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A B S T R A C T

In this work a transformation strain gradient enhancement is introduced into a phenomenological constitutive
model for the pseudoelastic behavior of shape memory alloys. The constitutive model is able to capture
several unique features of the constitutive response of these materials during the transformation between
austenite and martensite during the pseudoelastic response. These features include the asymmetry in the initial
transformation stresses in tension versus compression, the asymmetry in the transformation strains in tension
and compression, and finally the asymmetry in the hardening behavior in tension and compression. In fact,
experiments have shown that untrained NiTi exhibits hardening during its transformation in compression,
but softening for tensile loading. It is this softening behavior that motivates the need for the introduction
of the transformation strain gradient into the constitutive modeling. Transformation strain gradient effects
are introduced via a phase variable that describes the extent of transformation. The free energy of the
material then depends on gradients of the phase variable, which introduces a material length scale into the
theory. The governing equation for the phase variable is developed from a microforce balance and continuum
thermodynamics analysis. The model is implemented in the commercial finite element software Abaqus through
user defined subroutines and several numerical simulations are performed to illustrate the model response and
lack of numerical mesh-dependency of the results.

1. Introduction

Shape memory alloys (SMAs) are a family of alloys that includes
NiTi, CuAlNi, CuZnAl, AuCd and others, and they are best known for
their shape memory effects and pseudoelastic behaviors (Lagoudas,
2008). These properties are enabled by the martensitic phase trans-
formation between the austenite and martensite phases induced by
stress or temperature change. SMA constitutive behaviors enable wide
range of engineering applications in the aerospace, medical, automo-
tive, and robotics areas. Although many of the above-mentioned alloys
have their own advantage in specific applications, NiTi alloys are usu-
ally preferred due to their superior thermomechanical properties (Jani
et al., 2014). Generally, the pseudoelastic behavior of SMAs is observed
when the temperature is above the austenite finish temperature. The
initial highly symmetric BCC lattice in the austenite phase becomes
unstable under high stress, and transforms into the martensite phase
that has a lower degree of symmetry. Once the applied stress is re-
moved, the martensite becomes unsustainable, and transforms back to
austenite (Shaw and Kyriakides, 1995).

Cisse et al. (2016) have reviewed the plethora of micromechani-
cal and phenomenological models describing the pseudoelastic behav-
ior of SMAs in existence. Most micromechanical models include the
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variant volume fractions as internal variables. These models rely on
micromechanical modeling to describe single grain behavior and the
macroscopic polycrystalline material response is then obtained using
homogenization, such as in Sun and Hwang (1993) Gall and Sehitoglu
(1999) Boyd and Lagoudas (1996) and Berveiller et al. (1991), or
through direct numerical simulation of grain structures, for example,
in Gall et al. (2000) Anand and Gurtin (2003) Levitas and Ozsoy
(2009) and Junker and Hackl (2011). These models produce detailed
microstructural information but come with significant computational
cost. As such, phenomenological models are more appropriate for the
simulation of geometrically complex SMA structures. The first phe-
nomenological model can be attributed to Tanaka and Nagaki (1982),
and later Tanaka (1986) extended it to feature exponential trans-
formation hardening functions. Many phenomenological models use
an analogy to the classical theory of plasticity where transforma-
tion is governed by a transformation surface, hardening laws, and
flow rules (Lagoudas et al., 1996; Souza et al., 1998), and its gen-
eralizations by Auricchio and Bonetti (2013), Scalet et al. (2019),
and Alsawalhi and Landis (2022). More recent works on finite deforma-
tion include Xu et al. (2019) and Zhang and Baxevanis (2021), where
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logarithmic strain is utilized to resolve spurious results arising from
using non-integrable objective rates in the additive decomposition of
the deformation gradient.

One important feature of SMA constitutive response is the asym-
metry in the tensile and compressive behaviors. Experimental obser-
vations by Gall et al. (1999) and Bechle and Kyriakides (2014) both
show the distinct behaviors of polycrystalline NiTi SMAs under tension
versus compression. In order to accurately reproduce such asymme-
try, Gall and Sehitoglu (1999) demonstrated the ability for a tex-
ture measurement coupled with a micromechanical model to predict
the asymmetry. Peultier et al. (2008) and Frost et al. (2016) pro-
posed models incorporating micromechanical information and intro-
duced tension/compression asymmetry via a saturation function for the
mean transformation strain. In contrast, Qidwai and Lagoudas (2000)
use different types of phase transformation functions that enable ten-
sion/compression asymmetry and volumetric transformation. Each of
these prior works utilizes the martensite volume fraction as an internal
variable to describe the transformation state. Following the framework
originally developed in Landis (2002, 2003a,b) for ferroelastic and
ferroelectric switching behavior, Jiang and Landis (2016) proposed a
phenomenological model for isothermal pseudoelastic SMA constitutive
response that uses transformation strain as the sole internal variable.
Instead of introducing tension/compression asymmetry through the
transformation surface, this model uses a weighted mix of potentials
that are calibrated to tensile and compressive responses. This feature
allows the model to display hardening behavior in compression, and
softening behavior in tension, as is observed in experiments.

Rate-independent phenomenological models with softening are sus-
ceptible to the issue of mesh-sensitivity or mesh-dependence of so-
lutions due to the fact that sharp, zero thickness, boundaries form
and propagate between large (transformed) and small (untransformed)
deformation regions. Without a material length scale to regularize such
boundaries, the governing mathematical problem becomes ill-posed.
This issue can be addressed by introducing mild rate-dependency, as
shown by Needleman (1988), or by including higher strain gradients
as in He and Sun (2010), Duval et al. (2011), Rezaee Hajidehi and
Stupkiewicz (2018). In He and Sun (2010), a macroscopic model for
polycrystalline NiTi shape memory alloy is developed using a noncon-
vex strain energy density function along with a strain gradient term
to account for the interfacial energy between different martensite and
austenite phases. Both Duval et al. (2011) and Rezaee Hajidehi and
Stupkiewicz (2018) introduce a nonlocal parameter that is coupled with
its local counterpart through an additional partial differential equation
that involves both the local and nonlocal parameter as well as the
gradient of the nonlocal parameter. An internal material length scale is
introduced through the additional PDE that limits the local instability.

In this paper, a gradient enhancement along the lines of Rezaee
Hajidehi and Stupkiewicz (2018) is applied to the phenomenological
constitutive model for pseudoelastic shape memory alloys of Jiang
and Landis (2016). This model includes the definition of a trans-
formation surface, an associated flow rule, and back-stresses defined
through a transformation potential. Under this framework, the ten-
sion/compression asymmetry, and specifically the softening of the ten-
sile response commonly observed in shape memory alloys can be
captured, and the model is enhanced by a gradient regularization.
Through the addition of a nonlocal phase variable that couples with
equivalent transformation strain locally, and an energy penalty asso-
ciated with its gradient, a material length-scale is introduced, thus
eliminating artificial mesh-dependency. The model is implemented in
the commercial software Abaqus through user defined subroutines to
simulate the response of different structures under various loading
scenarios. The first simulation performed is the uniaxial extension of
a NiTi strip. The second simulation performed is on a stationary crack
in a finite-sized specimen under mode-I loading conditions. Two crack
tip locations are studied: one with the tip located at the center, while
the other with the tip offset towards the edge. For each of these first

two geometries, a study is conducted to demonstrate the effect of the
material length scale on the results. Finally, the uniaxial extension of
a NiTi tube is simulated to demonstrate the capability of the model in
three-dimensional applications.

The remainder of the paper is organized as follows: in the For-
mulation section, the main constitutive theory is presented in detail
along with a derivation for the additional governing equation for the
nonlocal phase variable; in the Finite Element Implementation section,
the method of implementation as well as the simulation setups are
briefly described and the simulation results and corresponding analyses
are presented; finally, the theory and findings are summarized in the
Summary section.

2. Formulation

In the following section, a gradient regularized phenomenological
model for shape memory alloys is presented. Index notation will be
utilized, and summation is implied over repeated indexes. Let �

ij
and

"
ij
be components of the stress and strain tensor, respectively. The

strain tensor is decomposed into elastic strain "E
ij
and transformation

strain "T
ij
components. A scalar phase variable � is introduced which

describes the extend of transformation, such that � = 0 corresponds to
no transformation and � = "

c
corresponds to full transformation where

"
c
is a material-specific parameter related to the saturation strain.
The following form of the Helmholtz free energy density function is
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Here,  � links the newly introduced phase variable � to the equiv-
alent transformation strain Ñ"

T (defined later in Eq. (22)),  Grad intro-
duces an energy penalty for the gradient of �,  E is the standard elastic
free energy density, and  T is the part of free energy density associated
with the kinematic hardening model for transformation used for the
derivation of back stresses. l0 is the characteristic length scale of the
material and  is a penalty modulus. C

ijkl
are components of the linear

elastic stiffness tensor, which is assumed to be constant and isotropic
in this study for the sake of simplicity.

To derive the governing equation for the phase variable �, consider
a body ⌦ and its enclosing boundary )⌦ with outward unit normal n.
Introduce a set of external micro-forces: � the surface micro-force per
unit area, volume micro-force �, and a set of internal micro-forces: ⇡
and ⇠

i
. Following the ideas outlined in Gurtin (1996), Fried and Gurtin

(1993, 1994), the micro-force balance can be written as

 
⌦

(⇡ + �)dV +  
)⌦

�dS = 0 (5)
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Applying the divergence theorem and recognizing that the equality
must be valid for any arbitrary volume, the point-wise form of the
micro-force balance is obtained,

⇠
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+ ⇡ + � = 0 (7)

The second law of thermodynamics for isothermal processes can be
written as follows,
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Again applying the divergence theorem and the arbitrary volume argu-
ment, the above inequality becomes
0
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Following the Coleman–Noll procedure (Coleman and Noll, 1974),
the first two terms are satisfied by
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Then, by defining components of the backstress �B
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as
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The second law can be rewritten as
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This inequality will be satisfied in ‘‘strong form’’ by requiring that
each term on the left-hand side satisfies the inequality independently
of the other. The second term on the left-hand side will satisfy the
inequality by assuming that no transformation strain evolves within
a convex transformation surface that encloses the origin in (�

ij
* �

B
ij
)

space, and that transformation strain increments are normal to the
transformation surface when (�

ij
*�B

ij
) is on the transformation surface.

The first term on the left-hand side satisfies the inequality if,

⇡ = * ) 
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Taking the viscosity parameter � to be zero, then the governing
equation for � can be obtained from the micro-force balance as,

l
2
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where l0 is the material-specific characteristic length-scale.
The following specific form of the kinematic hardening model is

adopted for transformation strain evolution. The elastic states are en-
closed by a Mises-type transformation surface defined by
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where s
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and sB
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are components of the deviatoric stress and back stress

tensors, and �0 is the size of the transformation surface. The associated
flow rule provides that the transformation strain increment is normal
to the transformation surface and can be obtained as
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Since ⇤ is constrained to be non-negative during transformation strain-
ing, it can be shown that
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Hence the second law is satisfied.
The transformation potential is postulated to take the form of a

weighted sum of tensile (t) and compressive (c) transformation poten-
tials,
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Fig. 1. Homogeneous uniaxial tension and compression stress–strain responses of an
example material.
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This definition of transformation potential captures both strain and
stress asymmetry between the tensile and compressive responses. The
strain asymmetry is captured through the definition of the equivalent
transformation strain in Eq. (22). This equivalent transformation strain
variable maps any state of transformation strain onto a compressive
state such that the transformation potentials dictate that strain satura-
tion occurs as Ñ"T approaches "

c
. Each potential is decomposed into a

part, ÉJ , that solely depends on the Je2 invariant of the transformation
strain, and a part, ÉE, that only depends on the equivalent transfor-
mation strain, Ñ"T. At small transformation strain levels, ÉJ dominates
and, since J

e

2 remains the same for tension and compression, both
responses remain similar. As the strain level increases, the effect of ÉE

becomes more prominent. The equivalent transformation strain scales
differently for tension and compression, thus producing different be-
haviors. Stress asymmetry is captured through the weight ⇠, which
mixes the uniaxial compression and tension behaviors for intermediate
states, e.g. pure shear. When ⇠ = 1 uniaxial tension is recovered, and
⇠ = 0 represents uniaxial compression. The weighted sum of the tensile
and compressive potentials then generalizes the uniaxial responses to
arbitrary deformation states.

Note that each of the potentials can be calibrated individually to
match independent tensile and compressive responses. The parameters
H0, "1, s1, and m control the strength of the hardening/softening, the
transition into the hardening/softening, the average stress level during
transformation, and the onset of the saturation branch, respectively.
An example of the stress–strain responses for uniaxial tension and
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Fig. 2. Geometry of the model strip with the finite element mesh. The dashed line is the center-line of the strip where the phase parameter � is presented in Figs. 5–7.

compression using the parameters reported in Table 1 are shown in
Fig. 1.

3. Finite element implementation

Several numerical calculations are carried out to demonstrate the
capability of the model. The model is implemented within the commer-
cial finite element software Abaqus through user defined subroutines
UMAT and HETVAL. Given the similarities between the governing
equation for � and that of a steady-state heat transfer problem, the
analogy can be used such that the theory can be readily implemented
using the existing coupled-temperature–displacement elements within
Abaqus. It is noted that, as described in Seupel et al. (2018), there
are difficulties with the Abaqus implementation if the ‘‘source’’ term,
i.e., ( Ñ"T * �), is passed entirely through the ‘‘heat generation’’ variable
in the UMAT subroutine. Therefore, the same split scheme as outlined
in the afore-mentioned paper is used. Specifically, Ñ"T is represented in
HETVAL and *� is passed through the UMAT’s own heat generation
variable. The rate of change of ‘‘heat generation’’ with respect to
‘‘temperature’’ is also handled through HETVAL. Since both parts of
the ‘‘source’’ are recombined within the Abaqus solver, this split does
not affect the simulation results.

3.1. Tension of a strip

Following the work of Jiang et al. (2017b), tension test simulations
are performed on a strip with the dimensions L : W = 10 : 1
under plane strain conditions. The dashed line in Fig. 2 indicates the
center line of the strip where representative distributions of the phase
variable � in the ensuing analyses will be presented in Figs. 5–7. In
this simulation the axial and transverse displacements of all nodes
on the left edge are zero, the transverse displacements on the right
edge are zero, and the axial displacements on the right edge are all
specified as �. This case is denoted Case I and serves as a reference for
comparison to different scenarios. The material length scale for Case
I is l0 = l1 = 9.1 �m. The mesh consists of 64000 (80 along width
and 800 along length direction) 4-noded linear plane strain coupled-
temperature–displacement elements with reduced integration. In order
to initiate localized transformation, a small geometric imperfection is
introduced by means of a notch with 0.2% reduced width, positioned
on the top of the strip approximately W away from the right edge. The
material parameters used in this calculation are listed in Table 1.

A sequence of the strip in its deformed configuration along with
normalized nominal stress and bending moment diagrams with bul-
let points corresponding to those of the deformation snapshots are
presented in Fig. 3. The nominal stress is normalized by the size of
transformation surface �0, and the bending moment is normalized by
M0 = �0W

2_6.
The initial deformation of the strip up to Point 2 in Fig. 3(a) is

for the most part uniform. Inhomogeneous deformation initiates close
to the right end at an axial strain of approximately 0.4"

c
. As shown

in Image 2 in Fig. 3(c) (which corresponds to Point 2 on Fig. 3(a)),
martensite transformation first appears as an inclined band close to
the right end of the strip. Although there is only one visible band,
the influence from a faint second characteristic band of the opposing

Table 1
Model parameters used for the strip tension simulations.
Parameter (unit) Value Parameter (unit) Value

L (mm) 40.0 W (mm) 4.0
E (GPa) 68.1 �0 (MPa) 93.8
⌫ 0.425 "

c
(%) 3.3

l1 (�m) 9.1 "
s
(%) 3.7

 (GPa) 71 "
t
(%) 4.5

H0t (GPa) *11.4 s1t (MPa) 750.4
H0c (GPa) 1.4 s1c (MPa) 938
m
t

0.001 "1t (%) 0.033
m
c

0.0001 "1c (%) 0.033

orientation produces a small kink in the angle of the boundaries of
the primary band. The top of the leftward deformation front has an
inclination of 42.3˝, and the bottom of the leftward front has an
inclination of 45.4˝. The top of the right boundary of this deformation
band has an inclination of 47.6˝ while the bottom of this side of the
band has an inclination of 44.5˝. In the nominal stress–strain behavior,
the nucleation of the localized transformation bands coincides with a
sharp drop in the average axial stress. The asymmetric propagation of
the band contributes to a build-up of bending moments on the ends of
the strip. As the transformation front propagates towards the left, the
nominal stress level remains largely unchanged. At Point 3 in Fig. 3(a),
the asymmetric front produces a kink in the upper boundary of the strip
of around 1.3˝. At this point, the faint second characteristic band is
no longer actively influencing the austenite–martensite front, which is
now a straight boundary with a slightly reduced inclination of 43.2˝. A
second band appears near the left end of the strip in the neighborhood
of Point 4 in Fig. 3(a). Another thin stripe of martensite also nucleates
from the bottom right corner of the strip and connects with the dom-
inant transformation zone. As shown in Fig. 3(b), this results in some
stabilization of the bending moments before they continue to increase
between Points 5 and 8. The enlarged pictures show that the newly
formed localization zones primarily follow the two characteristic band
directions. The zone on the left expands slowly towards the dominant
front and the two fronts eventually merge with each other as shown
in Image 8 of Fig. 3(c), leaving a few islands of austenite material on
either end of the strip. The merging of the transformation bands marks
the maximum of bending moment during loading, and the nominal
stress level starts to increase sharply. Aside from those at the very
ends of the strip, the remaining small islands of austenite disappear at
higher levels of displacement and the central region of the strip deforms
uniformly until the end of loading phase.

The unloading behavior starting from Point 10 in Fig. 3(a) is quite
different from what was observed during loading. As expected, the
deformation is mostly homogeneous until Point 11. As seen in Image
11 in Fig. 3(c), the martensite to austenite transformation first occurs
in the form of three distinct and symmetric islands at both ends of the
strip. The three islands then break up into stripes with boundaries at
the characteristic angles. Unlike martensite nucleation during loading,
there is no significant change in either the nominal stress or the bending
moment at Point 12 of Figs. 3(a) and (b). Throughout the majority of
unloading, instead of a single propagating transformation front, both
characteristics compete with one another, leaving a crisscross pattern
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Fig. 3. The nominal stress–displacement curve for Case I; (b) The normalized bending moment–displacement curve for Case I; (c) Images of the strip in its deformed configuration
for Case I with phase-field response � superimposed corresponding to the Points in (a); (d) enlarged figure with details for select Images.

in their wake. The enlarged picture of Image 16 of Figs. 3(c) shows
that the small martensite residual islands are mostly parallel to each
other and align along the two characteristics. The nominal stress shows
some small undulations but remains largely unchanged during this part
of the behavior. However, the bending moment experiences significant
oscillations due the evolution of the crisscrossed fingers on either side
of the band. It is not until Point 17 in Fig. 3(a) that one of the
characteristics finally becomes dominant and the fronts reduce to a
single inclined band with boundaries at an inclination of around 44.1˝.
This produces a kink of 1.4˝ along the top boundary of the strip and 1.7˝
along the bottom. This asymmetry again leads to a sharp increase in the
bending moment from Point 16 to Point 17 in Fig. 3(b). The moment
then gradually drops as the single front retreats towards the left. After
the band disappears around Point 19 of Fig. 3(a), the deformation again
becomes mostly homogeneous while the stress drops to zero.

To study the effect of boundary conditions on the propagation of the
transformation band, two additional simulations are performed with
the same geometry and material parameters but different boundary

conditions. For Case II, the nodes at both ends are allowed to move
freely in the transverse direction, except at the bottom-left corner
where both displacement degrees of freedom are constrained to pro-
hibit rigid body motions. As in Case I, the axial displacement on the left
edge of the strip is set to zero, and all nodes on the right end are subject
to a prescribed axial displacement �. Case III is designed to allow for
end rotation. The nodes on both the left and right ends are constrained
to remain on a straight line that is allowed to rotate. The midpoints of
each edge then serve as reference points for the relative displacement
applied across the strip. The transverse displacements at both midpoints
are set to zero, the left midpoint is fixed in the axial direction, and the
axial displacement of the right midpoint is prescribed as �.

As in the Case I, the average nominal stress in the axial direction is
calculated and plotted against the prescribed displacement, normalized
by L"

c
, as shown in Fig. 4(a)(b) for Case II and Case III, respectively,

and normalized bending moment for both cases are plotted in Fig. 4(e).
Sequences of the strips in their deformed configurations with contours
of the phase variable superimposed are presented in Fig. 4(c)(d).



Mechanics of Materials 183 (2023) 104689

6

H. Yu and C.M. Landis

Fig. 4. (a)(b) Nominal stress–displacement curves for the strip tension test for Case II and III; (c)(d) Images of the calculated strip in its deformed configuration with the phase
field variable � superimposed corresponding to the Points in (a) and (b); (e) Normalized bending moment–displacement curves for Case II and III.
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Table 2
Model parameters used for the different Cases in the parameter studies.
Parameter (unit) Case I Case IV Case V Case VI Case VII

l0 (�m) 9.1 18.3 36.6 9.1 9.1
H0t (GPa) *11.4 *11.4 *11.4 *14.25 *8.55
s1t (MPa) 938 938 938 996 856

For both Case II and Case III, the loading behaviors are mostly iden-
tical. However, as shown in Fig. 4(e), due to the fact that boundaries
in Case III are free to rotate, its bending moment is mostly negligible,
while the bending moment for Case II exhibits a similar pattern as Case
I. Homogeneous deformation persists until Point 2 in Fig. 4(a), where
an inclined band of martensite transformation appears close to the right
end of the strip. The front of the band then steadily propagates towards
the left while the normalized nominal stress traverses a plateau. In the
neighborhood of Point 8 in Fig. 4(a), the front reaches the end of the
strip. The triangular austenite island is transformed between Points 8
and 9 while the stress starts to increase. Deformation becomes mostly
homogeneous throughout the strip without any remaining austenite
islands, in contrast to the case with fixed ends.

During unloading, the behaviors for Case II and Case III differ. For
Case II, the reverse transformation nucleates in the form of several
inclined stripes close to the right end of the specimen between Points
12 and 13 in Fig. 4(a). The nucleation corresponds to a jump in the
stress–deflection curve. However, the transformation interface fails to
maintain a preferred orientation and breaks up into a crisscross forma-
tion after Point 13, while the stress traverses a comparatively ragged
plateau. Both characteristics compete with one another throughout
the entire unloading phase. Unlike Case II, with the end being able
to rotate, Case III exhibits only one characteristic during unloading.
Although there is still a jump associated with nucleation of the band,
the stress plateau is relatively flat compared to Case II.

3.2. Parameter study

In this section, the characteristic material length scale as well as
tensile softening modulus are changed from Case I to study their effect
on the propagation of transformation front. They are labeled Case IV
through Case VII and the modified material parameters along with the
reference parameters are listed in Table 2.

The gradient enhancement introduces a characteristic material length
scale into the constitutive relation. In the following section, a brief
parameter study is performed to demonstrate the effect of this length
scale. The numerical simulation setup is identical to the fixed-boundary
case, Case I, and material parameters are kept the same except for l0. In
addition to the original characteristic length of l1, two additional cases
with 2l1, denoted Case IV, and 4l1, denoted Case V, are simulated. The
results are compared in Fig. 5.

In Fig. 5(a)(b) and (c), the sequences of the deformed strip with the
normalized phase variable response superimposed are presented for the
cases of Case I, IV, and V, respectively. The load–deflection curves for
these three cases are essentially identical to Fig. 3(a) and thus are not
shown. The snapshots for Case IV and Case V are taken according to
the bullet points used in Fig. 3. All three cases exhibit similar patterns
during loading except that, for Case V, the band front is at the opposite
inclination as for the other two cases. However, it is observed that
the transition zones from the austenite to martensite regions differ in
their sizes, with 4l1 having the widest transition zone and l1 having
the thinnest. To further illustrate this feature, the normalized phase
variable distributions along the center line of the undeformed strips
as shown in Fig. 2 at loading Point 3 in each case are plotted against
relative horizontal distance �x from the midpoint of the transition zone
in Fig. 5(d) and (e). The front for the Case V spans about 83l1 and has
the smoothest transition between the austenite and martensite regions.

The front spans across approximately 39l1 and 22l1 for Case IV and Case
I, respectively. When the relative axial location is normalized by each
respective characteristic length scale l0, as in Fig. 5(e), all three curves
coincide with each other indicating that the profile of the transition
zone remain unchanged across different length scales and the actual
width is scaled by the length-scale parameter l0. During unloading, all
three cases start with competing fronts at nucleation and transition to a
single front near the end of unloading. With the smaller length-scales,
the crisscross pattern is more pronounced. The pattern can be clearly
observed with length-scales of 2l1 and l1 while it is smeared out for the
case of 4l1.

The next set of calculations illustrate the effect of the tensile soften-
ing modulusH0t. Along with the softening modulus adopted in previous
simulations, two additional cases with 20% stronger softening, denoted
Case VI and 20% weaker softening, denoted Case VII, are examined.
The parameter s1t is adjusted accordingly to keep the average stress
in the softening branch the same across all three cases. The other
parameters remain unchanged. The new uniaxial tension stress–strain
curves for these cases are plotted in Fig. 6(a). The resultant load
deflection curves as well as a series of snapshots of the strips in their de-
formed configurations with the phase variable response superimposed
are presented in Fig. 6(b), (c), (d), and (e), respectively.

The main features of the load deflection curves remain the same
for all three cases with the only differences observed at the nucleation
of the bands both during loading and unloading. At nucleation of the
band during loading, a drop in nominal stress can be observed for both
Case I and the greater softening Case VI. However, the transition into
the stress plateau is relatively smooth for the low-softening Case VII.
The mechanism for this smoothing can be seen at the onset of more
diffused transformation bands at Point 1 of Fig. 6(e) before the full
band nucleates. Other than this small detail, there are no significant
differences in the load–deflection curves across these three cases.

As shown in Fig. 6(c), (d), and (e), the propagation patterns across
all three cases are similar. However, the width of the transition zone
between austenite and martensite regions varies slightly. Although not
as prominent as the differences caused by a larger material length-
scale l0, the weaker softening modulus does produce a slightly wider
transition zone, as evident in Fig. 6(f). This should not be unexpected
since for a material that hardens any transitions between austenite and
martensite should be smooth with little to no effect from the material
length scale. The wider transition region for Case VII is more obvious
during unloading, where the residual islands and crisscross pattern are
clearly visible for Case VI and Case I, while these patterns are more
diffuse in Case VII. The extent of the competing fronts during unloading
also varies for different softening moduli. For Case VII, both character-
istics persist until the very end of unloading and a glimpse of a single
front can be observed in the neighborhood of Image 18 of Fig. 6(e). In
comparison, for Case VI, the transition from dual characteristics to a
single front happens earlier near Image 14 of Fig. 6(c).

3.3. Mesh sensitivity of the solution

The following simulations are performed with same set of parame-
ters as in Case V where l0 is set to 4 times the original value in Table 1
to allow for a wider front to facilitate this demonstration. A strip with
the same dimensions as in the previous section is subjected to tension
employing the fixed boundary conditions. Two additional mesh densi-
ties are compared with the one used in the previous sections. A coarser
mesh with 400 elements along length and 40 along width (total 16000
elements, labeled 1

4N0), and a finer mesh with 1600 elements along
length and 160 elements along width (total 256000 elements, labeled
4N0) are simulated. The snapshots of the front during propagation, as
well as the results of the phase variable along the centerline of the strip
are compared in Fig. 7. The overall simulation results are essentially
the same as what has been observed and described in the previous
demonstrations. To show that the results are independent of the mesh
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Fig. 5. (a) Sequence of the strip in its deformed configuration calculated using the original characteristic length l1 (Case I); (b) sequence of the strip in its deformed configuration
taken at bullet Points corresponding to those in the tensile test using 2l1 (Case IV); (c) sequence of the strip in its deformed configuration calculated using 4l1 (Case V); (d)
normalized phase variable versus axial location normalized by l1 across the center line of the strip for all three length-scales; (e) normalized phase variable � versus axial location
normalized by each respective l0 across the center line of the strip for all three length-scales.

density, a snapshot of the strip with the phase variable superimposed
is taken after one characteristic becomes dominant. In the enlarged
snapshots, the transition zone spans multiple elements for each mesh
density, and the width and shape of the transition zone remains the
same. This is also evident in the �_"

c
* x plot along the centerline

around where the transition zone is located. In the plot, the phase
variable changes from 0.1 in the region ahead of the front to around
0.9 in the region behind the front for all three cases. The transition
zone is clearly visible and spans about 15 elements, 30 elements, and
60 elements, respectively for the 1

4N0, N0, and 4N0 cases and there is
no significant deviation within the three curves for the different mesh
densities. This result clearly demonstrates that, with the introduction
of the gradient regularization, mesh-sensitivity is eliminated. However,
the mesh still needs to be fine enough to resolve the gradient of the
phase variable, particularly on the boundary of the transition zone.
As shown in Fig. 7(c), the same model but with meshes having only
1
64 and 1

128 of the original number of elements can generate mesh-
dependent artifacts, such as the oscillation at the boundary of the

transition zone. The width of the transition zone also deviates slightly
from the converged cases. For the simulations done in this paper, it
is found that having 7 to 8 elements across the austenite to martensite
transition zone is sufficient to generate consistent results, as seen in the
1
16N0 case.

3.4. Crack simulation

In this section, a mode-I crack opening simulation of a rectangular
block with an edge crack is studied under plane strain conditions.
Exploiting the symmetry of this problem, only the top half of the block
is simulated, and the crack tip is assumed to be fixed (not growing).
The geometry is shown in Fig. 8. Nodes located on the bottom edge
to the right of the tip can only displace in the horizontal direction. A
uniform and linearly increasing displacement is prescribed across the
top of the block, and both the left and right edges of the block are
traction free. The material parameters used in this set of simulations
are the same as those used in Case I and outlined in Table 1. But the
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Fig. 6. (a) Uniaxial stress–strain responses for each softening strength; (b) normalized nominal stress vs. normalized axial deflection of the strip; (c)(d)(e) the strip in its deformed
configuration with the phase variable � superimposed corresponding to +20% (Case VI, more softening), original (Case I), and *20% (Case VII, less softening) softening; (f) the
normalized phase variable � versus the axial location normalized by l0 across the center line of the strip for all three softening cases.
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Fig. 7. (a) Enlarged views of the band transition zone for mesh densities of 1
4N0, N0, and 4N0 during propagation; (b) normalized phase variable � plotted along the centerline

through the transition zone corresponding to the meshes shown in (a); (c) the normalized phase variable plotted along the centerline on coarser meshes.

Fig. 8. Geometry of the crack model with the finite element mesh.

length, L = 20 mm, and width, W = 5 mm, are different. The material
length scale is l0 = l1 = 9.1 �m.

First, the L : W = 4 : 1 rectangular block with the crack tip
located at the center of the symmetry plane, a = 0.5 L, is studied.
The mesh consists of 160000 uniformly distributed 4-noded bilinear
coupled-temperature–displacement elements with reduced integration
(CPE4RT). In Fig. 9(a), a normalized load–deflection (F * �) curve is
presented during the loading phase. In Fig. 9(c), a set of 11 snapshots
of the deformed block with contours of the phase-field distribution are
presented corresponding to the numbered points on the load deflection
curve.

It is seen that a small transformation region first occurs near the
crack tip at Point 1 in Fig. 9(a). The localization then expands to form
an inclined narrow ray at approximately 42˝ from the horizontal that
extends from the tip towards the top edge. This also marks the start
of a softer material response as seen in the load–deflection diagram. At
Point 3 in Fig. 9(a), the ray intersects with the top edge and is reflected

at approximately *44˝ from the intersection point, forming an inverted
V-shape. As the loading continues, the narrow band expands its width
and additional rays start to appear at the same characteristic angles as
the original set. In Image 5 of Fig. 9(c), one prominent ray initially at an
angle of *134˝ appears on the left while another finger/strip appears
parallel to the right branch. From this point on, additional rays con-
tinue to nucleate and the interaction between the two characteristics
results in a crisscross pattern in the lower triangular region enclosed
by the first two branches. At higher prescribed displacement levels,
the individual martensite regions continue to expand and eventually
merge with each other in the neighborhood of Point 9 in Fig. 9(a),
from which point the material recovers its stiff response and the force
increases sharply. There exists two small pockets of austenite material
both ahead and behind the crack tip. While the pocket ahead of the
tip will eventually transform at higher load, the one behind the tip
remains untransformed even at high load levels. Next, the specimen
with crack length a = 0.2 L is studied. The same mesh is used in this
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Fig. 9. (a) (c) Load–deflection curve for the case with centered crack tip, a = 0.5 L, and its corresponding sequence of the deformed configuration with � superimposed; (b) (d)
load–deflection curves for the case with the crack length at a = 0.2 L and its corresponding sequence of the deformed configuration with � superimposed.

calculation and the normalized load–deflection curve as well as the
corresponding deformed configurations with phase-field distributions
superimposed are shown in Figs. 9(b) and (d). The transformation
pattern is very similar to the results where the crack tip is located
at the center. As in the center tip case, the localized bands initially
form an inverted V-shape. the offset of crack tip provides more space
for the pattern to continue through multiple reflections until it reaches
the right edge of the block, forming a zigzag pattern. Again, at higher
displacement levels, new branches parallel to the initial bands appear
and interactions between the two characteristics produce crisscross
patterns in the triangular regions enclosed by the initial branches. Most
of the bands merge with one another in the neighborhood of Point 9 in
Fig. 9(a), and the material resumes its stiff response. Again, in addition
to the austenite pocket behind the tip that remains even higher loads,

there is also a small austenite island that does not fully transform just
ahead of the crack tip.

The above simulations are also performed on the same geometry
with the characteristic material length scale increased from its original
setting, l1, by a factor of 4 and 16, respectively. Fig. 10 presents the
deformed configurations for both cases with phase-field distributions
superimposed, along with the corresponding load–deflection curves.
The main features for both load–deflection and transformation remain
similar. In the deformed configurations for both scenarios, the in-
creased material length scale produces a more diffuse transformation
response, which is to be expected. The transformation differs from the
original case more profoundly for l0 = 16l1. At Point 4 in Figs. 10(b),
the two vertices are not connected by a strip of martensite material, as
seen in both the l0 = l1 and l0 = 4l1 cases. Instead, the vertices continue
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Fig. 10. (a) (c) Load–deflection curves for the case with a centered crack tip and the corresponding sequences of the deformed configuration with � superimposed and material
length-scale l0 set to 4l1; (b) (d) Load–deflection curve for the case with center crack tip and its corresponding sequence of deformed configuration with phase-field superimposed
and material length-scale l0 set to 16l1.

to expand individually until they merge with one another. Once the
regions merge, the force resumes its rapid ascent. There is essentially
no austenite pocket behind the tip for the case with l0 = 16l1. But there
still exists a pocket of austenite material ahead of the tip, which would
transform at higher load level.

Crack calculations like these have the potential to be consequential
for an experimental determination of the material length scale for
a given material due to the interplay of length scales that exists in
these problems. Specifically, there are three primary length scales,
the material length scale associated with the austenite-to-martensite
boundary of this theory, l0, the size of the transformation zone around
the crack tip under small-scale transformation assumptions, K2

I
_�

T
,

and the specimen dimension which could be the crack length a, or
in this case the height of the strip W . In problems where there is
only hardening of the material, the material length scale l0 will play
no role and the size of the transformation zone will evolve from a
shape that is governed by the stress intensity factor K

I
and small-scale

yielding considerations governed by the transformation stress �
T
, to

a large-scale yielding configuration that will alter the transformation
zone due to interactions with the specimen geometry. However, when
softening is introduced the material length scale plays a significant role
in the transition from a small scale yielding transformation zone shape
to the distinct bands that form and propagate. Additional studies of
the instabilities that are triggered from the transformation zone in a
softening material and how they are mediated by the material length
scale l0 are of interest, but left for future work.

3.5. Extension of a tube

In this final calculation, following the work of Jiang et al. (2017a),
the constitutive model is implemented for the simulation of the axial
extension of a NiTi tube. The geometry is shown in Fig. 11 and
has dimensions L = 10 mm, R = 2.5 mm, and t = 0.1 mm. The
material length scale is again l0 = l1 = 9.1 �m. In light of the
results shown in Jiang et al. (2017a), where the phase transformation
pattern evolves in a symmetric manner about the center plane, and
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Fig. 11. Geometry of the model tube and the finite element mesh.

Fig. 12. (a) Average axial stress versus normalized elongation of the tube (b) Images of the deformed shape of the tube with normalized phase variable superimposed, corresponding
to numbered bullet Points on the response shown in (a).
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Table 3
Model parameters used for tension of a tube.
Parameter (unit) Value Parameter (unit) Value

E (GPa) 80.1 �0 (MPa) 110.3
⌫ 0.425 "

c
(%) 3.3

l0 (�m) 9.1 "
s
(%) 3.7

 (GPa) 80.1 "
t
(%) 4.5

H0t (GPa) *4.76 s1t (MPa) 418
H0c (MPa) 66.8 s1c (MPa) 572
m
t

0.001 "1t (%) 0.033
m
c

0.0001 "1c (%) 0.033

also to reduce computational cost, only half of the tube is modeled.
The mesh consists of 194, 200, and 1 three-dimensional quadratic
coupled-temperature–displacement elements along the circumference,
length, and thickness directions, respectively. The axial displacement
at one end is constrained to be zero and is prescribed at the other
end. Symmetry conditions are prescribed along the symmetry plane.
The tensile material parameters are calibrated to match that used in
the experiment in Jiang et al. (2017a) and are shown below in Table 3.

The deformed shape of the tube with the normalized phase variable
distribution superimposed is shown in Fig. 12(b), and the normalized
average axial stress is plotted against normalized elongation of the
tube in Fig. 12(a). The normalized average axial stress first experi-
ences a nearly linear response before a sudden drop at Point 2 in
Fig. 12(a), which corresponds to the nucleation of a thin spiral band
originating from the corner of the tube, as evident in Image 2 of
Fig. 12(b). The thin band forms an angle of approximately 55.7˝ with
the symmetry plane and expands towards the fixed end of the tube. The
asymmetric transformation causes a small kink angle at the interface
between martensite and austenite materials. The transformation band
front remains clean with the exception of a small region close to the
symmetry plane, where short spikes of approximately the same angle
as the main front can be observed. These short spikes become more
prominent as the transformation front propagates. The main front stops
its expansion when it reaches the fixed end at Point 5 in Fig. 12(a),
while new spikes appear and fill the triangular gap near both ends.
During propagation, the normalized average axial stress traverses a
‘‘bumpy’’ plateau between Points 2 and 9 in Fig. 12(a). The small
undulations during this period can be attributed to the nucleation
and merging of smaller spikes. Once the entire tube transforms to the
martensite phase, the normalized average axial stress resumes its steep
increase from Point 9 to 10 in Fig. 12(a).

During unloading, the deformation is again mostly uniform before
the localized transformation bands first appear in the neighborhood
of Points 11 and 12 in Fig. 12(a). A sharp increase in stress can be
observed at Point 12 due to nucleation. The backward transformation
first manifests as a thin band at approximately ±55.7˝ near the corner
of the fixed end. As seen in Image 13 of Fig. 12(b), due to the
interactions between the two characteristic angles, the front displays
a crisscross pattern at one side near the symmetry plane while the
other side remains mostly clean. This pattern cannot be sustained and,
between Images 14 and 15 of Fig. 12(b), the inclined front breaks up
into a multi-pronged formation with a base line that remains parallel
to the ends of the tube and persists to the end of the retreat. The
average stress increases between Point 17 and 18 in Fig. 12(a) when
the transformation front reaches the end of the tube, followed by a
monotonic drop while the tube undergoes uniform unloading.

4. Summary

A novel phenomenological model for pseudoelastic shape mem-
ory alloys with a gradient enhancement to regularize martensite to
austenite transition zones in strain softening materials is introduced.
By introducing a new phase variable that couples with the equivalent

transformation strain, a material length scale is introduced to eliminate
artificial mesh dependency. The model is implemented within the finite
element method, and several numerical calculations were carried out to
illustrate the behaviors of the model.

In the simulations of the extension of NiTi strips, the model success-
fully produces the inhomogeneous response commonly observed in NiTi
under uniaxial tension. The load–deflection curve exhibits the typical
plateau during transformation. The effect of boundary conditions on the
characteristics of the Lüders-like band front were studied and discussed.
It was shown that the restriction on rotation of the ends of the strip
inhibit the propagation of a single front, which is more often seen in
experiments. The material length scale is one of the key features in
this constitutive model, which controls the width of the transition zone
between the transformed and untransformed material. A comparison
of results for different mesh densities was performed to illustrate the
lack of mesh dependency of the solutions. The phase variable results
along the centerline for each mesh density that sufficiently resolves
the material length scale each agree with one another, indicating no
artificial mesh-dependence exists in the numerical solutions. It was also
shown that the length scale has a relatively small impact on the overall
load–deflection behaviors of the structures studied.

The second set of calculations modeled the evolution of transfor-
mation emanating from a crack loaded in mode-I. In these simulations,
interesting patterns of transformation develop. As expected, the trans-
formation first occurs near the crack tip, but thereafter an inclined
narrow band of transformed material originating from the tip develops
and extends towards the top edge of the specimen, unlike what happens
in a strain hardening material. The band then ‘‘reflects’’ off of the top
surface of the specimen and again from the symmetry plane if there is
enough space to do so in the horizontal direction. Once the primary
zig-zag band structure is established, further deformation causes new
bands to emerge from these while the primary bands widen. Ultimately
a complex microstructure develops and evolves until much of the region
ahead of the crack has transformed to martensite. The interest in these
crack calculations stems from the fact that they may play a role in
determining the material length scale experimentally. The interplay
between the material length scale, the transformation zone size, and the
specimen size presents the opportunity to compare experimental obser-
vations of the microstructures that develop in softening materials to the
numerical simulations with the material length scale that produces the
same details of the microstructures.

Lastly, uniaxial extension of a NiTi tube is simulated. The results of
this three-dimensional simulation agrees with the prior experimental
and numerical observations on tubes. However, the prior numerical
simulations used the mesh size to regularize the austenite–martensite
interface width, while the present simulations are mesh-independent.
These results demonstrate that the proposed constitutive model is able
to accurately reproduce three-dimensional structural instabilities.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Hongrui Yu reports financial support was provided by National Science
Foundation. Chad M. Landis reports financial support was provided by
National Science Foundation.

Data availability

Data will be made available on request.

Acknowledgment

The authors acknowledge with thanks the financial support received
for this work from the National Science Foundation under grant no.
CMMI-1762389.



Mechanics of Materials 183 (2023) 104689

15

H. Yu and C.M. Landis

References

Alsawalhi, M.Y., Landis, C.M., 2022. A new phenomenological model for shape memory
alloys. Int. J. Solids Struct. 257, 111264.

Anand, L., Gurtin, M.E., 2003. Thermal effects in the superelasticity of crystalline
shape-memory materials. J. Mech. Phys. Solids 51 (6), 1015–1058.

Auricchio, F., Bonetti, E., 2013. A new ‘‘flexible" 3D macroscopic model for shape
memory alloys. Discrete Contin. Dyn. Syst.-S 6 (2), 277.

Bechle, N.J., Kyriakides, S., 2014. Localization in NiTi tubes under bending. Int. J.
Solids Struct. 51 (5), 967–980.

Berveiller, M., Patoor, E., Buisson, M., 1991. Thermomechanical constitutive equations
for shape memory alloys. Le Journal de Physique IV 1 (C4), C4–387.

Boyd, J.G., Lagoudas, D.C., 1996. A thermodynamical constitutive model for shape
memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12
(6), 805–842.

Cisse, C., Zaki, W., Ben Zineb, T., 2016. A review of constitutive models and modeling
techniques for shape memory alloys. Int. J. Plast. 76, 244–284.

Coleman, B.D., Noll, W., 1974. The thermodynamics of elastic materials with heat
conduction and viscosity. In: The Foundations of Mechanics and Thermodynamics.
Springer, pp. 145–156.

Duval, A., Haboussi, M., Ben Zineb, T., 2011. Modelling of localization and propagation
of phase transformation in superelastic SMA by a gradient nonlocal approach. Int.
J. Solids Struct. 48 (13), 1879–1893.

Fried, E., Gurtin, M., 1993. Continuum theory of thermally induced phase transitions
based on an order parameter. Physica D 68 (3), 326–343.

Fried, E., Gurtin, M., 1994. Dynamic solid-solid transitions with phase characterized by
an order parameter. Physica D 72 (4), 287–308.

Frost, M., Bene≤ová, B., Sedlák, P., 2016. A microscopically motivated constitutive
model for shape memory alloys: formulation, analysis and computations. Math.
Mech. Solids 21 (3), 358–382.

Gall, K., Lim, T.J., McDowell, D.L., Sehitoglu, H., Chumlyakov, Y.I., 2000. The role of
intergranular constraint on the stress-induced martensitic transformation in textured
polycrystalline NiTi. Int. J. Plast. 16 (10–11), 1189–1214.

Gall, K., Sehitoglu, H., 1999. The role of texture in tension–compression asymmetry in
polycrystalline NiTi. Int. J. Plast. 15 (1), 69–92.

Gall, K., Sehitoglu, H., Chumlyakov, Y.I., Kireeva, I., 1999. Tension–compression
asymmetry of the stress–strain response in aged single crystal and polycrystalline
NiTi. Acta Mater. 47 (4), 1203–1217.

Gurtin, M.E., 1996. Generalized Ginzburg-Landau and Cahn-Hilliard equations based
on a microforce balance. Physica D 92 (3–4), 178–192.

He, Y.J., Sun, Q.P., 2010. Macroscopic equilibrium domain structure and geometric
compatibility in elastic phase transition of thin plates. Int. J. Mech. Sci. 52 (2),
198–211.

Jani, J.M., Leary, M., Subic, A., Gibson, M.A., 2014. A review of shape memory alloy
research, applications and opportunities. Mater. Des. (1980-2015) 56, 1078–1113.

Jiang, D., Kyriakides, S., Landis, C.M., 2017a. Propagation of phase transformation
fronts in pseudoelastic NiTi tubes under uniaxial tension. Extreme Mech. Lett. 15,
113–121.

Jiang, D., Kyriakides, S., Landis, C.M., Kazinakis, K., 2017b. Modeling of propagation of
phase transformation fronts in NiTi under uniaxial tension. Eur. J. Mech. A Solids
64, 131–142.

Jiang, D., Landis, C.M., 2016. A constitutive model for isothermal pseudoelasticity
coupled with plasticity. Shape Memory Superelast. 2 (4), 360–370.

Junker, P., Hackl, K., 2011. Finite element simulations of poly-crystalline shape memory
alloys based on a micromechanical model. Comput. Mech. 47 (5), 505–517.

Lagoudas, D.C., 2008. Shape Memory Alloys: Modeling and Engineering Applications.
Springer.

Lagoudas, D.C., Bo, Z., Qidwai, M.A., 1996. A unified thermodynamic constitutive
model for SMA and finite element analysis of active metal matrix composites. Mech.
Compos. Mater. Struct. 3 (2), 153–179.

Landis, C.M., 2002. Fully coupled, multi-axial, symmetric constitutive laws for
polycrystalline ferroelectric ceramics. J. Mech. Phys. Solids 50 (1), 127–152.

Landis, C.M., 2003a. On the fracture toughness of ferroelastic materials. J. Mech. Phys.
Solids 51 (8), 1347–1369.

Landis, C.M., 2003b. On the strain saturation conditions for polycrystalline ferroelastic
materials. J. Appl. Mech. 70 (4), 470–478.

Levitas, V.I., Ozsoy, I.B., 2009. Micromechanical modeling of stress-induced phase
transformations. Part 2. Computational algorithms and examples. Int. J. Plast. 25
(3), 546–583.

Needleman, A., 1988. Material rate dependence and mesh sensitivity in localization
problems. Comput. Methods Appl. Mech. Engrg. 67 (1), 69–85.

Peultier, B., Ben Zineb, T., Patoor, E., 2008. A simplified micromechanical constitutive
law adapted to the design of shape memory applications by finite element methods.
Mater. Sci. Eng. A 481, 384–388.

Qidwai, M., Lagoudas, D., 2000. On thermomechanics and transformation surfaces
of polycrystalline NiTi shape memory alloy material. Int. J. Plast. 16 (10–11),
1309–1343.

Rezaee Hajidehi, M., Stupkiewicz, S., 2018. Gradient-enhanced model and its micro-
morphic regularization for simulation of Lüders-like bands in shape memory alloys.
Int. J. Solids Struct. 135, 208–218.

Scalet, G., Niccoli, F., Garion, C., Chiggiato, P., Maletta, C., Auricchio, F., 2019. A three-
dimensional phenomenological model for shape memory alloys including two-way
shape memory effect and plasticity. Mech. Mater. 136, 103085.

Seupel, A., Hütter, G., Kuna, M., 2018. An efficient FE-implementation of implicit
gradient-enhanced damage models to simulate ductile failure. Eng. Fract. Mech.
199, 41–60.

Shaw, J.A., Kyriakides, S., 1995. Thermomechanical aspects of NiTi. J. Mech. Phys.
Solids 43 (8), 1243–1281.

Souza, A.C., Mamiya, E.N., Zouain, N., 1998. Three-dimensional model for solids
undergoing stress-induced phase transformations. Eur. J. Mech. A Solids 17 (5),
789–806.

Sun, Q.P., Hwang, K.C., 1993. Micromechanics modelling for the constitutive behavior
of polycrystalline shape memory alloys—I. Derivation of general relations. J. Mech.
Phys. Solids 41 (1), 1–17.

Tanaka, K., 1986. A thermomechanical sketch of shape memory effect: one-dimensional
tensile behavior. Res. Mech. 18, 251–263.

Tanaka, K., Nagaki, S., 1982. A thermomechanical description of materials with internal
variables in the process of phase transitions. Ing.-Arch. 51 (5), 287–299.

Xu, L., Baxevanis, T., Lagoudas, D.C., 2019. A three-dimensional constitutive model for
the martensitic transformation in polycrystalline shape memory alloys under large
deformation. Smart Mater. Struct. 28 (7), 74004.

Zhang, M., Baxevanis, T., 2021. An extended three-dimensional finite strain constitutive
model for shape memory alloys. J. Appl. Mech. 88 (11).

http://refhub.elsevier.com/S0167-6636(23)00135-7/sb1
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb1
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb1
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb2
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb2
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb2
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb3
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb3
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb3
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb4
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb4
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb4
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb5
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb5
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb5
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb6
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb6
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb6
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb6
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb6
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb7
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb7
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb7
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb8
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb8
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb8
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb8
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb8
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb9
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb9
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb9
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb9
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb9
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb10
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb10
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb10
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb11
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb11
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb11
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb12
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb12
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb12
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb12
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb12
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb13
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb13
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb13
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb13
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb13
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb14
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb14
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb14
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb15
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb15
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb15
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb15
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb15
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb16
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb16
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb16
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb17
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb17
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb17
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb17
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb17
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb18
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb18
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb18
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb19
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb19
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb19
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb19
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb19
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb20
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb20
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb20
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb20
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb20
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb21
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb21
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb21
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb22
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb22
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb22
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb23
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb23
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb23
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb24
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb24
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb24
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb24
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb24
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb25
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb25
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb25
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb26
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb26
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb26
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb27
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb27
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb27
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb28
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb28
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb28
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb28
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb28
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb29
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb29
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb29
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb30
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb30
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb30
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb30
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb30
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb31
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb31
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb31
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb31
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb31
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb32
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb32
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb32
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb32
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb32
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb33
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb33
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb33
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb33
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb33
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb34
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb34
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb34
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb34
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb34
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb35
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb35
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb35
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb36
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb36
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb36
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb36
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb36
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb37
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb37
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb37
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb37
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb37
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb38
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb38
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb38
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb39
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb39
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb39
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb40
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb40
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb40
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb40
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb40
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb41
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb41
http://refhub.elsevier.com/S0167-6636(23)00135-7/sb41

	A gradient regularized model for shape memory alloys
	Introduction
	Formulation
	Finite Element Implementation
	Tension of a strip
	Parameter study
	Mesh sensitivity of the solution
	Crack simulation
	Extension of a tube

	Summary
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References


