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Abstract

To improve the efficiency of wave farms and achieve maximum power generation, the layout of wave energy

converters (WECs) in an array needs to be carefully designed so that the hydrodynamic interactions can be

positively exploited. For this, the hydrodynamic characteristics of the WEC array in different layouts need

to be calculated. However, such calculations using numerical models usually entail significant computational

cost, especially for large arrays of WECs. To address the computational challenge, a physics-constrained

Gaussian process (GP) model is proposed to replace the original expensive numerical model and predict the

hydrodynamic characteristics of the WECs for any array layout. By exploring the relationship between the

WEC array (i.e., the input) and different hydrodynamic characteristics (i.e., the output), we summarize a set

of physical constraints/features, including invariance, symmetry, and additivity. This prior knowledge about

the input-output relationship is then directly embedded in the constructed GP model through the design of

physics-constrained kernels. In particular, a double-sum invariant kernel is first developed to incorporate the

invariance and symmetry features, and then an additive kernel is developed to incorporate the additive feature

of the problem. The invariant kernel and the additive kernel are then integrated to construct the physics-

constrained GP model. Compared to the standard GP model, the proposed physics-constrained GP models

require less training data to achieve the desired accuracy in predicting the hydrodynamic characteristics and

are also less vulnerable to the curse of dimensionality (i.e., good scalability for large arrays) due to the use

of an additive kernel. The efficiency, accuracy, and scalability of the proposed approach are demonstrated

through an application to predict the hydrodynamic characteristics for WEC arrays of different sizes and

layouts.

Keywords: Wave energy converters, Hydrodynamic characteristics, Physical constraints, Gaussian process

model, Kernel design

1. Introduction

According to the U.S. Department of Energy, the estimated total renewable wave energy resource in

the United States has the potential to power more than 100 million homes each year [1]. The deployment
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of wave energy converters (WECs) in large-scale arrays, also known as wave farms, offers great prospects

for harnessing such renewable wave energy and facilitating electrical power transmission. Unlike the single-

WEC configuration, a wave farm typically involves complex physical laws (i.e., WECs interact with scattered

and radiated waves), and the hydrodynamic interactions between neighboring WECs could have a significant

impact on the total power generation of the wave farm. By arranging the positions of WECs in array properly,

the total power generation can be greater than the power generated by the same number of isolated devices

[2, 3]. In order to improve the efficiency of wave farms and achieve maximum power generation, the layout

of WECs needs to be carefully designed so that the hydrodynamic interactions can be positively exploited.

Therefore, hydrodynamic modeling has drawn extensive attention in this field.

Most previous research on modeling hydrodynamic interaction has been conducted based on linear po-

tential flow theory [4], and various numerical methods have been proposed within this context for calculating

hydrodynamic interactions within arrays of WECs [5]. The main methods can be classified into two classes:

(i) analytical or semi-analytical methods, such as point-absorber approximation [6], plane-wave approxima-

tion [7], and the multi-scattering method [8]; and (ii) numerical methods, such as the boundary element

method and finite element method. However, if high accuracy is desired, the computational efforts may still

be burdensome, especially when the number of WECs is large and higher-fidelity models are used. Moreover,

additional challenges also arise when dealing with problems such as uncertainty quantification and design

optimization, which typically require a large number of model evaluations.

To address the above computational challenges, this paper proposes a surrogate-model-based approach

for predicting hydrodynamic interactions between WECs. Surrogate models have been extensively used to

approximate the input-output relationship for computationally expensive models in various disciplines. They

are trained using a data-driven approach, and the training data are obtained by evaluating the expensive

models over a number of input points. The computational efficiency of surrogate models is greatly increased.

Therefore, once trained, the original expensive models can be replaced by the surrogate models for subsequent

analysis and design where repeated model evaluations are needed. Among various surrogate models proposed

in the literature, the Gaussian process (GP) model [9, 10] has been gaining popularity due to its flexibility

in modeling complex functions and its ability to provide closed-form predictive distributions. Therefore, this

paper will focus on the GP model.

The application of surrogate models, or more generally machine learning models, has been explored by

researchers in the field of wave energy converters. A kriging surrogate model based approach was proposed

in [11], based on which the layout design of arrays with different number of WECs was performed with high

efficiency. Neshat et al. [12] proposed an adaptive neuro-surrogate-based approach for achieving optimal

placement of wave energy converters, where the total wave farm energy was predicted by a trained recurrent

neural network in stead of calculated using time-consuming computation. However, the effectiveness and

efficiency of these approaches were demonstrated through application in arrays with limited/small number

of WECs (e.g., 5 buoys in [11] and 16 buoys in [12]), and their scalability to larger arrays may still need
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to be investigated. Sarkar et al. [13] introduced a machine learning based method for the optimization of

large-scale arrays with oscillating wave surge converters. By decomposing the whole array into small clusters

and approximating the performance of the clusters using Gaussian process regression, the proposed approach

is able to efficiently optimize large arrays. However, the trade-off for scalability of this approach is to restrict

the hydrodynamic interaction between the nearest neighbors of WECs. Overall, these surrogate based meth-

ods focus on directly predicting power output of the wave energy converter arrays, while an alternative option

is to predict the intermediate variable (e.g., hydrodynamic interactions) and compute the power generation

by using the predicted hydrodynamic interactions [14]. The latter option may offer the benefit of construct-

ing more accurate surrogate models with less training data since the underlying input-output relationship

is expected to be less complex than the former option. To the authors’ best knowledge, little research has

investigated the prediction of hydrodynamic interactions using surrogate models. The main difficulties are

twofold. First, the standard way of building a surrogate model fails to incorporate available prior physical

knowledge about the problem or input-output relationship. The direct surrogate modeling option is to take

the layout of a WEC array (i.e., represented by a vector consisting of the coordinates of the WECs) as the

model input, and the hydrodynamic characteristics as the model output. However, the hydrodynamic char-

acteristics could be permutation-invariant with respect to the ordering of the WECs given an array layout,

or they could be symmetric with respect to the axes. In addition, the WEC interaction problem is similar to

the classical many-body interaction problem [14], and the hydrodynamic characteristics can demonstrate the

additivity feature. Directly taking the coordinates as inputs and applying commonly used product kernels

for training the GP model cannot incorporate prior knowledge into the surrogate modeling. Instead, these

features (i.e., invariance, symmetry, and additivity) can only be learned by a large number of training data

if directly using the common way to train the surrogate models. However, a lot of times obtaining many

training data for the hydrodynamic characteristics is impractical due to the high computational cost of run-

ning expensive models (e.g., MS solver or boundary element models). The limited training data typically

will lead to lower prediction accuracy and generalization ability of the established surrogate model. Second,

as the size of the WEC array increases, there are additional challenges in constructing a surrogate model

that stem from the increased input dimension, which typically requires more training data to obtain the

desired prediction accuracy (i.e., suffering from curse of dimensionality). However, the computational effort

to calculate the hydrodynamic characteristics typically increases significantly with the number of the WECs,

which means obtaining training data is more costly. In the end, building surrogate models for prediction of

hydrodynamic characteristics becomes a challenging task. To tackle these issues, the most related research

is in [14]. They proposed a surrogate-model-based approach to predict the hydrodynamic characteristics

of multiple bodies through a hierarchical interaction decomposition method. The key idea is to decompose

hydrodynamic characteristics into contributions from clusters with fewer bodies, and then separately build

lower-order surrogate models for these components/clusters instead of the total response. This mitigates

the curse of dimensionality of surrogate modeling. In addition, by carefully designing the model input ac-
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cording to the input-output relationship, these lower-order surrogate models can include the invariance and

symmetry principles. Overall, this approach successfully addressed the challenges in surrogate modeling for

hydrodynamic analysis by reducing the size of the problem and selecting the proper inputs and outputs.

Alternatively, this paper proposes a physics-constrained GP model to efficiently predict the hydrody-

namic characteristics of a WEC array with different layouts. Physics-constrained machine learning aims

to introduce physical laws and constraints to lead the model training to produce a physically consistent

predictive response [15, 16]. Compared with standard machine learning, physics-constrained models are able

to potentially reduce the required training cost [10] and improve the prediction accuracy and generalization

ability of the surrogate model under the same number of training data [17]. In the current problem, the

prior knowledge about the hydrodynamic characteristics (i.e., invariance, symmetry, and additivity) can be

encoded as the physical constraints of the hydrodynamic model. These constraints can be enforced in the

surrogate model by adding operations inside the surrogate model that give rise to the desired features. This

paper proposes to embed the invariance, symmetry, and additivity in the kernel function to provide more

informative prior knowledge for the GP model. In particular, an invariant kernel is first developed to in-

corporate the invariance and symmetry information, and the established invariant kernel is then integrated

into the GP model. This developed invariant kernel enables efficient incorporation of the prior knowledge

in the GP model and eliminates the need for handcrafting the input features. Second, taking advantage

of the similarity to the classical many-body interaction problem [14], the hydrodynamic characteristics are

decomposed to the sum of the outputs from subsystems. Such an additive feature is also regarded as a

physical constraint in this paper, and a new kernel is developed to embed the additive feature in the GP

model. The kernel exhibits a similar additive feature to the hydrodynamic characteristics and is thus named

“additive kernel.” Finally, the proposed invariant kernel is combined with the additive kernel to establish

an integrated kernel, which is used to construct more informative GP models that explicitly include the

known physical constraints on the hydrodynamic characteristics. Compared to the standard GP models,

the proposed physics-constrained GP models require less training data to achieve desired accuracy in pre-

dicting the hydrodynamic characteristics and are less vulnerable to the curse of dimensionality. It should

be noted that the novelty and focus of this work is to design physics-constrained kernels to incorporate

prior knowledge about the problem of interest in order to more efficiently train an accurate Gaussian process

model. This is in comparison to standard Gaussian process model. Since the hydrodynamic analysis problem

shows the permutation invariance, symmetry, and additivity properties, as shown in rent work by Zhang

et al. [14], this work tries to incorporate these properties directly in the construction/design of the kernel.

It is expected that the proposed approach will have general applicability to other problems as well. The

generality of the proposed approach stems from the capability of the kernel to incorporate different prior

physical knowledge/constraints (e.g., beyond the permutation invariance, symmetry, and additive properties

considered in the current work). For other problems, for example, problems showing periodicity or satisfying

partial differential equation, one can potentially update the model by designing corresponding kernels to
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incorporate the related knowledge/constraints.

The remainder of this paper is organized as follows. Section 2 presents the hydrodynamic interaction

problem for WEC arrays and discusses the computational challenges in calculating hydrodynamic charac-

teristics for arrays with different layouts. Section 3 presents the proposed physics-constrained GP model for

efficient predicting hydrodynamic characteristics of WEC arrays with different layouts. Section 4 presents

the illustrative example with application to arrays with a different number of WECs and discusses the perfor-

mance of the proposed approach in terms of prediction accuracy and efficiency. Finally, Section 5 summarizes

the research findings.

2. Hydrodynamic Interaction Between WECs

2.1. Representation of WEC array layout

Assume the considered WEC array has N identical WECs floating in the water, which are able to oscillate

in M modes of motion. Among different configurations for WECs, this paper mainly focuses on cylindrical

heave converters, which are heaving floating resonant buoys connected to a power take-off moored to the

seafloor. A typical cylindrical heave converter is shown in Figure 1(a). Therefore, the number of oscillating

modes M is reduced to 1 here.

A two-dimensional Cartesian coordinate system is defined to express the locations of the WECs. The

WECs in the array are under the incident wave propagating along the positive x-axis, and the corresponding

incident angle is an arbitrary number β. Figure 1(c) shows an example layout of the array with N WECs,

and note that throughout the paper, an array of WECs is numbered as in the figure. Without loss of

generality, the leftmost buoy of the array is assumed to be located at the origin of the coordinate system.

The layout of the array can then be characterized by the locations of the remaining N − 1 buoys: x =

[x̄2, x̄3, . . . , x̄N , ȳ2, ȳ3, . . . , ȳN ] ∈ X ⊂ R2(N−1), where the pair (x̄i, ȳi) represents the coordinates of the

ith WEC and X denotes the admissible layout space. For convenience, the layouts of the WEC arrays are

transformed into equivalent layouts with all buoys on the right half plane with β = 0 beforehand, which can

be established by rotating the coordinate system and adjusting the origin.

2.2. Diffraction and radiation problem

Following the assumption of classical hydrodynamics (i.e., small displacements, inviscid and incompress-

ible fluid and irrotational flow), the fluid motion can be described by a velocity potential function based on

the linear potential theory of waves [20]. By further assuming that all motions are time-harmonic with angu-

lar frequency ω, we can extract the time-dependence of the velocity potential [21], and the time-dependent

velocity potential function Φ is then written as

Φ = Re
[
φ · e−iωt

]
(1)
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Figure 1: (a) Wave energy converter (WEC) (adapted from [18]), (b) wave farm (adapted from [19]), and (c) Cartesian

representation of an array of N WECs.

where i =
√
−1, and Re[·] indicates that the real part is to be taken. ω is the wave frequency, and should

satisfy the dispersion equation ω2 = gk tanh(kh), where g is the gravity acceleration, k is the wave number,

and h is the water depth. Due to the linear potential theory of waves, the complex-valued velocity φ can be

expressed by the superposition of the incident wave potential, the scattered wave potential and the radiated

wave potential [21]:

φ = φI + φD +
N∑
p=1

U (p)φ
(p)
R (2)

where φI is the incident wave velocity potential, φD describes the velocity potential of the diffracted wave

field, φ
(p)
R is the velocity potential of the wave field induced by the oscillation of the pth body in the heave

motion, and U (p) is the corresponding velocity amplitude. The complex-valued potential φ must satisfy the

Laplace equation within the entire fluid domain, expressed by ∇2φ = 0. Also, several boundary conditions

should be satisfied, and interested readers are referred to [20, 22] for detailed descriptions of the boundary

conditions. By solving this boundary value problem, the diffracted wave potential φD and the radiated wave

potential φR can be determined.

In this paper, we are more interested in the hydrodynamic characteristics of the array of WECs, and they

can be computed based on the hydrodynamic pressure acting on the devices. More specifically, after the

velocity potential in the entire fluid domain is solved, we can calculate the hydrodynamic pressure based on

the linearized Bernoulli’s equation [23]. Ultimately, the hydrodynamic forces on the WECs may be calculated

by integrating the hydrodynamic pressure over the submerged surface of the WECs [21]. More specifically,

the wave excitation force on the pth body in the direction of heave motion due to the incident and diffracted

wave, and the hydrodynamic reaction force on the pth body in the direction of heave motion induced by the
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oscillation of the qth body in the direction of heave motion are written as

F (p) = iωρ

∫ ∫
Sp

(φI + φD)νdS (3)

f (pq) = iωρ

∫ ∫
Sp

[
U (q)φ

(q)
R

]
νdS (4)

where ρ is the fluid density, Sp is the submerged surface of the pth body, and ν is the generalized normal

component with respect to the body p. It should be noted that the wave reaction force, f (pq), can be

reformulated to obtain the radiation-related hydrodynamic characteristics (the added mass coefficient a(pq))

and the wave damping coefficient b(pq). The reformulation is written as the following equation:

f (pq) = iωU (q)

[
a(pq) + i

b(pq)

ω

]
(5)

In the end, for a WEC array with N identical buoys (shown in Figure 1(c)), our main purpose is to

calculate the hydrodynamic characteristics of the array, including wave excitation force F (p) (corresponding

to the diffraction problem), added mass coefficient a(pq), and wave damping coefficient b(pq) (corresponding

to the radiation problem), where p, q = 1, . . . , N .

2.3. Multiple scattering

In this paper, the multiple-scattering (MS) method is adopted to obtain the solution of velocity potential

of the wave field and calculate the hydrodynamic interaction within the array of WECs due to its versatility

in achieving enhanced accuracy. In the first step, this approach requires the solution of the single (isolated)

body problem for each body, p, within the array. We refer the reader to [1] for more details on the derivation

for the case of upright cylindrical bodies under heave oscillation. In the second step, the interaction between

the bodies is then addressed by considering the implications to the other bodies (e.g., body q) of the diffracted

field generated by the initial body, p. The accuracy of the MS method is influenced by both the truncation

order (i.e., for deriving the solution for a specific body) as well as the interaction order (i.e., for addressing

the coupling between the bodies). Further details about the MS approach can be found in [22].

Ultimately, for each considered frequency, ω, the MS method provides the wave excitation forces exerted

on each body by the incident wave as well as the added mass and damping coefficients exerted on body p

in the direction of heave motion due to the oscillation of of body q in the direction of heave motion. In this

paper, we denote F(ω)∈ CN as the response vector relating the incident and diffracted wave to the wave

excitation force on each body in the heave direction, and each element of the vector corresponds to F (p).

Also, we denote a(ω)∈ RN×N and b(ω)∈ RN×N as the added mass and damping matrices respectively,

with the pqth element (i.e., a(pq) and b(pq)) of these matrices relating the heave oscillations of bodies p

and q. It is noteworthy to point out that the computational cost of the MS solver can be expensive (i.e.,

modeling hydrodynamic interactions between WECs takes a lot of computational time), especially when the
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number of WECs in the array is large. Considering the significant computational effort in calculation of the

hydrodynamic characteristics, typically, one can limit the maximum order of interaction or the the maximum

number of eigenfunction series to a relatively small number. Although such implementation gives rise to

faster computation of the hydrodynamic characteristics, it trades off accuracy for computational efficiency.

3. Physics-Constrained Gaussian Process Model for Predicting Hydrodynamic Characteristics

To alleviate the computational burden in calculating the hydrodynamic characteristics of the WEC array,

surrogate modeling can be used. Surrogate models (also frequently referenced as metamodels) can provide an

approximate input-output relationship to replace a computationally expensive model, utilizing information

within a database of preliminary simulations from that model. Among different surrogate models, this paper

focuses on the GP model, which has been gaining popularity due to its high flexibility in approximating

complex functions. This section first briefly reviews the GP model and then presents in detail the proposed

physics-constrained GP model for predicting hydrodynamic characteristics of a WEC array.

3.1. Review of Gaussian process model

For an unknown function f with input vector x ∈ Rnx , given a set of observations a GP model can be

adopted to approximate the deterministic function output y = f(x) ∈ R. The core principle is to assume the

target function f as a realization of a regression model and a zero-mean Gaussian process with covariance

or the so-called kernel σ2R(xi,xj), where σ2 is the variance and R(xi,xj) is the correlation function.

To create a GP model, the regression basis function and the kernel function need to be specified first.

A popular selection for the regression basis function is the polynomial (e.g., a linear or quadratic function

of x), and one of the commonly used kernel functions is the squared exponential covariance function. The

selection/use of a kernel function introduces some hyperparameters to the GP model, such as the length scale

of the correlation function and the variance. Conditioned on the n observations corresponding to the function

outputs Y = {yh;h = 1, . . . , n} for different inputs X = {xh;h = 1, . . . , n}, the predictive distribution of

the function output provided by the GP model is

f(x)|X,Y ∼ N (f̄(x),V[f(x)]) (6)

where N (·) represents the Gaussian distribution, and f̄(x) and V[f(x)] are the predictive mean and the

predictive variance, respectively. This predictive variance provides a local estimation of the uncertainty of

the model predictions and entails useful information for guiding the selection of the training data. The

calibration of the GP model requires a careful selection of the training inputs, X, frequently referenced as

design of experiments. It can be established using some space-filling technique such as Latin hypercube

sampling (LHS), perhaps augmented through an adaptive refinement to improve the accuracy in target

regions [24, 25]. Through the proper tuning of the hyperparameters, the GP model can approximate very

complex functions. The optimal selection of the hyperparameters can be based on the maximum likelihood
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estimation principle, where the likelihood is defined as the probability of the observations. The development

and employment of the GP model is only based on matrix manipulations, and as such is computationally

efficient.

3.2. Physics-constrained Gaussian process model for predicting hydrodynamic characteristics

In this problem, GP models are constructed to predict the relationship between the WEC layout and

the hydrodynamic characteristics of each buoy. As discussed in Section 2, the layout is characterized by

the locations of the buoys, x = [x̄2, x̄3, . . . , x̄N , ȳ2, ȳ3, . . . , ȳN ], where the pair (x̄i, ȳi) represents the

coordinates of the ith WEC. Therefore, x is taken as the input of the GP models. For the model output, we

are interested in the wave excitation force vector F, added mass coefficient matrix a, and added damping

coefficient matrix b described in Section 2. In this paper, we build separate GP models to predict the

elements of F, a, and b (i.e., F (p), a(pq), and b(pq), where p, q = 1, . . . , N), and the reason will be discussed

later. Note that the wave excitation forces are complex values, and we separately predict the real and

imaginary parts. With the model input and output selected, corresponding GP models can be constructed.

However, the standard way of building GP model faces significant challenges. Directly taking coordi-

nates as inputs cannot incorporate our prior knowledge about the input-output relationship, such as the

physical constraints including invariance, symmetry, and additivity (will be discussed in detail later), into

the surrogate modeling. These features can only be learned by a large number of training data, but a lot of

times we cannot obtain so many training data due to the high cost of running the numerical model (e.g., the

MS solver). As a result, the prediction accuracy and generalization ability of the GP model under a limited

number of training data may be significantly reduced. This is especially the case for arrays with a large

number of WECs, since the large input space typically requires more training data to obtain desired predic-

tion accuracy. However, the computational time of calculating the hydrodynamic characteristics increases

dramatically with the number of WECs, which means obtaining training data is more costly as well.

To address the challenges in constructing a GP model to predict the hydrodynamic characteristics, this

paper proposes a physics-constrained GP model that explicitly embeds the available physical constraints

into the surrogate modeling process and eliminates the need for preparing a large training data set. This

section first summarizes the physical characteristics/constraints of the relationship between the WEC layout

and the hydrodynamic characteristics of WECs. Then, for different hydrodynamic characteristics, different

model inputs are selected so that the physical constraints can be encoded appropriately and conveniently.

Finally, in order to provide “informative prior knowledge” to the GP models, a physics-constrained GP

model through designing specific kernels is proposed.

3.2.1. Physical constraints of hydrodynamic interaction model: invariance, symmetry, and additivity

First, in many engineering problems, the interested system often exhibits invariance or symmetry features,

meaning some transformations on the model input do not change the model output. For example, in

a chemical environment, the interatomic potential of a molecule or crystal is permutation-invariant with
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respect to the ordering of the atoms in the same species [26]. In general, such invariance and symmetry

knowledge about a function f(x) can be formulated as

f(x) = f(g(x)) ∀x ∈ X ∀g ∈ G (7)

where g(x) is an operation/transformation on the input x that determines the invariance/symmetry, and G

represents a finite group of all possible such operations. Note that the function f is also invariant to the

compositions of the operations [27], and thus the group G includes both the operations and their possible

compositions.

In the hydrodynamic interaction problem, we also have some prior knowledge about the invariance and

symmetry features that the hydrodynamic characteristics exhibit, and they are essentially derived based on

the physical laws of the hydrodynamic interaction problem and based on the underlying principles of the

numerical model (i.e., MS solver) for calculating the hydrodynamic interaction. For the WEC array with N

buoys shown in Figure 1(c) represented by x = [x̄2, x̄3, . . . , x̄N , ȳ2, ȳ3, . . . , ȳN ], the physical constraints

are summarized as below:

(1) The wave excitation force of the buoy p (i.e., Re
[
F (p)

]
and Im

[
F (p)

]
where p = 1 . . . N) is permutation-

invariant to the ordering of the rest of the buoys in the array;

(2) The added mass and damping coefficient matrices (i.e., a and b) are symmetric, which means the

added mass and damping coefficients of buoy p due to the heave oscillation of buoy q are equal to the added

mass and damping coefficients of buoy q due to the heave oscillation of buoy p;

(3) The diagonal terms of added mass and damping coefficient matrices (a(pp) and b(pp)) where p = 1 . . . N ,

are permutation-invariant with respect to the ordering of the rest of the buoys in the array. The off-diagonal

terms of the matrices (a(pq) and b(pq) where p, q = 1 . . . N and p 6= q), are permutation invariant with respect

to the ordering of the rest of the buoys in the array (i.e., all the buoys in the array excluding buoy p and

buoy q themselves);

(4) Since any layout of the WEC array can be transformed to a new one with incident wave angle β equal

to zero, under zero incident angle, the hydrodynamic characteristics of all the buoys stay the same when the

layout is reflected with respect to the x-axis. This symmetry property is illustrated in Figure 2.

The invariance and symmetry information summarized above can be encoded mathematically through

Eq. (7). For example, suppose the array has three buoys and the coordinate vector used to characterize the

layout is x = [x̄2, x̄3, ȳ2, ȳ3]. Then the operations for the wave excitation force of buoy 1 (i.e., F (1)) can be

expressed by

g1([x̄2, x̄3, ȳ2, ȳ3]) = [x̄2, x̄3, ȳ2, ȳ3], g2([x̄2, x̄3, ȳ2, ȳ3]) = [x̄3, x̄2, ȳ3, ȳ2]

g3([x̄2, x̄3, ȳ2, ȳ3]) = [x̄2, x̄3,−ȳ2,−ȳ3], g4([x̄2, x̄3, ȳ2, ȳ3]) = [x̄3, x̄2,−ȳ3,−ȳ2]
(8)

where g1(·) represents “no operation”, g2(·) represents swapping WEC 2 and 3, g3(·) represents reflecting the
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WEC layout with respect to the x-axis, and g4(·) represents swapping WEC 2 and 3 first and then reflecting

the entire layout with respect to the x-axis.

Figure 2: Illustration of symmetry property of hydrodynamic characteristics.

Second, the hydrodynamic interaction problem involves wave interactions between multiple floating bodies

and resembles the classical many-body interaction problem in many fields such as quantum mechanics and

molecular dynamics [28, 29]. As informed in the work by Zhang et al. [14] (which studied surrogate

modeling of hydrodynamic forces between multiple floating bodies), the model output of this problem (i.e.,

hydrodynamic characteristics) can be decomposed into contributions from subsets of the buoys, represented

by many-body terms (i.e., individual terms and interaction terms), and approximated by the series truncated

at some finite orders. Mathematically, we formulate such decomposition as

y(x) =
∑

2≤i≤N

yi(xi) +
∑

2≤i<j≤N

yij(xi,xj) + · · ·+
∑

2≤i<j<···<l≤N

yij...l(xi,xj , . . . ,xl) + · · · (9)

where xi = (x̄i, ȳi) is the coordinate vector of the ith WEC. y represents the quantity of interest such as any

element of force vector F, added mass coefficient matrix a, or added damping coefficient matrix b. yi denotes

the response attributed to the ith buoy, yij denotes the response attributed to the interaction between the

ith and the jth buoys, and yij...l denotes the response attributed to the interaction between the ith, the jth,

. . . , and the lth buoys. The additivity feature is illustrated in Figure 3.

Figure 3: Illustration of decomposition of many-body systems (i.e., array of N WECs).

The invariance, symmetry, and additivity features discussed above are deemed the physical constraints of
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the hydrodynamic interaction model, and if this available prior knowledge can be incorporated when the GP

models are constructed (e.g., encoded in the prior function assumed for the GP model), the required number

of training data to reach good prediction accuracy is expected to be reduced. This reduction is especially

important for building accurate GP models for arrays with a relatively large number of WECs, where the

computational cost to obtain the training data is typically quite expensive.

3.2.2. Selection of model input

As summarized in the previous section, the permutation-invariance features of wave excitation force,

added mass, and added damping coefficient may involve different buoys (i.e., corresponding to different

model input); therefore, we separately predict these hydrodynamic characteristics. For different quantities

of interest, we need to do some simple transformation (e.g., shift the coordinate system by some distances)

on the original model input x so that the invariance and symmetry information can be appropriately and

conveniently included in surrogate modeling.

First, we consider the model output y = Re
[
F (p)

]
, or Im

[
F (p)

]
, or a(pp), or b(pp), where p = 1, . . . , N .

In order to include the permutation invariance of the model outputs with respect to the ordering of all

buoys except buoy p in the GP model, we move the origin of the coordinate system to buoy p and obtain

a new coordinate vector, which will be used as the model input. Take the array with three WECs as an

example: if we are interested in the added mass coefficient of WEC 2 due to its heave motion (i.e., a(22)),

we first augment the coordinate vector x = [x̄2, x̄3, ȳ2, ȳ3] to xaug = [0, x̄2, x̄3, 0, ȳ2, ȳ3] and then shift

the coordinate system so that the second buoy is the new origin. Finally, the new coordinate vector used to

characterize the array layout becomes xT = [−x̄2, x̄3, − ȳ2, ȳ3] (i.e., represented by the positions of WECs

1 and 3). It is noteworthy to point out that the added mass and damping coefficients are invariant with

respect to any translational shift of the coordinate system, and thus the above transformation on the model

input does not change the model outputs. However, any translational shift of the coordinate system along

the wave propagation direction (i.e., x direction when β = 0) can cause changes to the wave excitation forces.

Therefore, in practice, when predicting the wave excitation force of buoy p where p = 2, . . . , N , we select the

original coordinate vector as the model input (i.e., xT = x), and release the constraint on the permutation

invariance (switching the ordering of buoys except buoy 1 and buoy p does not change F (p)).

Second, for the off-diagonal terms of added mass and damping coefficient matrices (y = a(pq) or b(pq),

where p, q = 1, . . . , N and p 6= q), we also move the origin of the coordinate system to the body p so that the

permutation invariance with respect to the ordering of the buoys except buoy p and buoy q can be considered

conveniently, and the transformed coordinate vector is also represented by xT . It should be noted that in

this case we also release the constraint on the permutation invariance since switching the ordering of buoy

p and buoy q does not change the value of a(pq) or b(pq).
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3.2.3. Physics-constrained GP model through kernel design

In order to incorporate the physical constraints of the hydrodynamic interaction model (i.e., invariance,

symmetry, and additivity) to the GP model, we propose a physics-constrained GP model through kernel

design. As discussed in Section 3.1, kernel is an crucial ingredient of a GP model. Consider two input

locations x, x′ and their corresponding model outputs y(x), y(x′), a kernel k(·) is used to measure the

covariance (representing similarity or distance) between the model outputs at two input locations, written

as

Cov(y(x), y(x′)) = k(x,x′) (10)

The kernel function in the GP model typically assumes that the covariance between model outputs at two

input locations decays smoothly as the distance between these inputs increases [30, 10], i.e., if x are close to

x′, y(x) will be similar to y(x′). Such kernel functions lie in the category of stationary kernel function, which

is a function of the distance between inputs x− x′. Commonly used stationary kernel functions include the

squared exponential kernel (shown in Eq. (11)), Matérn kernels (shown in Eq. (12)∼(13)), rational quadratic

kernel (shown in Eq. (14)), and more details about these kernel functions can be found in [10].

• Squared exponential kernel

k (x,x′) = σ2
nx∏
i=1

exp

(
−|xi − x

′
i|
2

2θ2i

)
(11)

• Matérn 5/2 kernel

k (x,x′) = σ2
nx∏
i=1

(
1 +

√
5|xi − x′i|
θi

+

√
5|xi − x′i|2

3θ2i

)
exp

(
−
√

5|xi − x′i|
θi

)
(12)

• Matérn 3/2 kernel

k (x,x′) = σ2
nx∏
i=1

(
1 +

√
3|xi − x′i|
θi

)
exp

(
−
√

3|xi − x′i|
θi

)
(13)

• Rational quadratic kernel

k (x,x′) = σ2
nx∏
i=1

(
1 +
|xi − x′i|

2

2αθ2i

)−α
(14)

where xi and x′i are the ith component of the input x and x′, respectively. Note that the distances between

inputs are calculated in the Euclidean space in this study. A kernel function have several hyperparameters,

which have significant influence on the established GP model. Take the squared exponential kernel in

Eq. (11) as an example, σ2 is the variance which tunes the amplitude of the model and θ = [θ1, . . . , θnx
] are

the length-scales which control the wiggliness of the model. We can also use the same θ for all components,

and the corresponding kernel is the isotropic kernel. For the rational quadratic kernel, α is the scale mixture

parameter.

In order to obtain the desired prediction performance, selecting an expressive valid kernel function is

especially important since it determines the prior function assumed for the GP model. Therefore, here we
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propose to impose the already known physical constraints into the kernel, and in this way a more “informative

prior knowledge” can be provided for the GP model construction. In this section, an invariant kernel is first

developed based on the invariance and symmetry information on the hydrodynamic interaction model and a

base kernel (e.g., commonly used kernel functions). After that, an additive kernel is designed to incorporate

the additive characteristics of the hydrodynamic interaction model and is then combined with the invariant

kernel. The integrated kernel can explicitly consider the invariance, symmetry, and additivity features and

be used to build GP models with high interpretability and generalization ability to predict the hydrodynamic

characteristics for arrays with different layouts.

First, in order to build a GP model that is invariant under the operations in G (see Eq. (7)), the proposed

invariant kernel function should be invariant under the same operations. Ginsbourger et al. [31] have shown

that a GP model is invariant to the operations in the group G if and only if k is argument-wise invariant to

these operations, meaning it satisfys the following property:

k(xT ,x
′
T ) = k(g(xT ), g′(x′T )) ∀xT ,x′T ∈ X ∀g, g′ ∈ G (15)

This kernel will be established by double-summing a base kernel defined earlier (e.g., one of the commonly

used kernels defined in Eq. (11)∼(14)) over the orbits of the inputs, where the orbit of xT is the set of all

transformed inputs obtained by applying each possible operation in G to xT , and can be represented by the

set A(xT ) = {g(xT ); g ∈ G}. Formally, the invariant kernel is given by

k(xT ,x
′
T ) =

∑
xT∈A(xT )

∑
x′
T∈A(x′

T )

kbase(xT ,x
′
T ) (16)

In this application, the operations in the group G include permutation of the WECs (i.e., switching the

orders), symmetric mapping with respect to the x-axis and their composition. To this end, the GP model

constructed using the invariant kernel function k will be capable of integrating our prior knowledge (i.e.,

invariance and symmetry information) about the physical characteristics of the problem.

Second, we embed our knowledge about the additive features of the hydrodynamic characteristics. To

build a GP model with the additive features, a new class of kernel is defined. It has been proved that the

additivity of the GP model can be expressed by the additivity of the corresponding kernels [32]. Therefore,

the GP model in our problem is specified by a kernel that can be decomposed into a series of subkernels

with each sub-kernel corresponding to the contribution from the interaction between subsets of WECs with

different numbers of WECs. Such a kernel is defined as the additive kernel, and it has the following expression:

kadd(xT ,x
′
T ) = σ2

1

∑
2≤i1≤N

ki1(xT,i1 ,x
′
T,i1) + σ2

2

∑
2≤i1<i2≤N

ki1(xT,i1 ,x
′
T,i1)ki2(xT,i2 ,x

′
T,i2) + · · ·

+ σ2
t

∑
2≤i1<i2≤···≤it≤N

t∏
d=1

kid(xT,id ,x
′
T,id

) + · · ·
(17)
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where {kid(xT,id,x′T,id), d = 2, 3, . . . , N} is a base kernel operating on two dimensions of the input xT and

x′T (i.e., the transformed coordinates of the dth WEC), and σ2
t is the variance assigned to the tth interaction

term. In order to specify the additive kernel, one needs to select a base kernel function first, and then

optimize the hyperparameters, including the length scale of the base kernel and the variance σ2
t in each

order based on the given training data. Note that different variance values can be specified for each sub-

kernel of the additive kernel which also helps the GP model control the variance assigned to each order of

interaction of the input.

Finally, the additive kernel in Eq. (17) is combined with the invariant kernel in Eq. (16), and more

specifically, the base kernel of the invariant kernel takes the additive kernel:

k(xT ,x
′
T ) =

∑
xT∈A(xT )

∑
x′
T∈A(x′

T )

kadd(xT ,x
′
T ) (18)

To better explain how the proposed physics-constrained kernel works, Figure 4 illustrates the evaluation

process of the proposed kernel for any 3-WEC array. The integrated kernel is then used to develop GP

models for the hydrodynamic characteristics. It is noteworthy to point out that the computational cost of

evaluating the proposed kernel in Eq. (18) is expensive when the dimension of the input is large. However, if

the many-body system converges fast, we can truncate the interaction series to a low order, which will help

reduce the computational effort in building the GP model. In our problem, the decomposition in Eq. (9) is

expected to converge fast (i.e., the first several orders of interaction contribute much to the response) based

on the justification given in [14]. That is, the MS method provides an exact solution for the hydrodynamic

characteristics by summing the infinite scattering order, whose superior convergence rate has been confirmed,

and many-body expansion has a faster convergence speed than the MS method. This principle also applies

to the GP model with a similar additive structure. Therefore, in this application, it is expected that only the

first few orders of interactions are important for modeling the hydrodynamic characteristics. This assumption

naturally suggests that, when the computational resources are limited, one can limit the maximum considered

order of interaction for the additive kernel without significantly impacting the prediction accuracy. In the

end, the computational cost of evaluating Eq. (18) can be significantly reduced.

3.3. Overall algorithm

The overall algorithm of the proposed physics-constrained GP model for predicting hydrodynamic char-

acteristics of WEC arrays is illustrated in Algorithm 1, which shows the key steps. In the algorithm, the

output of the GP model is scalar meaning a separate GP model is built for each element of F, a and b.

Therefore, for an array of N WECs, we need to train 2N + 2(N2 + N)/2 = N2 + 3N GP models in total.

However, in practice, we can train a model to predict some elements together if they depend on the same

model input (e.g., Re
[
F (11)

]
, Im

[
F (11)

]
, a(11), and b(11)). In this way, the number of GP models needed to

be trained is reduced to N +N − 1 + (N2 −N)/2 = (N2 + 3N)/2− 1 at most, which is less than half of the

original required number of GP models.
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Figure 4: Illustration of the evaluation process of the physics-constrained kernel between any two 3-WEC arrays represented

by xT and x′T .

For any new WEC array shown in Fig 1(c), we first transform the layout to a new one with incident angle

β = 0, and the corresponding coordinate vector is denoted x0. For any model output of interest, we then

transform x0 to appropriate xT,0 by simply moving the coordinate system according to Section 3.2.2. Then

the trained GP models can be used to directly predict the elements of the hydrodynamic characteristics for

the considered wave frequency ω. Finally, the elements are assembled to establish the corresponding vector

F or matrices a and b.

4. Illustrative Example

To demonstrate the performance of the proposed algorithm, it is applied to predict hydrodynamic char-

acteristics of WECs in an array. The array is in a rectangular domain with 127.5 m along the x-axis and

255 m along the y-axis, and the water depth is 60 m. The buoys are identical cylinders oscillating in heave

direction only. The radius for each buoy is rb = 3 meters and its mass is mb = 1.8e5 kg, corresponding to a

draft of Dr = 6.37 m and natural period of oscillation of 5.06 s. The considered wave frequency is 0.6 rad/s

and it corresponds to a wave period equal to 10 s which has a high occurrence probability. To investigate
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Algorithm 1 The proposed physics-constrained GP model

Step 1: Represent layout of an array with N WECs (Figure 1(c) with β = 0) using a coordinate vector

x = [x̄2, x̄3, . . . , x̄N , ȳ2, ȳ3, . . . , ȳN ]

Step 2: Generate input matrix X = {xh;h = 1, . . . , n} (i.e., using Latin Hypercube Sampling (LHS)),

and run expensive model (i.e., MS solver) for each xh to obtain hydrodynamic characteristics (Y =

Fh,ah, or bh) at a specific wave frequency w

Step 3: Obtain the model input matrix XT = {xhT ;h = 1, . . . , n} by transforming each model input x to

xT according to Section 3.2.2

Step 4: Design kernel to encode permutation invariance, symmetry, and additivity properties according

to Section 3.2.3

Step 5: Based on input-output pairs {XT ,Y}, develop a physics-constrained Gaussian process model

the impact of the wave frequency on the model construction, wave frequencies between 0.3 rad/s and 1.3

rad/s (i.e., wave periodic between 4.8 s and 20.9 s) are also considered. The corresponding wave number k

varies from 0.0136 1/m to 0.1723 1/m. The incident angle β is selected as 0 in this example, but generally it

can take any value. In order to investigate the scalability of the proposed algorithm, it is applied to arrays

with different numbers of WECs, and here N in the range of 3 to 30 is considered.

4.1. Implementation details

To establish the training data set, n inputs are generated by LHS and the corresponding outputs are

calculated by the hydrodynamic interaction model using the MS approach. For the MS solver, the order

of interaction is set as 5, whereas the eigenfunction series are truncated at 5 and 40 for the main fluid and

the fluid below the cylinder, respectively, to ensure adequate accuracy. These values are selected through

a convergence study of the model. More details can be found in the Appendix. In the proposed physics-

constrained GP model, the kernel is the invariant kernel in Eq. (16) taking the additive kernel in Eq. (17)

as base kernel, and for the base kernel of additive kernel, we select the commonly used Matern kernel with

ν = 5/2. Since decomposition in Eq. (9) is expected to converge fast, we infer that only the first several

orders of interaction in Eq. (17) contribute much to the model response. To validate this assumption with

the currently available computational resource, we used the additive kernel with full orders of interaction

for the WEC arrays with 3 buoys and 4 buoys, and the contribution from each order is characterized by

the assigned variance σ2
t , where t = 1, 2 for the 3-WEC array and t = 1, 2, 3 for the 4-WEC array. After

optimization of the hyperparameters, the results for all the diffraction- and radiation-related hydrodynamic

characteristics show that for the 3-WEC array, σ2
1 ≈ 1 while σ2

2 ≈ 0. Similarly, for the 4-WEC array, σ2
1 ≈ 1

while σ2
2 , σ

2
3 ≈ 0. Both cases indicate that only the first order of interaction between the buoys contributes

most to the hydrodynamic coefficients predicted by the physics-constrained GP model. Therefore, for all the

other cases, we limit the maximum considered order of interaction for the additive kernel to the first order and

assume that this implementation will not significantly impacting the prediction accuracy. This significantly
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reduces the computational effort in evaluating the kernel functions. For comparison purposes, a standard

GP model, which is the same as the proposed model but uses the standard base kernel, is constructed to

predict the same output. For the kernels in the proposed GP model and the standard GP model, we use the

same length-scale value for all input dimensions. The reason for this selection here is that the computational

effort to optimize a single length scale is typically much less than the effort to optimize multiple length

scales, especially when the input dimensionality is high. More importantly, in this example using the same

length scale for all the input dimensions can already inform an accurate Gaussian process model.

To assess the accuracy of the GP models in predicting the hydrodynamic characteristics, validation

metrics are calculated over a testing set for each case. The test size is set as nt = 1000, and the testing

data are also generated by LHS. Figure 5 shows the statistics of the minimum, maximum, and average

separation distance between WECs in an array calculated for the 1000 testing data. Here the coefficient of

determination, R2, is used as the validation metric,

R2 = 1−
∑nt

i=1(yi − ŷi)2∑nt

i=1(yi −
∑nt

i=1 y
i/nt)2

(19)

where ŷi is the prediction from the established GP model for the ith data in the testing set. Large R2 values

(e.g., closer to 1) indicate that the trained model has good accuracy.

Figure 5: Statistics of the minimum (dmin), maximum (dmax), and average (davg) separation distance between WECs in an

array for 1000 testing data.

4.2. Selection of training size and prediction accuracy

To investigate the prediction accuracy of the proposed physics-constrained GP model, we calculate the

coefficient of determination R2 for all cases (i.e., arrays with different numbers of WECs). Due to space

limitation, we only list the results for arrays of 3, 5, 8, 10, 20, and 30 WECs, while the results for other cases

show a similar pattern. The prediction accuracy metrics are calculated separately for different elements of the

hydrodynamic characteristic matrices F, a, and b. For illustrative purposes, the elements are classified into

four groups: (1) real and imaginary parts of F (1), (2) real and imaginary parts of F (p) where p = 2, . . . , N ,
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(3) a(pp) and b(pp) where p = 1, . . . , N , and (4) a(pq) and b(pq) where p, q = 1, . . . , N and p 6= q. The reason

for such classification is that the prediction accuracies for the real and imaginary parts of F are close, and

also the prediction accuracies for a and b are close. Additionally, when modeling F (1), a(pp), and b(pp), the

strict invariance information is incorporated while only partial invariance information is considered when

modeling F (p), a(pq), and b(pq). For each group, the mean of the accuracy metrics (i.e., R2) is calculated,

and to show the spread of prediction accuracy between different elements within a group, the minimum and

maximum of the accuracy metrics are also calculated.

When constructing the physics-constrained GP model to replace the computationally expensive MS solver,

it is desirable to use a small number of training data n, while maintaining the good prediction accuracy of

the surrogate model. In order to select an appropriate n, we investigate how the model prediction accuracy

changes over different n. Figure 6 shows the variation of the mean R2 values against n for arrays with

different numbers (i.e., 5, 10, 20, and 30) of WECs when the wave frequency, ω, is 0.6 rad/s. As expected,

the mean R2 increases when the training size increases. This is true for arrays with different WECs and

for the different hydrodynamic characteristics. For the diffraction-related characteristics, the prediction

accuracy is already superior (i.e., the mean R2 values are larger than 0.98) when n reaches 40 and has

only small improvement when further increasing n. However, for the radiation-related characteristics, more

training data are required to reach the targeted mean R2 values (i.e., 0.98). The reasons for this is that

the radiation-related characteristics show stronger nonlinearity with respect to the model input than the

diffraction-related characteristics. Note that for a specific WEC array, different elements of the hydrodynamic

coefficients come from one evaluation of the MS solver, and thus the same number n should be selected for

different hydrodynamic coefficients. As a result, the number of training data n for 3-, 5-, 8-, 10, 20-, and

30-WEC arrays is selected as 100, 120, 120, 120, 160, and 180, respectively.

To further compare the prediction performance of the algorithm using a selected number of training data

between different WEC arrays, we show the mean, minimum, and maximum of the prediction metrics in

Table 1. For diffraction-related characteristics (i.e., elements of F), as can be observed from the table, the

R2 for all cases are over 0.90, which reveals excellent prediction accuracy of the proposed physics-constrained

GP model. In each case, by comparing the mean, minimum, and maximum of R2 within a group of the

hydrodynamic characteristics, we can find that the values are very close, which means there is little variation

in the prediction accuracy for different elements of F. For radiation-related characteristics (i.e., elements

of a and b), very good prediction accuracy can also be obtained, but the mean, minimum, and maximum

values of R2 for radiation-related hydrodynamic characteristics are relatively different. This indicates that

the prediction accuracy for different elements of a(pp)/b(pp) and a(pq)/b(pq) show relatively large variability.

Additionally, almost all the hydrodynamic characteristics experience a drop in the prediction accuracy as

the number of WECs in the array increases, although the number of training data are also increased. This

is expected since the dimensionality of the model input is proportional to the number of WECs in the array,

and higher-dimensional input space requires more training data to inform an accurate GP model.
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Figure 6: Variation of the mean of R2 against the number of training data n for arrays with different numbers of WECs (shown

for the case when the wave frequency ω = 0.6 rad/s).

4.3. Impact of wave frequency

The prediction accuracy of the established surrogate model may be significantly affected by the wave

frequency of interest. To investigate the impact of the wave frequency on the physics-constrained GP model,

Figure 7 shows the variation of the mean R2 values against wave frequency ω for all the hydrodynamic

coefficients of arrays with different numbers of WECs. For comparison purposes, the physics-constrained

GP models are developed for different wave frequencies with the same number of training data n, and n is

still selected as 120, 120, 160, and 180 for 5-, 10-, 20-, and 30-WEC arrays, respectively. The considered

wave frequencies are between 0.3 rad/s and 1.3 rad/s, and since these two bounds have very low occurrence

probability for most deployment locations, they can serve as good bounding cases to check the impact of the

wave frequency on the prediction accuracy. It is noteworthy to point out that in this section the physics-

constrained GP model is established for the multi-dimensional outputs consisting of the hydrodynamic

coefficients under all the considered wave frequencies. As can be observed the figure, the prediction accuracy
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# of WECs
Re[F (1)](Im[F (1)]) Re[F (p)](Im[F (p)])

mean min max mean min max

3 0.9989(0.9976) 0.9989(0.9976) 0.9989(0.9976) 0.9997(0.9997) 0.9996(0.9997) 0.9997(0.9997)

5 0.9989(0.9988) 0.9989(0.9988) 0.9989(0.9988) 0.9993(0.9992) 0.9991(0.9991) 0.9994(0.9993)

8 0.9982(0.9985) 0.9982(0.9985) 0.9982(0.9985) 0.9988(0.9989) 0.9986(0.9985) 0.9992(0.9992)

10 0.9980(0.9976) 0.9980(0.9976) 0.9980(0.9976) 0.9985(0.9984) 0.9982(0.9981) 0.9988(0.9987)

20 0.9971(0.9978) 0.9971(0.9978) 0.9971(0.9978) 0.9971(0.9972) 0.9961(0.9963) 0.9976(0.9978)

30 0.9967(0.9958) 0.9967(0.9958) 0.9967(0.9958) 0.9964(0.9962) 0.9951(0.9944) 0.9970(0.9968)

# of WECs
a(pp)(b(pp)) a(pq)(b(pq))

mean min max mean min max

3 0.9940(0.9819) 0.9934(0.9787) 0.9946(0.9872) 0.9901(0.9984) 0.9856(0.9958) 0.9951(0.9998)

5 0.9936(0.9788) 0.9913(0.9725) 0.9981(0.9962) 0.9848(0.9976) 0.9715(0.9935) 0.9972(0.9994)

8 0.9935(0.9742) 0.9908(0.9629) 0.9977(0.9936) 0.9734(0.9955) 0.9538(0.9855) 0.9963(0.9990)

10 0.9931(0.9736) 0.9885(0.9663) 0.9978(0.9945) 0.9690(0.9943) 0.9241(0.9824) 0.9949(0.9986)

20 0.9938(0.9819) 0.9913(0.9718) 0.9969(0.9937) 0.9692(0.9941) 0.9452(0.9833) 0.9949(0.9974)

30 0.9933(0.9828) 0.9901(0.9776) 0.9960(0.9922) 0.9678(0.9932) 0.9378(0.9848) 0.9939(0.9970)

Table 1: Mean, minimum, and maximum of prediction accuracy metrics when ω = 0.6 rad/s

when ω = 0.6 rad/s degrades compared to the results presented in Section 4.2, obtained from training the

physics-constrained GP model for the single wave frequency 0.6 rad/s. From the figure, we can also observe

that when the wave frequency is relatively low (e.g., less than 0.8 rad/s), all the R2 values are greater than

0.6 and the prediction for all hydrodynamic characteristics demonstrates a relatively good agreement with

the ground truth values. However, as the wave frequency increases, it becomes more challenging to predict

the hydrodynamic characteristics accurately, especially for the radiation-related coefficients. The reason

behind this observation is that the wavelength decreases as the wave frequency becomes larger based on the

dispersion relation, and thus there are more peaks/troughs in the hydrodynamic data as wave frequency

increases (i.e., the model input-output relationship becomes more complex). To further illustrate the impact

of the wavelength on the prediction accuracy, Figure 8 plots the variation of the same mean R2 values

against k × lx as in Figure 7, where lx is the array length along the x-direction. As can be seen from the

figure, the prediction accuracy drops when the wavelength reduces, and when the array length is larger than

approximately 10 times the wavelength, most of the mean R2 values become less than 0.6.

One straightforward way to improve the prediction performance for predicting the hydrodynamic charac-

teristics under relatively high wave frequencies is to use more training data within the available computational

budgets. To investigate this, the number of training data for 5-, 10-, 20-, and 30-WEC arrays is increased to

5 times the original number of training data, i.e., 600, 600, 800, and 900, respectively, and the corresponding

results are shown in Figure 9. As can be observed from the figure, increasing the number of training data

directly is effective in improving the prediction accuracy. For example the mean R2 for element b(pq) in

the 5-WEC array dramatically increases from 0.01 to 0.87 when ω = 1.3 rad/s. However, one drawback of

this method is that we need to trade off between accuracy and efficiency. Increasing prediction accuracy for
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high wave frequency usually demands a larger number of training data, resulting in heavier computational

efforts in obtaining the data and also higher cost in training the surrogate model. In addition, adding more

training data may only lead to a small gain in improving the prediction performance when the number of

WECs in the array is large (e.g., 20- and 30-WEC arrays). Despite this, the lower prediction accuracy for

higher frequencies is less of a concern in this application since very high wave frequencies typically have a

low occurrence probability for most deployment locations.

Figure 7: Prediction accuracy metrics against ω for arrays with different numbers of WECs.

4.4. Performance of physics-constrained kernel

In this section, the performance of the kernel in the proposed physics-constrained GP model is inves-

tigated. For comparison purposes, a standard GP model with the Matern kernel with ν = 5/2 is also

constructed with the same training data set and validated using the same testing data as the physics-

constrained GP model. For convenience, the kernel in the physics-constrained GP model and the standard

GP model are referred to as the physics-constrained kernel and standard kernel, respectively, in this section.
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Figure 8: Prediction accuracy metrics against k × lx for arrays with different numbers of WECs.

The main purpose of this section is to compare the performance of the physics-constrained GP model and

the standard GP model, and thus the prediction accuracy for a single case is less of a concern here. Note

that ω = 0.6 rad/s is selected for demonstrating the results in this section.

The kernel function in a GP model specifies the covariance between the model response at two input

locations, which implicitly describes the distance between two input locations. In order to visualize the

capability of the physics-constrained kernel and the standard kernel in describing the similarity of the model

response between the input points, Figure 10 illustrates the covariance function values evaluated at a data

set XT (i.e., covariance matrix k(XT ,XT )). The data set contains four arrays of 3 WECs, characterized

by XT = {x1
T ,x

2
T ,x

3
T ,x

4
T }, where x1

T = [123.5 93.2 − 59.2 − 116.4], x2
T = [93.2 123.5 − 116.4 − 59.2],

x3
T = [123.5 93.2 59.2 116.4], and x4

T = [93.2 123.5 116.4 59.2]. Among these four inputs, x1
T is selected

from the training set, and the other three are transformed from x1
T based on the invariance and symmetry

properties, as shown in Eq. (8). For illustration purposes, we added some Gaussian noises to the locations
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Figure 9: Prediction accuracy metrics against ω for arrays with different numbers of WECs when more training data are used.

of WECs. Note that here we focus on the physics-constrained kernel used for F (1), a(pp), and b(pp), which

includes the complete permutation invariance and symmetry information available. In Figure 10, the value

of each grid describes the covariance of the model response between two inputs, and for comparison, the

values are normalized so that the diagonal terms of the covariance matrices are equal to one. As a result, the

covariance values close to one means that two input points are close to each other and the their responses

are also highly similar. As can be observed from the figure, the covariance calculated by the standard kernel

between xiT and xjT (i 6= j) is nearly zero, while the corresponding covariance calculated by the physics-

constrained kernel is close to one. However, as we mentioned earlier, xiT and xjT (i 6= j) should give us

similar model responses due to the invariance and symmetry features of the input-output relationship. This

indicates that the physics-constrained kernel has the capability of encoding the invariance and symmetry

features into the GP model, while the standard kernel is not able to capture such properties.

To further demonstrate the performance of the physics-constrained GP model and the standard GP model
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Figure 10: Covariance matrix calculated by physics-constrained kernel and standard kernel.

in recovering the ground truth input-output relationship, Figure 11 and Figure 12 show the model response

F (1) calculated by the true function, predicted by the physics-constrained GP model and the standard GP

model. In order to visualize the permutation invariance and symmetry features of the model response, we

pick the array of 3 WECs and plot the contour map of F (1) with respect to xT,2 and xT,3, where xT,2

and xT,3 are the positions of the two WECs (i.e., WEC 2 and WEC 3) except the one at the origin of the

coordinate system. First, Figure 11 shows the contour map of F (1) in terms of the positions of WEC 2 and

WEC 3 characterized by some ID numbers. More specifically, the input domain is divided into a 5-by-9 grid,

and the nodes of the grid are assigned a sequence of ID numbers. As a result, each ID number represents a

position that WEC 2 and WEC 3 may take in the input domain, and thus in Figure 11 the horizontal and

vertical axes correspond to the positions of WEC 2 and WEC 3, respectively. As can be observed from the

figure, the true function of F (1) is symmetrical with respect to the diagonal line, which means switching the

position of WEC 2 and WEC 3 does not change the model response. Note that the diagonal line in the figure

is blank because the two buoys cannot be overlapped with each other physically. The physics-constrained GP

model can correctly recover such permutation invariance feature since such feature has been entirely coded

into the kernel, while the standard GP model fails to capture the permutation invariance. However, we can

find some slight symmetry property with respect to the diagonal line predicted by the standard GP model,

which might have been learned by the training data, and if more training data are used, it is expected that

the constructed standard GP model might be able to capture more of the permutation invariance. Second,

Figure 12 shows the contour map of F (1) in terms of the position of WEC 2 characterized by its [x, y]

coordinate. Here, WEC 3 moves symmetrically with respect to the x-axis, and to make sure the whole

array is not symmetrical with respect to the x-axis, we set the distance of WEC 3 to the x-axis as 2/3 of

the corresponding distance of WEC 2 to the x-axis. In this case, if we reflect WEC 2 with respect to the

x-axis, the whole layout of the array will also be reflected with respect to the x-axis. Based on the true

function in Figure 12, we know the model response is symmetrical with respect to the x-axis. Again, the

physics-constrained GP models perfectly capture the symmetry feature because of the use of kernels that
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explicitly incorporate symmetry, while the standard GP model cannot capture the symmetry feature.

Figure 11: Permutation invariance of F (1) from true function, physics-constrained GP model, and standard GP model.

Figure 12: x-axis symmetry of F (1) from true function, physics-constrained GP model, and standard GP model.

Table 2 reports the accuracy metrics of the predictions from the physics-constrained GP model and

the standard GP model. Note that the metrics are averaged over the elements of each hydrodynamic

characteristics (i.e., F, a, and b), and these hydrodynamic characteristics are calculated for ω = 0.6 rad/s.

The number of training data n is again selected as 100, 120, 120, 120, 160, and 180 for 3-, 5-, 8-, 10-, 20-,

and 30-WEC arrays, respectively. From Table 2, we can conclude that the physics-constrained GP model

significantly outperforms the standard GP model in terms of the prediction accuracy, especially when the

array has a large number of WECs. When the array has 3 WECs, the standard GP model trained with 100

data can also obtain a relatively good prediction. However, when the number of WECs in the array reaches
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5, its prediction accuracy drops drastically, and 120 training data is not enough for a standard GP model to

correctly learn the input-output relationship. Therefore, the standard GP model cannot explain the highly

complex relationship with limited training data and also suffers severely from the curse of dimensionality.

In comparison, for the physics-constrained GP model, the R2 values calculated in all cases are close to 1,

which indicates excellent prediction accuracy. This validates that encoding the invariance, symmetry, and

additivity features into the kernel according to the input-output relationship can significantly improve the

prediction accuracy. More importantly, with only 80 more training data sets, the prediction accuracy for

30 WECs almost does not change (or reduce) compared to that for 3 WECs, which means the prediction is

less prone to the curse of dimensionality when wave frequency ω = 0.6 rad/s. One possible reason is that

using the physics-constrained kernel can build an interpretable GP model directly rather than learning the

features from a large number of training data and thus can help reduce the required number of training

data. Also, it has been proved that kernels that include lower-order additive structures sometimes allow

us to make predictions over data far away from the training data (i.e., extrapolation) [33]. For example,

additive kernels of first order give high covariance between model response at input locations that are similar

in any one dimension. This is of significant importance to arrays with a large number of WECs, where the

computational effort in running the MS solver is quite expensive and obtaining a large number of training data

is sometimes impractical. Additionally, the results prove that the physics-constrained kernel has included

the most contributed part of the model response (i.e., the first order of interaction), and this ensures that our

computation in evaluating the proposed physics-constrained kernel can be efficient (i.e., no need to evaluate

the kernel for the higher order of interactions where the evaluations are more expensive).

In addition to the comparison to the standard GP model, the proposed physics-constrained GP model

is also compared to the hierarchical kriging model proposed in [14]. Table 2 reports the accuracy metrics

of the predictions from hierarchical kriging model. Instead of using a single surrogate model to predict the

hydrodynamic coefficients of the arrays with multiple WECs, the reference paper [14] constructs multiple

surrogate models corresponding to clusters with fewer WECs. The prediction of the hydrodynamic coef-

ficients is then obtained by summing the predictions from the hierarchical surrogate models according to

the many-body expansion. The proposed surrogate models are also enhanced by taking into account the

permutation invariance and symmetry features of the problem. Different from the physics-constrained GP

model proposed in this study, the reference paper [14] encoded the physical knowledge though designing and

transforming the surrogate model input. As can be seen from Table 2, the hierarchical kriging model accu-

rately predicts all the hydrodynamic coefficients and, similar to the model proposed in this study, bypasses

the curse of dimensionality. More importantly, the hierarchical surrogate models are established only for the

2-WEC and 3-WEC arrays, and no additional surrogate models are required to be constructed for arrays

with any number of WECs in this example. By comparing the proposed physics-constrained GP model to the

hierarchical surrogate model in [14], we can find that both models produce accurate predictions for arrays of

3 to 30 WECs. Therefore, in the context of hydrodynamic analysis (for array with relatively small number
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# of WECs
Physics-constrained GP model Standard GP model Hierarchical kriging model [14]

F a b F a b F a b

3 0.9992 0.9914 0.9929 0.7072 0.5696 0.5355 0.9999 0.9997 0.9998

5 0.9992 0.9866 0.9938 0.5342 0.3031 0.1781 0.9999 0.9998 0.9998

8 0.9988 0.9759 0.9928 0.3981 0.0000 0.0000 0.9999 0.9997 0.9997

10 0.9984 0.9714 0.9923 0.3847 0.0000 0.0000 0.9999 0.9997 0.9997

20 0.9971 0.9705 0.9935 0.3798 0.0000 0.0000 0.9999 0.9995 0.9996

30 0.9963 0.9687 0.9928 0.3130 0.0000 0.0000 0.9998 0.9991 0.9994

Table 2: Prediction accuracy metrics from physics-constrained GP model and standard GP model

of WECs), both the proposed physics-constrained GP model and the hierarchical surrogate model work well

in predicting the hydrodynamic coefficients. On the other hand, they do have some differences in how the

surrogate model is built. These differences may have impacts and implications on the computational effort

and their accuracy, depending on the output of interest, wave conditions, the type of WECs, and size of

arrays considered. The proposed physics-constrained GP model is constructed to predict the total response

in an N -WEC array (i.e., hydrodynamic coefficients of each body), and one can choose the kernel and op-

timize the hyperparameters so that the model better fits the data for the interested response. Therefore,

the training of the physics-constrained GP model aims to minimize the error for the total response. In com-

parison, the hierarchical surrogate model directly starts with the many-body expansion (i.e., the additive

property) and builds kriging models for lower-order subsystems (i.e., 2- and 3-body interaction). Therefore,

the hierarchical surrogate model aims to minimize the errors of the kriging models for the lower-order sub-

systems. To obtain the total response, one can predict the response from each subsystem using the kriging

models and then add them. However, adding the predictions for the lower-order subsystems also means that

the errors in these kriging models could be accumulated. If these kriging models have good accuracy, then

the predicted total response may also have good accuracy; however, there is no explicit control over the

error for the total response because the approach does not explicitly optimize for that. This might lead to

large overall errors for the total response in some specific cases (e.g., for large-scale array where there are

many combinations/terms to add, and/or when the accuracy of kriging models for lower-order subsystems

is not high enough). Accordingly, there are respective implications on how expensive it is to build/train

the surrogate models. For the proposed physics-constrained GP model, it would require running simulations

and establishing training data for array size of interest. For large-scale array, the computational cost of

establishing the training data could increase significantly. In comparison, the hierarchical surrogate model

only requires running simulations and establishing training data for 2- and 3-WEC arrays. Therefore, it

would have better scalability to large-scale array than the proposed physics-constrained GP model. More

comprehensive comparisons between them related to the above discussed aspects as well as the validity and

implications of the many-body expansion assumption will be carried out in future work.

28



4.5. Computational efficiency

In this section, we discuss the efficiency gain provided by the physics-constrained GP model. On average,

one evaluation of the numerical model for calculating the hydrodynamic characteristics of arrays of 3, 5, 8,

10, 20, and 30 WECs takes 0.1s, 0.5s, 2.1s, 4.1s, 23.2s, and 83.0s, respectively. Overall, the computational

time increases dramatically with the number of WECs in the numerical model, further highlighting the

computational challenges in modeling a large array. On the other hand, the physics-constrained GP model

trained using selected n training data to reach the targeted accuracy level (i.e., mean of R2 over 0.98)

takes only around 0.0003s, 0.0020s, 0.0135s, 0.0335s, 0.7166s, and 3.3s to obtain all the hydrodynamic

characteristics when the considered wave frequency is ω = 0.6 rad/s. Therefore, a speed-up of several

orders of magnitude speedup can be obtained. Note that when more expensive numerical models (such as

boundary element models) are used, the computational gain by using the physics-constrained model will be

even greater.

5. Conclusions

This paper proposed a physics-constrained Gaussian process (GP) model to efficiently predict the hy-

drodynamic characteristics of WEC arrays with different numbers of WECs. Instead of building a standard

GP model and learning the physical constraints (i.e., invariance, symmetry, and additivity features) of the

WEC interaction problem through a large training data set, which is computationally inefficient or even

prohibitive, the proposed physics-constrained GP model directly encodes these physical constraints/features

into the model development. More specifically, the known physical constraints are encoded into the kernel by

designing and integrating the invariant kernel and the additive kernel, and in this way a more “informative

prior” can be provided for the GP model construction. Once trained, the physics-constrained GP model can

be employed to directly and efficiently predict the hydrodynamic characteristics under different layouts.

Application to prediction of the hydrodynamic characteristics of arrays with different numbers of WECs

demonstrates the high accuracy and efficiency of the proposed approach. The results show that the designed

integrated kernel is able to correctly capture the invariance, symmetry, and additivity features of the problem.

The proposed physics-constrained GP model can accurately predict the hydrodynamic characteristics with

a relatively small number of training data, especially when the wave frequency is low. More importantly,

the proposed physics-constrained GP model is much less vulnerable to the curse of dimensionality compared

to the standard GP model, and such good scalability is crucial for analyzing arrays with a relatively large

number of WECs.

One limitation of the proposed physics-constrained GP model is that if the decomposition of the many-

body system does not converge fast (e.g., requires much more than first three orders of interaction), the

computational cost of evaluating the proposed kernel might be high and thus it might take a longer time

to train the GP model. Another limitation is that when the wave frequency is relatively large and input-

output relationship shows strong non-linearity, a larger training set is needed to obtain the desired prediction
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accuracy, which results in significant training cost. One potential remedy is to develop a sparse physics-

constrained GP model, and future research will investigate the potential of such model. In addition, the

application only investigated arrays with up to 30 WECs. Future research work will investigate the scala-

bility of the proposed model to arrays of even larger sizes (e.g., with 40 to 100 WECs) by including cutoff

distance and splitting the array into clusters. Another future research topic of interest is to use the hydrody-

namic characteristics predicted by the proposed physics-constrained GP model to calculate the total power

generation of the WEC array and also optimize the layout of the WEC array.
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Appendix: Selection of parameters for the MS solver

The parameters of the MS solver can be selected through a convergence study. More specifically, one can

monitor the variation of hydrodynamic interactions concerning one parameter while keeping other parameters

constant. The parameters can then be chosen so that the results stay unchanged (e.g., percentage change

less than 1%). For example, when determining the order of interaction, the terms at which the eigenfunction

series are truncated for the main fluid and the fluid below the body are first set separately to 20 and 50

(as proposed in [22]). The MS solver is then applied to calculate the hydrodynamic coefficients using a set

of values for the interaction order. Note that the convergence study is performed on arrays with different

numbers of WECs and specific configurations, and some examples can be found in [22]. As an example,

here the convergence results for a selected 3-WEC array (with equal distances L between the WECs) are

shown. Different distances (i.e., L = 3rb, 13rb, and 30rb) are considered as well. The variation of the

hydrodynamic coefficients is shown in the first row of Figure 13. It is worth noting that the hydrodynamic

coefficients are normalized to have values between 0 and 1. Also, the coefficients are grouped by physical

meanings and then averaged over the same group for illustration, and the details about the grouping can
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be found in Section 4.2. Similarly, the variation of the hydrodynamic coefficients concerning the other two

parameters is also presented in Figure 13. From the figure we can observe that the hydrodynamic coefficients

change significantly when the orders/parameters are small but reach plateau as the parameters increase to

larger numbers. The parameters are finally chosen to ensure that all hydrodynamic coefficients remain

unchanged. Many times more conservative choices are made for these parameters. More detailed discussion

about determining these parameters in MS solver can be found in [34, 22].

Figure 13: Convergence study of MS solver (shown for a selected 3-WEC array). The different columns show the results for

different separation distances (i.e., L) between the WECs.
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