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1 | INTRODUCTION

Extracting information from large graphs is a fundamental statistical task. Because many natural
networks have underlying metric structure—for example, nearby proteins in a biological network are
more likely to share function, and users with similar interests in a social network are more likely to
interact—a central inference problem is to infer latent geometric structure in an observed graph. More-
over, with the proliferation of large data sets in the modern world, statistical inference is inherently
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high dimensional, see, for example, the survey [10]. This motivates the study of inferring latent high
dimensional geometry in a graph.

In this paper, we consider the hypothesis testing problem that determines if such inference
is information-theoretically possible. This continues a line of work originated by Bubeck, Ding,
Eldan, and Récz [3] and continued by Eldan and Mikulincer [8]. Our main contribution is a tight
characterization of when detection is possible in the anisotropic setting introduced in [8].

Formally, given a graph G on [n], we wish to test between two hypotheses. The null hypothesis is
that G is a sample from the Erd6s-Rényi graph G(n, p), where each edge is present with independent
probability p. The alternative hypothesis is that G is a sample from a random geometric graph (RGG),
which we define precisely below. In such graphs, each vertex corresponds to a random point in some
metric space and an edge exists between two vertices if their distance is smaller than a given threshold.

A natural RGG is the isotropic model: each vertex i € [n] corresponds to an independent latent
vector X; sampled from the Haar measure on the sphere S?~! or an isotropic d-dimensional Gaussian,'
and edge (i, /) is present if (X;, X;) > 1, 4, where 1, 4 is chosen so that each edge is present with proba-
bility p. Let G(n, p, d) denote the isotropic RGG with spherical latent data; we fix p € (0, 1) and allow
d to vary with n. The following seminal result of Bubeck, Ding, Eldan, and Récz characterizes, for
fixed p € (0, 1), when it is possible to test between G(n, p) and G(n, p, d). Let TV denote total variation
distance.

Theorem 1. [3] Let p € (0, 1) be fixed.

(a) If n* < d, then TV(G(n, p), G(n, p,d)) — O.
(b) If n® > d, then TV(G(n, p), G(n, p,d)) — 1.

Each coordinate of the latent vector X; represents an attribute of vertex i. The isotropic model
assumes that each attribute has the same influence on the network structure. In real networks, some
attributes are more important than others: for example, in a social network geographic location has
a stronger influence on connectivity than preference of ice cream flavor. This motivates the follow-
ing anisotropic generalization of the RGG, introduced in [8], in which attributes may have different
weights.

Definition 1.1 (Anisotropic random geometric graph). Forn € N,p € (0,1), @ €
Ri()s let G(n, p, @) be the following random graph model. Generate X, ... , X, i.i.d. from
N(0,D,) where D, is the diagonal matrix with diagonal a. Let th« € R be the unique
number satisfying P((X,,X2) > 1,,) = p. Then, G ~ G(n,p,a) is a graph on [n] =
{1, ... ,n} where (i, /) is an edge if and only if (X;, X;) > 1, 4.

By rotational invariance of the model, the assumption that X; has diagonal covariance is without
loss of generality. Thus, all our results apply to the case of latent Gaussian vectors with arbitrary
covariance.

Throughout, we fix p € (0, 1) and allow d, a to vary with n. The central question we study is,
under what limiting behaviors of (, d, a) can one statistically distinguish G(n, p, a) from G(n, p)? This
question was first studied in [8], in which the following upper and lower bounds on detection were
derived.

Theorem 2. [[8], Theorem 2] Let p € (0, 1) be fixed. Then,

(a) If l’l3 < (”a”2/”a”4)47 then TV(G(n7p)7 G(”laP» a)) d 0
(b) It > (|lallo/llll3)°, then TV(G(n, p), G(n, p, @) — 1.

I'These models have the same threshold for the detection task we consider.
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When a = 19, this recovers the sharp d = n® detection threshold in the isotropic model. However,
for general « there is a polynomially sized gap between the upper and lower bounds of Theorem 2. For
example, if a; = i7'/3, (||all,/|lell4)* < d*/3 while (||a|l,/|le|l5)® < d. [[8], Conjecture 1] conjectures
that the hypothesis of part (1) can be weakened to n® < (|||, /||«|l5), that is, the detection threshold
is n* < (||a||,/|le|l5)®. The main result of this paper is to affirmatively resolve this conjecture.

Theorem 3 (Main result). If p € (0,1) is fixed and n* < (||a|l,/|lall5)®, then
TV(G(n,p),G(n,p,a)) — 1.

In light of Theorem 1, this result can be interpreted as meaning that for the task of detecting
geometry, the effective dimension of the anisotropic RGG is (|||l /|| «]l5)°.

One motivation for [[8], Conjecture 1] is that Theorem 2 (b) is witnessed by the signed triangles
statistic

0(G) = Z (Gij = P)(Gik = P)(Gjk = P),

i<j<k

which is also an optimal statistic witnessing Theorem 1 (b). So, Theorem 3 confirms the optimality of
the signed triangles statistic in the anisotropic setting.

1.1 | Central limit theorem for anisotropic Wishart matrices

Closely related to the anisotropic RGG is the following matrix of inner products generating G(n, p, a).
A sample of G(n, p, @) can be obtained by thresholding each entry of this matrix at #, ,.

Definition 1.2 (Diagonal-removed anisotropic Wishart matrix). Let W ~ W(n, «) be the
random n X n matrix generated as follows. Sample X € R?*" with i.i.d. columns from
N(0,D,), and set W = ||a||3" (XTX — diag(XTX)).

For fixed n, if d - o0 and ||a||,/|lall, — 0, by the multidimensional CLT W(n, &) converges in
total variation to the following matrix of Gaussians.

Definition 1.3. Let M ~ M(n) be a symmetric random n X n matrix with zero diagonal
and i.i.d. standard Gaussians above the diagonal.

If we now allow d, a to vary with n, a natural question is, for which (n, d, @) can one test between
W(n,a) and M(n)? This can be regarded as the random matrix analog of the question of detecting
geometry in random graphs. Eldan and Mikulincer obtain the following detection lower bound.

Theorem 4. [[8], Theorem 4] If n® < (||all,/||«]l4)*, then KL(W(n, a), M(n)) — 0.

Of course, by Pinsker’s inequality this also implies TV(W(n, a), M(n)) — 0. Furthermore, the
statistic (M) = tr(M?) distinguishes W(n, @) and M(n) to total variation distance 1 — o(1) when
n® > (||a|l,/llall5)®, which can be verified by computing the mean and variance of this statistic under
the two hypotheses.

Similarly to above, these upper and lower bounds match for & = 19, but in general there is a poly-
nomially sized gap between them. We prove the following result, which identifies the sharp threshold
for this detection task by improving the lower bound in Theorem 4. This result can be regarded as a
tight CLT for anisotropic Wishart matrices.

Theorem 5. If n* < (|||l,/||«|l5)®, then TV(W(n, a), M(n)) — 0.
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1.2 | Techniques and discussion

Theorem 3 follows from Theorem 5 by the thresholding idea introduced in [3]. Note that G(n, p, @)
and G(n, p) are entry-wise thresholdings of W(n, @) and M(n). Thus TV(G(n, p, a), G(n, p)) is upper
bounded by TV(W(n, a), M(n)) plus a small error term from the difference of the thresholds.

Our main technical contributions are in the proof of Theorem 5. We divide the entries of « into
large coordinates a™ and small coordinates a~, each accounting for a constant fraction of its L? mass.
We note (Lemma 2.4) that (|la~||,/|la”||,)* is of the same order as (||a|l,/||a||5)®, so Theorem 4 is
sufficient to show that W(n, @~) converges in total variation to M(n).

It remains to control the contributions of the large coordinates a*. We consider a procedure
(Lemma 2.3) where we add the coordinates of a* to @~ one by one. Note that the effect of this opera-
tion on W ~ W(n, @) is to add an independent rank-one spike and scale down by a constant. By a data
processing argument, the increase in TV(W(n, @), M(n)) from one step of this procedure is bounded
by TV(M(n,u), M(n)), where M(n,u) is a linear combination of M(n) and an independent rank-one
Gaussian spike (see Definition 2.1).

This last quantity is bounded (Lemma 2.2) using the Ingster-Suslina y? method, as M(n, u) is
a mixture of shifted Gaussian matrices parametrized by the spike. This is done after conditioning
on a high probability event under which the y? divergence’s tails are integrable. The resulting y>
divergence is an expectation over two independent copies of the Gaussian spike, which is bounded by
hypercontractivity estimates.

Our iterative method bears some resemblance to the iterative argument used in [4] to bound the KL,
divergence between a diagonal-removed (isotropic) Wishart matrix W = XX —diag(X"X) and a sym-
metric matrix of independent Gaussians, which also constructs the data matrix X one vector at a time.
In [4], X is constructed one column at a time, and each new column adds a new row and column to W.
In contrast, we construct X one row at a time, and each new row adds a new rank-one component to
W. The methods used to control the contribution of each step to the total variation distance (or in [4],
the KL divergence) are consequently different.

1.3 | Related work

There is a long history of work on low-dimensional random geometric graphs, see for example, [16].
The study of high-dimensional random geometric graphs began in [7], which showed that the isotropic
model G(n, p, d) converges in total variation to G(n, p) as d — oo for n fixed, and moreover that their
clique numbers converge if d > log>n. [3] showed Theorem 1, that the threshold for convergence of
G(n, p, d) and G(n, p) with p fixed is d < n3. They conjectured that if p = o(1), convergence occurs at
smaller d; in particular, for p = ¢/n they conjectured the threshold d =< log®n. [2] proved convergence
occurs when d = @(n’p, n’/?>p?), meaning the threshold does decrease with p. Recently [11] proved
that for p = ¢/n (¢ > 1), convergence occurs when d 2> log*®n, resolving the conjecture of [3] up to
polylog factors. In a different direction, [12] obtain detection upper and lower bounds for soft random
geometric graphs, wherein the inner products (X;, X;) determine the probability of edge (i, ) being
present.

There is also a growing literature on CLTs for random matrices. [5] proved a general multidimen-
sional CLT using Stein’s method. [9] and [3] concurrently showed that W(n, d) 2 Wn, 19 converges
in total variation to M(n) if d > n’. [4] generalized this result to arbitrary log-concave entry distribu-
tions, showing that the random matrix W = d~'/>(XT X —diag(X" X)), where X € R% has i.i.d. entries
from a log-concave measure, converges to M(n) if d/ logzd > n’. [17] refined the result of [3,9] by
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BRENNAN ET AL. WI LEY 129

computing the limiting value of TV(W(n, d), M(n)) if n,d — co with d/n> — c. [6] showed a count-
able sequence of phase transitions for the Wishart ensemble W(n, d): for each k € N, if nkt3 > ghtl
they show that W(n, d) converges to an explicit density f;. CLTs have been shown for Wishart tensors
[13] and Wishart matrices with arbitrary deleted entries [1]. Finally, [14] considers Wishart matrices
W = \/d(d~'XTX ~1,) where the columns of X are drawn i.i.d. from N'(0, T) for £ € R¥ of the form

Zij=s(i—j),

where s : Z — R is a covariance function with s(0) = 1. They show that W converges in Wasserstein
distance to a Gaussian matrix if n’ < d and s € #*3(Z), and under various conditions if s is the
correlation function of a fractional Brownian noise.

1.4 | Notation and preliminaries

We adopt standard asymptotic notations: f > g means that f /g — oo and f > g means that f > cg for
an absolute constant c. Throughout, ¢, C > 0 denote universal constants that may change from line to
line.

We use TV, KL, and ;(2 to denote total variation, Kullback-Leibler divergence, and chi-square
divergence. That is, for measures v, 4 with v absolutely continuous with respect to ,

dv

2
1 d d
TV, u) = E]Ez,w du (&) log ﬁ(é), 22,1 =Eey, <d;(§) - 1) :

d
- 1', KL(v. ) = B¢,

We recall that TV satisfies the triangle inequality and the data processing inequality TV(XC(v), K(u)) <
TV(v, u) for any Markov kernel XC. We also recall the Cauchy-Schwarz inequality 4TV(v, u)*> <

22, ).

2 | PROOF OF MAIN RESULTS
For g € R", let A(g) = (gg" — diag(gg")). We introduce the following random matrix, consisting of a
linear combination of a sample from M(n) and a rank-one Gaussian spike (with diagonal removed).

Definition 2.1. For u € [0, 1], let M ~ M(n, u) be generated by

M =uA(g)+ V1 —u?M’, (D

where g ~ N(0,1,) and M’ ~ M(n) are independent.

We defer the proof of the following lemma to Section 3. Using this lemma, we prove Theorems 3
and 5.

Lemma 2.2. We have that TV(M(n, u), M(n)) < u’n/?.

2.1 | Detection lower bound for anisotropic Wishart matrices

We first prove Theorem 5. Assume without loss of generality that &y > --- > ay > 0, and that
llall, = 1. Define a* = (ay, ... ,a,) and @~ = (@41, ... , &q), for the smallest r such that [la*||5 > %

a ‘1 ‘7T0T “81¥T8601
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130 Wl LEY BRENNANET AL.

We may assume
2
< Jlatlly < 5 @)

W | —

Indeed, if ||a+||§ > % we in fact have r = 1 because the a; are decreasing. Thus a% > %, which

implies ||a||; = ©(1). The condition n* < (||a|l,/||a||5)® is then vacuous so there is nothing to prove.
Henceforth we assume (2). Fort =0, 1, ... , r, define

a =, e W Qs e Q).

These interpolate between @~ and « in the sense that d=a,a =a.

Lemma 2.3. Foreachtr=1, ... ,r,
TV(W(n, a'), M(n)) < TV(W(n, a'™"), M(n)) + Ca?n’/2.
Proof. Letu, = a,/||a'||,. By the triangle inequality,
TV(W(n, a"), M(n)) < TV(W(n, &), M(n, u,)) + TV(M(n, u;), M(n)). 3)
For M € R™", define the Markov kernel
KM) = u;A(g) + V1 —u?M

where g ~ N'(0,1,). Note that W ~ W(n,a'), M ~ M(n,u,) can be generated by W =
KW, M = KM’ for W ~ W(n,a'~"), M’ ~ M(n). By data processing,

TV(W(n, a"), M(n, u;)) < TVIW (@, '), M(n)).

The remaining term in (3) can be bounded by Lemma 2.2:

3
TV(M(n, u), M(n)) S uin®’? = ”0#”3/2 S gn’l?
[ 1P)

where the final inequality uses that ||a’||, > ||la” ||, = 1, by (2). L]
Lemma 2.4. We have that (||a”||,/]|a” |l9)* = ||a||3_6.
Proof. Note that

rod

r d
20 —4 2 4 3.3 6
lat Gl iy =D Y a?af < D1 i’ < lells,
i=1j=r+1

i=1j=r+1

where the first inequality uses that a; > a; because « is decreasing. This rearranges as

- 1 V4 20 4y (=6 -6
(la~ M2/l 11)* = [Ja* |5 lla” I 1all3® 2 [lall5®,

where the final inequality uses that ||a™||,, [[a~ ||, = 1, by (2). [
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Proof of Theorem 5. By applying Lemma 2.3 repeatedly, we get

TV(W(n, @), M(n)) < TV(W(n, @), M(n)) + C )" a?n’/?

t=1

< TV(W(n, a™), M(n)) + Cllal3n*>. )

The hypothesis n* < (||a|l,/]l«]l3)® = ||0:||3_6 implies the second term of (4) is o(1). By
Lemma 2.4 we further have n’ < (|la”||,/|la"||4)*. Therefore Theorem 4 and Pinsker’s
inequality imply that the first term of (4) is o(1). This concludes the proof. (]

Remark 2.5. We conjecture that Theorem 5 remains true if the diagonal is not removed,
that is, if W(n, @) and M(n) are replaced by the law W*(n, a) of W = ||oc||51 XX~ |||, L),
where X is as in Definition 1.2, and the law M*(n) of a GOE matrix. With minor modifica-
tions, the proof of Lemma 2.2 in the next section generalizes if the diagonal is not removed,
that is, if A(g) and M(n) are replaced by gg" — I, and M*(n). So, if Theorem 4 holds
without diagonal removal, the above proof can be easily modified to conclude Theorem 5
without diagonal removal. The difficulty is that the entropy chain rule argument used to
prove Theorem 4 requires the diagonal to be removed.

Remark 2.6. The convergence in Theorem 5 is with respect to total variation distance,
whereas that of Theorem 4 is with respect to KL divergence. We expect that Theorem 5
remains true when total variation distance is replaced by KL divergence, though our
methods do not show this because our iterative argument relies on the TV triangle
inequality (3).

WILEY—
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2.2 | Detection lower bound for anisotropic RGGs

The proof of Theorem 3 is identical to that of Theorem 2 (a) (Theorem 2(b) in [8]), using Theorem 5
in place of Theorem 4.

119)/W09° K[

Proof of Theorem 3. Define the threshold functions H,,,, K, : R — {0, 1} by
Hp,a(x) = ]]{x > tp,a}’ Kp(x) = ]]{X > ‘D_I(P)},

where 1,4 is defined in Definition 1.1 and ®(t) = Pz x01)(Z > 1) is the complement
of the cdf of the standard Gaussian. Then, G(n, p, @) and G(n, p) can be generated as the
following entry-wise thresholdings of W(n, @) and M(n):

G(nap7 a) = Hp,ll(W(n’ a))s G(”»p) = KP(M(n))
Using the TV triangle inequality and data processing inequality,

VG, p, a), G(n, p)) < TV(H), o(W(n, @), Hy o M(n))) + TV(Hp o(M(1)), K,(M(n)))
< TV(W(n, a), M(n)) + TV(H, o(M(n)), K,(M(n))). &)

Since n* < (||a|l,/|lall5)®, Theorem 5 implies that the first term of (5) is o(1). The second
term of (5) is o(1) by [[8], Lemma 16]. Indeed, the proof of this lemma proceeds identically
if the hypothesis n* < (||l /|l«|l,)* is weakened to n® < (||a||,/|l]l5)°. n
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3 | PROOF OF TVBOUND FOR SPIKED GAUSSIAN MATRIX

In this section, we will prove Lemma 2.2. Let M(n, u, g) be the random matrix M generated by (1) for
g € R" fixed and M’ ~ M(n). Thus M(n, u) is a mixture of the random matrices M(n, u, g) over latent
randomness g ~ N (0, 1,).

Further, for (always measurable and high probability) S € R”, let ug be the law of g ~ N'(0,1,)
conditioned on g € S. Let M(n, u, S) be the law of M generated by (1) for g ~ pug and M’ ~ M(n). This
can be regarded as M(n, u) conditioned on g € S, and as a mixture of the M(n, u, g) over g ~ us.

We begin with the following series of estimates. Let S C R” be a set we will specify later.

TVM(n,u), M(n)) < TVIM(n, u), M(n, u, S)) + TVIM(n, u, S), M(n)) 6)
< PENJ\/(OJn)(g (S SC) + TV(M(I’L, u, S),M(n))
ATV(M(n,u, S), M(n))* < x*(M(n, u,S), M(n)) (N
dM(n, u, g)( )
dM(n)

dM(n,u,g)( )dM(n u, h)( A).
dM(n) dM(n)

= =1+ Eamm <Eg~us

= =1+ Eg ey Eavmn

The two estimates leading to (6) are by the TV triangle inequality and the data processing inequality.
The estimate leading to (7) is by Cauchy-Schwarz.

These estimates are the starting point of the so-called truncated Ingster-Suslina y*> method. It is
necessary to condition on an appropriate S in (6) so that the tails of the y? divergence (7) are integrable.
The following lemma evaluates the inner expectation in (7).

Lemma 3.1. For g,h € R”,

dM(n,u,g), , . dM(n,u, h)
Ea-pmon A
AMO) a1 A) M) (A)
= (1 — u*) - D/4 exp( Z gigihih; — Z (8787 +hih; >
l<1<]<n l<t<]<n

Proof. The densities of M(n) and M(n, u, g) (on the subspace of symmetric matrices with
zero diagonal) are

YW= T eo 2 exp(-247).

dLeb 1<i<j<n
Thus
B s LD i
— (1w ] EA‘,_/NMO,,)exp<_<“‘;(l‘j§§)f>2 - g’ +A,-2J).

1<i<j<n
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By a straightforward calculation the inner expectation equals

1+ u? M2 M4 2 2 2,2

T~ CXP<1_u4gigjhihj ) (g7} + hihy)
from which the result follows. Note that the prefactors of (1 — u?)™"*~D/2 and t’;;
(multiplied @ times) from the previous two displays combine to produce the prefactor
(1 _ u4)—n(n—l)/4_ -

Before proceeding further, we record two consequences of Boolean and Gaussian hypercontrac-
tivity. The proof of the following lemma is standard, see [[15], Chapters 9 and 11].

Lemma 3.2. Let f : {—1,1}" — R be a polynomial of degree d > 2 and v =
unif({—1, 1}"). Further, let 6> = E,.,f(x)’.

(a) Forany k > 2, E,. f(x)f < d¥/?ck,
(b) There exist constants Cy, ¢4 such that P, [|f(x)| > te] < Cyexp(—cyt*/?).

The same statements hold if f : R* - R and v = N0, I,,).
Fora > 1, let

Sa)={geR" : |Igl} < A +am,llglli <3(1 +an}.

We will prove Lemma 2.2 by taking S = S(a) in the calculation (7) for appropriate a. We first estimate
the probability of S(a).

Lemma 3.3. For g ~ N'(0,1,), P(g € S(a)°) < Cexp(—cal/2n1/4).

Proof. Letf, = ||g|l3 — n and f4 = ||g|ls — 3n. Note that Ef} = 2n and Ef? = 96n. By
Lemma 3.2 (b)

P(||g||% > (1 4+ a)n) = P(f, > an) < Crexp (—czan/\/2n> < Cexp (—canl/z) .
Similarly

P(ligllt > 3(1 + @) = P(fy > 3an) < Cs exp<—64(3an/\/96n)1/2> < Cexp (—ca'*n'l4).

Let g, h be independent samples from g, for a to be determined, and define the random variables

1
X= Z gigjhih;, vY=2 Z (g77 +hih?).

1<i<j<n 1<i<j<n

The following two lemmas bound, respectively, the low and high moments of X and Y.

Lemma 3.4. The following estimates hold for all a > 1.

E
E

g,h~;45(a)X = 0,
XY =0,

8:h~Hsq
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2 n(n—1)
8vh~#sm)X - 2

E

’ < P(S(@)) 12,

E

8»h~ﬂs(a)

Y — @’ < P(S(a)C)l/ZnZ’
’]Eg,hNMS(a)X3 —nn—1n - 2)’ < P(S(a)")/2nd.

Proof. The first two claims follow by the symmetry of S(a) under the map (g, ... ,g,) —
(X181, --- »Xu8n) for any x € {—1, 1}". In the rest of this proof, let E denote expectation
with respect to g, h ~ N'(0,1,). By straightforward calculation,

nn—1)
s
nn—1)

O
EX? = n(n - 1)(n - 2).

EX? =

EY =

We estimate the discrepancy caused by changing the measure from pg( to N'(0, I,,) using
the following generic bound. For any (g, #)-measurable &,

Eyghong& = PS@)*E1{g, h € S(a)}¢ = P(S(a))* [EE - E1{(g, h € S(@))}¢].
Thus

Eg g€ — E5| < (PS(@)™* = 1) [EE| + P(S(@) *|E1{(g. h € S(@)) }¢

< 2P(S(a)) + /2P(S(a)°)

P(S(a))?

VEE) S VP(S(@))EE).

For & = X2, by Lemma 3.2 (a)
E&? = Ex* < 43(EX?)? < nt,

which proves the third conclusion. For & = X3, we similarly have E&? < nS, proving the
fifth conclusion. For & = Y, a straightforward calculation shows E&? < n?, proving the
fourth conclusion. (]

Lemma 3.5. Fora > 1 and integer i,j > 0,
Eyg g, XY < (60) 2an) ™.
Proof. By Cauchy-Schwarz,

- i 1/2 n1/2
quhNﬂsm) IX'Y'| < (Eg,thls(mXZI) (Eg,h Yzj) : ®)

~Hs(a)

For all g € S(a),

> g < lglld < (4 +ayn® < any?

1<k<t<n
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and similarly for . Thus if g, h € S(a), then |Y| < (2an)?, which implies

1/2

(]Eg!hNﬂS(a) Yzj) < (Zan)zj- 9)

If i = 0, this implies the result. Otherwise assume i > 1. By symmetry of the set S(a), the
distribution of X under g, h ~ ps, is the same as that of

X= Z XiXegrgehihe

1<k<€<n

where x ~ unif({—1,1}")and g, s ~ pg, are independent. By Lemma 3.2 (a), conditioned
on g, h,

EX < 20 (EX?) = (2i>2f< > g%g%h%h%) -
X X

1<k<t<n

For g, h € S(a),

1 1
Y sigehihy <5 ¥ (ghet +hiht) < 5 (Iglli+1IAl3) < 3°(1+aPn® < 3Qan)’.

1<k<t<n 1<k<£<n
So,
o E wazf = 15 S(H)EX)N(” < (6i - 2an)*.
Recalling (8) and (9) this implies the result. ]

Proof of Lemma 2.2. We may assume u*n < 107 because otherwise the lemma is trivial.
Take S = S(a) for a = (u?n)~'/*. By Lemma 3.3, P(5¢) < Cexp(—cu~'/*n'/?). Equation
(7) and Lemma 3.1 imply

2 4
2 4\—n(n—1)/4 u u
1+ 4TV(M(n, 1, S), M(n))> < (1 — u®) B oy exp<1_u4X - Y>

1 dy=n(n=1)/4 (GO ivj
i <Z W0 =y XY )

ij=0

LetT = {(i,)) € Zzzo i+ 2j<4}and TC = Z;O \ 7. By the estimates in Lemma 3.4,

1 u2i+4j E Xin
e o ANit &h~m
(iJ)ETl!]! (I —uH)™ '
ut nn—1) u nn—1) ub nn—1)n-2) 3 e
<1- : + : + : + Cne
- 1 —ut 2 (1 —u*)? 4 (1 —u*)3 6 n-e

Sl—u4-w+Cu6n3.

~1/4,1/8

In the last line we have used that n3e~" < ubn3, because e """ ig larger than any

polynomial in ~!. By Lemma 3.5,

—1/4p,1/8
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1 u2i+4j

771}3 Jh~ XinS
(1 — byt &S (mze:p,

.y (6i) <2au2n>i+2j

- (Nt @i/e) \ 1 —u*

< Z <12e-au2n>i+2j
e\ 1w

Since au’n = (u?n)>* < 1073, this is a convergent double-geometric sum. As i +2j > 4
for (i,)) € T¢,

1 u2i+4j
/e (1= uhy*s

B s IX' Y|
(iH)ET

1 24

Z W (1 _ u4),‘+j Eg.hNMS

=

XY < (au’n)* = ubn’.

Combining the above,

log(1 + 4TV(M(n, u, S), M(n))?) < —”(”T_l) log(1 — u) + log<l ot @ + Cu6n3>
< Cubn’.
Therefore

TVM(n, u,S), M(n)) < u’n®?.

Finally, since P(S¢) < Cexp(—cu~/*n'/®) <« u?n®?, (6) implies TV(M(n, u), M(n)) <
wn/?, "
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