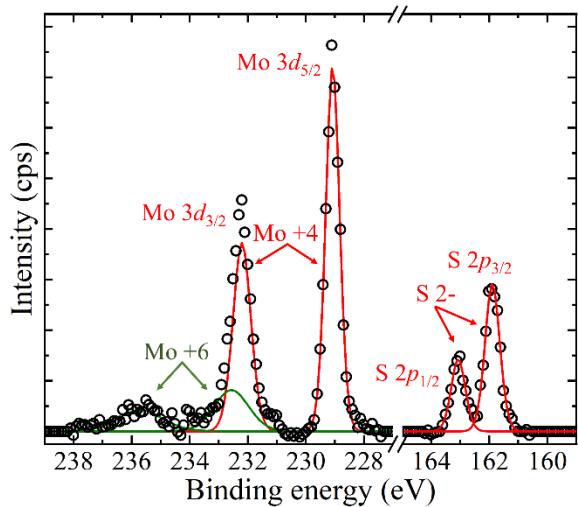
283 528 cm^{-1} [532 cm^{-1}], 568 cm^{-1} [570 cm^{-1}], 599 cm^{-1} [603 cm^{-1}], 640 cm^{-1} [642 cm^{-1}], and 820 cm^{-1} [824 cm^{-1}]. The observation of multiple peaks are a result of RR scattering, which occurs when the
284 laser excitation energy (1.96 eV for the 633 nm wavelength) matches the energy for an optical
285 transition in the material; in MoS_2 , the direct band gap is $\sim 1.96\text{ eV}$ at the K point in the Brillouin
286 zone.^{41,44} RR scattering results in higher signal intensities compared to those obtained with non-
287 resonant Raman and provides information about phonons that are away from the center of the
288 Brillouin zone, for example, near the zone boundary.⁴⁵ As a result, RR spectra are sensitive to
289 structural defects and disorder in the material. This is evident in our data (Fig. 5b), which shows
290 differences in peak positions for the MoS_x layers on $\text{Al}_2\text{O}_3(0001)$ compared to those on
291 hBN/ $\text{Al}_2\text{O}_3(0001)$; any such differences, if present in Fig. 5a data are not detectable.

293 The most intense and asymmetric peak seen in our RR spectra is at $\sim 460\text{ cm}^{-1}$ [464 cm^{-1}] for
294 $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ [$\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$]. This particular peak profile has been investigated
295 in earlier RR scattering studies.^{44,45} Frey *et al*⁴⁵ and Li *et al*⁴⁴ have interpreted the asymmetric
296 shape, observed in Raman spectra of bulk MoS_2 single crystal, as a convolution of two peaks – a
297 second-order peak from a longitudinal acoustic (LA) phonon at the M point on the zone boundary,
298 referred to as 2LA(M) at $\sim 454\text{ cm}^{-1}$, and a first-order optical phonon A_{2u} at $\sim 465\text{ cm}^{-1}$. From the
299 2LA(M) mode frequency, first-order LA(M) mode frequency is calculated to be 227 cm^{-1} .^{44,45} The
300 LA(M) phonon mode, analogous to the D peak of graphene, is reported to be sensitive to defects
301 and imperfections in the MoS_2 crystal lattice.⁴⁵⁻⁴⁷ Based on this information, we assign phonon
302 modes to each of the peaks observed in our RR spectra as follows: the peak at $\sim 460\text{ cm}^{-1}$ [464 cm^{-1}]
303 in case of $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$] is due to a combination of 2LA(M) + A_{2u} ; the peaks at $\sim 179\text{ cm}^{-1}$ [181 cm^{-1}], 640 cm^{-1} [642 cm^{-1}], and 820 cm^{-1} [824 cm^{-1}] can be assigned to the A_{1g} – LA(M),
304 A_{1g} + LA(M), and $2A_{1g}$ phonon modes, respectively;^{41,44,45} the peaks observed at $\sim 528\text{ cm}^{-1}$ [532

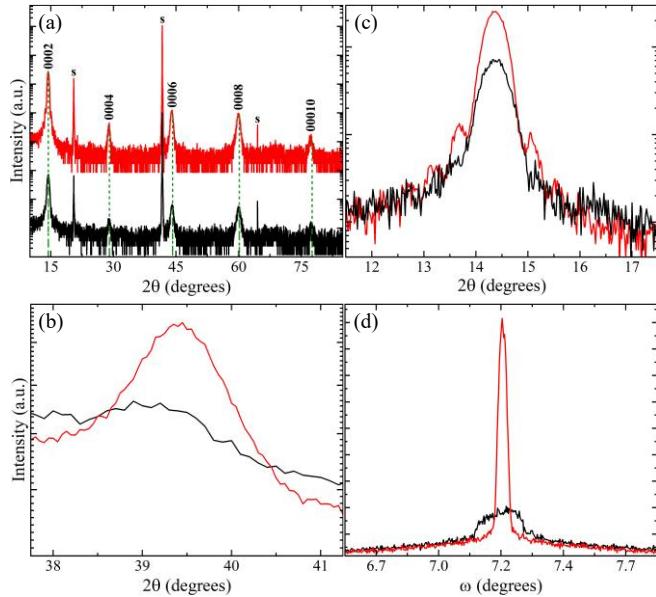
306 cm^{-1}], 568 cm^{-1} [570 cm^{-1}], and 599 cm^{-1} [603 cm^{-1}] can be assigned to the E_{1g} + LA(M), $2E_{1g}$, and
307 E_{2g}^1 + LA(M) phonon modes, respectively.^{41,45} (The E_{1g} mode, at ~ 285 cm^{-1} , is a first-order
308 characteristic Raman mode of MoS₂ that is forbidden in a backscattering Raman experiment and
309 hence we do not see it in our data.⁴⁵) Finally, we note the presence of defect-sensitive LA(M)
310 phonon mode peak at ~ 229 cm^{-1} , clearly visible in the RR spectra of the MoS_x/Al₂O₃(0001) (Fig.
311 5b, black curve). (This peak is also visible, however at lower intensities, in our Raman spectra
312 obtained using 532 nm wavelength laser.) The absence of this peak in the data from
313 MoS_x/hBN/Al₂O₃(0001) (Fig. 5b, red curve) suggests that the MoS_x layers on hBN/Al₂O₃(0001)
314 are of better crystal quality than on bare Al₂O₃(0001).


315 The difference in peak positions ($\Delta\omega$) of the E_{2g}^1 and A_{1g} first order modes of MoS₂ is used as a
316 measure of film thickness with $\Delta\omega$ around 25 cm^{-1} corresponding to bulk 2H-MoS₂.^{44,48} From Fig.
317 5a, we obtain $\Delta\omega = 25 \pm 1$ cm^{-1} for both sets of MoS_x films. From Fig. 5b, we measure $\Delta\omega = 26 \pm$
318 4 cm^{-1} [28 ± 4 cm^{-1}] for MoS_x/Al₂O₃(0001) [MoS_x/hBN/Al₂O₃(0001)]. The fact that $\Delta\omega \geq 25 \pm 1$
319 cm^{-1} implies that the MoS_x films are multilayer thick, as expected, and consistent with our XRD
320 and TEM measurements.

321 In summary, our XPS, XRD, TEM, and Raman spectroscopy results reveal that the as-deposited
322 MoS_x films are nearly stoichiometric, 0001-oriented, and with a relatively larger unit cell volume
323 compared to the bulk 2H-MoS₂. The XRD and Raman spectroscopy data show MoS_x films are
324 more highly ordered, with relatively less lattice distortions and fewer defects on hBN/Al₂O₃(0001)
325 than those on Al₂O₃(0001), indicating that hBN buffer layer improves the crystalline quality of
326 MoS_x layers. These results are qualitatively similar to those reported for the growth of Ta₂C films
327 on hBN/Al₂O₃(0001).³⁷ While the exact mechanisms leading to the observed enhancement in
328 crystal orientation and quality are not clear, we speculate that surface diffusion of adspecies during

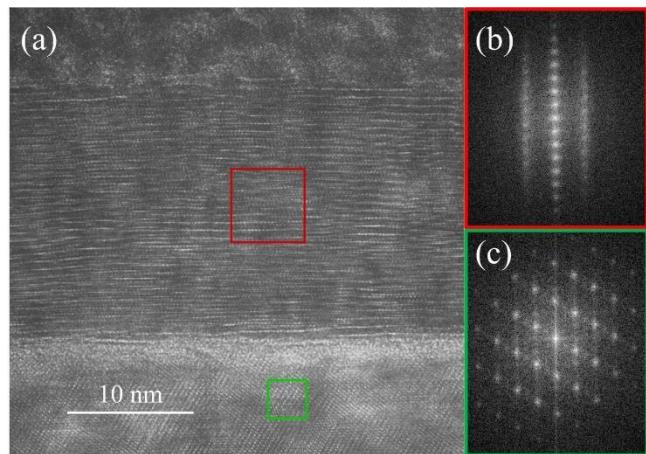

329 deposition is relatively easier on hBN surfaces due to the lack of dangling bonds than on
330 Al₂O₃(0001) surface. This is plausible and consistent with previous demonstrations of vdW epitaxy
331 by Koma and others.²²⁻²⁸

332 CONCLUSIONS

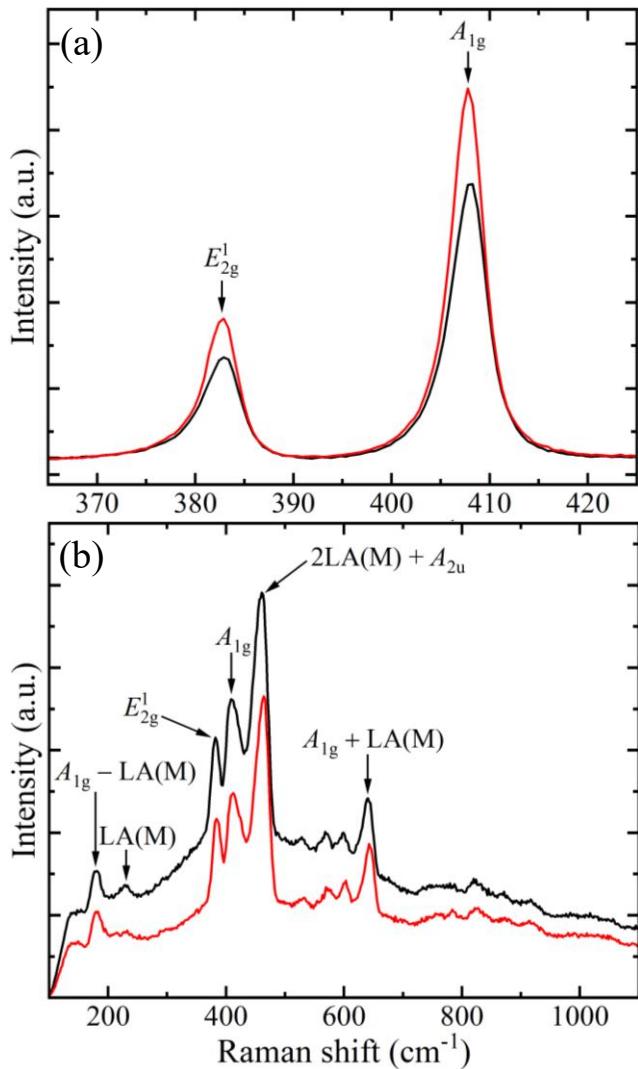

333 In conclusion, we have demonstrated the growth of highly oriented MoS_x layers ($x = 2.0 \pm 0.1$)
334 on single-crystalline Al₂O₃(0001) and on hBN-covered Al₂O₃(0001) substrates via reactive direct
335 current magnetron sputtering in H₂S/Ar gas mixture. Using *in situ* AES and LEED, we confirm
336 the formation of hBN on Al₂O₃(0001) and MoS_x on hBN. XPS, XRD, TEM, and Raman
337 spectroscopy measurements indicate formation of 0001-oriented 2H-MoS_x \approx 2 multilayered films
338 and an enhancement in film crystallinity when deposited on hBN/Al₂O₃(0001). We also find, using
339 Raman spectroscopy, the defect sensitive LA(M) Raman mode of MoS_x at \sim 229 cm⁻¹ observed for
340 MoS_x/Al₂O₃(0001) is suppressed in MoS_x/hBN/Al₂O₃(0001). We believe that our findings are of
341 interest in understanding the role of van der Waals materials in heteroepitaxy of crystalline solids.

342 **FIGURES**

344 **Figure 1.** *In-situ* room-temperature low-energy electron diffraction (LEED) patterns obtained
 345 using incident electron energies $E = 230$ eV, 253 eV, and 254 eV, respectively, from (a) bare
 346 $\text{Al}_2\text{O}_3(0001)$ substrate, (b) after exposure to 1.2×10^5 L of borazine at $T_s = 1373$ K, followed by
 347 (c) reactive sputter deposition of an ≈ 3 -nm-thick MoS_x film at $T_s = 1073$ K. Contrast in the images
 348 (b) and (c) has been enhanced to see the LEED spots better. (d) *In-situ* Auger electron spectroscopy
 349 (AES) data acquired from the same sample after borazine exposure (black curve) and subsequent
 350 MoS_x deposition (red curve).


358 **Figure 2.** X-ray photoelectron spectra (XPS) around Mo $3d$ and S $2p$ peaks obtained from an air-
 359 exposed, ≈ 20 -nm-thick, $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ film after Shirley background subtraction. Open
 360 circles are the raw data, red and green lines are Gaussian fits to MoS_x and MoO_3 peaks,
 361 respectively. From the data, we determine S/Mo ratio x to be 2.0 ± 0.1 .

362


363 **Figure 3.** (a-d) X-ray diffraction (XRD) measurements obtained from ≈ 20 -nm-thick MoS_x films
 364 sputter-deposited on bare $\text{Al}_2\text{O}_3(0001)$ (black curves) and $\text{hBN}/\text{Al}_2\text{O}_3(0001)$ (red curves) with
 365 intensities plotted on (a, c) logarithmic and (b, d) linear scales. (a) Symmetric $2\theta:\omega$ scans. \mathbf{s} refers
 366 to Al_2O_3 $000l$ reflections with $l = 3, 6$, and 9 at progressively increasing 2θ values. Peaks due to
 367 the film are labeled as shown. Dotted green lines highlight the expected peak positions of
 368 stoichiometric 2H- MoS_2 phase.⁴ (b) Asymmetric $2\theta:\omega$ scans acquired around the MoS_2 $10\bar{1}3$
 369 reflections from the same set of samples at $2\theta = 39.2^\circ$ for $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$ and $2\theta = 39.45^\circ$ for
 370 $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ samples. (c) Magnified view of a portion of the XRD data around MoS_2
 371 0002 reflection ($2\theta = 14.36^\circ$) in (a) from both the samples superposed for comparison. Fringes
 372 around the 0002 peak in the red curve are Laue oscillations. (d) ω -rocking curves for the MoS_2
 373 0002 reflections with $\theta = 7.18^\circ$ in the two samples.

374

375

376 **Figure 4.** (a) Typical cross-sectional transmission electron microscopy (XTEM) image from a
377 $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ sample showing region around the substrate-film interface. (b, c) Fourier
378 transforms of the regions within the film and the substrate, highlighted by (b) red and (c) green
379 squares, respectively.

381 **Figure 5.** Characteristic Raman spectra obtained from $MoS_x/Al_2O_3(0001)$ (black curve) and
 382 $MoS_x/hBN/Al_2O_3(0001)$ (red curve) samples using (a) 532 nm and (b) 633 nm wavelength laser
 383 excitations. In both plots, peak intensities are absolute and the data are plotted as obtained without
 384 any lateral or vertical translations. First order modes – E_{2g}^1 (~ 383 cm^{-1}) and A_{1g} (~ 408 cm^{-1}) are
 385 seen in both the plots. However, second order modes enhanced by resonant Raman scattering A_{1g}
 386 $\pm LA(M)$, $2LA(M) + A_{2u}$ are observed only in (b). The $LA(M)$ mode at ~ 229 cm^{-1} , associated with
 387 defects, is observed in the Raman spectra from $MoS_x/Al_2O_3(0001)$ sample but not in the film grown
 388 on $hBN/Al_2O_3(0001)$.

389 **ASSOCIATED CONTENT**

390 **Supporting Information**

391 Comparison of XRD peak positions (2θ values in degrees) for symmetric $000l$ reflections
392 obtained from our samples – $\text{MoS}_x/\text{Al}_2\text{O}_3(0001)$, $\text{MoS}_x/\text{hBN}/\text{Al}_2\text{O}_3(0001)$ with 2θ values for bulk,
393 phase pure, 2H- and 3R- MoS_2 . Details on indexing of low energy electron diffraction patterns.

394 **NOTES**

395 The authors declare no competing financial interests.

396 **ACKNOWLEDGEMENTS**

397 We gratefully acknowledge support from the Air Force Office of Scientific Research (AFOSR,
398 Dr. Ali Sayir) under Grant # FA9550-141-0106, FA9550-18-1-0050 and, FA9550-462 20-1-0184.
399 We thank the Office of Naval Research (Dr. Chagaan Baatar) for the funds received under Grant
400 # N00014-12-1-0518 that were used to build the UHV deposition system. SK thanks the National
401 Science Foundation (NSF) for DMR Award 2211350 (Dr. James Edgar). KT is supported by the
402 Japanese Student Service Organization (L1611111026) and the UCLA Department of Materials
403 Science and Engineering for his doctoral study in the United States. KH is supported by the Japan
404 US Advanced Collaborative Education Program (JUACEP). We thank Professor Abby Kavner for
405 allowing us to use their Raman spectroscopy system and Jan Tesar for acquiring a few of the
406 Raman scans. We thank Mr. Noah Bodzin and the Nanoelectronics Research Facility in the UCLA
407 Henry Samueli School of Engineering for assistance with focused ion beam milling. The authors
408 acknowledge the use of facilities and instrumentation at the UC Irvine Materials Research Institute

409 (IMRI), which is supported in part by the National Science Foundation through the UC Irvine
410 Materials Research Science and Engineering Center (DMR-2011967).

411 **REFERENCES**

- 412 (1) Jellinek, F.; Brauer, G.; Muller, H. Molybdenum and Niobium Sulphides. *Nature* **1960**, *185*
413 (4710), 376–377. <https://doi.org/10.1038/185376a0>.
- 414 (2) Dickinson, R. G.; Pauling, L. The Crystal Structure of Molybdenite. *J. Am. Chem. Soc.*
415 **1923**, *45* (6), 1466–1471. <https://doi.org/10.1021/ja01659a020>.
- 416 (3) Schönfeld, B.; Huang, J. J.; Moss, S. C. Anisotropic Mean-square Displacements (MSD) in
417 Single-crystals of 2H- and 3R-MoS₂. *Acta Crystallogr. Sect. B* **1983**, *39* (4), 404–407.
418 <https://doi.org/10.1107/S0108768183002645>.
- 419 (4) Bronsema, K. D.; De Boer, J. L.; Jellinek, F. On the Structure of Molybdenum Diselenide
420 and Disulfide. *ZAAC - J. Inorg. Gen. Chem.* **1986**, *540* (9–10), 15–17.
421 <https://doi.org/10.1002/zaac.19865400904>.
- 422 (5) Strachan, J.; Masters, A. F.; Maschmeyer, T. 3R-MoS₂ in Review: History, Status, and
423 Outlook. *ACS Appl. Energy Mater.* **2021**, *4* (8), 7405–7418.
424 <https://doi.org/10.1021/acsaem.1c00638>.
- 425 (6) Kam, K. K.; Parkinson, B. A. Detailed Photocurrent Spectroscopy of the Semiconducting
426 Group VI Transition Metal Dichalcogenides. *J. Phys. Chem.* **1982**, *86* (4), 463–467.
427 <https://doi.org/10.1021/j100393a010>.
- 428 (7) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS₂: A New Direct-

- 429 Gap Semiconductor. *Phys. Rev. Lett.* **2010**, 105 (13), 2–5.
430 <https://doi.org/10.1103/PhysRevLett.105.136805>.
- 431 (8) Elias, C.; Valvin, P.; Pelini, T.; Summerfield, A.; Mellor, C. J.; Cheng, T. S.; Eaves, L.;
432 Foxon, C. T.; Beton, P. H.; Novikov, S. V.; Gil, B.; Cassabois, G. Direct Band-Gap
433 Crossover in Epitaxial Monolayer Boron Nitride. *Nat. Commun.* **2019**, *10* (1), 1–7.
434 <https://doi.org/10.1038/s41467-019-10610-5>.
- 435 (9) Paszkowicz, W.; Pelka, J. B.; Knapp, M.; Szyszko, T.; Podsiadlo, S. Lattice Parameters and
436 Anisotropic Thermal Expansion of Hexagonal Boron Nitride in the 10–297.5 K Temperature
437 Range. *Appl. Phys. A Mater. Sci. Process.* **2002**, *75* (3), 431–435.
438 <https://doi.org/10.1007/s003390100999>.
- 439 (10) Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and van
440 Der Waals Heterostructures. *Science* **2016**, *353* (6298), aac9439.
441 <https://doi.org/10.1126/science.aac9439>.
- 442 (11) Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H. C.; Huang, Y.; Duan, X. Van Der Waals
443 Heterostructures and Devices. *Nat. Rev. Mater.* **2016**, *1* (9).
444 <https://doi.org/10.1038/natrevmats.2016.42>.
- 445 (12) Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. *Nature* **2013**, *499* (7459),
446 419–425. <https://doi.org/10.1038/nature12385>.
- 447 (13) Ajayan, P.; Kim, P.; Banerjee, K. Two-Dimensional van Der Waals Materials. *Phys. Today*
448 **2016**, *69* (9), 38–44. <https://doi.org/10.1063/PT.3.3297>.
- 449 (14) Liu, X.; Hersam, M. C. 2D Materials for Quantum Information Science. *Nat. Rev. Mater.*

450 2019, 4 (10), 669–684. <https://doi.org/10.1038/s41578-019-0136-x>.

451 (15) He, F.; Zhou, Y.; Ye, Z.; Cho, S.-H.; Jeong, J.; Meng, X.; Wang, Y. Moiré Patterns in 2D
452 Materials: A Review. *ACS Nano* 2021, 15 (4), 5944–5958.
453 <https://doi.org/10.1021/acsnano.0c10435>.

454 (16) Shi, Y.; Zhou, W.; Lu, A. Y.; Fang, W.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.;
455 Yang, H. Y.; Li, L. J.; Idrobo, J. C.; Kong, J. Van Der Waals Epitaxy of MoS₂ Layers
456 Using Graphene as Growth Templates. *Nano Lett.* 2012, 12 (6), 2784–2791.
457 <https://doi.org/10.1021/nl204562j>.

458 (17) McCreary, K. M.; Hanbicki, A. T.; Robinson, J. T.; Cobas, E.; Culbertson, J. C.; Friedman,
459 A. L.; Jernigan, G. G.; Jonker, B. T. Large-Area Synthesis of Continuous and Uniform
460 MoS₂ Monolayer Films on Graphene. *Adv. Funct. Mater.* 2014, 24 (41), 6449–6454.
461 <https://doi.org/10.1002/adfm.201401511>.

462 (18) Wang, S.; Wang, X.; Warner, J. H. All Chemical Vapor Deposition Growth of MoS₂:H-BN
463 Vertical van Der Waals Heterostructures. *ACS Nano* 2015, 9 (5), 5246–5254.
464 <https://doi.org/10.1021/acsnano.5b00655>.

465 (19) Miwa, J. A.; Dendzik, M.; Grønborg, S. S.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P.;
466 Ulstrup, S. Van Der Waals Epitaxy of Two-Dimensional MoS₂-Graphene Heterostructures
467 in Ultrahigh Vacuum. *ACS Nano* 2015, 9 (6), 6502–6510.
468 <https://doi.org/10.1021/acsnano.5b02345>.

469 (20) Fu, L.; Fu, L.; Sun, Y.; Wu, N.; Mendes, R. G.; Chen, L.; Xu, Z.; Zhang, T.; Rümmeli, M.
470 H.; Rellinghaus, B.; Pohl, D.; Zhuang, L. Direct Growth of MoS₂/h-BN Heterostructures

- 471 via a Sulfide-Resistant Alloy. *ACS Nano* **2016**, *10* (2), 2063–2070.
472 <https://doi.org/10.1021/acsnano.5b06254>.
- 473 (21) Xin, W.; Severino, J.; De Rosa, I. M.; Yu, D.; Mckay, J.; Ye, P.; Yin, X.; Yang, J.-M.;
474 Carlson, L.; Kodambaka, S. One-Step Synthesis of Tunable-Size Gold Nanoplates on
475 Graphene Multilayers. *Nano Lett.* **2018**, *18* (3), 1875–1881.
476 <https://doi.org/10.1021/acs.nanolett.7b05173>.
- 477 (22) Koma, A.; Sunouchi, K.; Miyajima, T. Fabrication and Characterization of Heterostructures
478 with Subnanometer Thickness. *Microelectron. Eng.* **1984**, *2* (1–3), 129–136.
479 [https://doi.org/10.1016/0167-9317\(84\)90057-1](https://doi.org/10.1016/0167-9317(84)90057-1).
- 480 (23) Koma, A.; Yoshimura, K. Ultrasharp Interfaces Grown with Van Der Waals Epitaxy. *Surf.*
481 *Sci.* **1986**, *174* (1–3), 556–560. [https://doi.org/10.1016/0039-6028\(86\)90471-1](https://doi.org/10.1016/0039-6028(86)90471-1).
- 482 (24) Saiki, K.; Ueno, K.; Shimada, T.; Koma, A. Application of Van Der Waals Epitaxy to
483 Highly Heterogeneous Systems. *J. Cryst. Growth* **1989**, *95* (1–4), 603–606.
484 [https://doi.org/10.1016/0022-0248\(89\)90475-2](https://doi.org/10.1016/0022-0248(89)90475-2).
- 485 (25) Ohuchi, F. S.; Parkinson, B. A.; Ueno, K.; Koma, A. Van Der Waals Epitaxial Growth and
486 Characterization of MoSe₂ Thin Films on SnS₂. *J. Appl. Phys.* **1990**, *68* (5), 2168–2175.
487 <https://doi.org/10.1063/1.346574>.
- 488 (26) Koma, A. Van Der Waals Epitaxy—a New Epitaxial Growth Method for a Highly Lattice-
489 Mismatched System. *Thin Solid Films* **1992**, *216* (1), 72–76. [https://doi.org/10.1016/0040-6090\(92\)90872-9](https://doi.org/10.1016/0040-6090(92)90872-9).
- 491 (27) Löher, T.; Ueno, K.; Koma, A. Van Der Waals Type Buffer Layers: Epitaxial Growth of

- 492 the Large Lattice Mismatch System CdS/InSe/H–Si(111). *Appl. Surf. Sci.* **1998**, *130*–*132*,
493 334–339. [https://doi.org/10.1016/S0169-4332\(98\)00080-4](https://doi.org/10.1016/S0169-4332(98)00080-4).
- 494 (28) Koma, A. Van Der Waals Epitaxy for Highly Lattice-Mismatched Systems. *J. Cryst.*
495 *Growth* **1999**, *201*–*202*, 236–241. [https://doi.org/10.1016/S0022-0248\(98\)01329-3](https://doi.org/10.1016/S0022-0248(98)01329-3).
- 496 (29) Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.;
497 Heidelberger, C.; Kong, W.; Choi, S.; Qiao, K.; Almansouri, I.; Fitzgerald, E. A.; Kong, J.;
498 Kolpak, A. M.; Hwang, J.; Kim, J. Remote Epitaxy through Graphene Enables Two-
499 Dimensional Material-Based Layer Transfer. *Nature* **2017**, *544* (7650), 340–343.
500 <https://doi.org/10.1038/nature22053>.
- 501 (30) Kong, W.; Li, H.; Qiao, K.; Kim, Y.; Lee, K.; Nie, Y.; Lee, D.; Osadchy, T.; Molnar, R. J.;
502 Gaskill, D. K.; Myers-Ward, R. L.; Daniels, K. M.; Zhang, Y.; Sundram, S.; Yu, Y.; Bae,
503 S. hoon; Rajan, S.; Shao-Horn, Y.; Cho, K.; Ougazzaden, A.; Grossman, J. C.; Kim, J.
504 Polarity Governs Atomic Interaction through Two-Dimensional Materials. *Nat. Mater.*
505 **2018**, *17* (11), 999–1004. <https://doi.org/10.1038/s41563-018-0176-4>.
- 506 (31) Lin, Y. C.; Lu, N.; Perea-Lopez, N.; Li, J.; Lin, Z.; Peng, X.; Lee, C. H.; Sun, C.; Calderin,
507 L.; Browning, P. N.; Bresnahan, M. S.; Kim, M. J.; Mayer, T. S.; Terrones, M.; Robinson,
508 J. A. Direct Synthesis of van Der Waals Solids. *ACS Nano* **2014**, *8* (4), 3715–3723.
509 <https://doi.org/10.1021/nn5003858>.
- 510 (32) Aleman, A.; Li, C.; Zaid, H.; Kindlund, H.; Fankhauser, J.; Prikhodko, S. V.; Goorsky, M.
511 S.; Kodambaka, S. Ultrahigh Vacuum Dc Magnetron Sputter-Deposition of Epitaxial
512 Pd(111)/Al₂O₃ (0001) Thin Films. *J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.* **2018**,

- 513 36 (3), 030602. <https://doi.org/10.1116/1.5021609>.
- 514 (33) Tanaka, K.; Fankhauser, J.; Zaid, H.; Aleman, A.; Sato, M.; Yu, D.; Ebnonnasir, A.; Li, C.;
515 Kobashi, M.; Goorsky, M. S.; Kodambaka, S. Kinetics of Zr-Al Intermetallic Compound
516 Formation during Ultra-High Vacuum Magnetron Sputter-Deposition of Zr/Al₂O₃(0001)
517 Thin Films. *Acta Mater.* **2018**, *152*, 34–40. <https://doi.org/10.1016/j.actamat.2018.04.018>.
- 518 (34) Tanaka, K.; Aleman, A.; Liao, M. E.; Wang, Y.; Goorsky, M. S.; Kodambaka, S. Effects of
519 Ultra-Low Ethylene Partial Pressure on Microstructure and Composition of Reactively
520 Sputter-Deposited Ta–C Thin Films. *Thin Solid Films* **2019**, *688* (July), 137440.
521 <https://doi.org/10.1016/j.tsf.2019.137440>.
- 522 (35) *NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of*
523 *Standards and Technology, Gaithersburg, 2012).* <http://srdata.nist.gov/xps/>.
524 <https://doi.org/10.18434/T4T88K>.
- 525 (36) Tanaka, K.; Aleman, A.; Zaid, H.; Liao, M. E.; Hojo, K.; Wang, Y.; Goorsky, M. S.;
526 Kodambaka, S. Ultra-High Vacuum Dc Magnetron Sputter-Deposition of 0001-Textured
527 Trigonal α -Ta₂C/Al₂O₃(0001) Thin Films. *Materialia* **2020**, *13*, 100838.
528 <https://doi.org/10.1016/j.mtla.2020.100838>.
- 529 (37) Tanaka, K.; Arias, P.; Hojo, K.; Liao, M. E.; Aleman, A.; Zaid, H.; Goorsky, M. S.;
530 Kodambaka, S. Synergistic van Der Waals Epitaxy and Remote Epitaxy : An Approach to
531 Superior Quality Crystal Growth (to Be Published).
- 532 (38) Moser, J.; Liao, H.; Levy, F. Texture Characterisation of Sputtered MoS₂ Thin Films by
533 Cross-Sectional TEM Analysis. *J. Phys. D. Appl. Phys.* **1990**, *23* (5), 624–626.

- 534 https://doi.org/10.1088/0022-3727/23/5/026.
- 535 (39) Williams, D. B.; Carter, C. B. Obtaining and Indexing Parallel-Beam Diffraction Patterns.
536 In *Transmission Electron Microscopy*; Springer US: Boston, MA, 2009; pp 283–309.
537 https://doi.org/10.1007/978-0-387-76501-3_18.
- 538 (40) Lee, J. U.; Kim, K.; Han, S.; Ryu, G. H.; Lee, Z.; Cheong, H. Raman Signatures of
539 Polytypism in Molybdenum Disulfide. *ACS Nano* **2016**, *10* (2), 1948–1953.
540 https://doi.org/10.1021/acsnano.5b05831.
- 541 (41) Windom, B. C.; Sawyer, W. G.; Hahn, D. W. A Raman Spectroscopic Study of MoS₂ and
542 MoO₃: Applications to Tribological Systems. *Tribol. Lett.* **2011**, *42* (3), 301–310.
543 https://doi.org/10.1007/s11249-011-9774-x.
- 544 (42) Verble, J. L.; Wieting, T. J. Lattice Mode Degeneracy in MoS₂ and Other Layer
545 Compounds. *Phys. Rev. Lett.* **1970**, *25* (6), 362–365.
546 https://doi.org/10.1103/PhysRevLett.25.362.
- 547 (43) McDevitt, N. T.; Zabinski, J. S.; Donley, M. S. The Use of Raman Scattering to Study
548 Disorder in Pulsed Laser Deposited MoS₂ Films. *Thin Solid Films* **1994**, *240* (1–2), 76–81.
549 https://doi.org/10.1016/0040-6090(94)90698-X.
- 550 (44) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D.
551 From Bulk to Monolayer MoS₂: Evolution of Raman Scattering. *Adv. Funct. Mater.* **2012**,
552 *22* (7), 1385–1390. https://doi.org/10.1002/adfm.201102111.
- 553 (45) Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G. Raman and
554 Resonance Raman Investigation of MoS₂ Nanoparticles. *Phys. Rev. B - Condens. Matter*

- 555 *Mater. Phys.* **1999**, *60* (4), 2883–2892. <https://doi.org/10.1103/PhysRevB.60.2883>.
- 556 (46) McDevitt, N. T.; Zabinski, J. S.; Donley, M. S.; Bultman, J. E. Disorder-Induced Low-
557 Frequency Raman Band Observed in Deposited MoS₂ Films. *Appl. Spectrosc.* **1994**, *48*
558 (6), 733–736. <https://doi.org/10.1366/000370294774369063>.
- 559 (47) Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.;
560 Richards, D.; Roy, D. Effect of Disorder on Raman Scattering of Single-Layer MoS₂. *Phys.*
561 *Rev. B - Condens. Matter Mater. Phys.* **2015**, *91* (19), 1–7.
562 <https://doi.org/10.1103/PhysRevB.91.195411>.
- 563 (48) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations
564 of Single- and Few-Layer MoS₂. *ACS Nano* **2010**, *4* (5), 2695–2700.
565 <https://doi.org/10.1021/nn1003937>.
- 566 (49) Arias, P.; Ebnnnasir, A.; Ciobanu, C. V.; Kodambaka, S. Growth Kinetics of Two-
567 Dimensional Hexagonal Boron Nitride Layers on Pd(111). *Nano Lett.* **2020**, *20* (4), 2886–
568 2891. <https://doi.org/10.1021/acs.nanolett.0c00704>.
- 569 (50) Arias, P.; Abdulslam, A.; Ebnnnasir, A.; Ciobanu, C. V.; Kodambaka, S. Bifurcation and
570 Orientation-Dependence of Corrugation of 2D Hexagonal Boron Nitride on Palladium. *2D*
571 *Mater.* **2018**, *5* (4), 045001. <https://doi.org/10.1088/2053-1583/aacd71>.
- 572 (51) Stock, A.; Pohland, E. Borwasserstoffe, IX.: B₃N₃H₆. *Ber. dtsch. Chem. Ges. A/B* **1926**,
573 *59* (9), 2215–2223. <https://doi.org/10.1002/cber.19260590907>.
- 574 (52) Baker, M. .; Gilmore, R.; Lenardi, C.; Gissler, W. XPS Investigation of Preferential
575 Sputtering of S from MoS₂ and Determination of MoS_x Stoichiometry from Mo and S Peak

- 576 Positions. *Appl. Surf. Sci.* **1999**, *150* (1–4), 255–262. [https://doi.org/10.1016/S0169-4332\(99\)00253-6](https://doi.org/10.1016/S0169-4332(99)00253-6).

577

578 (53) Greczynski, G.; Kindlund, H.; Petrov, I.; Greene, J.; Hultman, L. Sputter-Cleaned Epitaxial
579 V_xMo(1-x)Ny/MgO(001) Thin Films Analyzed by X-Ray Photoelectron Spectroscopy: 2.
580 Single-Crystal V0.47Mo0.53N0.92. *Surf. Sci. Spectra* **2013**, *20* (1), 74–79.
581 <https://doi.org/10.1116/11.20130601>.

582 (54) Greczynski, G.; Kindlund, H.; Petrov, I.; Greene, J.; Hultman, L. Sputter-Cleaned Epitaxial
583 V_xMo(1-x)Ny/MgO(001) Thin Films Analyzed by X-Ray Photoelectron Spectroscopy: 3.
584 Polycrystalline V0.49Mo0.51N1.02. *Surf. Sci. Spectra* **2013**, *20* (1), 80–85.
585 <https://doi.org/10.1116/11.20130602>.

586 (55) Greczynski, G.; Kindlund, H.; Petrov, I.; Greene, J.; Hultman, L. Sputter-Cleaned Epitaxial
587 V_xMo(1-x)Ny/MgO(001) Thin Films Analyzed by X-Ray Photoelectron Spectroscopy: 1.
588 Single-Crystal V0.48Mo0.52N0.64. *Surf. Sci. Spectra* **2013**, *20* (1), 68–73.
589 <https://doi.org/10.1116/11.20130301>.

590 (56) Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.;
591 Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; Morgan, D.; Baltrusaitis, J.
592 Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron
593 Spectroscopy. *Appl. Surf. Sci. Sci. Adv.* **2021**, *5*, 100112.
594 <https://doi.org/10.1016/j.apsadv.2021.100112>.

595 (57) Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of
596 Gold. *Phys. Rev. B* **1972**, *5* (12), 4709–4714. <https://doi.org/10.1103/PhysRevB.5.4709>.

597 (58) Yan, R.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.;
598 Hight Walker, A. R.; Xing, H. G. Thermal Conductivity of Monolayer Molybdenum
599 Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. *ACS Nano* **2014**, *8*
600 (1), 986–993. <https://doi.org/10.1021/nn405826k>.

601 (59) Wang, Y.; Cong, C.; Qiu, C.; Yu, T. Raman Spectroscopy Study of Lattice Vibration and
602 Crystallographic Orientation of Monolayer MoS₂ under Uniaxial Strain. *Small* **2013**, *9*
603 (17), 2857–2861. <https://doi.org/10.1002/smll.201202876>.

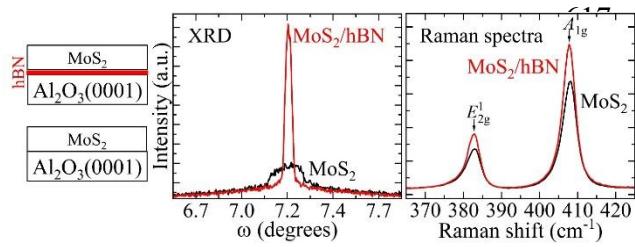
604 (60) Chakraborty, B.; Matte, H. S. S. R.; Sood, A. K.; Rao, C. N. R. Layer-Dependent Resonant
605 Raman Scattering of a Few Layer MoS₂. *J. Raman Spectrosc.* **2013**, *44* (1), 92–96.
606 <https://doi.org/10.1002/jrs.4147>.

607

608

609

610


611

612

613

614

615

