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In this paper we consider the problem of sampling from the low-
temperature exponential random graph model (ERGM). The usual approach
is via Markov chain Monte Carlo, but Bhamidi et al. showed that any lo-
cal Markov chain suffers from an exponentially large mixing time due to
metastable states. We instead consider metastable mixing, a notion of ap-
proximate mixing relative to the stationary distribution, for which it turns out
to suffice to mix only within a collection of metastable states. We show that
the Glauber dynamics for the ERGM at any temperature ± except at a lower-
dimensional critical set of parameters ± when initialized at G(n,p) for the
right choice of p has a metastable mixing time of O(n2 logn) to within total
variation distance exp(−Ω(n)).

1. Introduction. Given a vector of real-valued parameters β := (β0, β1, . . . , βK) ∈R×
(R+)K , the exponential random graph model ERGM(n,β) is defined to be the probability
measure over all simple graphs with n vertices

µβ(X) =
1

Zβ
exp

(

Hβ(X)

)

; Hβ(X) :=
K
∑

i=0

n2βiNi(X) .

The Ni are homomorphism densities corresponding to fixed finite and connected graphs
G0,G1, . . . ,GK (such as edges, triangles, 4-cycles, 5-cycles, 2-stars, etc, withG0 being fixed
to be a single edge connecting two vertices) and Zβ denotes the normalizing constant. This
is an exponential family where the sufficient statistics are the subgraph counts. The model
significantly generalizes the Erdős-Rényi random graph and is used to model a variety of
complex networks like social networks and biological networks [10, 16, 8, 9, 31]. Early anal-
ysis was carried out by statistical physicists [24, 25, 4], and probabilists and statisticians have
further studied various questions about these models including sampling, estimation, large
deviations theory, concentration of measure, and phase transitions [1, 5, 26, 7, 11, 23, 32, 27].

The basic problem we consider in this work is that of producing a sample from the ERGM

probability distribution in polynomial time. A popular approach to sampling is to use the
Glauber dynamics, a simple reversible Markov chain with the desired stationary distribution,
and to run it for sufficiently long that it is close to stationarity.

DEFINITION 1.1 (Glauber Dynamics). Given any probability distribution π over X =

{0,1}(n2) with π(x)> 0 for all x ∈ X , the Glauber dynamics with respect to π is the discrete
time Markov chain over X with single step transition from X to X ′ as follows:

1. Pick a coordinate I ∈
[(

n
2

)]

uniformly at random.
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2. Form X ′ by keeping all edges except for I the same as in X and sample X ′
I ∼ π(·|X∼I)

conditional on the other edges. Here X∼I denotes all the edges of X other than the edge
I .

The Glauber dynamics with respect to π is reversible for π ([20]), so in particular π is
stationary.

The mixing time of the Glauber dynamics, i.e., the time until the distribution is within total
variation 1/4 of stationarity, determines whether the approach is feasible. This mixing time
was shown by Bhamidi et al. [1] to be essentially characterized by the function Lβ : [0,1]→
R defined as

(1) Lβ(p) =
K
∑

i=0

βip
|Ei| − I(p)

where for each i, Ei is the edge set of the fixed graph Gi and I(p) := 1
2p log p +

1
2(1 −

p) log(1 − p). (Bhamidi et al. [1] actually formulated their results in an equivalent way in
terms of the function ϕβ defined in Section 2.3, while Lβ was studied by [6].)

THEOREM 1.2 ([1]). Consider the ERGM(n,β) distribution. There are three regimes

for β:

1. High temperature: If Lβ has a unique local maximum with a non-vanishing second deriva-

tive, then the Glauber dynamics Markov chain for ERGM(n,β) mixes in timeO(n2 logn).
2. Low temperature: If Lβ has multiple local maxima with non-vanishing second deriva-

tives, then any local Markov chain with stationary distribution ERGM(n,β) must suffer a

mixing time of exp(Ω(n)).
3. Critical temperature: If any local maxima of Lβ has a vanishing second derivative.

In this work, we use a somewhat informal notion of metastability since this is not needed
in order to state our technical results. Consider subsets of the state space A,B ⊆ X such
that A ⊆ B. We will call B to be metastable with respect to a given Markov dynamics if
the Markov dynamics initialized inside the set A takes a long time ± exponential in n ± to
exit the set B. Slow mixing in the low-temperature phase is due to the existence of multiple,
disconnected metastable states from which it takes the Glauber dynamics exponential time to
leave. The question is therefore: can one efficiently produce a sample from the ERGM in the
low temperature regime?

An important insight into the structure of the ERGM distribution was developed by Chat-
terjee and Diaconis [6], and this will constitute a useful step towards our goal. They showed
that the ERGM distribution is close to a finite mixture of constant graphons with respect to
the cut-metric (graphons and the cut metric δ□ are reviewed in Section 2.2):

THEOREM 1.3 (Theorem 4.2 of [6]). Denote by Mβ the set of global maxima of Lβ . The

ERGM(n,β) distribution converges, in probability with respect to the cut-metric, to a mixture

of G(n,p∗) for p∗ ∈Mβ . Formally, let Xn ∼ ERGM(n,β) and X̃n be its corresponding

graphon and M̃β be the set of all constant graphons with value p∗ for some p∗ ∈Mβ . For

every fixed η > 0, there are constants C(η), c(η)> 0 such that

P(δ□(X̃n, M̃β)> η)≤C(η) exp(−c(η)n2) .

Given the approximation results of Chatterjee and Diaconis, can one simply find p∗ and
obtain a sufficiently accurate approximation of the ERGM by sampling G(n,p∗)? Unfor-
tunately, no: Theorem 1.3 is in cut metric, which turns out to be too weak to control total
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variation distance. Indeed, the paper [3] shows that dTV(ERGM,G(n,p∗))→ 1 even for the
simple ERGM consisting of edges and 2-stars. The approximation results of Eldan and Gross
[7] show that even in the low-temperature regime, the ERGM can be approximated in a cer-
tain Wasserstein metric by an appropriate mixture of stochastic block models, endowing it
with richer structure compared to G(n,p∗). However, these results also do not imply approx-
imation in the total variation distance.

The ERGM is closely related to the ferromagnetic Ising model and, in fact, the ERGM

with the 2-star can be written as an Ising model. Just as for the ERGM, the Glauber dy-
namics is known to mix exponentially slowly for the Ising model at low temperatures. Nev-
ertheless, there are Markov chains mixing in polynomial-time which can sample efficiently
from arbitrary ferromagnetic Ising models based on random cluster dynamics [15] and the
Swendsen-Wang dynamics [29, 30]. For the ERGM it is not at all clear how to write down
the corresponding random cluster model such that the associated random cluster dynamics
mixes rapidly. We instead pursue a more direct approach.

The starting point of our approach is the observation that if our aim is only to produce a
sample from nearly the correct distribution, then there is no need for the dynamics to tran-
sition between all metastable states. In order to implement this intuition, it is necessary to
slightly modify the standard definition of mixing time of a Markov chain. The usual defini-
tion measures the distance to stationarity starting from a worst-possible initial state. Instead,
we use the following definition.

DEFINITION 1.4. Given a Markov transition kernel P with stationary π∗ we start from
some initial distribution π0 and say that P is (π0, π∗, τ, δ)-mixing if for every t≥ τ

(2) dTV(π0P
t, π∗)≤ δ .

Note that an immediate consequence of the data processing inequality for total variation
is that P is (π0, π∗, τ, δ)-mixing if and only if dTV(π0P τ , π∗)≤ δ.

Our main result, Theorem 3.1 given in Section 3, shows that whenever δ ≥ δ0 =
exp(−Ωβ(n)), with π0 being a mixture of G(n,p∗) for some carefully chosen distribution
p∗, the Glauber dynamics for ERGM is (π0, π∗,Cβn

2 log n
δ , δ)-mixing even in the low tem-

perature regime. That is, as long as the target TV distance is ≥ δ0, then the mixing time of the
Glauber dynamics is O(n2 logn). This gives a counterpoint to the criticism of these models
in [1] based on the difficulty of sampling these models at low temperature.

The role of δ0 merits some discussion. Incorporating the starting distribution into the def-
inition of mixing time invalidates one of the basic lemmas: it is no longer true that the total
variation decreases exponentially as exp(−Ct/n2 log(n)) for every t. The basic reason is
that in a Markov chain with multiple metastable states requiring exponential time to leave,
any initial error in probability assigned to the metastable states might persist for exponential
time. Thus, one might think of δ0 as capturing this initial (possibly unavoidable) error. We
remark that Gheissari and Sinclair’s work [14] on mixing in low-temperature Ising models
also considers mixing up to a TV distance of δ0.

The following is a corollary of Theorem 3.1.

THEOREM 1.5. Suppose that p∗ is the unique global maximizer of Lβ and moreover

that Lβ has nonzero second derivative at p∗. Let π0 := G(n,p∗). There exist positive con-

stants cβ,Cβ and n0(β), such that if n > n0(β), then whenever δ ≥ exp(−cβn), the Glauber

dynamics for µβ is
(

π0, µ,Cβn
2 log(n2/δ), δ

)

-mixing.

In fact, Theorem 3.1 is more comprehensive and shows that even when there are multiple
global maximizers in the low temperature regime, we can sample efficiently from the condi-
tional distribution of being close to any of these maximizers. In Theorem 3.3, we establish
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a surprising richness which can be present in the ERGM at low temperature. Even within a
small cut-metric neighborhood of the constant p∗ graphon where the ERGM measure concen-
trates (and looks very close to G(n,p∗)) [6], we establish the existence of metastable states
for certain choices of β whose total probability is exp(−Θ(n)). The Glauber dynamics takes
an exponentially long time to escape this set of metastable states. In contrast, Bhamidi et
al. [1] constructed metastable states as sets of graphs similar to G(n,p), where p was a local
maximizer of Lβ , and these have a total probability of exp(−Ω(n2)).

1.1. Overview and Proof Sketch. We now give a high level overview of the ideas behind
the main results, which are stated in Section 3.

Sufficient Conditions for Path Coupling. The large deviations results in [6] stated here as
Theorem 1.3 show that a sample from the ERGM is w.h.p. close in cut-metric to some con-
stant graphon with value p∗. Sufficient conditions established in [1] for the path coupling
argument to work requires much stronger control on small subgraph counts than provided
by the cut-metric: the increase in homomorphism density of G in X formed by adding any
edge e to X (denoted by ∆e

G(X)) must be approximately 2n−2|E(G)|(p∗)|E(G)|−1 for ev-
ery fixed subgraph G. We will show that ∆e

G(X) indeed concentrates close to this value with
probability 1− exp(−Ωβ(n)). The coupling argument showing how this statement implies
our main theorem is contained in Sections 4 and 5.

Fixed Point Equations for Subgraph Concentration. Theorem 1.3 shows thatX ∼ µ is close
to the constant graphon with value p∗. Section 6 reduces the task of showing concentration of
∆e

G(X) to show additionally that: (1) every node degree uniformly concentrates close to p∗

and (2) that the number of common neighbors of any two vertices u and v is close to n(p∗)2.
We show these two properties as follows. First, concentration of degrees is established us-
ing the cavity method, discussed momentarily. For the second property, we make use of the
concentration of degrees to derive a fixed point equation for the common neighbor counts
and use the concentration results for fixed point equations established in [5, Theorem 1.5].
We note that the concentration results given by [5, Theorem 1.5] in themselves do not seem
to be sufficient to establish the concentration of ∆e

G(X) and the concentration of degrees as
established by the cavity method is essential.

Cavity Method for Degrees. We use the cavity method as developed in Section 8 to first
show that conditioned on the exponential random graph X being close to the constant p∗

graphon, the normalized degree of every vertex concentrates close to p∗. Graphon conver-
gence can show that most vertices have degree close to p∗ (see Lemma 7.1). To obtain the
uniform concentration, we look at the law of the the edges emanating from a single vertex
(called the cavity) conditioned on the rest of the graph being close to the constant graphon
p∗. We show that the ªmean fieldº generated by the rest of the graph forces the cavity ver-
tex to have degree close to p∗ with high probability. This is established in Theorem 8.9 and
Corollary 6.3 and is our main technical innovation.

1.2. Discussion and Future Work. Fast mixing of a Markov chain can be used to establish
concentration of measure, central limit theorems, and estimation of the partition function.
Concentration of measure, CLTs and approximation byG(n,p) ([11, 27]) have been explored
in the literature for high-temperature ERGM models. It would be interesting to consider their
extension to low-temperature ERGM via the approximate mixing established in this work.
Maximum likelihood estimation often involves estimation of the partition function. There
are multiple works ([17, 28, 12, 13, 18]) that efficiently approximate partition functions of
a parametric family with a given parameter β by efficiently generating samples from the
distribution for every choice of the parameter β′. We leave open the problem of estimating
the partition function of the low-temperature ERGM.
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1.3. Related Work. Polynomial or quasipolynomial time mixing from a well-chosen ini-
tial distribution has been explored for the mean field Ising model by Levin et al. [19] and
more recently for the Ising model on the lattice Z

d by Gheissari and Sinclair [14]. Lubet-
zky and Sly [22] consider mixing from specific initial conditions for the 1-dimensional Ising
model and identify initial states which allow faster mixing than the worst case by constant
factors. The work [21] considers an idea similar to ours in isolating the ‘modes’ of a probabil-
ity distribution in order to aid sampling. Their approach consider multiple, coupled, random
instantiations of the Markov chains, which are all allowed to interact as the evolve, whereas
our work considers a single instance of such a Markov chain.

2. Background and Notation. This section contains the basic definitions and notation
for graphons and the Glauber dynamics.

2.1. Notation. For any simple graph X , we denote by V (X) its vertex set and by
E(X) its edge set. Given an unordered pair e = (u, v) for some u, v ∈ V (X), we define
Xe =Xuv =Xvu = 1(e ∈ E(X)). Without loss of generality, we take V (X) = [n], where
|V (X)| = n, and identify the space of finite simple graphs on n vertices with the space

X := {0,1}(n2), where the coordinates are indexed by tuples (u, v) for u < v, u, v ∈ [n].
Throughout, we will reserve u, v,w to denote vertices of size n random graphs for large n
and i, j, l to denote vertices of fixed graphs like G0,G1, . . . above.

By X∼e we denote the graph formed by all edges other than the edge e. Given X ∈
X , define X+e ∈ X (resp. X−e ∈ X ) by (X+e)∼e = X∼e (resp. (X−e)∼e = X∼e) and
(X+e)e = 1 (resp. (X−e)e = 0) i.e., we add (resp. remove) edge e to the graph X .

We use the standard asymptotic notationO( · ),Ω( · ), and Θ( · ). For x, y ∈R
+ y =Oγ(x),

we mean y ≤Cγx for some constant Cγ which depends only on γ (and similarly for Ωγ and
Θγ). In the statement of the results, expressions of the form ϵ < c(γ) mean ªϵ smaller than
a constant depending only on γ" and n > n0(γ) means ªn larger than a constant depending
only on γ".

We will occasionally use the function I : [0,1] → [−1
2 ,0] given by I(p) := 1

2p log p +
1
2(1− p) log(1− p). This is just −1/2 times the binary entropy function. For any set A⊆B,
we let A∁ :=B \A whenever the set B is clear from context.

2.2. Graphon Theory. Our work relies heavily on the theory of graph limits and
graphons; our notation follows [6]. Let W denote the space of symmetric measurable func-
tions f : [0,1]2 → [0,1], where the space [0,1]2 is endowed with the uniform probability
measure. For f, g ∈W , define their cut distance to be

δ□(f, g) = sup
S,T⊂[0,1]

∣

∣

∣

∣

∫

S×T

(

f(x, y)− g(x, y)
)

dxdy

∣

∣

∣

∣

,

where the supremum is over Borel measurable sets S,T . Define the equivalence relation
∼ on W by f ∼ g iff there exists a measure preserving bijection σ : [0,1]→ [0,1] such that
f(x, y) = g(σx,σy) := gσ(x, y). Let W̃ be the quotient space with respect to this equivalence
relation. For f ∈W , let f̃ denote its orbit in W . A metric δ□ on W̃ can now be defined as

δ□(f̃ , g̃) = inf
σ
δ□(f, gσ) .

An important fact in the theory of graph limits is that (W̃, δ□) is a compact metric space.
For a graph X with vertex set [n], we can associate the function fX ∈ W where

fX(x, y) = 1(⌊nx⌋,⌊ny⌋)∈E(X) = X⌊nx⌋,⌊ny⌋. We define its corresponding graphon to be
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X̃ = f̃X ∈ W̃. Note that under this mapping, vertex isomorphic graphs correspond to the
same element of W̃ . We will denote the graphon with the constant value p ∈ [0,1] by p1.

For a finite simple graph H with vertex set [k] for some k ∈ N and a graphon h ∈ W̃ , we
define the homomorphism density t(H,h) as

t(H,h) =

∫

[0,1]k

∏

(i,j)∈E(H)

h(xi, xj)dx1 . . . dxk .

In particular, the subgraph counts Ni(X) appearing in the Hamiltonian Hβ(X) are defined
as the homomorphism densities

(3) Ni(X) := t(Gi, f̃
X) .

When emphasizing a particular graph G we will also use the notation NG(X).
The classical theory of graph limits is too coarse to understand convergence of Markov

chains because the cut metric does not control degrees of individual vertices (or neighbor-
hoods of two vertices), which can have a large impact on the evolution of the Glauber dy-
namics. The following quantities will allow us to establish a fine-grained understanding of
the measure µ. Given a graph X with n vertices, whenever u ∈ [n], we define the normalized
degree

(4) pu(X) :=
degree of vertex u

n
= n

∫ 1

0

∫ u
n

u−1
n

fX(x, y)dxdy .

Similarly, define the normalized wedge count for nodes u, v by

puv(X) :=
number of vertices to which both u and v have edges

n

= n2

∫ 1

0

∫ u
n

u−1
n

∫ v
n

v−1
n

fX(x, z)fX(y, z)dxdydz .(5)

2.3. Glauber Dynamics for the ERGM. As described in the introduction, at each step of
the Glauber dynamics for µ a pair of vertices e= {u, v} is chosen uniformly at random from
the

(

n
2

)

possibilities and the variable Xe indicating presence of edge e is updated according
to the conditional probability

(6) ϕe(X∼e) := EX∼µ

[

Xe

∣

∣X∼e

]

.

It will be useful to express the update probability in terms of subgraph counts. For any
graph G= (V,E) define

(7) ∆e
G(X) =NG(X

+e)−NG(X
−e)

and let

rG(X,e) :=

(

n2∆e
G(X)

2|E|

)

1
|E|−1

.

I can be shown via straight forward calculations that the update probability can be expressed
as:

ϕe(X∼e) = EX∼µ[Xe|X∼e] =
exp(2β0 +

∑K
l=1 2βl|El|rGl

(X,e)|El|−1)

1 + exp(2β0 +
∑K

l=1 2βl|El|rGl
(X,e)|El|−1)

.
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Note that, by definition of rG(X,e), adding the edge e toX∼e increases n2Nl(X), the scaled
homomorphism density of Gl in X , by 2|El|rGl

(X,e)|El|−1. The expression for ϕe(X∼e) is
obtained by writing down Hβ(X

+
e )−Hβ(X

−
e ) in terms of rGl

(X,e).
It follows from the definitions that if X ∼ G(n,p), then rG(X,e) ≈ p with high prob-

ability. If, conversely, it were the case that rG(X,e) = p for all G1, . . . ,GK , then the up-
date probability takes the following simpler form (with some abuse of notation) given by
ϕβ : [0,1]→ [0,1] with

(8) ϕβ(p) =
exp(2β0 +

∑K
l=1 2βl|El|p|El|−1)

1 + exp(2β0 +
∑K

l=1 2βl|El|p|El|−1)
.

Let Mβ denote the set of global maximizers of Lβ . Let Uβ ⊂Mβ be the global maximizers
where the second derivative of Lβ is nonzero. It can be shown that p∗ ∈ Uβ only if p∗ =
ϕβ(p

∗) and ϕ′β(p
∗) < 1. What this implies is that p∗ is a stable fixed point: if the chain is

started at X where rG(X,e) ≈ p∗ for all G ∈ G1, . . . ,GK , then that continues to hold for
exponentially many steps. This was shown in Lemma 17 from [1] and is stated in our paper
as Lemma 4.9.

We will also need to consider the Glauber dynamics for distributions π that assign zero
probability to some graphs.

DEFINITION 2.1 (Glauber Dynamics). Given any probability distribution π over X =

{0,1}(n2), we define the Glauber dynamics with respect to π to be the discrete time Markov
chain over X with single step transitions (to obtain X ′) as follows:

1. Pick a coordinate E ∈
[(

n
2

)]

uniformly at random.
2. Given the coordinate E, define X⊕E to be X with edge E flipped, and let

(9) X ′ =











X⊕E with probability π(X⊕E)
π(X⊕E)+π(X)

if π(X) ̸= 0

X⊕E with probability 1 if π(X) = 0

X with probability π(X)
π(X⊕E)+π(X)

The Glauber dynamics with respect to π is reversible for π ([20]), so in particular π is sta-
tionary. When π(X)> 0 for every X , this reduces to the definition given in Definition 1.1

3. Main Results. Fix β ∈R× (R+)
K , and recall thatMβ denotes the set of global max-

imizers of Lβ . Let Uβ ⊂Mβ be the global maximizers where the second derivative of Lβ is
nonzero. Throughout, we will always take p∗ ∈ Uβ . When |Uβ|= |Mβ|= 1, our main result,
stated below in Theorem 3.1, shows that the Glauber dynamics for ERGM when initialized
at the G(n,p∗) distribution rapidly approximately mixes as long as the target total variation
distance δ0 ≥ exp(−cβn) (see Definition 1.4). Note that |Uβ| = |Mβ| = 1 even in the low
temperature regime for Lebesgue almost all β.

In the case that |Uβ|> 1, we show that Glauber dynamics with the same initialization as
above can efficiently and approximately sample from the ERGM conditioned on being close
in cut metric to the constant p∗ graphon. Note that Theorem 1.3 shows that with a very large
probability, a sample from the ERGM is close to the constant p graphon for some p ∈ Uβ . If
the probability of being close in cut-metric to each p ∈ Uβ under the measure µ is known,
then we can initialize the Glauber dynamics to the correct mixture of (G(n,p))p∈Uβ

and
show that it mixes rapidly as long as the target total variation distance δ0 ≥ exp(−cβn). In
this work, we do not consider the problem of estimating these mixture probabilities.

For η > 0 denote the η-ball in cut metric around p∗ by

B□
η (p∗) := {X ∈ X : δ□(X,p

∗1)≤ η} .
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Let Pη be the kernel of the Glauber dynamics with respect to the measure µ( · |B□
η (p∗)) and

let P be the kernel of the Glauber dynamics with respect to the measure µ.

THEOREM 3.1. Let π0 := G(n,p∗) for any p∗ ∈ Uβ . Let X̄0 ∼ π0, X̄1, X̄2, . . . , evolve

according to Pη and X0 ∼ π0,X1,X2, . . . evolve according to P . There exist positive con-

stants η0(β), cβ,η,Cβ,η and n0(β, η) such that whenever η < η0(β) and n > n0(β, η), the

following hold:

1. (X0,X1, . . . ,XT ) can be coupled with (X̄0, . . . , X̄T ) such that with probability at least

1− TC(β, η) exp(−cβ,ηn), we have

(X0,X1, . . . ,XT ) = (X̄0, X̄1, . . . , X̄T ) .

2. Whenever δ ≥ exp(−cβ,ηn), Pη is (π0, µ(·|B□
η (p∗)),Cβ,ηn

2 log(n2/δ), δ)-mixing.

3. If |Uβ|= |Mβ|= 1, then whenever δ ≥ exp(−cβ,ηn), P is (π0, µ,Cβ,ηn
2 log(n2/δ), δ)-

mixing.

This theorem shows that we can achieve metastable mixing by disregarding a portion of the
state space of probability exp(−cβ,ηn) under the measure µ(·|B□

η (p∗)). One might wonder
if this is necessary, and in particular whether it is possible to improve the second item due
to B□

η (p∗) being possibly well-connected. We next answer this question in the negative and
gain insight into the structure of the ERGM measure at low temperature.

The paper [1] constructs metastable states where the graph is close to G(n,p) for some
p which is a local maximizer of Lβ , from which any local Markov chain takes exp(Ω(n))
time to escape. The large deviations theory based results established in [6] show that when
p is not the global minimizer of Lβ , then these metastable states collectively have mass
exp(−Ω(n2)). One might hypothesize that the metastable states can be fully characterized
by the behavior of local maximizers of Lβ and the cut-metric neighborhoods, and moreover
that they have total mass exp(−Ω(n2)) .

Perhaps surprisingly, it turns out instead that the low-temperature ERGM landscape is re-
markably intricate even within the neighborhood B□

η (p∗) around the global optimizer p∗.
We show by construction that this set can contain multiple metastable states which collec-
tively have mass exp(−Θ(n)) and from which the Glauber dynamics takes exp(Ω(n)) time
to escape. These states are close in cut-metric to the constant graphon p∗ and it follows that
cut-metric based large deviations analysis cannot capture the intricacies of Markov chain
mixing in the ERGM at low-temperatures.

EXAMPLE 3.2. Suppose K = 1 and let G1 be the triangle graph (i.e, the 3 clique). Let
σ(x) := ex/(1+ex). There exist parameters β0, β1 ∈R×R

+ and real numbers p∗1 ̸= p∗2 such
that:

1. p∗1 and p∗2 satisfy p∗i = σ(2β0+6β1(p
∗
i )

2), Uβ = {p∗1}, and p∗2 is a local maximizer of Lβ ;
2. There exists q∗ ∈ [0,1], q∗ /∈ {p∗1, p∗2}, such that q∗ = σ(2β0 + 6β1q

∗p∗1);
3. Taking f(x) = σ(2β0 + 6β1x

2) and g(x) = σ(2β0 + 6β1xp
∗
1), we have f ′(p∗1) < 1 and

g′(q∗)< 1.

We numerically check that the choice β0 =−1.8 and β1 = 2 has p∗1, p
∗
2, and q∗ satisfying the

relations above. As shown next, this turns out to imply metastability.

THEOREM 3.3. Consider Example 3.2 given above. Let η > 0 be any small enough con-

stant. Let the initial state X0 be such that (X0)1j ∼ Ber(q∗) and (X0)ij ∼ Ber(p∗1) for

i, j ̸= 1 and i < j are independently distributed. Suppose X0,X1, . . . is the trajectory of
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the Glauber dynamics with respect to µ with β as given in Example 3.2. Define the set of

graphs Xq,p(η) for q, p ∈ [0,1] by

Xq,p(η) := {X ∈ X : δ□(X,p)≤ η/2 and |p1(X)− q| ≤ η} .
Then the following hold:

1. The set Xq∗,p∗
1
(η) is metastable: There is a constant α > 0 such that

P
(

∩t≤exp(αn){Xt ∈ Xq∗,p∗
1
(η)}

)

≥ 1− exp(−Ωη(n)) .

2. The set Xq∗,p∗
1
(η) has sizable probability:

µ(Xq∗,p∗
1
(η)) = exp(−Θη(n)) .

3. Most of the mass lies in Xp∗
1 ,p

∗
1
(η):

µ(Xp∗
1 ,p

∗
1
(η))≥ 1− exp(−Ωη(n)) .

The theorem is proved in Section 9. Note that the existence of p∗2 is necessary for the
model to be in the low-temperature regime and for q∗ ̸= p∗1 to exist in the result above (else
Glauber dynamics would mix in time O(n2 logn) as shown by [1]). However, the theorem
statement itself does not refer to p∗2.

In order to see why the set of states described in the theorem above are metastable, consider
the first step of Glauber dynamics taking X0 to X1. The number of triangles formed by
including an edge e = (1, j) is approximately nq∗p∗1 (which is 6np∗1q

∗ after counting re-

labelings), i.e., ∆e
G1

(X0)≈ 6p∗
1q

∗

n2 . Thus, the Glauber dynamics updates this coordinate to 1
with probability ≈ σ(2β0 + 6β1q

∗p∗1) = q∗. Similarly, if an edge e= (i, j) is to be updated
with i, j ̸= 1, then the number of triangles formed is n(p∗1)

2 (which is 6np∗1q
∗ after counting

re-labelings) i.e., ∆e
G1

(X0) ≈ 6(p∗
1)

2

n2 , and the probability of setting this coordinate to 1 is
≈ σ(2β0 + 6β1(p

∗
1)

2) = p∗1. Therefore, the Glauber dynamics update still makes X1 look
approximately like the initial distribution. Not only that, but this is a stable fixed point, which
follows from the conditions f ′(p∗1)< 1 and g′(q∗)< 1.

4. Showing Metastable Mixing for Glauber Dynamics .

4.1. Couplings, Contraction, and Mixing. Consider a Markov chain over the finite state
space X and with transition kernel P . Let d :X ×X →R

+ be such that supx,y∈X d(x, y)≤
dmax. We will use the following lemma to establish metastable mixing, proved in Ap-
pendix C.

LEMMA 4.1. Let A ⊆ X × X be such that for (x, y) ∈ A there exists a γ-contractive

coupling Qxy of P (x, ·) and P (y, ·), i.e. for (X ′, Y ′)∼Qxy we have

Ed(X ′, Y ′)≤ (1− γ)d(x, y) .

Then, given any jointly distributed (X0, Y0) ∈ X × X , there exists a coupling between the

trajectories (Xk)k≥0 and (Yk)k≥0 of the Markov chain P such that

Ed(Xk+1, Yk+1)≤ (1− γ)Ed(Xk, Yk) + dmaxpk ,

where pk := P((Xk, Yk) ∈ A∁) = 1 − P((Xk, Yk) ∈ A). Unrolling this recursion, we con-

clude that

Ed(XK , YK)≤ dmax

[

(1− γ)K +
supk≤K pk

γ

]

.
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The following corollary is immediate from the coupling characterization of total variation.

COROLLARY 4.2. In the setting of Lemma 4.1, if additionally infx ̸=y d(x, y) ≥ dmin,
then dTV(XK , YK)≤ dmax

dmin

[

(1− γ)K + γ−1 supk≤K pk
]

.

In essence, the result above shows that whenever two trajectories can be coupled such that
with high probability they lie in a set A where a contractive coupling exists, then the laws
of their iterates converge until a certain lower threshold. In particular, taking Y0 to be drawn
from the stationary distribution of P , we can establish metastable mixing for X0,X1, . . . .

We will use the monotone coupling, defined next.

DEFINITION 4.3 (Monotone coupling). When P is the kernel of the Glauber dynamics
with respect to µ, the following coupling between P (x, ·) and P (y, ·) is called the monotone

coupling. For any two x, y ∈ X , we obtain the one step Glauber dynamics updates X ′, Y ′ as
follows:

1. Pick the update edge I ∈
(

[n]
2

)

uniformly at random to be the same for both X ′ and Y ′.
2. Draw U ∼ Unif([0,1]) independent of everything else and set

(10)

X ′ =

{

x+I if U ∈ [0, ϕI(x∼I))

x−I otherwise
and Y ′ =

{

y+I if U ∈ [0, ϕI(y∼I))

y−I otherwise.

For any two graphs X,Y ∈ X , the relation X ⪯ Y denotes that Xe ≤ Ye for every e ∈
(

[n]
2

)

. It follows immediately from the definition of the monotone coupling that givenX ⪯ Y ,
if X ′, Y ′ are obtained via the monotone coupling, then X ′ ⪯ Y ′ almost surely. We next
identify a region of the state space over which the coupling is contractive (as required by
Lemma 4.1).

4.2. Control of Subgraph Counts Implies Contraction. We will now follow the results
established in [1] to show the path coupling of Glauber dynamics and use the notations they
introduced. Recall that the update probability under the Glauber dynamics for µ is given by

ϕe(X∼e) =
exp(β0 +

∑K
l=1 2βl|El|rGl

(X,e)|El|−1)

1 + exp(β0 +
∑K

l=1 2βl|El|rGl
(X,e)|El|−1)

,

where

rG(X,e) :=
(n2∆e

G(X)

2|E(G)|
)

1
|E(G)|−1

and ∆e
G(X) =NG(X

+e)−NG(X
−e).

Let GL denote the set of finite simple graphs with at most L vertices (omitting the graph
with 1 edge and 2 vertices), where L is a fixed constant satisfying L>maxi≤K |Vi|. Define
the set

(11) Γp∗,ϵ :=
{

X : rG(X,e) ∈ [p∗ − ϵ, p∗ + ϵ] for all e ∈
(

[n]
2

)

and G ∈GL

}

.

Note that whenever X ∈ Γp∗,ϵ, ϕe(X∼e)≈ ϕβ(p
∗)≈ p∗. That is, each edge updates approx-

imately like G(n,p∗). The significance of Γp∗,ϵ is that in this set the monotone coupling is
contractive, as shown in [1, Lemma 18] and stated next. We will additionally state a theorem
in the next subsection that Γp∗,ϵ has high probability under µ(·|B□

η (p∗)).
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LEMMA 4.4 (Contraction within Γp∗,ϵ, [1]). Let p∗ ∈ Uβ , ϵ > 0 small enough as a func-

tion of β, and n large enough as a function of β, ϵ. Let A := {(x, y) ∈ Γp∗,ϵ×Γp∗,ϵ : x⪯ y}.

Let X ′, Y ′ be obtained from x, y via one step of the Glauber dynamics under the monotone

coupling. There is a constant c(β, ϵ)> 0 such that if (x, y) ∈A, then

EdH(X ′, Y ′)≤
(

1− c(β, ϵ)

n2

)

dH(x, y) ,

and moreover, X ′ ⪯ Y ′ almost surely.

4.3. Key Theorem. We first recall Theorem 1.3 which state that ∪p∗∈Uβ
B□

η (p∗) has prob-
ability 1− exp(−Ω(n2)) under the measure µ, that is, most of the mass of µ is concentrated
in the cut-metric ballsB□

η (p∗). The following theorem shows that µ
(

·
∣

∣B□
η (p∗)

)

concentrates
over the set Γp∗,ϵ, where path coupling is possible (as per Lemma 4.4).

THEOREM 4.5. Suppose p∗ ∈ Uβ . Given any ϵ > 0, and any η < c(β, ϵ), we must have:

µ
(

Γp∗,ϵ

∣

∣B□
η (p∗)

)

≥ 1−C(η, ϵ, β) exp
(

−Ωβ,ϵ,η(n)
)

.

We prove the theorem in Section 6, modulo lemmas proved via the cavity method in Sec-
tion 8.

REMARK 4.6. Notice that rG(X,e) ∈ [p∗−ϵ, p∗+ϵ] uniformly for every e is not implied
by δ□(X̃, p

∗) < η (for any constant η > 0). An example is given in Theorem 3.3, where
metastability occurs despite being close to the p∗ graphon with high probability: The edges
emanating from a single vertex prevent uniform concentration of rG(X,e) in the set [p∗ −
ϵ, p∗ + ϵ], but the single vertex neighborhood has a vanishingly small impact on δ□(X̃, p∗).

While it can easily be proved directly, the following is also a corollary of the above theo-
rem. This is a corollary since any dense Erdős-Rényi random modelG(n,p) can be written as
an instance of the exponential random graph model. This has p as the single local maximizer
for Lβ(·).

COROLLARY 4.7. Fix any ϵ > 0. Then there exists δ0(ϵ) > 0 such that for all 0 < δ <
δ0(ϵ), if Z ∼G(n,p∗ + δ), then P(Z ∈ Γp∗,ϵ)≥ 1− exp(−Ωϵ(n)).

Even though Theorem 3.2 in [6] considers the probability over the entire space of
graphons, we can easily adapt its proof to show the following lemma which considers only
the neighborhoodB□

η+δ(p
∗) for p∗ ∈ Uβ . A brief sketch of the modifications required is given

in Appendix A.

LEMMA 4.8. Suppose p∗ ∈ Uβ . Then, there exists a constant cβ > 0 such that whenever

η, δ ∈ (0, cβ) are fixed constants independent of n, we have

µ(η ≤ δ□(X,p
∗)≤ η+ δ)

µ(δ□(X,p∗)≤ η)
≤C(η, δ) exp(−c(η, δ)n2) .

4.4. Metastability. We intend to invoke Lemma 4.1 to show approximate mixing and
prove Theorem 3.1. The prior subsection shows that G(n,p∗) and at µ

(

·
∣

∣B□
η (p∗)

)

are both
within the set Γp∗,ϵ with high probability. We show that the Glauber chains with these ini-
tializations do not leave Γp∗,ϵ with probability 1− exp(−Ω(n)) until time exp(Ω(n)). Some
intuition behind this was given in Section 2.3.

We next state Lemma 17 from [1], after adapting it to our situation.
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LEMMA 4.9 (Staying in Γp∗,ϵ). Let ϵ > 0 be a small enough constant independent of n
and suppose p∗ ∈ Uβ . Let X0,X1, . . . evolve according Glauber dynamics with respect to

the measure µ. If X0 ∈ Γp∗,ϵ, then for some α= α(β, ϵ,L), we have

P
(

Xt ∈ Γp∗,2ϵ for all t≤ eαn
)

≥ 1− exp
(

−Ωβ,L,ϵ(n)
)

.

The proofs of the following lemmas are given in Appendix C.

LEMMA 4.10 (G(n,p∗ ± ϵ) sandwich). Let p∗ ∈ Uβ . Let constants ϵ, η > 0 be such that

ϵ < ϵ0(β), η < η0(β, ϵ), and n > n0(β, ϵ, η). Let X ∼ µ(·|B□
η (p∗)), Ȳ ∼G(n,p∗ + ϵ), and

Y ∼G(n,p∗ − ϵ). Then, there exists a coupling between X, Ȳ , and Y such that with proba-

bility at least 1− exp(−Ωβ,η,ϵ(n))

Y ⪯X ⪯ Ȳ .

LEMMA 4.11 (Staying in B□
η/2(p

∗)). Suppose p∗ ∈ Uβ , η > 0 such that η < η0(β) and

n > n0(η,β). Let X0 ∼ G(n,p∗) and generate the trajectory X0, . . . ,XT via Glauber dy-

namics with respect to µ. The entire trajectory X0, . . . ,XT stays within the ball B□
η/2(p

∗)

with probability at least 1− TC(β, η) exp(−c(β, η)n).

5. Proof of Main Result, Theorem 3.1. We now show how the main theorem fol-
lows from the various lemmas stated in the last section. Recall that π0 := G(n,p∗), X̄0 ∼
π0, X̄1, X̄2, . . . , is a trajectory of the Markov chain Pη and X0 ∼ π0,X1,X2, . . . is a trajec-
tory of the Markov chain P .

5.1. Proof of Theorem 3.1, Part 1. We will couple the trajectories X̄0, . . . , X̄T and
X0, . . . ,XT such that the event E := {(X̄0, X̄1, . . . , X̄T ) ̸= (X0, . . . ,XT )} satisfies E ⊆
∪T
t=0

{

Xt ∈
(

B□
η/2(p

∗)
)∁}

. We can then conclude the result from Lemma 4.11. The main

observation is that whenever n is large enough as a function of η, if X ∈ B□
η/2(p

∗), then
Pη(X, ·) = P (X, ·). We construct the following coupling:

1. X0 = X̄0 almost surely.
2. Xt+1, X̄t+1 are drawn from the TV optimal coupling between P (Xt, ·) and Pη(X̄t, ·).

It is clear that {Xt+1 ̸= X̄t+1} ⊆ {Xt ̸= X̄t} ∪
{

Xt ∈
(

B□
η/2(p

∗)
)∁}

. Now, noting that

{X0 ̸= X̄0} is the empty event, we conclude that {X1 ̸= X̄1} ⊆
{

X0 ∈
(

B□
η/2(p

∗)
)∁}

. An

induction argument with the same basic step shows that E ⊆ ∪T
t=0

{

Xt ∈
(

B□
η/2(p

∗)
)∁}

.

5.2. Proof of Theorem 3.1, Part 2. Let Ȳ0 ∼ µ
(

·
∣

∣B□
η (p∗)

)

and consider the trajectory
Ȳ0, Ȳ1, . . . , ȲT with respect to the transition kernel Pη . Note that this is a stationary process
since the stationary distribution of Pη is µ

(

·
∣

∣B□
η (p∗)

)

. Similarly, let Y0 ∼ µ
(

·
∣

∣B□
η (p∗)

)

,
but with the trajectory Y1, . . . , YT generated with respect to the transition kernel P . Using
Lemma 4.8 to bound P(Ȳt ∈B□

η
2
(p∗)), a similar proof as in Item 1 shows that

(12) dTV
(

(Ȳ0, . . . , ȲT ), (Y0, . . . , YT )
)

≤ T exp
(

−Ωβ,η(n
2)
)

.

From Item 1, we have

(13) dTV((X̄0, . . . , X̄T ), (X0, . . . ,XT ))≤ T exp(−Ωβ,η(n)) .

These last two displays allow us to consider the total variation distance between the dis-
tributions of XT and YT instead of X̄T and ȲT . Let ϵ > 0 be small enough to satisfy the
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conditions in Lemma 4.9. By Lemma 4.10 and Theorem 4.5, we conclude that for some
0< δ < δ0(β, ϵ, η), η < η0(δ, ϵ, β), and n > n0(δ, β, η, ϵ), we can couple Z0 ∼G(n,p∗ + δ)
withX0 and Y0 such that with probability at least 1−exp(−Ωβ,δ,η,ϵ(n)), the following hold:

1. X0 ⪯ Z0 and Y0 ⪯ Z0, and
2. X0, Y0,Z0 ∈ Γp∗,ϵ .

Now, we consider the Markov chain Z0,Z1, . . . ,ZT with respect to P . We consider the
monotone coupling between Y0, . . . , YT and Z0, . . . ,ZT as in Definition 4.3: conditional on
Y0 ⪯ Z0, we have Yt ⪯ Zt almost surely for every t ≤ T . Recall Γp∗,ϵ from (11) and the
set A := {(x, y) ∈ Γp∗,ϵ × Γp∗,ϵ : x⪯ y} defined in Lemma 4.4. Now, (Yt,Zt) ∈A∁ implies
either Y0 ̸⪯ Z0, Yt ̸∈ Γp∗,ϵ, or Zt ̸∈ Γp∗,ϵ. The first of these is ruled out by monotonicity of
the coupling. For the latter two, Lemma 4.9 shows that starting in Γp∗,ϵ the trajectory stays
there for some time, and it follows that

P
(

(Yt,Zt) ∈A∁
)

≤ exp
(

−Ωβ,δ,ϵ,η(n)
)

.

Applying Lemmas 4.1 and 4.4 with Hamming distance dH over X , we conclude that
whenever T ≤ exp(c0n) for small enough c0 as a function of ϵ, δ, η, β

Ed(YT ,ZT )≤
n2

2

[

(

1− c(ϵ, β)

n2

)T

+
n2

c(ϵ, β)
exp(−Ωη,β,ϵ,δ(n))

]

.

Similarly, we have

Ed(XT ,ZT )≤
n2

2

[

(

1− c(ϵ, β)

n2

)T

+
n2

c(ϵ, β)
exp(−Ωη,β,ϵ,δ(n))

]

.

Combining the two displays above, the coupling characterization of TV distance implies

dTV(XT , YT )≤ P(XT ̸= YT )≤ P(XT ̸= ZT ) + P(ZT ̸= YT )

≤ P(d(XT ,ZT )> 1) + P(d(YT ,ZT )> 1)

≤ Ed(XT ,ZT ) +Ed(YT ,ZT )

≤ n2
[

(

1− c(ϵ, β)

n2

)T

+
n2

c(ϵ, β)
exp

(

−Ωη,β,ϵ,δ(n)
)

]

.(14)

Now, we will allow ϵ, δ to be small enough constants as a function of β such that Lem-
mas 4.9 and 4.4 hold. Whenever η is small enough as a function β and n is large enough,
combining Equations (12), (13), and (14), yields

dTV(X̄T , ȲT )≤ n2

[

(

1− c(ϵ, β)

n2

)T

+
n2T

c(ϵ, β)
exp

(

−Ωη,β(n)
)

]

.

This yields the second part of the theorem statement by considering T = Cβ,ηn
2 log(n2/δ).

5.3. Proof of Theorem 3.1, Part 3. Whenever |Uβ| = 1, the concentration result of [6]
(stated here as Theorem 1.3) implies that

dTV
(

µ,µ
(

· |B□
η (p∗)

))

≤ exp
(

−Ωβ,η(n
2)
)

.

Meta-stable mixing to µ follows from the second part and the triangle inequality.
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6. Uniform Subgraph Concentration and Proof of Theorem 4.5. In this section we
reduce the proof of Theorem 4.5 on the concentration of ∆e

G(X) :=NG(X
+e)−NG(X

−e)
to control of both the vertex degrees pu(X) and common neighbors puv(X). The latter are
stated here as corollaries and will be proved via the cavity method in Section 8.

Theorem 4.5 states that if we sample X ∼ µ
(

·
∣

∣B□
η (p∗)

)

, then X ∈ Γp∗,ϵ with probability
1−C(β, ϵ, η) exp

(

−Ωβ,ϵ,η(n)
)

. Unpacking the definitions, it suffices to show that for some
small enough h(ϵ,L),

(15)
∣

∣

∣
∆e

G(X)− 2|E(G)|(p∗)|E(G)|−1|
n2

∣

∣

∣
≤ h(ϵ,L)

n2

for everyG ∈GL and e ∈
(

[n]
2

)

, with probability at least 1−C(β, η, ϵ,L) exp(−Ωβ,η,ϵ,L(n)).
We start with a lemma (proved in Appendix B) which shows that (15) (and hence The-

orem 4.5) follows from uniform control of both the vertex degrees pu(X) and common
neighbors puv(X). Some notation is needed. Given a fixed graph G= ([k],E) and vertices
i, j ∈ [k] such that (i, j) ∈E, let

(16) Eij(G) :=
{

l : l ∈ [k], l ̸= i, l ̸= j, (l, i) ∈E, (l, j) ∈E
}

and dij(G) = |Eij(G)| .
In words, dij(G) is the number of common neighbors of vertices i and j in G.

LEMMA 6.1. Suppose X ∈ X , e = (u, v), and p∗ ∈ [0,1] are such that

supu∈[n] |pu(X) − p∗| ≤ ϵ. For any fixed graph G and for some constant CG depending

only on G, we have

∣

∣

∣
∆e

G(X)− 2

n2

∑

(i,j)∈E(G)

(puv(X)

(p∗)2

)dij

(p∗)|E(G)|−1
∣

∣

∣
≤ CG

n2

(

ϵ+ δ□(X̃, p
∗) + n−1

)

.

COROLLARY 6.2. Let C(L) =maxG∈GL
CG for CG in Lemma 6.1 and h(ϵ,L) be as in

(15). Let a(ϵ,L) = h(ϵ,L)/3C(L). Then X ∈ Γp∗,ϵ holds if

1. X is a(ϵ,L)-close to the constant graphon p∗ in the cut-metric,
2. pu(X) is uniformly close to p∗ for every vertex u, i.e., supu |pu(X)− p∗| ≤ a(ϵ,L), and
3. puv(X) is close to (p∗)2 uniformly for every pair of vertices u ̸= v, i.e.,

(17) sup
u ̸=v

|puv(X)− (p∗)2| ≤ p∗a(ϵ,L)/3L.

It follows that Theorem 4.5 is proved if these conditions are each shown to hold for
X ∼ µ(·|B□

η (p∗)) with probability at least 1 − C(β, ϵ, η,L) exp(−Ωβ,ϵ,η,L(n)) whenever
we choose 0< η < c(β, ϵ) to be a small enough constant. Item 1 holds by Theorem 1.3. We
address Items 2 and 3 below.

6.1. Uniform Control of Degrees. Section 8 develops the cavity method for the ERGM

and demonstrates the following uniform control on vertex degrees.

COROLLARY 6.3. Suppose p∗ ∈ Uβ and let ϵ > 0 be an arbitrary fixed constant. Then,
for any 0< η < c(β, ϵ) and n > n0(β, ϵ, η), we have:

µ
(

sup
u∈[n]

|pu(X)− p∗| ≤ ϵ
∣

∣

∣
B□

η (p∗)
)

≥ 1− exp(−Ωβ,ϵ(n)) .
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We take η < c(β,a(ϵ,L)) in Corollary 6.3, implying that if we sample X ∼ µ
(

·
∣

∣B□
η (p∗)

)

then Item 2 of Corollary 6.2 holds with probability 1−C(β, ϵ, η,L) exp(−Ωβ,ϵ,η,L(n)).
It remains to show Item 3 of Corollary 6.2. As a step towards this, it turns out that if pu(X)

is close to p∗ uniformly for every vertex u (as stated in Corollary 6.3) and X is close to the
constant graphon p∗, then most of the common neighbor counts puv(X) are close to (p∗)2.
This follows from the definition of cut-metric.

COROLLARY 6.4. Suppose that p∗ ∈ Uβ . Given arbitrary ϵ, δ > 0, suppose η < c(β, ϵ, δ)
and n > n0(δ, ϵ, β, η). Then, for every u ∈ [n], there exists a random set Su ⊆ [n] \ {u} such
that |Su| ≤ δn and

µ
(

sup
u∈[n]

sup
v∈S∁

u

|puv(X)− (p∗)2| ≤ ϵ
∣

∣

∣
B□

η (p∗)
)

≥ 1− exp(−Ωβ,ϵ(n)) .

We refer to Appendix D.1 for the proof.
Next, to establish Equation (17), we boost control of puv(X) from most pairs u, v to all

pairs.

6.2. Uniform Control of Common Neighbors. Let X ′ be obtained from X ∼ µ
(

·
∣

∣B□
η (p∗)

)

via one step of the Glauber dynamics with respect to µ
(

·
∣

∣B□
η (p∗)

)

, so that we
also have X ′ ∼ µ

(

·
∣

∣B□
η (p∗)

)

. As shown in Lemma 4.8, with high probability X is η/2
away from the boundary of B□

η (p∗) (that is, X ∈B□
η
2

(p∗)) and the expected Glauber update

for puv with respect to µ
(

·
∣

∣B□
η (p∗)

)

is the same as with respect to µ(·), which is

E
[

puv(X
′)
∣

∣X
]

=
(

1− 2

N

)

puv(X)

+
1

N

(

n−1
∑

w∈[n]\{u,v}

ϕuw(X∼uw)Xvw + ϕvw(X∼vw)Xuw

)

.

The next lemma shows that under the conditions shown in Corollaries 6.3 and 6.4 to hold with
high probability for X ∼ µ

(

·
∣

∣B□
η (p∗)

)

, each of the normalized sums in the last displayed
equation is close to (p∗)2 uniformly for every u ̸= v. The Glauber dynamics with respect to
µ
(

·
∣

∣B□
η (p∗)

)

, therefore, tries to regress every puv(X) close to (p∗)2.

LEMMA 6.5. Suppose X ∈ X , p∗ ∈ [0,1] are such that the following conditions hold:

1. supu∈[n] |pu(X)− p∗| ≤ ϵ, and

2. For every u ∈ [n], there exist sets Su ⊆ [n] such that |Su| ≤ δn and

sup
u∈[n]

sup
w∈S∁

u

|puw(X)− (p∗)2| ≤ ϵ .

Then, for every u, v ∈ [n], we have
∣

∣

∣
n−1

∑

w∈[n]\{u,v}

ϕuw(X∼uw)Xvw − (p∗)2
∣

∣

∣
≤Cβ

(

ϵ+ δ+ δ□(X,p
∗) + n−1

)

.

The lemma is proved in the next subsection.
Intuitively, this suggests that the stationary distribution of the Glauber dynamics, µ

(

·
∣

∣B□
η (p∗)

)

, should be such that puv(X) ≈ (p∗)2 for every u ̸= v with high probability. The
next lemma formalizes this sentiment using Stein’s method for concentration developed in
[5, Theorem 1.5]. We refer to Appendix B for its proof.
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LEMMA 6.6. For any u, v ∈ [n] such that u ̸= v, define

guv(X) := puv(X)− 1

2n

∑

w∈[n]\{u,v}

(

ϕuw(X∼uw)Xvw + ϕvw(X∼vw)Xuw

)

.

Then, for any γ > 0 which is independent of n, we have

(18) µ
(

{|guv(X)|> γ} ∪ (B□
η/2(p

∗))∁
∣

∣

∣
B□

η (p∗)
)

≤C(η,β) exp(−Ωγ,η,β(n)) .

COROLLARY 6.7. Item 3 of Corollary 6.2 holds with the desired probability.

PROOF. Combining the last two lemmas with Corollary 6.3 proves (17).

6.3. Proof of Lemma 6.5. First, note that by definition

ϕuw(X∼uw) =
exp(

∑K
i=0 n

2βi∆
uw
i (X))

1 + exp(
∑K

i=0 n
2βi∆uw

i (X))
.

Now, suppose w ∈ S∁
u. Then, using Lemma 6.1, we conclude that

K
∑

i=0

n2βi∆
uw
i (X) =

K
∑

i=0

2|Ei|βi(p∗)|Ei|−1 ±Oβ

(

ϵ+ δ□(X,p
∗) + n−1

)

.

Using the fact that the function x→ ex

1+ex is 1-Lipschitz, we have for w ∈ S∁
u that

ϕuw(X∼uw) =
exp(

∑K
i=0 2|Ei|βi(p∗)|Ei|−1)

1 + exp(
∑K

i=0 2|Ei|βi(p∗)|Ei|−1)
±Oβ

(

ϵ+ δ□(X,p
∗) + n−1

)

.

Now, the fact that p∗ ∈ Uβ implies that L′
β(p

∗) = 0. It can be easily checked that this implies

p∗ = ϕβ(p
∗). It follows that whenever w ∈ S∁

u,

ϕuw(X∼uw) = p∗ ±Oβ

(

ϵ+ δ□(X,p
∗) + n−1

)

.

An application of the triangle inequality now shows that
∣

∣

∣
n−1

∑

w∈[n]\{u,v}

ϕuw(X∼uw)Xvw − p∗pv(X)
∣

∣

∣
≤ |Su|

n
+Oβ

(

ϵ+ δ□(X,p
∗) + n−1

)

.

The assumption that |Su| ≤ δn and the fact that |pv(X)− p∗| ≤ ϵ imply the result.

7. Some Graphon Estimates. We state three technical lemmas below, whose proofs
appear in Appendix A.

LEMMA 7.1. For any graph X over n vertices, p ∈ [0,1], and δ > 0, there exists a set

S ⊆ [n] such that |S| ≤ δn and

(19) sup
u∈S∁

|pu(X)− p| ≤ 2δ□(X̃, p1)

δ
.

It follows as an application that forX ∼ ERGM(n,β) and any given fixed constants δ, η > 0,

with probability at-least 1− C(η) exp(−c(η)n2), there exists a (random) set S ⊆ [n] such

that |S| ≤ δn and

inf
p∗∈Uβ

sup
u∈S∁

|pu(X)− p∗| ≤ 2η

δ
.
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LEMMA 7.2. If Y ⪯X ⪯ Z , then δ□(X̃, p1)≤max
(

δ□(Ỹ , p1), δ□(Z̃, p1)
)

.

LEMMA 7.3. Consider any fixed graph G = (V,E). For any vertex i, let di denote the

degree of the vertex i. Suppose p, q ∈ [0,1]. If G=G0, the graph consisting of a single edge,

then

(20)
|V |
∑

i=1

qdip|E|−di = 2q|E| + (|V | − 2)p|E| .

If G is connected and G ̸=G0, then there is a constant C depending only on (di)i∈V and |E|
such that

2q|E| + (|V | − 2)p|E| −C|p− q|

≤
|V |
∑

i=1

qdipE−di ≤ 2q|E| + (|V | − 2)p|E| − ζ(|p− q|) ,

where ζ : [0,1]→ R
+ is a continuous function depending only on G such that ζ(x)> 0 for

x ̸= 0.

8. The Cavity Method. In this section we address the degrees and show that every
vertex u has nearly the same degree pu(X) ≈ p∗ ∈ Uβ with high probability for X ∼
µ(·|B□

η (p∗)). While the cut-metric based convergence does not allow us to control all the
degrees, it is nevertheless possible to conclude that a large portion of the vertices have degree
pu(X)≈ p∗. We boost this to a uniform statement, in Theorem 8.9 and Corollary 6.3, via the
cavity method: most of the vertices and the corresponding edges are conditioned on being
close to the constant graphon p∗1, which generates the mean field with which the remaining
cavity vertices interact. We can then reason about the behavior of the cavity vertices.

We start by adapting several of the graphon definitions to incorporate a cavity.

8.1. Restricted Homomorphism Densities and Restricted Cut Metric. Recall from Sec-
tion 2.2 the function representative fX(x, y) of a graph X over n vertices. We will need the
homomorphism density of a graph forced to contain a particular vertex u of X . To that end,
for every u ∈ [n], define the event

Ak,i
u :=

{

x ∈ [0,1]k : xi ∈
[u− 1

n
,
u

n

)}

and

(21) Ak
u =

{

x ∈ [0,1]k : xi ∈
[u− 1

n
,
u

n

)

for some i ∈ [k]
}

=
⋃

i∈[k]

Ak,i
u .

For the sake of clarity in the results below, given a fixed graph G, we take its vertex set
V (G) = [k] during calculations.

DEFINITION 8.1 (Homomorphism density w.r.t. a vertex). Define the homomorphism
density ofG inX with respect to vertex u (which counts only homomorphisms which include
the vertex u) as

(22) NG(X;u) :=

∫

[0,1]k
1(Ak

u)
∏

(i,j)∈E(G)

fX(xi, xj)
k
∏

i=1

dxi .
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For ease of computation, we also introduce the quantity

(23) N0
G(X;u) :=

k
∑

l=1

∫

[0,1]k
1(Ak,l

u )
∏

(i,j)∈E(G)

fX(xi, xj)
k
∏

i=1

dxi .

The next lemma follows from elementary arguments; see Appendix A.

LEMMA 8.2. 0≤N0
G(X,u)−NG(X,u)≤ |V (G)|3/n2.

We will now show that whenever the graphon corresponding to X is close to a constant
graphon p1, then NG(X,u) can be approximated as a polynomial of pu(X) and p. This
will allow us to control the fine-grained structure of X in terms of the counts NG(X,u) just
based on nearness to a constant graphon and the normalized degrees of the vertices of X .
The proof, given in Appendix A, follows from a slight modification of the proof technique of
[2, Lemma 4.4], which establishes the continuity of homomorphism densities with respect to
the graphon metric via a repeated application of the triangle inequality.

LEMMA 8.3. Suppose DG = (d1, . . . , d|V (G)|) is the degree sequence of the fixed graph

G considered above. For any graph X with vertex set [n] and u ∈ [n], we have

∣

∣

∣
NG(X;u)− n−1

∑

d∈DG

pu(X)dp|E(G)|−d
∣

∣

∣
≤ |V (G)||E(G)|δ□(X̃, p)

n
+

|V (G)|3
n2

.

Let S ⊂ [n] be the ªcavity set". Define

Ak
S := ∪u∈SA

k
u and Ak,i

S := ∪u∈SA
k,i
u .

We have that

NG(X) =NG(X;S) +

∫

[0,1]k
1
{

(Ak
S)

∁
}

∏

(i,j)∈E(G)

fX(xi, xj)
k
∏

i=1

dxi ,

where the subgraph count NG(X;S) restricts to subgraphs containing a cavity vertex,

NG(X;S) :=

∫

[0,1]k
1
{

Ak
S

}

∏

(i,j)∈E(G)

fX(xi, xj)
k
∏

i=1

dxi .

The proofs of the next two lemmas are deferred to Appendix A.

LEMMA 8.4. Let X be any simple graph with vertex set [n] and let S ⊂ [n] be arbitrary.

Then
∣

∣

∣
NG(X;S)−

∑

u∈S

NG(X;u)
∣

∣

∣
≤ k3|S|2

n2
.

We now define the graphon metric restricted to S∁.

DEFINITION 8.5 (Restricted Graphon Metric). Let p∗ ∈ [0,1]. Define

(24) fX,S,p∗

(x1, x2) =

{

fX(x1, x2) if ⌈nx1⌉, ⌈nx2⌉ ∈ S∁

p∗ otherwise ,
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and let X̃S,p∗

be the graphon corresponding to fX,S,p∗

. We define the restricted cut metric
to be

δS,p
∗

□
(X̃, p∗) := δ□(X̃

S,p∗

, p∗) .

The restricted graphon distance to p∗ can be approximated in terms of the unrestricted
distance:

LEMMA 8.6. For any S ⊆ [n], we have

δ□(X̃, p
∗)− |S|(2n− |S|)

n2
≤ δS,p

∗

□
(X̃, p∗)≤ δ□(X̃, p

∗) .

We are now ready to establish the cavity decomposition of the Hamiltonian.

8.2. Cavity Decomposition of the Hamiltonian. It will be convenient to let r := |S|.
Given a simple graph X over n vertices, we define p̄u(X) to be the number of edges from
vertex u ∈ [n] to the set S∁, normalized by n:

p̄u(X) =
1

n

∑

v∈S∁

Xuv .

Here and throughout we hide the dependence on S to streamline the notation. Additionally,
whenever it is clear, we will denote p̄u(X) by p̄u. Note that |p̄u(X)− pu(X)| ≤ |S|/n.

Denote the portion of the Hamiltonian associated to the cavity by

Hcav
β (X;S) :=

K
∑

i=0

n2βiNi(X;S) ,

which is the same as Hβ except that the homomorphism densities are restricted to have at
least one vertex in the set S. Denote the rest of the Hamiltonian by

Hmean
β (X;S) =Hβ(X)−Hcav

β (X;S) .

We next bound the difference between Hβ(X) and Hmean
β (X;S).

LEMMA 8.7 (Cavity Decomposition). Assume that βi > 0 for some i = 1, . . . ,K . We

have the following upper and lower bounds.

1. Upper Bound:

Hβ(X)≤Hmean
β (X;S) +Oβ(nrδ

S,p∗

□
(X̃, p∗) + r2) +

K
∑

i=0

βinr|Vi|(p∗)|Ei|

+ 2n
∑

u∈S

[

Lβ(p̄u) + I(p̄u)−Lβ(p
∗)− I(p∗)− ζβ(|p̄u − p∗|)

]

(25)

2. Lower Bound:

Hβ(X)≥Hmean
β (X;S)−Oβ(nrδ

S,p∗

□
(X̃, p∗) + r2) +

K
∑

i=0

βinr|Vi|(p∗)|Ei|

+ 2n
∑

u∈S

[

Lβ(p̄u) + I(p̄u)−Lβ(p
∗)− I(p∗)−Cβ|p̄u − p∗|

]

(26)

Here ζβ is a function with the same properties of the function ζ in Lemma 7.3
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PROOF. Let Di be the tuple of the degrees of vertices in Gi (as in Lemma 8.3). In the
equations below, we will take

∑

di∈Di
to mean summation over all elements of the tuple. We

have

Hβ(X) =Hmean
β (X;S) +Hcav

β (X;S)

=Hmean
β (X;S) +

∑

u∈S

K
∑

i=0

βin
2Ni(X;u)±Oβ(r

2)

=Hmean
β (X;S) +

∑

u∈S

K
∑

i=0

∑

di∈Di

βinp
di
u (p∗)Ei−di ±Oβ(nrδ□(X̃, p

∗) + r2)

=Hmean
β (X;S) +

∑

u∈S

K
∑

i=0

∑

di∈Di

βinp̄
di
u (p∗)Ei−di ±Oβ(nrδ□(X̃, p

∗) + r2) .(27)

The first step is by the definition of the cavity Hamiltonian. The second step uses Lemma 8.4
to approximate N(G;S) and the third step uses Lemma 8.3 to approximate Ni(X;u). In the
fourth step, we have used the fact that |p̄u − pu| ≤ r/n.

We now apply Lemma 7.3 to the second term of Equation (27), yielding

K
∑

i=0

∑

di∈Di

βip̄
di
u (p∗)Ei−di ≤

K
∑

i=0

βi

[

2p̄|Ei|
u + (|Vi| − 2)(p∗)|Ei|

]

− ζβ(|p̄u − p∗|)

=
K
∑

i=0

βi|Vi|(p∗)|Ei| + 2
[

Lβ(p̄u) + I(p̄u)−Lβ(p
∗)− I(p∗)− ζβ(|p̄u − p∗|)

]

.(28)

In the first step we have used Lemma 7.3 and the fact that for G0 the inequality is an equality
which allows for all β0 ∈R. For i > 0, notice that βi ≥ 0 and the inequality goes in the right
direction. The function ζβ is as defined in the statement of Lemma 7.3 and exists since βi > 0
for some i ∈ [K]. To see this, observe that the Equation 20 is an equality when G = G0.
Therefore, in order to establish the strict inequality involving ζ as shown in Lemma 7.3, we
need at-least one of the βi > 0.

The upper bound in the lemma statement follows by combining Equations (27) and (28)
along with Lemma 8.6 to show that

nrδ□(X̃, p
∗)≤ nrδS,p

∗

□
(X̃, p∗) + 2r2 .

The lower bound on the Hamiltonian follows from a similar argument by replacing the upper
bound in Lemma 7.3 with the lower bound.

8.3. Controlling Degrees of Cavity Vertices. Given a sequence q̄u ∈ {0,1/n,2/n, . . . ,1}
for u ∈ S, we define the tuple qS = (q̄u)u∈S . Given arbitrary and fixed η > 0, p∗ ∈ [0,1], we
define the events

(29) A(S,qS , p
∗, η) = {X : p̄u(X) = q̄u for u ∈ S} ∩ {δS,p

∗

□
(X̃, p∗)≤ η}

and

(30) B(S,p∗, η) := {δS,p
∗

□
(X̃, p∗)≤ η} .

Note that by definition, B(∅, p∗, η) = B□
η (p∗). We want to show that whenever p∗ ∈ Uβ ,

if qS is not close to p∗, then the event A(S,qS , p
∗, η) has exponentially small probability

compared to the event B(S,p∗, η), whenever η and S are small enough.



METASTABLE MIXING OF MARKOV CHAINS 21

We now note that Hmean
β (X;S) and δS,p

∗

□
(X̃, p∗) depend only on Xuv for u, v ∈ S∁.

Therefore, whenever |S| is small, we will think of Hmean
β (X;S) as the mean field which

controls the behavior of the cavity, i.e., the edges emanating from the vertices in S. Now,
fixing X such that δS,p

∗

□
(X̃, p∗)≤ η, we look at the joint law of (Xuv) such that at least one

of u or v is in the set S. By Xmean(S) we denote the coordinates (Xuv)u,v∈S∁ . We denote
the rest of the coordinates by Xcav(S). Therefore, we want to understand the conditional law
Xcav(S)|Xmean(S) under the measure µ. We first record the following combinatorial lemma,
whose proof can be found in Appendix A.

LEMMA 8.8. Suppose r/n≤ 1/2 and Xmean(S) is fixed. Let the count of Xcav(S) such

that p̄u(X) = qu for u ∈ S be denoted by Hcav(qS). Hcav(qS) satisfies

exp
(

−r2
[

4 + 2 log(nr )
]

− r

2
log(2n)

)

≤Hcav(qS) exp
(

2n
∑

u∈S

I(qu)
)

≤ 1 .

Below we present the main result of this section.

THEOREM 8.9. Let p∗ ∈ Uβ be such that r/n < p∗ < 1− r/n and r < n/2. Given any

qS = (q̄u)u∈S as defined above for n sufficiently large as a function of β, η, we have

µ(A(S,qS , p
∗, η))

µ(B(S,p∗, η))
≤ exp

(

2n
∑

u∈S

(

Lβ(q̄u)−Lβ(p
∗)− ζβ(|q̄u − p∗|)

)

+ lower order

)

,

where lower order =Oβ(nrη+ r2 log(n/r) + r logn).

PROOF. Fix a p∗ ∈ Uβ . For the sake of convenience, only in this proof, we will denote
A(S,qS , p

∗, η) by A, B(S,p∗, η) by B and Oβ by O. Let C be the event {X : p̄u(X) =
q̄u for u ∈ S}. Let n be large enough so that the sets A,B and C are non-empty. Note that
1{X ∈B} is a function of Xmean and 1{X ∈ C} is a function of Xcav. Therefore we write
Xmean ∈B and Xcav ∈C in place of X ∈B and X ∈C , respectively.

With this notation in place, we have

µ(A) =
1

Zβ

∑

Xcav∈C

∑

Xmean∈B

exp(Hβ(X))

≤ 1

Zβ

∑

Xcav∈C

∑

Xmean∈B

exp(Hmean
β (X;S)) exp

(

O(nrη+ r2) + Γ(p∗) + ∆̄(qS , p
∗)
)

=
Hcav(qS)

Zβ

∑

Xmean∈B

exp(Hmean
β (X;S)) exp

(

O(nrη+ r2) + Γ(p∗) + ∆̄(qS , p
∗)
)

≤
Zmean
β

Zβ
exp

(

O(nrη+ r2) + 2n
∑

u∈S

[

Lβ(q̄u)−Lβ(p
∗)− ζβ(|q̄u − p∗|)

])

,(31)

where

Γ(p∗) :=
K
∑

i=0

βinr|Vi|(p∗)|Ei| ,

∆̄(qS , p
∗) := 2n

∑

u∈S

[

Lβ(q̄u) + I(q̄u)−Lβ(p
∗)− I(p∗)− ζβ(|q̄u − p∗|)

]

,
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and

Zmean
β :=

∑

Xmean∈B

exp(Hmean
β (X;S)) exp(−2n|S|I(p∗) + Γ(p∗)) .

In the second step of (31) we have applied the cavity decomposition from Lemma 8.7. In the
third step, we have used the fact that |C| =Hcav(qS) and in the fourth step, we have used
Lemma 8.8 to upper bound this count.

Now, note that under the condition p∗ < 1− |S|/n, there exists an admissible restricted
degree q̄ ∈ {0,1/n, . . . ,1− |S|/n} such that |q̄ − p∗| ≤ 1/n. Denote by q̄ the degree tuple
with q̄u = q̄ for every u ∈ S. Clearly, µ(B)≥ µ(A(S, q̄, p∗, η)). Repeating the calculation in
Equation (31), but with corresponding lower bounds instead of upper bounds, we conclude
that

(32) µ(B)≥
Zmean
β

Zβ
exp(−O(nrη+ r2 log(nr ) + r logn) +∆(q̄, p∗)) ,

where

∆(qS , p
∗) = 2n

∑

u∈S

[

Lβ(q̄u)−Lβ(p
∗)−Cβ|q̄u − p∗|

]

.

Using the properties of the Shannon entropy (i.e, supp∈[0,1−1/n] |H(p)−H(p+ 1/n)|=
|H(0)−H(1/n)| ≤ n−1(1 + logn)), we have that

sup
p∈[0,1−1/n]

∣

∣

∣
Lβ(p)−Lβ

(

p+
1

n

)∣

∣

∣
≤Cβ

logn

n

for some positive constant Cβ . This implies that ∆(q̄, p∗)≤ Cβr log(n). Plugging this into
the lower bound on µ(B) in Equation (32), and then combining it with the upper bound on
µ(A) in Equation (31), we obtain the claim.

From this result we derive the following corollary, which establishes that
supu∈[n] |pu(X) − p∗| must be close to zero with high probability under the measure

µ
(

·
∣

∣B□
η (p∗)

)

. Recall that this corollary was stated and used in Section 6.1 in order
to prove Theorem 4.5, which is the important component behind the proof of The-
orem 3.1. Observe that in the statement of Theorem 8.9, the term in the exponent,
Lβ(q̄u) − Lβ(p

∗) − ζβ(|q̄u − p∗|) < −δ0 < 0 whenever |q̄u − p∗| is large. Therefore, this
the event where |q̄u − p∗| is large incurs an exponentially small probability. We refer to
Section D for its complete proof.

COROLLARY 6.3. Suppose p∗ ∈ Uβ and let ϵ > 0 be an arbitrary fixed constant. Then,
for any 0< η < c(β, ϵ) and n > n0(β, ϵ, η), we have:

µ
(

sup
u∈[n]

|pu(X)− p∗| ≤ ϵ
∣

∣

∣
B□

η (p∗)
)

≥ 1− exp(−Ωβ,ϵ(n)) .

Recall that in Lemma 7.1, we showed that whenever X is close to the constant graphon
p∗, then most of the degrees concentrate close to p∗. In the result below we show that when
pu(X) is close to p∗ uniformly for every vertex u (as shown in Corollary 6.3) and X is close
to the constant graphon p∗, most of the degrees puv(X) concentrate close to (p∗)2. Recall
that this lemma was stated in Section 6, where it was used to prove Theorem 4.5.



METASTABLE MIXING OF MARKOV CHAINS 23

COROLLARY 6.4. Suppose that p∗ ∈ Uβ . Given arbitrary ϵ, δ > 0, suppose η < c(β, ϵ, δ)
and n > n0(δ, ϵ, β, η). Then, for every u ∈ [n], there exists a random set Su ⊆ [n] \ {u} such
that |Su| ≤ δn and

µ
(

sup
u∈[n]

sup
v∈S∁

u

|puv(X)− (p∗)2| ≤ ϵ
∣

∣

∣
B□

η (p∗)
)

≥ 1− exp(−Ωβ,ϵ(n)) .

The corollary states that with high probability, for every u, most puv(X) are such that
puv(X) ≈ (p∗)2. The proof of this fact is essentially similar to the proof of Lemma 7.1.
That is, we show that for any u, if |puv(X) − p∗pu(X)| > ϵ for δn number of vertices v,
then X violates the assumption that δ□(X,p∗) < η. We then apply Corollary 6.3 to con-
clude that p∗pu(X) is uniformly close to (p∗)2 with high probability for every u. We refer to
Appendix D.1 for the full proof.

9. Proof of Theorem 3.3. Before proceeding with the proof of Theorem 3.3, we will
establish generalizations of [1, Lemma 12 and Lemma 17]. Therefore, we will not instantiate
to the model parameters given in Example 3.2 but consider a general ERGM with parameter
β. We need to treat the vertex 1 separately from the other vertices. Following the notation
preceding Lemma 12 in [1], we define for some fixed, finite set of graphs G:

r̄max(X) := max
(

max
u:u ̸=1

pu(X), sup
e=(u,v):u,v ̸=1

G∈G

rG(X,e)
)

and

r̄min(X) := min
(

min
u:u ̸=1

pu(X), inf
e=(u,v):u,v ̸=1

G∈G

rG(X,e)
)

.

Here, we consider the evolution of the vertices 2, . . . , n− 1 when they are close to G(n−
1, p∗) in terms of the subgraph counts and the edges connecting vertex 1 are arbitrary. Notice
that we have included the degrees pu(X) here in addition to rG(X,e), which will be useful
to us later in the proof. The lemma below follows from a rewriting of the proof of Lemma
17 in [1], by noting that the edges connected to vertex 1 do not influence the evolution of
∆e

G(X) in the leading order term as considered in [1, Lemma 12 and Lemma 14] and a
straightforward tweak to also consider pu(X). Therefore, we skip the proof.

LEMMA 9.1. Suppose G = GL (the set of all graphs with at-most L vertices) and let

ϵ > 0 be a small enough constant independent of n. Suppose p∗ ∈ Uβ and let X0,X1, . . .
are drawn from the Glauber dynamics with respect to the measure µ. For some large enough

L ∈ N, independent of n, if X0 is such that p∗ − ϵ≤ r̄min(X0)≤ r̄max(X0)≤ p∗ + ϵ, then

for some α depending only on β, ϵ,L, we have

P

(

sup
t≤eαn

r̄max(Xt)≥ p∗ + 2ϵ
)

≤ exp(−Ωβ,L,ϵ(n))

and

P

(

inf
t≤eαn

r̄min(Xt)≤ p∗ − 2ϵ
)

≤ exp(−Ωβ,L,ϵ(n)) .

We now instantiate our discussion to the case of the exponential random graph model
defined in Example 3.2 and use the notation established in this example. Recall p1(X) and
p1u(X). Define

p(1)max(X) =max
(

p1(X),max
u ̸=1
u∈[n]

p1u(X)

p∗1

)

and p
(1)
min(X) =min

(

p1(X), min
u ̸=1
u∈[n]

p1u(X)

p∗1

)

.
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LEMMA 9.2. Consider the same setting as Lemma 9.1 instantiated to the parameter β
given in Example 3.2, with p∗ = p∗1. Given ϵ1 > 0, we can pick ϵ in Lemma 9.1 small enough

such that the following holds: Suppose q∗ − ϵ1 ≤ p
(1)
min(X0)≤ p

(1)
max(X0)≤ q∗ + ϵ1, then for

some α depending only on β, ϵ, ϵ1,L, we have

P

(

sup
t≤eαn

p(1)max(Xt)≥ q∗ + 2ϵ1

)

≤ exp(−Ωβ,L,ϵ(n))

and

P

(

inf
t≤eαn

p
(1)
min(Xt)≤ q∗ − 2ϵ1

)

≤ exp(−Ωβ,L,ϵ(n)) .

PROOF. Let N :=
(

n
2

)

. Recall the function g defined in Example 3.2 and ϕβ as defined in
Section 2. It is easy to show using similar techniques as in [1, Lemma 12] that

−p1(Xt)

N
+
g(p

(1)
min)

N
≤ E [p1(Xt+1)− p1(Xt)|Xt]≤−p1(Xt)

N
+
g(p

(1)
max)

N
.

Similarly, for every u ∈ [n] and u ̸= 1, denoting r̄max(Xt), r̄min(Xt) by r̄max, r̄min re-
spectively,

E [p1u(Xt+1)− p1u(Xt)|Xt]≤−2p1u(Xt)

N
+
g(p

(1)
max)r̄max

N
+
p
(1)
maxϕ(r̄max)

N

and

E [p1u(Xt+1)− p1u(Xt)|Xt]≥−2p1u(Xt)

N
+
g(p

(1)
min)r̄min

N
+
p
(1)
minϕ(r̄min)

N
.

Now, notice that by Lemma 9.1, r̄max(Xt)/p
∗
1 ≤ 1 + 2 ϵ

p∗
1

and r̄min(Xt)/p
∗
1 ≥ 1− 2 ϵ

p∗
1

with

probability at-least exp(−Ω(n)) whenever t≤ exp(αn). Therefore, we can consider the evo-
lution of p1u(Xt)

p∗
1

akin to the evolution of p1(Xt) with g(x) replaced by g(x)+x
2 . Notice that

the functions g and 1
2(g(x)+x) play the role of ϕ() in the proof of [1, Lemma 12] and satisfy

the relationship g(q∗) = q∗ and g′(q∗)< 1 (same for g(x)+x
2 ). This allows us to conclude the

statement of the lemma with minor modifications to the proof of Lemma 17 in [1]

PROOF OF THEOREM 3.3. Let the initial state X0 be sampled as in the theorem state-
ment.

1. Recall δS,p
∗

□
given in Definition 8.5. Consider this with S = {1}. By Lemma 8.6, in order

to show thatXt ∈B□
η (p∗) it is sufficient to show that δ1,p

∗

□
(Xt, p

∗)≤ η/4 with high prob-
ability. With similar arguments as in the proof of Lemma 4.11 with rmin, rmax replaced
with r̄min, r̄max we conclude that with probability at-least 1−T exp(−Ωη,β(n)), we have
that every point in the trajectory X0,X1, . . . ,XT ∈ B□

η (p∗). Using Lemma 9.2 and the
result above we conclude the statement.

2. This follows from a straightforward application of Theorem 8.9 along with Theorem 1.3
and the fact that p∗1 is the unique global maximizer of Uβ .

3. This follows from the same considerations as the proof of Item 2.
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APPENDIX A: PROOFS OF TECHNICAL LEMMAS

A.1. Proof Sketch of Lemma 4.8.

µ(η ≤ δ□(X,p
∗)≤ η+ δ)

µ(δ□(X,p∗)≤ η)
≤C(η, δ) exp(−c(η, δ)n2) .

Note that by Theorem 1.3, we know that

µ(η ≤ δ□(X,p
∗)≤ η+ δ)≤C1(η, δ) exp(−c1(η, δ)n2)

This is true since X in this set is not within an η neighborhood of M̃β whenever δ is small
enough as assumed. The proof follows once we demonstrate that:

(33) lim inf
n→∞

logµn(δ□(X,p
∗)≤ η)

n2
≥ 0

Here, we denote µ by µn in order to explicate the dependence on n. Taking the partition
function to be Zβ = exp(n2ψn), we conclude from Theorem 4.1 in [6, Theorem 4.1] that

lim
n→∞

ψn = Lβ(p
∗) .

Let Zβ(η, p
∗) :=

∑

X:δ□(X,p∗)≤η exp(Hβ(X)) = exp(n2ψn(η, p
∗)). Therefore, showing

Equation (33) reduces to showing that:

lim inf
n→∞

ψn(η, p
∗)≥ lim

n→∞
ψn = Lβ(p

∗) .

We now follow the proof of [6, Theorem 3.1] with some modifications. Note that the
Hamiltonian Hβ(X) :=

∑K
i=0 n

2βiNi(X) can be viewed as a function on the graphon coun-
terpart of X with Hβ(X)/n2 being a continuous function over the space of graphons. This
is identified with the function T in [6].

Now, replacing Ũa with T−1((a, a+ ϵ))∩ {h̃ ∈ W̃ : δ□(h̃, p
∗)< η}, we conclude that:

lim inf
n
ψn(η, p

∗)≥ sup
δ□(h̃,p∗)<η

T (h̃)− I(h̃) .

Where the function I is extended to the space of graphons via. a pointwise application like
in [6]. By [6, Theorem 4.1] and its proof, it is clear that T (h̃) − I(h̃) is maximized at the
constant p∗ graphon and the corresponding value is Lβ(p

∗). Therefore, from the discussion
above, we conclude:

lim inf
n
ψn(η, p

∗) = Lβ(p
∗) = lim

n
ψn

This establishes the lemma.

A.2. Proof of Lemma 7.1. Fix any p ∈ [0,1] and δ > 0 and consider the sets S+ :=
{

u : pu(X) − p > 2δ□(X̃, p1)/δ
}

and S− := {u : pu(X) − p < −2δ□(X̃, p1)/δ}. By the
definition of the cut-metric it follows that

δ□(X̃, p1)≥
1

n

∑

u∈S+

pu(X)− p≥ 2|S+|δ□(X̃, p1)
nδ

.

Thus, |S+| ≤ δn/2 and similarly |S−| ≤ δn/2. Therefore, |S+ ∪S−| ≤ δn, which allows us
to conclude the first inequality by taking S = S+ ∪ S−. The second inequality follows by
directly applying Theorem 1.3 to Equation (19).
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A.3. Proof of Lemma 7.2. We note that when considering distance from any constant
graphon p1 we have δ□(X̃, p1) = δ□(f

X , p1), since measure-preserving operators do not
affect the constant graphon. Now, notice that since fY (x1, x2) − p ≤ fX(x1, x2) − p ≤
fZ(x1, x2)− p, for any Borel measurable sets S,T ⊆ [0,1] we have

∫

S×T

(fX(x1, x2)− p)dx1dx2 ≤
∫

S×T

(fZ(x1, x2)− p)dx1dx2 ≤ δ□(Z̃, p) .

Similarly,
∫

S×T

(fX(x1, x2)− p)dx1dx2 ≥
∫

S×T

(fY (x1, x2)− p)dx1dx2 ≥−δ□(Ỹ , p) .

These together establish that
∣

∣

∣

∫

S×T

(fX(x1, x2)− p)dx1dx2

∣

∣

∣
≤max(δ□(Ỹ , p), δ□(Z̃, p)) .

Taking the suprememum over S,T yields the lemma.

A.4. Proof of Lemma 7.3. In case di < |E| for some i, we start with Young’s product
inequality, which states that for every a, b≥ 0 and α,β > 0 such that α−1+β−1 = 1, we have
ab≤ α−1aα + β−1bβ . We take a= qdi , b= p|E|−di , α= |E|/di and β = |E|/(|E| − di). In
case di = |E|, we check that the inequalities below hold trivially. Hence

|V |
∑

i=1

qdip|E|−di ≤
|V |
∑

i=1

di
|E|q

|E| +
|E| − di

|E| p|E|

=

∑|V |
i=1 di
|E| q|E| +

|V ||E| −∑|V |
i=1 di

|E| p|E|

= 2q|E| + (|V | − 2)p|E| .(34)

In the last step, we have used the fact that for any finite simple graph G,
∑|V |

i=1 di = 2|E|.
Equality when G=G0 follows by a straightforward calculation.

Now suppose that G ̸= G0. Then, it is easy to show that there exists a vertex j such
that dj < |E|. We note that Young’s product inequality is strict whenever aα ̸= bβ . For the
choice of a, b,α,β above, this condition means p ̸= q. Now, consider the function: f(p, q) =
−qdjp|E|−dj + di

|E|q
|E| + |E|−di

|E| p|E|. This is continuous over the set [0,1]2. Define Aδ :=

{(p, q) ∈ [0,1]2 : |p− q| ≥ δ}. Clearly, Aδ is a compact set for every δ ≥ 0. Define ζ(δ) =
inf(p,q)∈Aδ

f(p, q). It is clear from the strictness of the Young’s inequality that f(p, q) > 0
for every (p, q) ∈ Aδ whenever δ > 0. Therefore, we conclude by compactness of Aδ and
continuity of f that ζ(δ)> 0 whenever δ > 0. The continuity of ζ follows from the continuity
of f . Therefore, we conclude that there exists ζ as in the statement of the lemma such that:

−C|p− q| ≤ qdjp|E|−dj − di
|E|q

|E| − |E| − di
|E| p|E| ≤−ζ(|p− q|) .

The inequality above holds with ζ = 0 for every i, even when di = |E|. This allows us to sum
the inequality above and conclude the result.

A.5. Proof of Lemma 8.2. Since the proof is elementary, we only provide a brief sketch.
The statement N0

G(X,u) ≥ NG(X,u) follows from the fact that Ak
u = ∪k

l=1A
k,l
u and the

union bound. Now, note that 0≤∑k
l=1 1(A

k,l
u )− 1(Ak

u) ≤ k and the sum is non zero only
when the event Ak,l

u ∩Ak,m
u holds for some l ̸=m, l,m ∈ [k]. Noting that under the uniform

measure over [0,1]k the measure of Ak,l
u ∩ Ak,m

u is n−2 and using the union bound, we
conclude the result.
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A.6. Proof of Lemma 8.3. Suppose di is the degree of vertex i ∈ [k]. In light of
Lemma 8.2 we may replace NG(X,u) in the lemma statement by N0

G(X;u) and then by
considering a specific term in the sums we see that it is sufficient to prove that
∣

∣

∣

∣

∫

[0,1]k
1(Ak,l

u )
∏

(i,j)∈E(G)

fX(xi, xj)
k
∏

i=1

dxi −
pu(X)dlp|E(G)|−dl

n

∣

∣

∣

∣

≤ |E(G)|δ□(X̃, p)
n

.

Notice that
∫

[0,1]k
1(Ak,l

u )
∏

(i,j)∈E(G)

fX(xi, xj)

k
∏

i=1

dxi

=

∫

[0,1]k
1(Ak,l

u )
∏

(l,i)∈E(G)

fX(xl, xi)
∏

(i,j)∈E(G)
i,j ̸=l

fX(xi, xj)
k
∏

i=1

dxi .(35)

A simple computation shows that

pu(X)dlp|E(G)|−dl

n
=

∫

[0,1]k
1(Ak,l

u )

(

∏

i:(l,i)∈E(G)

fX(xl, xi)

)

pE(G)−dl

k
∏

i=1

dxi .(36)

Therefore,
∣

∣

∣

∣

∫

[0,1]k
1(Ak,l

u )
∏

(i,j)∈E(G)

fX(xi, xj)
k
∏

i=1

dxi −
pu(X)dlp|E(G)|−dl

n

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

[0,1]k
1(Ak,l

u )
∏

(l,i)∈E(G)

fX(xl, xi)

[

∏

(i,j)∈E(G)
i,j ̸=l

fX(xi, xj)− p|E(G)|−dl

] k
∏

i=1

dxi

∣

∣

∣

∣

.

(37)

Following the proof of [2, Lemma 4.4] with minor modifications, consider any ordering
among the set of edges (i, j) ∈ E(G) such that i, j ̸= l and index these ordered edges by
(i1, j1), . . . , (ih, jh) where h= |E(G)| − dl. Then

[

∏

(i,j)∈E(G)
i,j ̸=l

fX(xi, xj)− p|E(G)|−dl

]

=

|E(G)|−dl−1
∑

r=0

pr
|E(G)|−dl

∏

m=r+1

fX(xim , xjm)− pr+1

|E(G)|−dl
∏

m=r+2

fX(xim , xjm) .

Now, we use the above decomposition in Equation (37) and consider the terms in the sum-
mation one by one. We then follow the technique used in the proof of [2, Lemma 4.4] along
with the fact that Ak,l

u depends only on xu and the fact that the measure of the event Ak,l
u

under the uniform measure over [0,1]k is 1/n to conclude the result.

A.7. Proof of Lemma 8.4. Only in this proof, we will take the probability space to be
[0,1]k equipped with the Borel sigma algebra and the uniform measure P .

First, note that by the union bound,
∑

u∈SNG(X;u)≥NG(X;S). Now, almost surely
∑

u∈S

1(Ak
u)≤ k ,
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since there are at most k vertices in the graph G. We conclude that almost surely
∑

u∈S

1(Ak
u)− 1(Ak

S)≤ k− 1 .

Now let Bk
S be the event that

∑

l 1(A
k
u) ̸= 1(Ak

S). This can happen only when two events
Ak,i

u and Ak,j
v hold simultaneously for some i, j ∈ [k], u, v ∈ S, i ̸= j and u ̸= v. Therefore,

we have

Bk
S =

⋃

u,v∈S
u ̸=v

⋃

i,j∈[k]
i ̸=j

Ak,i
u ∩Ak,j

v .

By the union bound,

P (Bk
S)≤ |S|2k2P (Ak,i

l ∩Ak,j
m ) =

|S|2k2
n2

.

Now combining the considerations above, we have
∑

l∈S

NG(X; l)−NG(X;S)

=

∫

[0,1]k

[

−1
(

Ak
S

)

+
∑

l∈S

1(Ak
l )

]

∏

(i,j)∈E(G)

fX(xi, xj)
k
∏

i=1

dxi

≤ (k− 1)

∫

[0,1]k
1(Bk

S)
∏

(i,j)∈E(G)

fX(xi, xj)

k
∏

i=1

dxi

≤ kP (Bk
S)≤

|S|2k3
n2

.(38)

The lemma statement follows.

A.8. Proof of Lemma 8.6. In this proof alone, we will abuse notation to denote the
set ∪u∈S [

u−1
n , un) ⊆ [0,1] also by S (and similarly for S∁). Since we are considering the

cut-metric between X̃ and a constant graphon, we can write

δS,p
∗

□
(X̃, p∗) = sup

A,B⊂[0,1]

∣

∣

∣

∣

∫

A×B

[

fX,S,p∗

(x1, x2)− p∗
]

dx1dx2

∣

∣

∣

∣

= sup
A,B⊂[0,1]

∣

∣

∣

∣

∫

A∩S∁×B∩S∁

[

fX(x1, x2)− p∗
]

dx1dx2

∣

∣

∣

∣

= sup
A,B⊂S∁

∣

∣

∣

∣

∫

A×B

[

fX(x1, x2)− p∗
]

dx1dx2

∣

∣

∣

∣

.(39)

From the last equality above, we conclude that δS,p
∗

□
(X̃, p∗) ≤ δ□(X̃, p

∗). To conclude the
lower bound, note that

δ□(X̃, p)≤ δ□(X̃, X̃
S,p∗

) + δ□(X̃
S,p∗

, p∗) = δ□(X̃, X̃
S,p∗

) + δS,p
∗

□
(X̃, p∗) .

It is now easy to show that δ□(X̃, X̃S,p∗

) ≤ 1− |S∁|2/n2, which when combined with the
last display above proves the lower bound.
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A.9. Proof of Lemma 8.8. By Stirling’s formula, we have that for any k ∈ N and p ∈
[0,1] such that kp is an integer,

exp(−2kI(p))√
2k

≤
(

k

kp

)

≤ exp(−2kI(p)) .

A counting argument shows that Ncav(qS) =
∏

u∈S

(

n−|S|
qun

)

. For the upper bound, note that

∏

u∈S

(

n− |S|
qun

)

≤
∏

u∈S

(

n

qun

)

≤ exp
(

− 2n
∑

u∈S

I(qu)
)

.(40)

Now, for the lower bounds, we note that whenever qu ≤ q ≤ 1 and q ≥ 1/2: |2qI(qu/q)−
2I(qu)| ≤ (2 + log(1/(1− q)))(1− q). Taking q = (n− |S|)/n= 1− r/n below, we have

∏

u∈S

(

n− |S|
qun

)

≥
exp

(

−∑

u∈S 2(n− |S|)I( nqu
n−|S|)

)

(√
2n

)r

≥ exp
(

−
∑

u∈S

2nI(qu)− r2
[

4 + 2 log(nr )
]

− r

2
log(2n)

)

.(41)

APPENDIX B: PROOFS OF LEMMAS FROM SECTION 6

B.1. Proof of Lemma 6.1. Before proving the lemma, we derive an estimate for
∆e

G(X).
Recall the event Ak

u in (21) in Section 8. Suppose the fixed graph G has the vertex set [k].
We now define for u, v ∈ [n],

AkG
uv :=

{

x ∈ [0,1]k : (⌊nxi⌋, ⌊nxj⌋) ∈ {(u, v), (v,u)} for some (i, j) ∈E(G)
}

.

For i, j ∈ [k] define

Akij
uv :=

{

x ∈ [0,1]k : (⌊nxi⌋, ⌊nxj⌋) ∈ {(u, v), (v,u)}
}

.

Now, the definition of homomorphism density yields

∆e
G(X) =NG(X

+e)−NG(X
−e)

=

∫

∏

(i,j)∈E(G)

fX
+e

(xi, xj)
k
∏

t=1

dxt −
∏

(i,j)∈E(G)

fX
−e

(xi, xj)
k
∏

t=1

dxt

=

∫

1(AkG
uv )

∏

(i,j)∈E(G)

fX
+e

(xi, xj)
k
∏

t=1

dxt .(42)

A computation similar to the proof of Lemma 8.2 shows that

∫

∣

∣

∣
1(AkG

uv )−
∑

(i,j)∈E(G)

1(Akij
uv )

∣

∣

∣

k
∏

t=1

dxt ≤
E(G)3

n3
.

Using this in Equation (42), we conclude that

∆e
G(X) =

∫

∑

(i,j)∈E(G)

1(Akij
uv )

∏

(a,b)∈E(G)

fX
+e

(xa, xb)

k
∏

t=1

dxt ±O
(E(G)3

n3

)
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=
∑

(i,j)∈E(G)

∫

1(Akij
uv )

∏

(a,b)∈E(G)
(a,b) ̸=(i,j)

fX
+e

(xa, xb)
k
∏

t=1

dxt ±O
(E(G)3

n3

)

.(43)

We are now ready for the proof.

PROOF. We will prove the result by replacing puv(X), pu(X), and δ□(X,p
∗) with

puv(X
+e), pu(X

+e), and δ□(X
+e, p∗), noting that δ□(X,X

+e) ≤ 2/n2, |puv(X) −
puv(X

+e)| ≤ 1/n, and |pu(X)− pu(X
+e)| ≤ 1/n.

We will use E and E(G) interchangeably in this proof. For (i, j) ∈ E(G), first consider
the quantity

∫

1(Akij
uv )

∏

(a,b)∈E
(a,b) ̸=(i,j)

fX
+e

(xa, xb)

k
∏

t=1

dxt

=

∫

1(Akij
uv )

∏

(i,l)∈E
l ̸=j

fX
+e

(xi, xl)
∏

(j,l)∈E
l ̸=i

fX
+e

(xj , xl)
∏

(a,b)∈E
a,b/∈{i,j}

fX
+e

(xa, xb)

k
∏

t=1

dxt

= (p∗)|E|−di−dj+1

∫

1(Akij
uv )

∏

(i,l)∈E
l ̸=j

fX
+e

(xi, xl)
∏

(j,l)∈E
l ̸=i

fX
+e

(xj , xl)
k
∏

t=1

dxt

± 2|E(G)|δ□( ˜X+e, p∗)

n2
.(44)

In the last step we have used a similar peeling argument as in Lemma 8.3. Recalling the sets
Aki

u from Section 8, we note that whenever i ̸= j, 1(Akij
uv ) = 1(Aki

u ∩Akj
v ) + 1(Akj

u ∩Aki
v ).

Now,
∫

1(Aki
u ∩Akj

v )
∏

(i,l)∈E
l ̸=j

fX
+e

(xi, xl)
∏

(j,l)∈E
l ̸=i

fX
+e

(xj , xl)

k
∏

t=1

dxt

=

∫

1(Aki
u ∩Akj

v )
∏

(i,l)∈E
l ̸=j

l ̸∈Eij(G)

fX
+e

(xi, xl)
∏

(j,l)∈E
l ̸=i

l∈Eij(G)

fX
+e

(xj , xl)×

∏

l∈Eij(G)

fX
+e

(xi, xl)f
X+e

(xj , xl)
k
∏

t=1

dxt

=
1

n2
(pu(X

+e))di−1−dij (pv(X
+e))dj−1−dij (puv(X

+e))dij .(45)

In the last step, we have used the definitions of degrees pu and puv given in Equa-
tions (4) and (5) in terms of integrals over fX . Using this in Equation (44), and shortening
pu(X

+
e ), pv(X

+
e ) and puv(X+

e ) to pu, pv and puv , we obtain

n2
∫

1(Akij
uv )

∏

(a,b)∈E
(a,b) ̸=(i,j)

fX
+e

(xa, xb)

k
∏

t=1

dxt
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= (p∗)|E|−di−dj+1(pu)
di−1−dij (pv)

dj−1−dij(puv)
dij

+ (p∗)|E|−di−dj+1(pv)
di−1−dij (pu)

dj−1−dij (puv)
dij ± 2|E(G)|δ□( ˜X+e, p∗) .(46)

Using the condition supu |pu(X)− p∗|< ϵ, Equation (43), and the equation above, we con-
clude the statement of the lemma.

B.2. Proof of Lemma 6.6. We first state a simple modification of [5, Theorem 1.5]
below, which follows by essentially rewriting its proof with minor changes.

LEMMA B.1 (Modification of Theorem 1.5 in [5]). Under the same notation as [5, The-

orem 1.5], we suppose the same conditions as the original theorem hold, except condition

(ii), where we replace the assumption ∆(X)≤Bf(X) +C , with

1. ∆(X)≤ α1(A) + γ1(A∁) for some event A ∈ σ(X), α,γ ∈R
+

2. |f(X)| ≤M almost surely.

Then, we have

P(|f(X)|> t)≤
(

1 +
γ exp(θ0M)P(A∁)

α

)

inf
θ∈[0,θ0]

exp
(θ2α

2
− θt

)

.

PROOF. In the proof of [5, Theorem 1.5], in the display below Equation (7), we have for
θ ∈ [0, θ0]

|m′(θ)| ≤ |θ|E expθf(X)∆(X)

≤ |θ|αm(θ) + |θ|γ exp(|θ|M)P(A∁)

≤ |θ|αm(θ) + |θ|γ exp(|θ0|M)P(A∁) .

In the second step we have used the hypothesis that ∆(X)≤ α1(A)+γ1(A∁) and |f(X)| ≤
M . Therefore

d

dθ
log

(

m(θ) + γ exp(θ0M)P(A∁)
α

)

≤ θα .

The result then follows by an application of Gronwall’s lemma and the Chernoff bound.

We will consider Glauber dynamics with respect to the measure µ(·|B□
η (p∗)) (Defini-

tion 1.1) in order to generate the exchangeable pairs required by [5, Theorem 1.5] (and
Lemma B.1), where the event B□

η (p∗) is as defined in Equation (30). In the notation of
[5, Theorem 1.5], we consider

Fuv(X,X
′) :=

∑

w∈[n]
w/∈{u,v}

XuwXvw −
∑

w∈[n]
w/∈{u,v}

X ′
uwX

′
vw .

With the help of Lemma B.1, we will now prove Lemma 6.6.

PROOF OF LEMMA 6.6. By Lemma 4.8, we conclude that whenever p∗ ∈ Uβ and η > 0
is small enough,

µ
(

B□
η/2(p

∗))
∣

∣

∣
B□

η (p∗)
∁
)

≤C(β, η) exp(−c(β, η)n2) .
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Let X be drawn from the distribution µ(·|B□
η (p∗)) and let X ′ be obtained by taking a

single step of Glauber dynamics with respect to the measure µ(·|B□
η (p∗)). Clearly, (X,X ′)

form an exchangeable pair. Let

fuv(X) := E [Fuv(X,X
′)|X] .

Notice that |fuv(X)| ≤ 1 almost surely since |Fuv(X,X
′)| ≤ 1. For n large enough as a

function of η, whenever X ∈ B□
η/2(p

∗), the Glauber dynamics over µ(
∣

∣B□
η (p∗)) is exactly

equal to the Glauber dynamics w.r.t. µ. Therefore, a simple calculation yields the following
for X ∈B□

η/2(p
∗):

(47) fuv(X) =
4puv(X)

n− 1
−
(

n

2

)−1
∑

w∈[n]
w/∈{u,v}

ϕuw(X∼uw)Xvw + ϕvw(X∼vw)Xuw .

For any edge e, we consider ϕe(X∼e) =
exp(

∑K
i=1 n

2βi∆
e
i (X))

1+exp(
∑

K
i=1 n

2βi∆e
i (X))

. Note that

(48) |ϕe(X∼e)− ϕe(X
′
∼e)| ≤C(β)n2 sup

i∈[K]

|∆e
i (X)−∆e

i (X
′)| .

Now, X∼e and X ′
∼e can differ at most in one edge, by construction. Suppose this edge is

h. When e = h, then ∆e
i (X) = ∆e

i (X
′). Now suppose e ̸= h. Invoking Equation (42) with

k = |Vi|, we obtain

|∆e
i (X)−∆e

i (X
′)|

=

∣

∣

∣

∣

∫

1(AkGi
e )

[

∏

(a,b)∈E(G)

fX
+
e (xa, xb)−

∏

(a,b)∈E(G)

f (X
′
e)

+

(xa, xb)
]

k
∏

t=1

dxt

∣

∣

∣

∣

≤
∫

1(AkGi
e )1(AkGi

h )
k
∏

t=1

dxt ≤
|E(Gi)|2

n3
.(49)

Combining Equations (47), (48) and (49), we conclude that whenever X ∈B□
η/2(p

∗),

(50) |fuv(X)− fuv(X
′)| ≤ C(β)

n2
.

Observe that whenever the Glauber dynamics does not update an edge of the form (u,w)
or (v,w), Fuv(X,X

′) = 0. Let Aupd denote the event where Fuv(X,X
′) ̸= 0. Clearly,

P(Aupd|X) ≤ 4/n. It is also clear that |Fuv(X,X
′)| ≤ 1 almost surely. Therefore, we have

for any X ∈ X

(51) |f(X)| ≤ E [|F (X,X ′)||X]≤ P
(

Aupd|X
)

≤ 4

n
.

Now consider the local variance proxy ∆uv(X) (where the notation is once again derived
from [5, Theorem 1.5]) whenever X ∈B□

η/2(p
∗),

∆uv(X) :=
1

2
E
[

(fuv(X)− fuv(X
′))Fuv(X,X

′)
∣

∣X
]

≤ C(β)

n2
E
[

1(Aupd)
∣

∣X
]

≤ C(β)

n3
.(52)

Here, we have used Equation (50). Whenever, X /∈B□
η/2(p

∗), we will use the crude bound

∆uv(X)≤ C

n2
,



34

obtained by plugging in |f(X) − f(X ′)| ≤ |f(X)| + |f(X ′)| ≤ 8/n (which follows from
Equation (51)) into the the definition of ∆uv . Combining these bounds, we get that

∆uv(X)≤ C(β)

n3
1(X ∈B□

η/2(p
∗)) +

C(β)

n2
1(X ̸∈B□

η/2(p
∗)) .

By Lemma 4.8,

µ
(

X ̸∈B□
η/2(p

∗)
∣

∣

∣
B□

η/2(p
∗)
)

≤Cβ,η exp(−c(β, η)n2) .

Now, applying Lemma B.1, with M = 4/n, and θ0 = Cβn
2 for some large enough Cβ and

t= 4γ/(n− 1), we conclude the result.

APPENDIX C: DEFERRED PROOFS FOR PATH COUPLING

C.1. Proof of Lemma 4.1. Consider the following coupling between the trajectories
X0, . . . ,XK and Y0, . . . , YK :

1. Generate (X0, Y0) from the specified initial distribution.
2. Given Xk, Yk, we generate Xk+1, Yk+1 as follows:

(53) (Xk+1, Yk+1)∼
{

QXk,Yk
if (Xk, Yk) ∈A

P (Xk, ·)× P (Yk, ·) otherwise

Now we consider the distance d(Xk+1, Yk+1). We have

Ed(Xk+1, Yk+1) = Ed(Xk+1, Yk+1)1((Xk, Yk) ∈A×A)

+Ed(Xk+1, Yk+1)1((Xk, Yk) ∈A∁)

≤ E(1− γ)d(Xk, Yk)1((Xk, Yk) ∈A)

+Ed(Xk+1, Yk+1)1((Xk, Yk) ∈A∁)

≤ (1− γ)Ed(Xk, Yk) +Ed(Xk+1, Yk+1)1((Xk, Yk) ∈A∁)

≤ (1− γ)Ed(Xk, Yk) + D̄P((Xk, Yk) ∈A∁)

≤ (1− γ)Ed(Xk, Yk) + D̄pk .(54)

We conclude the result by unrolling the recursion.

C.2. Proof of Lemma 4.10. In both this and the next proof, we let

rmin(X) := inf
e∈(n2)
G∈GL

rG(X,e) and rmax(X) := sup
e∈(n2)
G∈GL

rG(X,e) .

PROOF. We will only prove the coupling for G(n,p∗ + ϵ). The other coupling fol-
lows analogously. Let N =

(

n
2

)

. Let e1, . . . , eN be any enumeration of
(

[n]
2

)

. Let X0 ∼
µ(·|B□

η (p∗)) and obtain the sequence X0, . . . ,XN by updating as follows: Given Xi−1, de-
fine (Xi)e = (Xi−1)e whenever e ̸= ei and let (Xi)ei be independently re-sampled from the
conditional distribution (Xi−1)ei

∣

∣(Xi−1)∼ei . In other words, we obtain Xi by re-sampling
the coordinate ei in Xi−1. Clearly, XN ∼ µ(·|B□

η (p∗)).
Now, consider Y0 = 0 ∈ X almost surely. Let e1, . . . , eN be the same as before. We will

construct Y1, . . . , YN as follows: Given Yi−1, we construct Yi such that (Yi)∼ei = (Yi−1)∼ei

and (Yi)ei is freshly drawn from Ber(p∗ + ϵ). It is clear that YN ∼G(n,p∗ + ϵ).
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By Theorem 4.5, we have that p∗ − ϵ≤ rmin(Xi)≤ rmax(Xi)≤ p∗ + ϵ with probability
at-least 1−C(η,β, ϵ) exp(−c(η,β, ϵ)n). Recall the definition of ϕβ from Section 2 and note
that P((Xi)ei = 1|Xi−1) ≤ ϕβ(rmax(Xi−1)) ≤ p∗ + ϵ. Therefore the fresh draws can be
coupled such that (Xi)ei ≤ (Yi)ei with probability at least 1−C(η,β, ϵ) exp(−c(η,β, ϵ)n).
Since (Xi)ei = (XN )ei and (Yi)ei = (YN )ei , we conclude via a union bound over i≤N that
XN ⪯ YN with probability at least 1− C(η,β, ϵ) exp(−c(η,β, ϵ)n). This gives the desired
coupling by taking X =XN and Ȳ = YN in the statement of the lemma.

C.3. Proof of Lemma 4.11. We first show that with probability at-least 1 −
C(η) exp(−c(η)n), we must have p∗ − η/4≤ rmin(X0)≤ rmax(X0)≤ p∗ + η/4.

This can be shown for example by using Lemma 6.1 and simple concentration bounds
for the degrees pu(X0) and puv(X0). The fact that δ□(X̃0, p

∗) is small follows from Theo-
rem 1.3 since G(n,p∗) is also (a very special case of) an exponential random graph. Now, in-
voking Lemma 4.9, we conclude that with probability at least 1−TC(β, η) exp(−c(β, η)n),
we have for every t≤ T that

(55) p∗ − η

2
≤ rmin(Xt)≤ rmax(Xt)≤ p∗ +

η

2
.

Now consider Markov chains Y0, . . . , YT and Z0, . . . ,ZT where Y0 ∼G(n,p∗ − η/2) and
Z0 ∼G(n,p∗ + η

2 ). Here, we generate the respective trajectories by Glauber dynamics with
respect to G(n,p∗ − η/2) (resp. G(n,p∗ + η

2 ) ) We couple the trajectories as follows:

1. At step 0, we pick X0, Y0,Z0 such that almost surely

Y0 ⪯X0 ⪯ Z0 .

2. At step t, pick the same edge It ∼ unif
((

[n]
2

))

to update for each Xt−1, Yt−1 and Zt−1.
3. Pick ut ∼ unif([0,1]) independently of everything else and set

(Xt)It = 1(ut ≤ ϕIt((Xt)∼It)); (Yt)It = 1(ut ≤ p∗− η
2 ); (Zt)It = 1(ut ≤ p∗+ η

2 ) .

For η small enough, we verify that under the event in Equation (55)

p∗ − η

2
≤ ϕβ(rmax(Xt))≤ ϕEt

((Xt)∼Et
)≤ ϕβ(rmax(Xt))≤ p∗ +

η

2
.

This implies that (Yt)It ≤ (Xt)It ≤ (Zt)It . We conclude that with probability at least 1 −
TC(β, η) exp(−c(β, η)n) we have Yt ⪯Xt ⪯ Zt. Now, we will apply Theorem 7.2 to obtain

(56) δ□(X̃t, p
∗)≤max

(

δ□(Ỹt, p
∗), δ□(Z̃t, p

∗)
)

.

Now, since Yt ∼G(n,p∗ − η/2) and Zt ∼G(n,p∗ + η/2), we have

P

(

max
(

δ□(Ỹt, p
∗), δ□(Z̃t, p

∗)
)

> η
)

≤ 1−C(η) exp(−c(η)n2) .

Using this in Equation (56), we conclude the statement of the claim.

APPENDIX D: PROOF OF COROLLARY 6.3

PROOF. Let δ > 0 and η > 0. We are given X ∈ X such that X ∈ B□
η (p∗), i.e.,

δ□(X̃, p
∗) < η. Consider the set S(X) := {u : |pu(X) − p∗| > 2η/δ}. By Lemma 7.1, we

note that |S(X)| ≤ δn, so

{S(X) ̸= ∅}=
⋃

S⊆[n]
1≤|S|≤δn

{S(X) = S} .
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By the union bound,

µ
(

|S(X)| ̸= ∅
∣

∣B□
η (p∗)

)

≤
δn
∑

r=1

∑

S⊆[n]
|S|=r

µ
(

S(X) = S|B□
η (p∗)

)

=

δn
∑

r=1

(

n

r

)

µ
(

S(X) = [r]|B□
η (p∗)

)

.(57)

Here, the second step follows from the permuation invariance of the vertices with respect to
the measure µ. In order to evaluate the upper bound in Equation (57), we will consider the
measure of the event {S(X) = [r]} for r ≤ δn.

Consider the restricted degrees p̄u with respect to the set [r] and suppose that δ2 < 2η. Let
the set D(p∗, α,S) := {qS : infu∈S |q̄u − p∗|>α} and note that

{S(X) = [r]}= {|pu(X)− p∗|> 2η/δ,∀u ∈ [r]}
⊆ {|p̄u(X)− p∗|> 2η/δ− δ,∀u ∈ [r]}

=
⋃

q[r]∈D(p∗, 2η
δ
−δ,[r])

{p̄u(X) = q̄u,∀u ∈ [r]} .(58)

Therefore whenever δ, η satisfy ϵ/2 = 2η/δ− δ, we have

{S(X) = [r]} ∩ {X ∈B([r], p∗, η)} ⊆
⋃

q[r]∈D(p∗,
ϵ
2 ,[r])

A([r],q[r], p
∗, η) .(59)

Note that with the above choice of η in the definition of S(X), we can take δ < ϵ/2

to conclude that for all u ∈ S(X)∁, |pu(X) − p∗| ≤ ϵ. We will note a simple result which
follows from standard arguments in calculus.

LEMMA D.1. Suppose p∗ ∈ Uβ and q ∈ [0,1] is such that |q− p∗|> ϵ/2. Then, Lβ(q)−
Lβ(p

∗)− ζβ(|q− p∗|)<−C(β, ϵ)< 0.

Pick δ to be small enough such that p∗ ∈ (δ,1− δ). Combining Lemma D.1 with Equa-
tion (59) and Theorem 8.9 we conclude that whenever r ≤ nδ:

µ({S(X) = r} ∩B([r], p∗, η))

µ(B([r], p∗, η))
≤

∑

q[r]∈D(p∗,
ϵ
2 ,[r])

µ(A([r],q[r], p
∗, η))

µ(B([r], p∗, η))

≤ |D(p∗, ϵ2 , [r])| exp(−nrC(β, ϵ) +Oβ(nrη+ r2 log(nr ) + r logn))

≤ exp(−2nrC(β, ϵ) +Oβ(nrη+ r2 log(nr ) + r logn))

= exp
(

−nr
(

2C(β, ϵ)−Oβ(η+ δ log(1δ ) +
logn
n )

))

= exp(−Ωβ,ϵ(nr)) .(60)

The first step follows from the union bound on Equation (59) and in the second step we used
Theorem 8.9 along with Lemma D.1. In the third step, we used that |D(p∗, ϵ, [r])| ≤ nr . In
the last step, we have picked η, δ small enough (as functions of ϵ, β) so that 2η/δ − δ = ϵ/2,
δ < ϵ/2, η < η0(ϵ, β) and n large enough as a function of ϵ, β such that Oβ(η+ δ log(1/δ)+
n−1logn))<C(β, ϵ).
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By Lemma 8.6, whenever r ≤ δn, we must have B□
η (p∗) =B(∅, p∗, η)⊆B([r], p∗, η)⊆

B(∅, p∗, η + δ). Along with Lemma 4.8, we conclude that whenever η, δ are smaller than
some constant cβ > 0, we have

µ(B□
η (p∗))≥ c(β, η, δ)µ(B([r], p∗, η)) .

Therefore whenever n is larger than a constant depending only on β, ϵ and η0, we have

µ({S(X) = [r]} ∩B(∅, p∗, η))
µ(B(∅, p∗, η)) ≤ µ({S(X) = [r]} ∩B([r], p∗, η))

µ(B(∅, p∗, η))

≤C(β, η, δ)
µ({S(X) = [r]} ∩B([r], p∗, η))

µ(B([r], p∗, η))

≤ exp(−Ωβ,ϵ(nr)) .(61)

Using the fact that
(

n
r

)

≤ nr , it follows using Equations (57) and (61) that

µ
(

|S(X)| ̸= ∅
∣

∣B□
η (p∗)

)

≤
nδ
∑

r=1

nr exp(−Ωβ,ϵ(nr))

≤ exp(−Ωβ,ϵ(n)) ,

which proves the corollary.

D.1. Proof of Corollary 6.4. Recall the sets Ak,i
u := {x ∈ [0,1]k : xi ∈ [u−1

n , un)}. Let
η > 0 be arbitrary for now. Suppose that X ∈B□

η (p∗). We have by definition

puv(X) = n2

∫

fX(x1, x3)f
X(x2, x3)1(A

3,1
u )1(A3,2

v )dx1dx2dx3 .

A simple calculation reveals that

puv(X)− pu(X)p∗ = n2

∫

fX(x1, x3)
(

fX(x3, x2)− p∗
)

1(A3,1
u )1(A3,2

v )dx1dx2dx3 .

Now, define S+
u := {v : puv(X)− p∗pu(X) > ϵ/2} and S−

u := {v : puv(X)− p∗pu(X) <
−ϵ/2}. Summing the display above for v ∈ S+

u , we have

|S+
u |ϵ

2n2
<

∑

v∈S+
u

∫

fX(x1, x3)
(

fX(x3, x2)− p∗
)

1(A3,1
u )1(A3,2

v )dx1dx2dx3

=

∫

x2∈A+
u

fX(x1, x3)
(

fX(x3, x2)− p∗
)

1(A3,1
u )dx1dx2dx3

=

∫

x1∈[
u−1
n ,

u
n )

[

∫

x2∈A+
u

x3∈C(x1)

(

fX(x3, x2)− p∗
)

dx2dx3

]

dx1

≤ δ□(X̃, p
∗)

n
,(62)

where A+
u := ∪v∈S+

u
[v−1

n , vn) and C(x1) := {x ∈ [0,1] : fX(x1, x) = 1}.
Taking η < δϵ/2, we conclude that

|S+
u | ≤ 2nδ□(X̃, p

∗)

ϵ
≤ δn

2
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and similarly

|S−
u | ≤ 2nδ□(X̃, p

∗)

ϵ
≤ δn

2
.

Therefore, whenever δ□(X̃, p∗)< η < δϵ/2, the sets Su := S+
u ∪ S−

u are such that

(63) sup
u∈[n]

sup
v∈S∁

u

|puv(X)− p∗pu(X)| ≤ ϵ

2
.

Now, invoking Corollary 6.3, we conclude that for any η < c(β, ϵ, δ) and whenever n is
larger than a constant depending only on β, ϵ, η and δ we have

µ
(

sup
u∈[n]

|pu(X)− p∗| ≤ ϵ

2

∣

∣

∣
B□

η (p∗)
)

≥ 1− exp(−Ωβ,ϵ(n))

and from Equation (63), we have

µ
(

sup
u∈[n]

sup
v∈S∁

u

|puv(X)− p∗pu(X)| ≤ ϵ

2

∣

∣

∣
B□

η (p∗)
)

= 1 .

Combining the two displays above, the statement of the corollary follows.
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