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Abstract

To improve the efficiency of wave farms and achieve maximum power generation, the layout of wave energy
converters (WECs) in an array needs to be carefully designed so that the hydrodynamic interactions can be
positively exploited. For this, the hydrodynamic characteristics of the WEC array in different layouts need
to be calculated. However, such calculations using numerical models usually entail significant computational
cost, especially for large arrays of WECs. To address the computational challenge, a physics-constrained
Gaussian process (GP) model is proposed to replace the original expensive numerical model and predict the
hydrodynamic characteristics of the WECs for any array layout. By exploring the relationship between the
WEC array (i.e., the input) and different hydrodynamic characteristics (i.e., the output), we summarize a set
of physical constraints/features, including invariance, symmetry, and additivity. This prior knowledge about
the input-output relationship is then directly embedded in the constructed GP model through the design of
physics-constrained kernels. In particular, a double-sum invariant kernel is first developed to incorporate the
invariance and symmetry features, and then an additive kernel is developed to incorporate the additive feature
of the problem. The invariant kernel and the additive kernel are then integrated to construct the physics-
constrained GP model. Compared to the standard GP model, the proposed physics-constrained GP models
require less training data to achieve the desired accuracy in predicting the hydrodynamic characteristics and
are also less vulnerable to the curse of dimensionality (i.e., good scalability for large arrays) due to the use
of an additive kernel. The efficiency, accuracy, and scalability of the proposed approach are demonstrated
through an application to predict the hydrodynamic characteristics for WEC arrays of different sizes and
layouts.

Keywords: Wave energy converters, Hydrodynamic characteristics, Physical constraints, Gaussian process

model, Kernel design

1. Introduction

According to the U.S. Department of Energy, the estimated total renewable wave energy resource in

the United States has the potential to power more than 100 million homes each year [1]. The deployment
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of wave energy converters (WECs) in large-scale arrays, also known as wave farms, offers great prospects
for harnessing such renewable wave energy and facilitating electrical power transmission. Unlike the single-
WEC configuration, a wave farm typically involves complex physical laws (i.e., WECs interact with scattered
and radiated waves), and the hydrodynamic interactions between neighboring WECs could have a significant
impact on the total power generation of the wave farm. By arranging the positions of WECs in array properly,
the total power generation can be greater than the power generated by the same number of isolated devices
[2, 3]. In order to improve the efficiency of wave farms and achieve maximum power generation, the layout
of WECs needs to be carefully designed so that the hydrodynamic interactions can be positively exploited.
Therefore, hydrodynamic modeling has drawn extensive attention in this field.

Most previous research on modeling hydrodynamic interaction has been conducted based on linear po-
tential flow theory [4], and various numerical methods have been proposed within this context for calculating
hydrodynamic interactions within arrays of WECs [5]. The main methods can be classified into two classes:
(i) analytical or semi-analytical methods, such as point-absorber approximation [6], plane-wave approxima-
tion [7], and the multi-scattering method [8]; and (ii) numerical methods, such as the boundary element
method and finite element method. However, if high accuracy is desired, the computational efforts may still
be burdensome, especially when the number of WECs is large and higher-fidelity models are used. Moreover,
additional challenges also arise when dealing with problems such as uncertainty quantification and design
optimization, which typically require a large number of model evaluations.

To address the above computational challenges, this paper proposes a surrogate-model-based approach
for predicting hydrodynamic interactions between WECs. Surrogate models have been extensively used to
approximate the input-output relationship for computationally expensive models in various disciplines. They
are trained using a data-driven approach, and the training data are obtained by evaluating the expensive
models over a number of input points. The computational efficiency of surrogate models is greatly increased.
Therefore, once trained, the original expensive models can be replaced by the surrogate models for subsequent
analysis and design where repeated model evaluations are needed. Among various surrogate models proposed
in the literature, the Gaussian process (GP) model [9, 10] has been gaining popularity due to its flexibility
in modeling complex functions and its ability to provide closed-form predictive distributions. Therefore, this
paper will focus on the GP model.

The application of surrogate models, or more generally machine learning models, has been explored by
researchers in the field of wave energy converters. A kriging surrogate model based approach was proposed
n [11], based on which the layout design of arrays with different number of WECs was performed with high
efficiency. Neshat et al. [12] proposed an adaptive neuro-surrogate-based approach for achieving optimal
placement of wave energy converters, where the total wave farm energy was predicted by a trained recurrent
neural network in stead of calculated using time-consuming computation. However, the effectiveness and
efficiency of these approaches were demonstrated through application in arrays with limited/small number

of WECs (e.g., 5 buoys in [11] and 16 buoys in [12]), and their scalability to larger arrays may still need



to be investigated. Sarkar et al. [13] introduced a machine learning based method for the optimization of
large-scale arrays with oscillating wave surge converters. By decomposing the whole array into small clusters
and approximating the performance of the clusters using Gaussian process regression, the proposed approach
is able to efficiently optimize large arrays. However, the trade-off for scalability of this approach is to restrict
the hydrodynamic interaction between the nearest neighbors of WECs. Overall, these surrogate based meth-
ods focus on directly predicting power output of the wave energy converter arrays, while an alternative option
is to predict the intermediate variable (e.g., hydrodynamic interactions) and compute the power generation
by using the predicted hydrodynamic interactions [14]. The latter option may offer the benefit of construct-
ing more accurate surrogate models with less training data since the underlying input-output relationship
is expected to be less complex than the former option. To the authors’ best knowledge, little research has
investigated the prediction of hydrodynamic interactions using surrogate models. The main difficulties are
twofold. First, the standard way of building a surrogate model fails to incorporate available prior physical
knowledge about the problem or input-output relationship. The direct surrogate modeling option is to take
the layout of a WEC array (i.e., represented by a vector consisting of the coordinates of the WECs) as the
model input, and the hydrodynamic characteristics as the model output. However, the hydrodynamic char-
acteristics could be permutation-invariant with respect to the ordering of the WECs given an array layout,
or they could be symmetric with respect to the axes. In addition, the WEC interaction problem is similar to
the classical many-body interaction problem [14], and the hydrodynamic characteristics can demonstrate the
additivity feature. Directly taking the coordinates as inputs and applying commonly used product kernels
for training the GP model cannot incorporate prior knowledge into the surrogate modeling. Instead, these
features (i.e., invariance, symmetry, and additivity) can only be learned by a large number of training data
if directly using the common way to train the surrogate models. However, a lot of times obtaining many
training data for the hydrodynamic characteristics is impractical due to the high computational cost of run-
ning expensive models (e.g., MS solver or boundary element models). The limited training data typically
will lead to lower prediction accuracy and generalization ability of the established surrogate model. Second,
as the size of the WEC array increases, there are additional challenges in constructing a surrogate model
that stem from the increased input dimension, which typically requires more training data to obtain the
desired prediction accuracy (i.e., suffering from curse of dimensionality). However, the computational effort
to calculate the hydrodynamic characteristics typically increases significantly with the number of the WECs,
which means obtaining training data is more costly. In the end, building surrogate models for prediction of
hydrodynamic characteristics becomes a challenging task. To tackle these issues, the most related research
is in [14]. They proposed a surrogate-model-based approach to predict the hydrodynamic characteristics
of multiple bodies through a hierarchical interaction decomposition method. The key idea is to decompose
hydrodynamic characteristics into contributions from clusters with fewer bodies, and then separately build
lower-order surrogate models for these components/clusters instead of the total response. This mitigates

the curse of dimensionality of surrogate modeling. In addition, by carefully designing the model input ac-



cording to the input-output relationship, these lower-order surrogate models can include the invariance and
symmetry principles. Overall, this approach successfully addressed the challenges in surrogate modeling for
hydrodynamic analysis by reducing the size of the problem and selecting the proper inputs and outputs.
Alternatively, this paper proposes a physics-constrained GP model to efficiently predict the hydrody-
namic characteristics of a WEC array with different layouts. Physics-constrained machine learning aims
to introduce physical laws and constraints to lead the model training to produce a physically consistent
predictive response [15, 16]. Compared with standard machine learning, physics-constrained models are able
to potentially reduce the required training cost [10] and improve the prediction accuracy and generalization
ability of the surrogate model under the same number of training data [17]. In the current problem, the
prior knowledge about the hydrodynamic characteristics (i.e., invariance, symmetry, and additivity) can be
encoded as the physical constraints of the hydrodynamic model. These constraints can be enforced in the
surrogate model by adding operations inside the surrogate model that give rise to the desired features. This
paper proposes to embed the invariance, symmetry, and additivity in the kernel function to provide more
informative prior knowledge for the GP model. In particular, an invariant kernel is first developed to in-
corporate the invariance and symmetry information, and the established invariant kernel is then integrated
into the GP model. This developed invariant kernel enables efficient incorporation of the prior knowledge
in the GP model and eliminates the need for handcrafting the input features. Second, taking advantage
of the similarity to the classical many-body interaction problem [14], the hydrodynamic characteristics are
decomposed to the sum of the outputs from subsystems. Such an additive feature is also regarded as a
physical constraint in this paper, and a new kernel is developed to embed the additive feature in the GP
model. The kernel exhibits a similar additive feature to the hydrodynamic characteristics and is thus named
“additive kernel.” Finally, the proposed invariant kernel is combined with the additive kernel to establish
an integrated kernel, which is used to construct more informative GP models that explicitly include the
known physical constraints on the hydrodynamic characteristics. Compared to the standard GP models,
the proposed physics-constrained GP models require less training data to achieve desired accuracy in pre-
dicting the hydrodynamic characteristics and are less vulnerable to the curse of dimensionality. It should
be noted that the novelty and focus of this work is to design physics-constrained kernels to incorporate
prior knowledge about the problem of interest in order to more efficiently train an accurate Gaussian process
model. This is in comparison to standard Gaussian process model. Since the hydrodynamic analysis problem
shows the permutation invariance, symmetry, and additivity properties, as shown in rent work by Zhang
et al. [14], this work tries to incorporate these properties directly in the construction/design of the kernel.
It is expected that the proposed approach will have general applicability to other problems as well. The
generality of the proposed approach stems from the capability of the kernel to incorporate different prior
physical knowledge/constraints (e.g., beyond the permutation invariance, symmetry, and additive properties
considered in the current work). For other problems, for example, problems showing periodicity or satisfying

partial differential equation, one can potentially update the model by designing corresponding kernels to



incorporate the related knowledge/constraints.

The remainder of this paper is organized as follows. Section 2 presents the hydrodynamic interaction
problem for WEC arrays and discusses the computational challenges in calculating hydrodynamic charac-
teristics for arrays with different layouts. Section 3 presents the proposed physics-constrained GP model for
efficient predicting hydrodynamic characteristics of WEC arrays with different layouts. Section 4 presents
the illustrative example with application to arrays with a different number of WECs and discusses the perfor-
mance of the proposed approach in terms of prediction accuracy and efficiency. Finally, Section 5 summarizes

the research findings.

2. Hydrodynamic Interaction Between WECs

2.1. Representation of WEC array layout

Assume the considered WEC array has N identical WECs floating in the water, which are able to oscillate
in M modes of motion. Among different configurations for WECs, this paper mainly focuses on cylindrical
heave converters, which are heaving floating resonant buoys connected to a power take-off moored to the
seafloor. A typical cylindrical heave converter is shown in Figure 1(a). Therefore, the number of oscillating
modes M is reduced to 1 here.

A two-dimensional Cartesian coordinate system is defined to express the locations of the WECs. The
WEC: in the array are under the incident wave propagating along the positive xz-axis, and the corresponding
incident angle is an arbitrary number (. Figure 1(c) shows an example layout of the array with N WECs,
and note that throughout the paper, an array of WECs is numbered as in the figure. Without loss of
generality, the leftmost buoy of the array is assumed to be located at the origin of the coordinate system.
The layout of the array can then be characterized by the locations of the remaining N — 1 buoys: x =
[Zo, T3, ...\ TN, T2, T3y -+, Un] € X C RZV=D where the pair (Z;,7;) represents the coordinates of the
ith WEC and X denotes the admissible layout space. For convenience, the layouts of the WEC arrays are
transformed into equivalent layouts with all buoys on the right half plane with 5 = 0 beforehand, which can

be established by rotating the coordinate system and adjusting the origin.

2.2. Diffraction and radiation problem

Following the assumption of classical hydrodynamics (i.e., small displacements, inviscid and incompress-
ible fluid and irrotational flow), the fluid motion can be described by a velocity potential function based on
the linear potential theory of waves [20]. By further assuming that all motions are time-harmonic with angu-
lar frequency w, we can extract the time-dependence of the velocity potential [21], and the time-dependent

velocity potential function ® is then written as
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Figure 1: (a) Wave energy converter (WEC) (adapted from [18]), (b) wave farm (adapted from [19]), and (c) Cartesian

representation of an array of N WECs.

where i = v/—1, and Re[] indicates that the real part is to be taken. w is the wave frequency, and should
satisfy the dispersion equation w? = gk tanh(kh), where g is the gravity acceleration, k is the wave number,
and h is the water depth. Due to the linear potential theory of waves, the complex-valued velocity ¢ can be
expressed by the superposition of the incident wave potential, the scattered wave potential and the radiated

wave potential [21]:
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where ¢; is the incident wave velocity potential, ¢p describes the velocity potential of the diffracted wave
field, gz,’)g) is the velocity potential of the wave field induced by the oscillation of the pth body in the heave
motion, and U is the corresponding velocity amplitude. The complex-valued potential ¢ must satisfy the
Laplace equation within the entire fluid domain, expressed by V2¢ = 0. Also, several boundary conditions
should be satisfied, and interested readers are referred to [20, 22] for detailed descriptions of the boundary
conditions. By solving this boundary value problem, the diffracted wave potential ¢p and the radiated wave
potential ¢ can be determined.

In this paper, we are more interested in the hydrodynamic characteristics of the array of WECs, and they
can be computed based on the hydrodynamic pressure acting on the devices. More specifically, after the
velocity potential in the entire fluid domain is solved, we can calculate the hydrodynamic pressure based on
the linearized Bernoulli’s equation [23]. Ultimately, the hydrodynamic forces on the WECs may be calculated
by integrating the hydrodynamic pressure over the submerged surface of the WECs [21]. More specifically,
the wave excitation force on the pth body in the direction of heave motion due to the incident and diffracted

wave, and the hydrodynamic reaction force on the pth body in the direction of heave motion induced by the



oscillation of the gth body in the direction of heave motion are written as

O —ip [ [ (01 +0ppuds (3)
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where p is the fluid density, S, is the submerged surface of the pth body, and v is the generalized normal
component with respect to the body p. It should be noted that the wave reaction force, f®?, can be
reformulated to obtain the radiation-related hydrodynamic characteristics (the added mass coefficient a(P9))

and the wave damping coefficient 5% . The reformulation is written as the following equation:

(5)

In the end, for a WEC array with N identical buoys (shown in Figure 1(c)), our main purpose is to
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calculate the hydrodynamic characteristics of the array, including wave excitation force F®) (corresponding
to the diffraction problem), added mass coefficient aP?  and wave damping coefficient b®P%) (corresponding

to the radiation problem), where p,q=1,...,N.

2.8. Multiple scattering

In this paper, the multiple-scattering (MS) method is adopted to obtain the solution of velocity potential
of the wave field and calculate the hydrodynamic interaction within the array of WECs due to its versatility
in achieving enhanced accuracy. In the first step, this approach requires the solution of the single (isolated)
body problem for each body, p, within the array. We refer the reader to [1] for more details on the derivation
for the case of upright cylindrical bodies under heave oscillation. In the second step, the interaction between
the bodies is then addressed by considering the implications to the other bodies (e.g., body ¢) of the diffracted
field generated by the initial body, p. The accuracy of the MS method is influenced by both the truncation
order (i.e., for deriving the solution for a specific body) as well as the interaction order (i.e., for addressing
the coupling between the bodies). Further details about the MS approach can be found in [22].

Ultimately, for each considered frequency, w, the MS method provides the wave excitation forces exerted
on each body by the incident wave as well as the added mass and damping coefficients exerted on body p
in the direction of heave motion due to the oscillation of of body ¢ in the direction of heave motion. In this
paper, we denote F(w)e CV as the response vector relating the incident and diffracted wave to the wave
excitation force on each body in the heave direction, and each element of the vector corresponds to F®).
Also, we denote a(w)e RV*Y and b(w)e RV¥*N as the added mass and damping matrices respectively,
with the pgth element (i.e., a?? and b(P?) of these matrices relating the heave oscillations of bodies p
and ¢. It is noteworthy to point out that the computational cost of the MS solver can be expensive (i.e.,

modeling hydrodynamic interactions between WECs takes a lot of computational time), especially when the



number of WECs in the array is large. Considering the significant computational effort in calculation of the
hydrodynamic characteristics, typically, one can limit the maximum order of interaction or the the maximum
number of eigenfunction series to a relatively small number. Although such implementation gives rise to

faster computation of the hydrodynamic characteristics, it trades off accuracy for computational efficiency.

3. Physics-Constrained Gaussian Process Model for Predicting Hydrodynamic Characteristics

To alleviate the computational burden in calculating the hydrodynamic characteristics of the WEC array,
surrogate modeling can be used. Surrogate models (also frequently referenced as metamodels) can provide an
approximate input-output relationship to replace a computationally expensive model, utilizing information
within a database of preliminary simulations from that model. Among different surrogate models, this paper
focuses on the GP model, which has been gaining popularity due to its high flexibility in approximating
complex functions. This section first briefly reviews the GP model and then presents in detail the proposed

physics-constrained GP model for predicting hydrodynamic characteristics of a WEC array.

3.1. Review of Gaussian process model

For an unknown function f with input vector x € R"», given a set of observations a GP model can be
adopted to approximate the deterministic function output y = f(x) € R. The core principle is to assume the
target function f as a realization of a regression model and a zero-mean Gaussian process with covariance
or the so-called kernel 02 R(x*,x7), where o2 is the variance and R(x?,x7) is the correlation function.

To create a GP model, the regression basis function and the kernel function need to be specified first.
A popular selection for the regression basis function is the polynomial (e.g., a linear or quadratic function
of x), and one of the commonly used kernel functions is the squared exponential covariance function. The
selection/use of a kernel function introduces some hyperparameters to the GP model, such as the length scale
of the correlation function and the variance. Conditioned on the n observations corresponding to the function
outputs Y = {y";h = 1,...,n} for different inputs X = {x";h = 1,...,n}, the predictive distribution of

the function output provided by the GP model is

FEIXY ~ N(f(x), VIf(x)]) (6)

where N(-) represents the Gaussian distribution, and f(x) and V[f(x)] are the predictive mean and the
predictive variance, respectively. This predictive variance provides a local estimation of the uncertainty of
the model predictions and entails useful information for guiding the selection of the training data. The
calibration of the GP model requires a careful selection of the training inputs, X, frequently referenced as
design of experiments. It can be established using some space-filling technique such as Latin hypercube
sampling (LHS), perhaps augmented through an adaptive refinement to improve the accuracy in target
regions [24, 25]. Through the proper tuning of the hyperparameters, the GP model can approximate very

complex functions. The optimal selection of the hyperparameters can be based on the maximum likelihood



estimation principle, where the likelihood is defined as the probability of the observations. The development
and employment of the GP model is only based on matrix manipulations, and as such is computationally

efficient.

3.2. Physics-constrained Gaussian process model for predicting hydrodynamic characteristics

In this problem, GP models are constructed to predict the relationship between the WEC layout and
the hydrodynamic characteristics of each buoy. As discussed in Section 2, the layout is characterized by
the locations of the buoys, x = [Z2, T3, ..., TN, Y2, U3, - .-, Yn], Where the pair (Z;,7;) represents the
coordinates of the 1th WEC. Therefore, x is taken as the input of the GP models. For the model output, we
are interested in the wave excitation force vector F, added mass coefficient matrix a, and added damping
coefficient matrix b described in Section 2. In this paper, we build separate GP models to predict the
elements of F, a, and b (i.e., F®®), a9 and b9, where p,q = 1,...,N), and the reason will be discussed
later. Note that the wave excitation forces are complex values, and we separately predict the real and
imaginary parts. With the model input and output selected, corresponding GP models can be constructed.

However, the standard way of building GP model faces significant challenges. Directly taking coordi-
nates as inputs cannot incorporate our prior knowledge about the input-output relationship, such as the
physical constraints including invariance, symmetry, and additivity (will be discussed in detail later), into
the surrogate modeling. These features can only be learned by a large number of training data, but a lot of
times we cannot obtain so many training data due to the high cost of running the numerical model (e.g., the
MS solver). As a result, the prediction accuracy and generalization ability of the GP model under a limited
number of training data may be significantly reduced. This is especially the case for arrays with a large
number of WECs, since the large input space typically requires more training data to obtain desired predic-
tion accuracy. However, the computational time of calculating the hydrodynamic characteristics increases
dramatically with the number of WECs, which means obtaining training data is more costly as well.

To address the challenges in constructing a GP model to predict the hydrodynamic characteristics, this
paper proposes a physics-constrained GP model that explicitly embeds the available physical constraints
into the surrogate modeling process and eliminates the need for preparing a large training data set. This
section first summarizes the physical characteristics/constraints of the relationship between the WEC layout
and the hydrodynamic characteristics of WECs. Then, for different hydrodynamic characteristics, different
model inputs are selected so that the physical constraints can be encoded appropriately and conveniently.
Finally, in order to provide “informative prior knowledge” to the GP models, a physics-constrained GP

model through designing specific kernels is proposed.

3.2.1. Physical constraints of hydrodynamic interaction model: invariance, symmetry, and additivity
First, in many engineering problems, the interested system often exhibits invariance or symmetry features,
meaning some transformations on the model input do not change the model output. For example, in

a chemical environment, the interatomic potential of a molecule or crystal is permutation-invariant with



respect to the ordering of the atoms in the same species [26]. In general, such invariance and symmetry

knowledge about a function f(x) can be formulated as

fx)=[flg(x) vxed& VYgel (7)

where g(x) is an operation/transformation on the input x that determines the invariance/symmetry, and G
represents a finite group of all possible such operations. Note that the function f is also invariant to the
compositions of the operations [27], and thus the group G includes both the operations and their possible
compositions.

In the hydrodynamic interaction problem, we also have some prior knowledge about the invariance and
symmetry features that the hydrodynamic characteristics exhibit, and they are essentially derived based on
the physical laws of the hydrodynamic interaction problem and based on the underlying principles of the
numerical model (i.e., MS solver) for calculating the hydrodynamic interaction. For the WEC array with N
buoys shown in Figure 1(c) represented by x = [Z2, Z3, ..., TN, J2, U3, ---, Yn], the physical constraints
are summarized as below:

(1) The wave excitation force of the buoy p (i.e., Re [F(p)] and Im [F(p)] where p = 1... N) is permutation-
invariant to the ordering of the rest of the buoys in the array;

(2) The added mass and damping coefficient matrices (i.e., a and b) are symmetric, which means the
added mass and damping coefficients of buoy p due to the heave oscillation of buoy ¢ are equal to the added
mass and damping coefficients of buoy ¢ due to the heave oscillation of buoy p;

(3) The diagonal terms of added mass and damping coefficient matrices (a®?) and b®P)) wherep =1... N,
are permutation-invariant with respect to the ordering of the rest of the buoys in the array. The off-diagonal
terms of the matrices (a(pq) and b9 where p,g =1...N and p # q), are permutation invariant with respect
to the ordering of the rest of the buoys in the array (i.e., all the buoys in the array excluding buoy p and
buoy ¢ themselves);

(4) Since any layout of the WEC array can be transformed to a new one with incident wave angle 3 equal
to zero, under zero incident angle, the hydrodynamic characteristics of all the buoys stay the same when the
layout is reflected with respect to the x-axis. This symmetry property is illustrated in Figure 2.

The invariance and symmetry information summarized above can be encoded mathematically through
Eq. (7). For example, suppose the array has three buoys and the coordinate vector used to characterize the
layout is X = [Z2, T3, 72, ¥3]. Then the operations for the wave excitation force of buoy 1 (i.e., F()) can be

expressed by

91([T2, T3, Yo, ¥3]) = [T2, T3, Go, ¥3], g2([T2, T3, Y2, U3]) = [T3, T2, U3, 2] )

g3([Z2, Z3, Y2, ¥3]) = [T2, T3, —¥2, 3], 9a([Z2, T3, U2, Y3]) = [T3, T2, —¥3, —o]

where g;(+) represents “no operation”, go(+) represents swapping WEC 2 and 3, g3(-) represents reflecting the
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WEC layout with respect to the z-axis, and g4(-) represents swapping WEC 2 and 3 first and then reflecting

the entire layout with respect to the z-axis.
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Figure 2: Illustration of symmetry property of hydrodynamic characteristics.

Second, the hydrodynamic interaction problem involves wave interactions between multiple floating bodies
and resembles the classical many-body interaction problem in many fields such as quantum mechanics and
molecular dynamics [28, 29]. As informed in the work by Zhang et al. [14] (which studied surrogate
modeling of hydrodynamic forces between multiple floating bodies), the model output of this problem (i.e.,
hydrodynamic characteristics) can be decomposed into contributions from subsets of the buoys, represented
by many-body terms (i.e., individual terms and interaction terms), and approximated by the series truncated

at some finite orders. Mathematically, we formulate such decomposition as

y) = D wii) Y wuxax) bt Y i Xg, ) (9)

2<i<N 2<i<j<N 2<i<j<-<I<N

where x; = (Z;,7;) is the coordinate vector of the ith WEC. y represents the quantity of interest such as any
element of force vector F, added mass coefficient matrix a, or added damping coefficient matrix b. y; denotes
the response attributed to the isth buoy, y;; denotes the response attributed to the interaction between the
ith and the jth buoys, and y;;..; denotes the response attributed to the interaction between the ith, the jth,
..., and the [th buoys. The additivity feature is illustrated in Figure 3.

r—-———-—--- - r—-——=—-=-=-=-- - ————

N WEC array

Figure 3: Illustration of decomposition of many-body systems (i.e., array of N WECs).

The invariance, symmetry, and additivity features discussed above are deemed the physical constraints of
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the hydrodynamic interaction model, and if this available prior knowledge can be incorporated when the GP
models are constructed (e.g., encoded in the prior function assumed for the GP model), the required number
of training data to reach good prediction accuracy is expected to be reduced. This reduction is especially
important for building accurate GP models for arrays with a relatively large number of WECs, where the

computational cost to obtain the training data is typically quite expensive.

3.2.2. Selection of model input

As summarized in the previous section, the permutation-invariance features of wave excitation force,
added mass, and added damping coefficient may involve different buoys (i.e., corresponding to different
model input); therefore, we separately predict these hydrodynamic characteristics. For different quantities
of interest, we need to do some simple transformation (e.g., shift the coordinate system by some distances)
on the original model input x so that the invariance and symmetry information can be appropriately and
conveniently included in surrogate modeling.

First, we consider the model output y = Re [F®)], or Im [F®], or a(?P), or b(PP), where p = 1,..., N.
In order to include the permutation invariance of the model outputs with respect to the ordering of all
buoys except buoy p in the GP model, we move the origin of the coordinate system to buoy p and obtain
a new coordinate vector, which will be used as the model input. Take the array with three WECs as an
example: if we are interested in the added mass coefficient of WEC 2 due to its heave motion (i.e., a(22)),
we first augment the coordinate vector x = [Z2, T3, U2, ¥3] t0 Xaqug = [0, T2, T3, 0, §2, ¥3] and then shift
the coordinate system so that the second buoy is the new origin. Finally, the new coordinate vector used to
characterize the array layout becomes xp = [~Z2, T3, — §2, ¥3] (i.c., represented by the positions of WECs
1 and 3). It is noteworthy to point out that the added mass and damping coefficients are invariant with
respect to any translational shift of the coordinate system, and thus the above transformation on the model
input does not change the model outputs. However, any translational shift of the coordinate system along
the wave propagation direction (i.e., z direction when 3 = 0) can cause changes to the wave excitation forces.
Therefore, in practice, when predicting the wave excitation force of buoy p where p = 2,..., N, we select the
original coordinate vector as the model input (i.e., x; = x), and release the constraint on the permutation
invariance (switching the ordering of buoys except buoy 1 and buoy p does not change F®)).

Second, for the off-diagonal terms of added mass and damping coefficient matrices (y = a®? or P9,
where p,g =1,..., N and p # q), we also move the origin of the coordinate system to the body p so that the
permutation invariance with respect to the ordering of the buoys except buoy p and buoy ¢ can be considered
conveniently, and the transformed coordinate vector is also represented by x,. It should be noted that in
this case we also release the constraint on the permutation invariance since switching the ordering of buoy

p and buoy ¢ does not change the value of a(P? or b(P®).
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3.2.3. Physics-constrained GP model through kernel design

In order to incorporate the physical constraints of the hydrodynamic interaction model (i.e., invariance,
symmetry, and additivity) to the GP model, we propose a physics-constrained GP model through kernel
design. As discussed in Section 3.1, kernel is an crucial ingredient of a GP model. Consider two input
locations x, x’ and their corresponding model outputs y(x), y(x’), a kernel k(-) is used to measure the
covariance (representing similarity or distance) between the model outputs at two input locations, written

Cov(y(x),y(x)) = k(x,x) (10)

The kernel function in the GP model typically assumes that the covariance between model outputs at two
input locations decays smoothly as the distance between these inputs increases [30, 10], i.e., if x are close to
x’, y(x) will be similar to y(x’). Such kernel functions lie in the category of stationary kernel function, which
is a function of the distance between inputs x — x’. Commonly used stationary kernel functions include the
squared exponential kernel (shown in Eq. (11)), Matérn kernels (shown in Eq. (12)~(13)), rational quadratic

kernel (shown in Eq. (14)), and more details about these kernel functions can be found in [10].

e Squared exponential kernel
712
(x,x') = JQHeXp ( — i ) (11)

e Matérn 5/2 kernel
\f|xﬁl’| L Vlwi —aif? V|2 — af
(x,x’ —a2| I ( 367 exp B — (12)

e Matérn 3/2 kernel

2 \fm—x\ V3|z; —
= - 13
x x =0 H ( > exp ( 0, ( )
e Rational quadratic kernel
Mg 2 o
no_ 2 |z —
kE(x,x')=0¢ H<1+2a92 ) (14)

where z; and x} are the ith component of the input x and x’, respectively. Note that the distances between
inputs are calculated in the Euclidean space in this study. A kernel function have several hyperparameters,
which have significant influence on the established GP model. Take the squared exponential kernel in
Eq. (11) as an example, o2 is the variance which tunes the amplitude of the model and 8 = [0, ..., 6, ] are
the length-scales which control the wiggliness of the model. We can also use the same 6 for all components,
and the corresponding kernel is the isotropic kernel. For the rational quadratic kernel, « is the scale mixture
parameter.

In order to obtain the desired prediction performance, selecting an expressive valid kernel function is

especially important since it determines the prior function assumed for the GP model. Therefore, here we
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propose to impose the already known physical constraints into the kernel, and in this way a more “informative
prior knowledge” can be provided for the GP model construction. In this section, an invariant kernel is first
developed based on the invariance and symmetry information on the hydrodynamic interaction model and a
base kernel (e.g., commonly used kernel functions). After that, an additive kernel is designed to incorporate
the additive characteristics of the hydrodynamic interaction model and is then combined with the invariant
kernel. The integrated kernel can explicitly consider the invariance, symmetry, and additivity features and
be used to build GP models with high interpretability and generalization ability to predict the hydrodynamic
characteristics for arrays with different layouts.

First, in order to build a GP model that is invariant under the operations in G (see Eq. (7)), the proposed
invariant kernel function should be invariant under the same operations. Ginsbourger et al. [31] have shown
that a GP model is invariant to the operations in the group G if and only if k is argument-wise invariant to

these operations, meaning it satisfys the following property:

k(XTvx/T) = k(g(XT)vg/(X/T)) VXTﬂX/T S v97gl eG (15)

This kernel will be established by double-summing a base kernel defined earlier (e.g., one of the commonly
used kernels defined in Eq. (11)~(14)) over the orbits of the inputs, where the orbit of x; is the set of all
transformed inputs obtained by applying each possible operation in G' to x,, and can be represented by the

set A(xp) = {g(x7); 9 € G}. Formally, the invariant kernel is given by

k(xp, x7) = Z Z Kbase (X, X7) (16)

xp€A(xp) xp €A(XT)
In this application, the operations in the group G include permutation of the WECs (i.e., switching the
orders), symmetric mapping with respect to the z-axis and their composition. To this end, the GP model
constructed using the invariant kernel function k will be capable of integrating our prior knowledge (i.e.,
invariance and symmetry information) about the physical characteristics of the problem.

Second, we embed our knowledge about the additive features of the hydrodynamic characteristics. To
build a GP model with the additive features, a new class of kernel is defined. It has been proved that the
additivity of the GP model can be expressed by the additivity of the corresponding kernels [32]. Therefore,
the GP model in our problem is specified by a kernel that can be decomposed into a series of subkernels
with each sub-kernel corresponding to the contribution from the interaction between subsets of WECs with

different numbers of WECs. Such a kernel is defined as the additive kernel, and it has the following expression:

/ 2 / 2 / /
kada(Xp,X7) = 07 E ki1 (XT,i1 ) XT,il) + 05 E ki, (XT,il ) XT,il)kh (XT,iga XT,ig) +oee
2<i <N 2<i; <ig <N

t
+ 07 > I EiaCxr iy X)) + -

2<iy <ig<-<iy <N d=1

(17)
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where {kid(xT,id7 X1T7id)7 d=2,3,...,N} is a base kernel operating on two dimensions of the input x;, and
x/ (i.e., the transformed coordinates of the dth WEC), and o7 is the variance assigned to the tth interaction
term. In order to specify the additive kernel, one needs to select a base kernel function first, and then
optimize the hyperparameters, including the length scale of the base kernel and the variance o? in each
order based on the given training data. Note that different variance values can be specified for each sub-
kernel of the additive kernel which also helps the GP model control the variance assigned to each order of
interaction of the input.

Finally, the additive kernel in Eq. (17) is combined with the invariant kernel in Eq. (16), and more

specifically, the base kernel of the invariant kernel takes the additive kernel:

Kxpxp) = Y Y Kada(xr,x7) (18)

x7€A(xp) xp €A(XT)
To better explain how the proposed physics-constrained kernel works, Figure 4 illustrates the evaluation
process of the proposed kernel for any 3-WEC array. The integrated kernel is then used to develop GP
models for the hydrodynamic characteristics. It is noteworthy to point out that the computational cost of
evaluating the proposed kernel in Eq. (18) is expensive when the dimension of the input is large. However, if
the many-body system converges fast, we can truncate the interaction series to a low order, which will help
reduce the computational effort in building the GP model. In our problem, the decomposition in Eq. (9) is
expected to converge fast (i.e., the first several orders of interaction contribute much to the response) based
on the justification given in [14]. That is, the MS method provides an exact solution for the hydrodynamic
characteristics by summing the infinite scattering order, whose superior convergence rate has been confirmed,
and many-body expansion has a faster convergence speed than the MS method. This principle also applies
to the GP model with a similar additive structure. Therefore, in this application, it is expected that only the
first few orders of interactions are important for modeling the hydrodynamic characteristics. This assumption
naturally suggests that, when the computational resources are limited, one can limit the maximum considered
order of interaction for the additive kernel without significantly impacting the prediction accuracy. In the

end, the computational cost of evaluating Eq. (18) can be significantly reduced.

3.8. Owverall algorithm

The overall algorithm of the proposed physics-constrained GP model for predicting hydrodynamic char-
acteristics of WEC arrays is illustrated in Algorithm 1, which shows the key steps. In the algorithm, the
output of the GP model is scalar meaning a separate GP model is built for each element of F, a and b.
Therefore, for an array of N WECs, we need to train 2N + 2(N? + N)/2 = N2 + 3N GP models in total.
However, in practice, we can train a model to predict some elements together if they depend on the same
model input (e.g., Re [F(H)], Im [F(H)}7 aM | and b(n)). In this way, the number of GP models needed to
be trained is reduced to N + N — 1+ (N? — N)/2 = (N2 +3N)/2 — 1 at most, which is less than half of the

original required number of GP models.
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Figure 4: Illustration of the evaluation process of the physics-constrained kernel between any two 3-WEC arrays represented

by x, and x/..

For any new WEC array shown in Fig 1(c), we first transform the layout to a new one with incident angle
B = 0, and the corresponding coordinate vector is denoted xy. For any model output of interest, we then
transform x( to appropriate X7, by simply moving the coordinate system according to Section 3.2.2. Then
the trained GP models can be used to directly predict the elements of the hydrodynamic characteristics for
the considered wave frequency w. Finally, the elements are assembled to establish the corresponding vector

F or matrices a and b.

4. Tllustrative Example

To demonstrate the performance of the proposed algorithm, it is applied to predict hydrodynamic char-
acteristics of WECs in an array. The array is in a rectangular domain with 127.5 m along the x-axis and
255 m along the y-axis, and the water depth is 60 m. The buoys are identical cylinders oscillating in heave
direction only. The radius for each buoy is 7, = 3 meters and its mass is m;, = 1.8e5 kg, corresponding to a
draft of D, = 6.37 m and natural period of oscillation of 5.06 s. The considered wave frequency is 0.6 rad/s

and it corresponds to a wave period equal to 10 s which has a high occurrence probability. To investigate
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Algorithm 1 The proposed physics-constrained GP model

Step 1: Represent layout of an array with N WECs (Figure 1(c) with 8 = 0) using a coordinate vector
X = [T, T3y, TN, §2,T3s- -+, UN]

Step 2: Generate input matrix X = {x";h = 1,...,n} (i.e., using Latin Hypercube Sampling (LHS)),
and run expensive model (i.e., MS solver) for each x" to obtain hydrodynamic characteristics (Y =
Fh, a, or bh) at a specific wave frequency w

Step 3: Obtain the model input matrix X7 = {x/;h = 1,...,n} by transforming each model input x to
x7 according to Section 3.2.2

Step 4: Design kernel to encode permutation invariance, symmetry, and additivity properties according
to Section 3.2.3

Step 5: Based on input-output pairs {Xr, Y}, develop a physics-constrained Gaussian process model

the impact of the wave frequency on the model construction, wave frequencies between 0.3 rad/s and 1.3
rad/s (i.e., wave periodic between 4.8 s and 20.9 s) are also considered. The corresponding wave number k
varies from 0.0136 1/m to 0.1723 1/m. The incident angle 3 is selected as 0 in this example, but generally it
can take any value. In order to investigate the scalability of the proposed algorithm, it is applied to arrays

with different numbers of WECs, and here N in the range of 3 to 30 is considered.

4.1. Implementation details

To establish the training data set, n inputs are generated by LHS and the corresponding outputs are
calculated by the hydrodynamic interaction model using the MS approach. For the MS solver, the order
of interaction is set as 5, whereas the eigenfunction series are truncated at 5 and 40 for the main fluid and
the fluid below the cylinder, respectively, to ensure adequate accuracy. These values are selected through
a convergence study of the model. More details can be found in the Appendix. In the proposed physics-
constrained GP model, the kernel is the invariant kernel in Eq. (16) taking the additive kernel in Eq. (17)
as base kernel, and for the base kernel of additive kernel, we select the commonly used Matern kernel with
v = 5/2. Since decomposition in Eq. (9) is expected to converge fast, we infer that only the first several
orders of interaction in Eq. (17) contribute much to the model response. To validate this assumption with
the currently available computational resource, we used the additive kernel with full orders of interaction
for the WEC arrays with 3 buoys and 4 buoys, and the contribution from each order is characterized by
the assigned variance o?, where t = 1,2 for the 3-WEC array and ¢t = 1,2,3 for the 4-WEC array. After
optimization of the hyperparameters, the results for all the diffraction- and radiation-related hydrodynamic
characteristics show that for the 3-WEC array, 07 ~ 1 while 02 ~ 0. Similarly, for the 4-WEC array, 0? ~ 1
while 02,02 ~ 0. Both cases indicate that only the first order of interaction between the buoys contributes
most to the hydrodynamic coefficients predicted by the physics-constrained GP model. Therefore, for all the
other cases, we limit the maximum considered order of interaction for the additive kernel to the first order and

assume that this implementation will not significantly impacting the prediction accuracy. This significantly
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reduces the computational effort in evaluating the kernel functions. For comparison purposes, a standard
GP model, which is the same as the proposed model but uses the standard base kernel, is constructed to
predict the same output. For the kernels in the proposed GP model and the standard GP model, we use the
same length-scale value for all input dimensions. The reason for this selection here is that the computational
effort to optimize a single length scale is typically much less than the effort to optimize multiple length
scales, especially when the input dimensionality is high. More importantly, in this example using the same
length scale for all the input dimensions can already inform an accurate Gaussian process model.

To assess the accuracy of the GP models in predicting the hydrodynamic characteristics, validation
metrics are calculated over a testing set for each case. The test size is set as n; = 1000, and the testing
data are also generated by LHS. Figure 5 shows the statistics of the minimum, maximum, and average
separation distance between WECs in an array calculated for the 1000 testing data. Here the coefficient of

determination, R2, is used as the validation metric,

R2—1_ Z?:tl(i‘/l - QZ)Q
Ziil(yl - 21;1 yl/nt)2

where 7 is the prediction from the established GP model for the ith data in the testing set. Large R? values

(19)

(e.g., closer to 1) indicate that the trained model has good accuracy.
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Figure 5: Statistics of the minimum (dmin), maximum (dmaz), and average (dqvg) separation distance between WECs in an

array for 1000 testing data.

4.2. Selection of training size and prediction accuracy

To investigate the prediction accuracy of the proposed physics-constrained GP model, we calculate the
coefficient of determination R? for all cases (i.e., arrays with different numbers of WECSs). Due to space
limitation, we only list the results for arrays of 3, 5, 8, 10, 20, and 30 WECs, while the results for other cases
show a similar pattern. The prediction accuracy metrics are calculated separately for different elements of the
hydrodynamic characteristic matrices F, a, and b. For illustrative purposes, the elements are classified into

four groups: (1) real and imaginary parts of F(1), (2) real and imaginary parts of F®) where p=2,... N,
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(3) a®?) and bPP) where p = 1,..., N, and (4) a®® and b9 where p,q = 1,..., N and p # ¢q. The reason
for such classification is that the prediction accuracies for the real and imaginary parts of F are close, and
also the prediction accuracies for a and b are close. Additionally, when modeling F(V), a(PP) and b®P), the
strict invariance information is incorporated while only partial invariance information is considered when
modeling F®), a9 and b®?. For each group, the mean of the accuracy metrics (i.e., R?) is calculated,
and to show the spread of prediction accuracy between different elements within a group, the minimum and
maximum of the accuracy metrics are also calculated.

When constructing the physics-constrained GP model to replace the computationally expensive MS solver,
it is desirable to use a small number of training data n, while maintaining the good prediction accuracy of
the surrogate model. In order to select an appropriate n, we investigate how the model prediction accuracy
changes over different n. Figure 6 shows the variation of the mean R? values against n for arrays with
different numbers (i.e., 5, 10, 20, and 30) of WECs when the wave frequency, w, is 0.6 rad/s. As expected,
the mean R? increases when the training size increases. This is true for arrays with different WECs and
for the different hydrodynamic characteristics. For the diffraction-related characteristics, the prediction
accuracy is already superior (i.e., the mean R? values are larger than 0.98) when n reaches 40 and has
only small improvement when further increasing n. However, for the radiation-related characteristics, more
training data are required to reach the targeted mean R? values (i.e., 0.98). The reasons for this is that
the radiation-related characteristics show stronger nonlinearity with respect to the model input than the
diffraction-related characteristics. Note that for a specific WEC array, different elements of the hydrodynamic
coefficients come from one evaluation of the MS solver, and thus the same number n should be selected for
different hydrodynamic coefficients. As a result, the number of training data n for 3-, 5-, 8-, 10, 20-, and
30-WEC arrays is selected as 100, 120, 120, 120, 160, and 180, respectively.

To further compare the prediction performance of the algorithm using a selected number of training data
between different WEC arrays, we show the mean, minimum, and maximum of the prediction metrics in
Table 1. For diffraction-related characteristics (i.e., elements of F), as can be observed from the table, the
R? for all cases are over 0.90, which reveals excellent prediction accuracy of the proposed physics-constrained
GP model. In each case, by comparing the mean, minimum, and maximum of R? within a group of the
hydrodynamic characteristics, we can find that the values are very close, which means there is little variation
in the prediction accuracy for different elements of F. For radiation-related characteristics (i.e., elements
of a and b), very good prediction accuracy can also be obtained, but the mean, minimum, and maximum
values of R? for radiation-related hydrodynamic characteristics are relatively different. This indicates that
the prediction accuracy for different elements of a(?P) / b®P) and o9 / b9 show relatively large variability.
Additionally, almost all the hydrodynamic characteristics experience a drop in the prediction accuracy as
the number of WECs in the array increases, although the number of training data are also increased. This
is expected since the dimensionality of the model input is proportional to the number of WECs in the array,

and higher-dimensional input space requires more training data to inform an accurate GP model.
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Figure 6: Variation of the mean of R? against the number of training data n for arrays with different numbers of WECs (shown

for the case when the wave frequency w = 0.6 rad/s).

4.8. Impact of wave frequency

The prediction accuracy of the established surrogate model may be significantly affected by the wave
frequency of interest. To investigate the impact of the wave frequency on the physics-constrained GP model,
Figure 7 shows the variation of the mean R? values against wave frequency w for all the hydrodynamic
coefficients of arrays with different numbers of WECs. For comparison purposes, the physics-constrained
GP models are developed for different wave frequencies with the same number of training data n, and n is
still selected as 120, 120, 160, and 180 for 5-, 10-, 20-, and 30-WEC arrays, respectively. The considered
wave frequencies are between 0.3 rad/s and 1.3 rad/s, and since these two bounds have very low occurrence
probability for most deployment locations, they can serve as good bounding cases to check the impact of the
wave frequency on the prediction accuracy. It is noteworthy to point out that in this section the physics-
constrained GP model is established for the multi-dimensional outputs consisting of the hydrodynamic

coefficients under all the considered wave frequencies. As can be observed the figure, the prediction accuracy
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Re[F(D](Im[FM)])

Re[F®)](Im[F®)])

# of WECs - -
mean min max mean min max
3 0.9989(0.9976)  0.9989(0.9976)  0.9989(0.9976)  0.9997(0.9997)  0.9996(0.9997)  0.9997(0.9997)
5 0.9989(0.9988)  0.9989(0.9988)  0.9989(0.9988)  0.9993(0.9992)  0.9991(0.9991)  0.9994(0.9993)
8 0.9982(0.9985)  0.9982(0.9985)  0.9982(0.9985)  0.9988(0.9989)  0.9986(0.9985)  0.9992(0.9992)
10 0.9980(0.9976)  0.9980(0.9976)  0.9980(0.9976)  0.9985(0.9984)  0.9982(0.9981)  0.9988(0.9987)
20 0.9971(0.9978)  0.9971(0.9978)  0.9971(0.9978)  0.9971(0.9972)  0.9961(0.9963)  0.9976(0.9978)
30 0.9967(0.9958)  0.9967(0.9958)  0.9967(0.9958)  0.9964(0.9962)  0.9951(0.9944)  0.9970(0.9968)
a(PP) (p(PP)) a(Pd) (b(ra))
# of WECs - -
mean min max mean min max
3 0.9940(0.9819)  0.9934(0.9787)  0.9946(0.9872)  0.9901(0.9984)  0.9856(0.9958)  0.9951(0.9998)
5 0.9936(0.9788)  0.9913(0.9725)  0.9981(0.9962)  0.9848(0.9976)  0.9715(0.9935)  0.9972(0.9994)
8 0.9935(0.9742)  0.9908(0.9629)  0.9977(0.9936)  0.9734(0.9955)  0.9538(0.9855)  0.9963(0.9990)
10 0.9931(0.9736)  0.9885(0.9663)  0.9978(0.9945)  0.9690(0.9943)  0.9241(0.9824)  0.9949(0.9986)
20 0.9938(0.9819)  0.9913(0.9718)  0.9969(0.9937)  0.9692(0.9941)  0.9452(0.9833)  0.9949(0.9974)
30 0.9933(0.9828)  0.9901(0.9776)  0.9960(0.9922)  0.9678(0.9932)  0.9378(0.9848)  0.9939(0.9970)

Table 1: Mean, minimum, and maximum of prediction accuracy metrics when w = 0.6 rad/s

when w = 0.6 rad/s degrades compared to the results presented in Section 4.2, obtained from training the
physics-constrained GP model for the single wave frequency 0.6 rad/s. From the figure, we can also observe
that when the wave frequency is relatively low (e.g., less than 0.8 rad/s), all the R? values are greater than
0.6 and the prediction for all hydrodynamic characteristics demonstrates a relatively good agreement with
the ground truth values. However, as the wave frequency increases, it becomes more challenging to predict
the hydrodynamic characteristics accurately, especially for the radiation-related coefficients. The reason
behind this observation is that the wavelength decreases as the wave frequency becomes larger based on the
dispersion relation, and thus there are more peaks/troughs in the hydrodynamic data as wave frequency
increases (i.e., the model input-output relationship becomes more complex). To further illustrate the impact
of the wavelength on the prediction accuracy, Figure 8 plots the variation of the same mean R? values
against k x [, as in Figure 7, where [, is the array length along the z-direction. As can be seen from the
figure, the prediction accuracy drops when the wavelength reduces, and when the array length is larger than
approximately 10 times the wavelength, most of the mean R? values become less than 0.6.

One straightforward way to improve the prediction performance for predicting the hydrodynamic charac-
teristics under relatively high wave frequencies is to use more training data within the available computational
budgets. To investigate this, the number of training data for 5-, 10-, 20-, and 30-WEC arrays is increased to
5 times the original number of training data, i.e., 600, 600, 800, and 900, respectively, and the corresponding
results are shown in Figure 9. As can be observed from the figure, increasing the number of training data
directly is effective in improving the prediction accuracy. For example the mean R? for element b®% in
the 5-WEC array dramatically increases from 0.01 to 0.87 when w = 1.3 rad/s. However, one drawback of

this method is that we need to trade off between accuracy and efficiency. Increasing prediction accuracy for
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high wave frequency usually demands a larger number of training data, resulting in heavier computational
efforts in obtaining the data and also higher cost in training the surrogate model. In addition, adding more
training data may only lead to a small gain in improving the prediction performance when the number of
WECs in the array is large (e.g., 20- and 30-WEC arrays). Despite this, the lower prediction accuracy for

higher frequencies is less of a concern in this application since very high wave frequencies typically have a

low occurrence probability for most deployment locations.
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Figure 7: Prediction accuracy metrics against w for arrays with different numbers of WECs.

4.4. Performance of physics-constrained kernel

In this section, the performance of the kernel in the proposed physics-constrained GP model is inves-
tigated. For comparison purposes, a standard GP model with the Matern kernel with v = 5/2 is also
constructed with the same training data set and validated using the same testing data as the physics-
constrained GP model. For convenience, the kernel in the physics-constrained GP model and the standard

GP model are referred to as the physics-constrained kernel and standard kernel, respectively, in this section.
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Figure 8: Prediction accuracy metrics against k X I, for arrays with different numbers of WECs.

The main purpose of this section is to compare the performance of the physics-constrained GP model and
the standard GP model, and thus the prediction accuracy for a single case is less of a concern here. Note
that w = 0.6 rad/s is selected for demonstrating the results in this section.

The kernel function in a GP model specifies the covariance between the model response at two input
locations, which implicitly describes the distance between two input locations. In order to visualize the
capability of the physics-constrained kernel and the standard kernel in describing the similarity of the model

response between the input points, Figure 10 illustrates the covariance function values evaluated at a data

set X (i.e., covariance matrix k(Xy,X;)). The data set contains four arrays of 3 WECs, characterized

by Xp = {x},x%,x3%,x%}, where x}. = [123.593.2 —59.2 — 116.4], x3 = [93.2123.5 —116.4 —59.2],

x5 = [123.593.2 59.2 116.4], and x4 = [93.2 123.5 116.4 59.2]. Among these four inputs, x} is selected

from the training set, and the other three are transformed from x}. based on the invariance and symmetry

properties, as shown in Eq. (8). For illustration purposes, we added some Gaussian noises to the locations
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Figure 9: Prediction accuracy metrics against w for arrays with different numbers of WECs when more training data are used.

of WECs. Note that here we focus on the physics-constrained kernel used for F(1), a(®P) and b(*P) which
includes the complete permutation invariance and symmetry information available. In Figure 10, the value
of each grid describes the covariance of the model response between two inputs, and for comparison, the
values are normalized so that the diagonal terms of the covariance matrices are equal to one. As a result, the
covariance values close to one means that two input points are close to each other and the their responses
are also highly similar. As can be observed from the figure, the covariance calculated by the standard kernel
between x’. and xgp (i # j) is nearly zero, while the corresponding covariance calculated by the physics-
constrained kernel is close to one. However, as we mentioned earlier, x4 and xjf (i # j) should give us
similar model responses due to the invariance and symmetry features of the input-output relationship. This
indicates that the physics-constrained kernel has the capability of encoding the invariance and symmetry
features into the GP model, while the standard kernel is not able to capture such properties.

To further demonstrate the performance of the physics-constrained GP model and the standard GP model
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Figure 10: Covariance matrix calculated by physics-constrained kernel and standard kernel.

in recovering the ground truth input-output relationship, Figure 11 and Figure 12 show the model response
F®) calculated by the true function, predicted by the physics-constrained GP model and the standard GP
model. In order to visualize the permutation invariance and symmetry features of the model response, we
pick the array of 3 WECs and plot the contour map of F(!) with respect to X7 o and Xg 5, where xp
and xp 3 are the positions of the two WECs (i.e., WEC 2 and WEC 3) except the one at the origin of the
coordinate system. First, Figure 11 shows the contour map of F(1) in terms of the positions of WEC 2 and
WEC 3 characterized by some ID numbers. More specifically, the input domain is divided into a 5-by-9 grid,
and the nodes of the grid are assigned a sequence of ID numbers. As a result, each ID number represents a
position that WEC 2 and WEC 3 may take in the input domain, and thus in Figure 11 the horizontal and
vertical axes correspond to the positions of WEC 2 and WEC 3, respectively. As can be observed from the
figure, the true function of F() is symmetrical with respect to the diagonal line, which means switching the
position of WEC 2 and WEC 3 does not change the model response. Note that the diagonal line in the figure
is blank because the two buoys cannot be overlapped with each other physically. The physics-constrained GP
model can correctly recover such permutation invariance feature since such feature has been entirely coded
into the kernel, while the standard GP model fails to capture the permutation invariance. However, we can
find some slight symmetry property with respect to the diagonal line predicted by the standard GP model,
which might have been learned by the training data, and if more training data are used, it is expected that
the constructed standard GP model might be able to capture more of the permutation invariance. Second,
Figure 12 shows the contour map of F(!) in terms of the position of WEC 2 characterized by its [z, ]
coordinate. Here, WEC 3 moves symmetrically with respect to the z-axis, and to make sure the whole
array is not symmetrical with respect to the z-axis, we set the distance of WEC 3 to the z-axis as 2/3 of
the corresponding distance of WEC 2 to the z-axis. In this case, if we reflect WEC 2 with respect to the
z-axis, the whole layout of the array will also be reflected with respect to the z-axis. Based on the true
function in Figure 12, we know the model response is symmetrical with respect to the z-axis. Again, the

physics-constrained GP models perfectly capture the symmetry feature because of the use of kernels that
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explicitly incorporate symmetry, while the standard GP model cannot capture the symmetry feature.
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Figure 11: Permutation invariance of F’ D from true function, physics-constrained GP model, and standard GP model.
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Figure 12: z-axis symmetry of F(1) from true function, physics-constrained GP model, and standard GP model.

Table 2 reports the accuracy metrics of the predictions from the physics-constrained GP model and
the standard GP model. Note that the metrics are averaged over the elements of each hydrodynamic
characteristics (i.e., F, a, and b), and these hydrodynamic characteristics are calculated for w = 0.6 rad/s.
The number of training data n is again selected as 100, 120, 120, 120, 160, and 180 for 3-, 5-, 8-, 10-, 20-,
and 30-WEC arrays, respectively. From Table 2, we can conclude that the physics-constrained GP model
significantly outperforms the standard GP model in terms of the prediction accuracy, especially when the
array has a large number of WECs. When the array has 3 WECs, the standard GP model trained with 100

data can also obtain a relatively good prediction. However, when the number of WECs in the array reaches
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5, its prediction accuracy drops drastically, and 120 training data is not enough for a standard GP model to
correctly learn the input-output relationship. Therefore, the standard GP model cannot explain the highly
complex relationship with limited training data and also suffers severely from the curse of dimensionality.
In comparison, for the physics-constrained GP model, the R? values calculated in all cases are close to 1,
which indicates excellent prediction accuracy. This validates that encoding the invariance, symmetry, and
additivity features into the kernel according to the input-output relationship can significantly improve the
prediction accuracy. More importantly, with only 80 more training data sets, the prediction accuracy for
30 WECs almost does not change (or reduce) compared to that for 3 WECs, which means the prediction is
less prone to the curse of dimensionality when wave frequency w = 0.6 rad/s. One possible reason is that
using the physics-constrained kernel can build an interpretable GP model directly rather than learning the
features from a large number of training data and thus can help reduce the required number of training
data. Also, it has been proved that kernels that include lower-order additive structures sometimes allow
us to make predictions over data far away from the training data (i.e., extrapolation) [33]. For example,
additive kernels of first order give high covariance between model response at input locations that are similar
in any one dimension. This is of significant importance to arrays with a large number of WECs, where the
computational effort in running the MS solver is quite expensive and obtaining a large number of training data
is sometimes impractical. Additionally, the results prove that the physics-constrained kernel has included
the most contributed part of the model response (i.e., the first order of interaction), and this ensures that our
computation in evaluating the proposed physics-constrained kernel can be efficient (i.e., no need to evaluate
the kernel for the higher order of interactions where the evaluations are more expensive).

In addition to the comparison to the standard GP model, the proposed physics-constrained GP model
is also compared to the hierarchical kriging model proposed in [14]. Table 2 reports the accuracy metrics
of the predictions from hierarchical kriging model. Instead of using a single surrogate model to predict the
hydrodynamic coefficients of the arrays with multiple WECs, the reference paper [14] constructs multiple
surrogate models corresponding to clusters with fewer WECs. The prediction of the hydrodynamic coef-
ficients is then obtained by summing the predictions from the hierarchical surrogate models according to
the many-body expansion. The proposed surrogate models are also enhanced by taking into account the
permutation invariance and symmetry features of the problem. Different from the physics-constrained GP
model proposed in this study, the reference paper [14] encoded the physical knowledge though designing and
transforming the surrogate model input. As can be seen from Table 2, the hierarchical kriging model accu-
rately predicts all the hydrodynamic coefficients and, similar to the model proposed in this study, bypasses
the curse of dimensionality. More importantly, the hierarchical surrogate models are established only for the
2-WEC and 3-WEC arrays, and no additional surrogate models are required to be constructed for arrays
with any number of WECs in this example. By comparing the proposed physics-constrained GP model to the
hierarchical surrogate model in [14], we can find that both models produce accurate predictions for arrays of

3 to 30 WECs. Therefore, in the context of hydrodynamic analysis (for array with relatively small number
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Physics-constrained GP model Standard GP model Hierarchical kriging model [14]

# of WECs F a b F a b F a b
3 0.9992  0.9914 0.9929 0.7072  0.5696 0.5355 0.9999  0.9997 0.9998
5 0.9992  0.9866 0.9938 0.5342 0.3031 0.1781  0.9999  0.9998 0.9998
8 0.9988  0.9759 0.9928 0.3981  0.0000 0.0000 0.9999 0.9997 0.9997
10 0.9984 0.9714 0.9923 0.3847  0.0000 0.0000 0.9999 0.9997 0.9997
20 0.9971  0.9705 0.9935 0.3798  0.0000 0.0000 0.9999 0.9995 0.9996
30 0.9963  0.9687 0.9928 0.3130  0.0000 0.0000 0.9998  0.9991 0.9994

Table 2: Prediction accuracy metrics from physics-constrained GP model and standard GP model

of WECs), both the proposed physics-constrained GP model and the hierarchical surrogate model work well
in predicting the hydrodynamic coefficients. On the other hand, they do have some differences in how the
surrogate model is built. These differences may have impacts and implications on the computational effort
and their accuracy, depending on the output of interest, wave conditions, the type of WECs, and size of
arrays considered. The proposed physics-constrained GP model is constructed to predict the total response
in an N-WEC array (i.e., hydrodynamic coefficients of each body), and one can choose the kernel and op-
timize the hyperparameters so that the model better fits the data for the interested response. Therefore,
the training of the physics-constrained GP model aims to minimize the error for the total response. In com-
parison, the hierarchical surrogate model directly starts with the many-body expansion (i.e., the additive
property) and builds kriging models for lower-order subsystems (i.e., 2- and 3-body interaction). Therefore,
the hierarchical surrogate model aims to minimize the errors of the kriging models for the lower-order sub-
systems. To obtain the total response, one can predict the response from each subsystem using the kriging
models and then add them. However, adding the predictions for the lower-order subsystems also means that
the errors in these kriging models could be accumulated. If these kriging models have good accuracy, then
the predicted total response may also have good accuracy; however, there is no explicit control over the
error for the total response because the approach does not explicitly optimize for that. This might lead to
large overall errors for the total response in some specific cases (e.g., for large-scale array where there are
many combinations/terms to add, and/or when the accuracy of kriging models for lower-order subsystems
is not high enough). Accordingly, there are respective implications on how expensive it is to build/train
the surrogate models. For the proposed physics-constrained GP model, it would require running simulations
and establishing training data for array size of interest. For large-scale array, the computational cost of
establishing the training data could increase significantly. In comparison, the hierarchical surrogate model
only requires running simulations and establishing training data for 2- and 3-WEC arrays. Therefore, it
would have better scalability to large-scale array than the proposed physics-constrained GP model. More
comprehensive comparisons between them related to the above discussed aspects as well as the validity and

implications of the many-body expansion assumption will be carried out in future work.
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4.5. Computational efficiency

In this section, we discuss the efficiency gain provided by the physics-constrained GP model. On average,
one evaluation of the numerical model for calculating the hydrodynamic characteristics of arrays of 3, 5, 8,
10, 20, and 30 WECs takes 0.1s, 0.5s, 2.1s, 4.1s, 23.2s, and 83.0s, respectively. Overall, the computational
time increases dramatically with the number of WECs in the numerical model, further highlighting the
computational challenges in modeling a large array. On the other hand, the physics-constrained GP model
trained using selected n training data to reach the targeted accuracy level (i.e., mean of R? over 0.98)
takes only around 0.0003s, 0.0020s, 0.0135s, 0.0335s, 0.7166s, and 3.3s to obtain all the hydrodynamic
characteristics when the considered wave frequency is w = 0.6 rad/s. Therefore, a speed-up of several
orders of magnitude speedup can be obtained. Note that when more expensive numerical models (such as
boundary element models) are used, the computational gain by using the physics-constrained model will be

even greater.

5. Conclusions

This paper proposed a physics-constrained Gaussian process (GP) model to efficiently predict the hy-
drodynamic characteristics of WEC arrays with different numbers of WECs. Instead of building a standard
GP model and learning the physical constraints (i.e., invariance, symmetry, and additivity features) of the
WEC interaction problem through a large training data set, which is computationally inefficient or even
prohibitive, the proposed physics-constrained GP model directly encodes these physical constraints/features
into the model development. More specifically, the known physical constraints are encoded into the kernel by
designing and integrating the invariant kernel and the additive kernel, and in this way a more “informative
prior” can be provided for the GP model construction. Once trained, the physics-constrained GP model can
be employed to directly and efficiently predict the hydrodynamic characteristics under different layouts.

Application to prediction of the hydrodynamic characteristics of arrays with different numbers of WECs
demonstrates the high accuracy and efficiency of the proposed approach. The results show that the designed
integrated kernel is able to correctly capture the invariance, symmetry, and additivity features of the problem.
The proposed physics-constrained GP model can accurately predict the hydrodynamic characteristics with
a relatively small number of training data, especially when the wave frequency is low. More importantly,
the proposed physics-constrained GP model is much less vulnerable to the curse of dimensionality compared
to the standard GP model, and such good scalability is crucial for analyzing arrays with a relatively large
number of WECs.

One limitation of the proposed physics-constrained GP model is that if the decomposition of the many-
body system does not converge fast (e.g., requires much more than first three orders of interaction), the
computational cost of evaluating the proposed kernel might be high and thus it might take a longer time
to train the GP model. Another limitation is that when the wave frequency is relatively large and input-

output relationship shows strong non-linearity, a larger training set is needed to obtain the desired prediction
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accuracy, which results in significant training cost. One potential remedy is to develop a sparse physics-
constrained GP model, and future research will investigate the potential of such model. In addition, the
application only investigated arrays with up to 30 WECs. Future research work will investigate the scala-
bility of the proposed model to arrays of even larger sizes (e.g., with 40 to 100 WECs) by including cutoff
distance and splitting the array into clusters. Another future research topic of interest is to use the hydrody-
namic characteristics predicted by the proposed physics-constrained GP model to calculate the total power

generation of the WEC array and also optimize the layout of the WEC array.
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Appendix: Selection of parameters for the MS solver

The parameters of the MS solver can be selected through a convergence study. More specifically, one can
monitor the variation of hydrodynamic interactions concerning one parameter while keeping other parameters
constant. The parameters can then be chosen so that the results stay unchanged (e.g., percentage change
less than 1%). For example, when determining the order of interaction, the terms at which the eigenfunction
series are truncated for the main fluid and the fluid below the body are first set separately to 20 and 50
(as proposed in [22]). The MS solver is then applied to calculate the hydrodynamic coefficients using a set
of values for the interaction order. Note that the convergence study is performed on arrays with different
numbers of WECs and specific configurations, and some examples can be found in [22]. As an example,
here the convergence results for a selected 3-WEC array (with equal distances L between the WECs) are
shown. Different distances (i.e., L = 3, 13rp, and 30r,) are considered as well. The variation of the
hydrodynamic coefficients is shown in the first row of Figure 13. It is worth noting that the hydrodynamic
coefficients are normalized to have values between 0 and 1. Also, the coefficients are grouped by physical

meanings and then averaged over the same group for illustration, and the details about the grouping can
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be found in Section 4.2. Similarly, the variation of the hydrodynamic coefficients concerning the other two

parameters is also presented in Figure 13. From the figure we can observe that the hydrodynamic coeflicients

change significantly when the orders/parameters are small but reach plateau as the parameters increase to

larger numbers.

The parameters are finally chosen to ensure that all hydrodynamic coefficients remain

unchanged. Many times more conservative choices are made for these parameters. More detailed discussion

about determining these parameters in MS solver can be found in [34, 22].
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