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Abstract 

Defining the similarity between chemical entities is an essential task in polymer informatics, 

enabling ranking, clustering, and classification. Despite its importance, pairwise chemical 

similarity for polymers remains an open problem. Here, a similarity function for polymers with 

well-defined backbones is designed based on polymers’ stochastic graph representations generated 

from canonical BigSMILES, a structurally-based line notation for describing macromolecules. The 

stochastic graph representations are separated into three parts: repeat units, end groups, and 

polymer topology. The earth mover’s distance is utilized to calculate the similarity of the repeat 

units and end groups, while the graph edit distance is used to calculate the similarity of the topology. 

These three values can be linearly or nonlinearly combined to yield an overall pairwise chemical 

similarity score for polymers that is largely consistent with the chemical intuition of expert users 

and is adjustable based on the relative importance of different chemical features for a given 

similarity problem. This method gives a reliable solution to quantitatively calculate the pairwise 

chemical similarity score for polymers and represents a vital step toward building search engines 

and quantitative design tools for polymer data. 

 

Introduction 

Polymers are ubiquitous with applications spanning clothing,1 food,2 energy,3 transportation,4 and 

health care.5 This breadth of applications is achieved due to polymers’ versatility, low-cost 

manufacturability, low density and chemical resistance. The massive design space available to 

polymer chemists leaves an abundance of potentially useful polymers yet to be identified and 

realized. As new polymers are discovered and current chemistries are manipulated, polymeric data 

is generated, enabling large polymer databases including PolyInfo,6 PI1M (A Polymer Informatics 

Database of about 1 Million Polymers),7 PolymerGenome,8 MaterialsMine,9 Open 

Macromolecular Genome,10 and CRIPT (Community Resource for Innovation in Polymer 

Technology).11 These databases have the potential to facilitate polymer design.12–16 However, to 

accelerate polymer design, these databases must be coupled with additional functionalities.17,18 For 

example, ranked search enhances data discoverability, and the ability to find similar polymers 

which have been previously synthesized, can further enable new polymer chemistries. 
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Additionally, classification and clustering algorithms are needed to validate, categorize and 

analyze new input polymer data points.19 Such tasks are difficult or impossible without a robust 

similarity scoring method that calculates the magnitude of a chemical change between polymers 

and quantifies pairwise chemical similarity for polymers.20 

 

In the field of cheminformatics, similarity scoring methods are well-established for small 

molecules. Either the graph structure21–23 is retained, or it is converted into a vector, known as a 

fingerprint. 24 Then, either vector or graph similarity metrics, such as Tanimoto25 and Cosine,26 

may be applied to calculate pairwise molecular similarity.25 These similarity scoring methods have 

been used for a variety of tasks such as calculating similarity of entries in a drug molecule library, 

27 designing new drug molecules, 28 ranking search results,29 and calculating the magnitude of a 

chemical change from one small molecule to another.25 Specialized machine learning methods also 

exist for similarity calculations of sequence-defined biomacromolecules such as proteins, peptides, 

and polysaccharides.29,30 Both small molecules and sequence-defined biomacromolecules have 

well-defined deterministic structures that are easily represented by graphs with atoms (or 

molecular fragments) as nodes and bonds as edges.29,31–38 In contrast, the vast majority of synthetic 

polymers are characterized by stochastic graphs that represent molecular ensembles or 

distributions.39,40 Previous studies have used monomers and compositions as representations and 

utilized methods similar to those developed for small molecules to measure pairwise polymer 

similarity, but those methods can only be applied to polymers with simple topologies, such as 

homopolymers and copolymers.41–45 These methods do not take into consideration the variety of 

topologies and stochastic configurations available to polymers; therefore, it is not possible for 

these methods to obtain an accurate and meaningful similarity score for polymers with complex 

topologies and stochastic properties, such as star polymers, graft polymers and segmented 

polymers. 

 

The first key challenge in developing a broadly applicable polymer similarity metric is developing 

a representation for the polymer stochastic graph. Aldeghi et al.40 proposed a graph representation 

for polymers using stochastic edges. However, the weight of the stochastic edges may not always 

be available, and when the weight is known, it is an average value that limits expressiveness. Guo 

et al.46 proposed PolyGrammar, which is designed for polymer representation and generative 

modeling; however, the current generation of the PolyGrammar only imitates chain growth 

polymerization.46 Recently, Lin et al.39 demonstrated that polymers have a direct analogy to formal 

languages, and using this, they were able to develop directed graphs and automata-like 

deterministic graphs representing polymers. Rather than the graph representing the chemical 

structure, the graph represents a generating function that, when the graph is traversed, produces all 

possible molecules in the molecular ensemble. 

 

Here, a method for pairwise similarity scoring of polymers based on an adaptation of Lin et al.’s 

graph representation 39 is proposed that is broadly applicable to stochastic ensembles across a wide 
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variety of polymer topologies. First, canonical polymer graph representations are generated with 

repeat units and end groups as nodes. Then, these graph representations are separated into three 

parts: repeat units, end groups, and topology. The earth mover’s distance (EMD) 47–49 is utilized to 

calculate the similarity of the repeat units, as well as the end groups. Subsequently, graph edit 

distance (GED) 30,50,51 is used to calculate the similarity of the topology. Combining similarity 

scores for the repeat units, end groups, and topology yields an overall pairwise chemical similarity 

for polymers that is largely consistent with the chemical intuition of expert users and is tunable 

based on the importance individual users place on specific substructural elements. 

 

Methods 

Stochastic Graph Representation 

The first step in generating a similarity score is to generate stochastic polymer graphs. The polymer 

molecular structure (see Figure 1a) is converted to a canonical BigSMILES52,53 representation, a 

structurally-based line notation for describing macromolecules (see Figure 1b) following the 

priority rules of canonicalization procedures from Lin et al.39 This canonicalization step is essential 

as it ensures that every polymer has exactly one representation. Without this step, it is possible to 

generate a similarity score smaller than one for the same polymer, as multiple non-canonicalized 

BigSMILES can map to the same polymer. Next, the algorithm from Lin et al.39 parses the 

canonical BigSMILES and uses connectivity information to build directed graphs, shown in Figure 

1c. Each node is labeled with either “Start,” “End,” a bonding descriptor, a repeat unit SMILES,  

or an end group SMILES. For the repeat units SMILES and end group SMILES, the symbol, *, is 

used as a connection point to clearly illustrate which atoms are connected in the polymers and 

which part of the repeat units belong to pendant groups. For example, one of Polymer A’s 

stochastic objects from its canonical BigSMILES, CC(C[>1])O[<1], is first transferred to 

CC(C*)O*. Next, CC(C*)O* is transferred to *CC(C)O*, which is more intuitive. The transfer 

process to a more intuitive SMILES string does not affect the similarity calculation. 

 

For Polymer A, a random copolymer, the directed graph39 reads from the left end group OCCO* 

to the stochastic bonding descriptor, which can connect either to poly(propylene glycol) (PPO) 

with repeat unit *CC(C)O* or poly(ethylene glycol) (PEG) with repeat unit *CCO*. Since H* as 

an end group is implicit in the canonical BigSMILES, the directed graph does not have a separate 

node for the right end group H*.39 As for Polymer B, a diblock copolymer, the directed graph reads 

from the left stochastic bonding descriptor, which can connect the repeat unit *C(CC)C* or its 

mirror *CC(CC)*, and then the graph reads the right stochastic bonding descriptor, which can 

connect the repeat unit *C(C)C* or its mirror *CC(C)*. If the repeat units are symmetric, such as 

*CC*, two connection paths still exist even though these two connection paths are identical. 

Therefore, to preserve the topological feature and ensure the robustness of the similarity function, 

two possible connection paths are retained for symmetric repeat units. For Polymer C, an 

alternating copolymer, the directed graph reads from the left stochastic bonding descriptor, which 

connects the repeat unit  *C(=O)C(C)CCCC(=O)*  or its mirror *C(=O)CCCC(C)C(=O)*, and 
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then the graph reads the right stochastic bonding descriptor, which connects the second repeat unit 

*OC(C)CO or its mirror *OCC(C)O*, and finally the graph returns to the left stochastic bonding 

descriptor. Again, both paths are kept for symmetric repeat units. 

 

 
Figure 1: Converting polymer molecular structures into the corresponding stochastic polymer 

graph representations. (a) A random copolymer (Polymer A), a diblock copolymer (Polymer B), 

and an alternating copolymer (Polymer C). (b) Canonical BigSMILES representations produced 

using the canonicalization procedures from Lin et al.39 (c) The algorithm from Lin et al.39 parses 

the canonical BigSMILES and uses the connectivity information to build directed graphs. Each 

node is labeled with either “Start,” “End,” a stochastic bonding descriptor, repeat unit SMILES, or 

end group SMILES. The directed graphs are converted into stochastic graphs in panel (d), where 

the nodes of “Start” and “End” are removed, stochastic bonding descriptor nodes are represented 

by circles with indexes (D1, D2, ...), repeat unit SMILES nodes are represented by squares with 

indexes (R1, R2,...), and end group SMILES nodes are represented by hexagons with indexes (E1, 

E2,...). The colors of repeat unit SMILES nodes and end group SMILES nodes match the 

corresponding repeat units and end groups in the canonical BigSMILES representations and 

directed graph representations. 

 

Finally, the directed graphs in Figure 1c are converted into polymer stochastic graphs in Figure 1d 

where the nodes of “Start” and “End” are removed, stochastic bonding descriptor nodes are 

represented by circles, repeat unit SMILES nodes are represented by squares, and end group 

SMILES nodes are represented by hexagons. The colors of repeat unit SMILES nodes and end 
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group SMILES nodes match the corresponding repeat units and end groups in the canonical 

BigSMILES representations. 

 

Overview of Similarity Method 

Based on this stochastic polymer graphs representation, a method to calculate the pairwise overall 

chemical similarity between two polymers is proposed, as illustrated in Figure 2. The polymer 

graph is decomposed into three components: repeat units, end groups and topology. Linkers 

between stochastic objects are also included into this category of end group. Topology here 

represents both the local connectivity (the way the monomer units themselves are connected) and 

the global topology of the graph. Individual similarity metrics are calculated for each component, 

which are then combined to yield an overall similarity score. The earth mover’s distance (EMD) 

is used to calculate the similarity scores of the repeat units 𝑆RU  and the end groups 𝑆EG . The 

topological similarity 𝑆TOP is then calculated from the stochastic graph representations with all 

chemical detail removed using graph edit distance (GED). Finally, the overall similarity score 𝑆OA 

between two polymers is generated by combining these three scores via either geometric or 

arithmetic mean. The details of calculating EMD, GED, and overall similarity score are illustrated 

in detail in the following sections. 

 

Figure 2: Schematic of the method for calculating the pairwise chemical similarity between two 

polymers. Using the stochastic graph representation, the polymers are separated into three key 

features: repeat units, end groups, and topology. Linkers between stochastic objects are also 

included with end groups, and topology here represents both the local connectivity (the way the 

monomer units themselves are connected) and the global topology of the graph. The similarity 

scores for the repeat units 𝑆RU and the end groups 𝑆EG are calculated via earth mover's distance 

(EMD) whereas the similarity score for topology 𝑆TOP is calculated via graph edit distance (GED). 
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The overall pairwise similarity score 𝑆OA between two polymers is generated by combining these 

three scores via either geometric or arithmetic mean. 

 

Earth Mover’s Distance for 𝑺RU and 𝑺EG 

The workflow of the repeat unit similarity 𝑆RU is shown in Figure 3 using Polymer A and Polymer 

B as an example. The procedure for the end groups is identical to the procedure for repeat units. 

The first step is to identify the repeat units. Polymer A has two repeat units (R1A and R2A), and 

Polymer B has two repeat units (R1B and R2B). Since the frequencies of the repeat units can vary, 

the repeat units of each polymer can be conceptualized as a molecular fragment ensemble. 

Therefore, the problem of calculating 𝑆RU is fundamentally a problem of calculating the similarity 

𝑆  between different ensembles or distributions of small molecules, each of which may be 

computed using existing methods for calculating the pairwise similarity of small molecules.25 

Specifically, molecular fragment ensemble 𝑃 =

 {(𝑝1, 𝑤𝑝1
), (𝑝2, 𝑤𝑝2

), . . . , (𝑝𝑖, 𝑤𝑝𝑖
), . . . , (𝑝𝑚, 𝑤𝑝𝑚

)}  has 𝑚  molecular fragments, where 𝑝𝑖  is a 

molecular fragment such as a repeat unit or end group and 𝑤𝑝𝑖
> 0 is the weight, related to the 

average probability (or frequency, 𝑧) of the molecular fragment being present in the polymer. 

Similarly, the second ensemble 𝑄 =  {(𝑞1, 𝑤𝑞1
), (𝑞2, 𝑤𝑞2

), . . . , (𝑞𝑗 , 𝑤𝑞𝑗
) , . . . , (𝑞𝑛, 𝑤𝑞𝑛

)}  has 𝑛 

molecular fragments.  The sums of the weights for 𝑃 and 𝑄 are both normalized and equal to one 

∑ 𝑤𝑝𝑖

𝑚
𝑖=1 = ∑ 𝑤𝑞𝑗

𝑛
𝑗=1 = 1. 

 

 
Figure 3: Workflow of earth mover's distance (EMD) calculation for ensemble similarity using the 

repeat unit sets of Polymers A and B as an example. The first step is to get the repeat units. Polymer 

A has two repeats (R1A and R2A) and Polymer B has two repeat units (R1B and R2B), where the 

subscripts are used for distinction. The second step is to get the corresponding weight for each 

repeat unit. The third step is to get the corresponding fingerprints (FPs). The fourth step is to 
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calculate the set of pairwise distances 𝐷 =  [𝑑𝑖,𝑗] based on the similarity metric. Once the weights 

and the set of pairwise distance 𝐷 =  [𝑑𝑖,𝑗] are obtained, the fifth step is to optimize the transport 

flows 𝐹 =  [𝑓𝑖,𝑗]  to calculate the distance 𝐸𝑀𝐷RU and the similarity score 𝑆RU. The procedure for 

the end groups is identical. 

 

The second step is to obtain the weight of each molecular fragment. Unlike small molecules, whose 

chemical structure uniquely determines the molar mass, polymers may have varying degrees of 

polymerization or monomer composition for a given chemical structure. When the composition or 

degree of polymerization is known, this may be used to determine the weights.  For repeat units 

within the stochastic objects inside the first level of curly brackets, or equivalently at the same 

level as the backbone when the backbone is present, based on the canonical BigSMILES, the 

weight 𝑤 of a repeat unit is directly proportional to the average number of the repeat unit per 

polymer, 𝑧: 

 
𝑤2

𝑤1
=

𝑧2

𝑧1
 (1) 

 

If  𝑧𝑖 is not specified, then the sum of molecular fragments connected to each stochastic bonding 

descriptor shares the same relative weight, and each molecular fragment connected with the same 

stochastic bonding descriptor shares the same relative weight. For example, as shown in Figure 

4a, in a random copolymer, R1-r-R2, 𝑤R1 = 𝑤R2. In Figure 4b, a diblock copolymer, R1-b-R2, 

has  𝑤R1 = 𝑤R2. Figure 4c illustrates a diblock with one block being a random copolymer (R1-r-

R2)-b-R3 such that 𝑤R1 = 𝑤R2 = 0.5𝑤R3. An alternating copolymer, R1-alt-R2 with 𝑤R1 = 𝑤R2 

is shown in Figure 4d. 

 

For repeat units that are the nested stochastic objects based on the canonical BigSMILES, such as 

the repeat units in the side chain of graft polymers or the repeat units in the macromonomer of 

segmented polymers (see Figure 4e,f), the lengths, or equivalently the degrees of polymerization,  

of the nested stochastic objects affect the polymer properties.54,55 Thus, the length of nested 

stochastic objects should be included into the weightings. However, if the relative weights are 

proportional to the frequencies, the influence of the backbone repeat unit may be nearly zero when 

the nested stochastic objects are long.  Therefore, for nested stochastic objects, relative weights 

between one repeat unit in the backbone and one in the nested stochastic object are given by a 

logarithmic equation. 
𝑤2

𝑤1
= 1 + ln

𝑧2

𝑧1
 (2) 

 

where 𝑧1, and 𝑤1 are the frequency and weight of the backbone repeat unit connected to a nesting 

stochastic object; 𝑧2 , and 𝑤2  are the frequency and weight of the repeat unit in the nesting 

stochastic object. This modification ensures that the weight monotonically increases with the 
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monomer frequency while reducing the weight of grafts and segments at high degrees of 

polymerization. For example, if 𝑧2: 𝑧1 = 200: 1, then 𝑤2: 𝑤1 = 6.3: 1 The range of the length of 

the graft chain or segment part is typically one to hundreds, yielding a range of  
𝑤2

𝑤1
 of about 1 to 

8. If the lengths of grafts or macromonomers are not specified, 
𝑤2

𝑤1
= 4 is a reasonable choice for a 

default value. 

 

The weight assignment for the end groups follows the same principles. For example, the same 

weight is used for both end groups in linear polymers (see Figure 4c). For graft polymers, the 

weight assignment between end groups at the end of the side chains and the end groups on the 

backbone also follows Equation 2 because there is one end group per graft side chain. If the degrees 

of polymerization are not specified, then the weight of the end groups at the end of the side chains 

is four times the weight of the end groups at the end of the backbone chain, as shown in Figure 4e. 

With these rules, the similarity algorithm can compare polymers based on chemical structure alone, 

without any degree of polymerization or composition information. However, if known, this 

information can be used to improve similarity scoring. 
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Figure 4: Weight assignment policy for polymers as a function of polymer topology when degrees 

of polymerization are not specified. Six types of polymer molecular structures, the corresponding 

canonical BigSMILES and stochastic polymer graph representations are displayed. (a) A random 

copolymer. (b) A diblock copolymer. (c) A diblock copolymer with one block being a random 

copolymer (R1-r-R2)-b-R3.  (d) An alternating copolymer.  (e) A graft polymer where the 

monomer on the backbone have a side chain. (f) A segmented polymer where a polymer is nested 

along the backbone. 

 

Returning to the example in Figure 3 and following the above rules, the two repeat unit ensembles 

are 𝑃 = {(R1A, 0.5), (R2A, 0.5)} for Polymer A and 𝑄 = {(R1B, 0.5), (R2B, 0.5)} for Polymer B. 

For Polymer B, R1B and R1B’ are different configurations in the polymer chain, but R1B and R1B’ 

are identical when separated from the polymer chain; therefore, the weight of R1B’ is merged to 

R1B, and the same for R2B’. 

 

With the ensembles defined, the earth mover’s distance (EMD) is a metric that is well-constructed 

to calculate the similarity of ensembles or distributions such as these; it has been successfully 

applied in multiple fields for ensemble similarity calculation, such as the similarity of inorganic 
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solids,47 the similarity of biomarker expression levels,48 and geometric dataset distances.49 EMD 

may be conceptualized as the minimal amount of work to transform one distribution into another, 

and it can be formulated and solved as a transportation problem. Here, the problem is transforming 

one discrete molecular fragment distribution 𝑃 to another 𝑄 with the minimum amount of work 

done (EMD), which can be interpreted as a measure of dissimilarity. Therefore, the problem of 

calculating 𝑆RU and 𝑆EG is equivalent to calculating the similarity 𝑆 between different ensembles 

of molecular fragments, each of which may have pairwise similarity 𝑠𝑖𝑗 computed using existing 

methods for calculating the pairwise similarity of small molecules.25 

 

Thus, the next step is to determine the pairwise similarity of the individual molecular fragments. 

First, each molecular fragment is represented by a SMILES (Simplified Molecular-Input Line-

Entry System) string56,57 containing “*” symbols to indicate the interconnections between 

monomers7,44. These SMILES strings are then transformed into fingerprints using Morgan 

fingerprints (radius = 2, nBits = 2048)40 as implemented in RDKit58 (step 3 in Figure 2). Then, the 

pairwise similarity score between the molecular fragments  𝑝𝑖 and 𝑞𝑗, 𝑠𝑖,𝑗 are calculated using the 

Tanimoto similarity metric.25,30 The similarity score 𝑠𝑖,𝑗 ranges from 0 to 1, where self-similarity 

is 1. The more similar two molecular fragments 𝑝𝑖 and 𝑞𝑗, the larger 𝑠𝑖,𝑗. Apart from the Morgan 

fingerprints and Tanimoto similarity metric, different settings for radius, nBits and useChirality of 

Morgan fingerprints,30 many other fingerprint embedding functions,24 molecular graph embedding 

methods21–23  and different similarity metrics25 can be utilized to obtain 𝑠𝑖,𝑗 without modifying the 

overarching algorithm for polymer similarity described here. 

 

EMD is inherently a measure of dissimilarity instead of similarity, so first the similarity score 

𝑠𝑖,𝑗 must be converted to a dissimilarity score using25,30 

 

𝑑𝑖,𝑗 = 1 − 𝑠𝑖,𝑗 (3) 

 

as shown in step 4 of Figure 3. After all necessary information is obtained on the 𝑤𝑝𝑖
, 𝑤𝑞𝑗

 and 𝑑𝑖,𝑗 

and for all the entities in the ensembles, the optimized transport flows 𝐹 =  [𝑓𝑖,𝑗]  and the EMD are 

determined using Equation 4a along with the constraints as specified in Equations 4b-e. 

 

 

𝐸𝑀𝐷(𝑃, 𝑄) =
min

𝐹
∑ ∑ (𝑓𝑖,𝑗 ⋅ 𝑑𝑖,𝑗)𝑛

𝑗=1
𝑚
𝑖=1

∑ ∑ 𝑓𝑖,𝑗
𝑛
𝑗=1

𝑚
𝑖=1

= min
𝐹

∑ ∑(𝑓𝑖,𝑗 ⋅ 𝑑𝑖,𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 (4a) 

Subject to 𝑓𝑖,𝑗 ≥ 0, for any 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 (4b) 

∑ 𝑓𝑖,𝑗

𝑛

𝑗=1

= 𝑤𝑝𝑖
, for any 1 ≤ 𝑖 ≤ 𝑚 (4c) 
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∑ 𝑓𝑖,𝑗

𝑚

𝑖=1

= 𝑤𝑞𝑗
, for any 1 ≤ 𝑗 ≤ 𝑛 (4d) 

∑ ∑ 𝑓𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

= ∑ 𝑤𝑝𝑖

𝑚

𝑖=1

= ∑ 𝑤𝑞𝑗

𝑛

𝑗=1

= 1 (4e) 

 

𝑓𝑖,𝑗 represents the amount of weight at 𝑝𝑖 which is transported to 𝑞𝑗. The sum of all the individual 

flows originating from 𝑝𝑖 is equal to the weight 𝑤𝑝𝑖
, and equivalently, the sum of all the individual 

flows originating from 𝑞𝑗 is equal to the weight 𝑤𝑞𝑗
, shown in Equations 4cd. Here,  𝑓𝑖,𝑗 ⋅ 𝑑𝑖,𝑗 is 

the cost for each individual flow. Thus, EMD represents the minimum overall cost to convert one 

ensemble 𝑃 to another ensemble 𝑄. 

 

These equations are coded into Pyomo,59–61 a python-based, open-source optimization modeling 

language with a diverse set of optimization capabilities, and solved with COIN-OR Branch-and-

Cut (cbc) solver, 62,63 an open-source mixed integer linear programming solver written in C++. 

𝐸𝑀𝐷(𝑃, 𝑄) is bounded between 0 and 1, representing the dissimilarity score between 𝑃 and 𝑄. 

 

Finally, the similarity score 𝑆(𝑃, 𝑄), for the ensemble pair 𝑃 and 𝑄,  may then be defined as 

 

 𝑆(𝑃, 𝑄) = 1 − 𝐸𝑀𝐷(𝑃, 𝑄) 

 

(5) 

Equation 5 is consistent with Equation 3 relating similarity and dissimilarity for small molecules. 

The value of 𝑆(𝑃, 𝑄) is also between 0 and 1. The smaller 𝐸𝑀𝐷(𝑃, 𝑄), the larger 𝑆(𝑃, 𝑄), and the 

higher the similarity between 𝑃 and 𝑄. Both the similarity between two repeat unit ensembles 

𝑆RU(𝑃, 𝑄), and the similarity between two end group ensembles 𝑆EG(𝑃, 𝑄) are calculated through 

the above EMD method. For the pair Polymer A and Polymer B, 𝑆RU = 0.28 and 𝑆EG = 0.10 (step 

5 in Figure 2). Since not all polymers’ molecular representations include the end groups (e.g., 

rings) and implicit end groups, some complementary rules for the end group similarity scores are 

set for those situations: (1) if two polymers both do not have end groups, 𝑆EG = 1; (2) if one 

polymer has end groups and the other polymer does not have end groups, then 𝑆EG = 1. 

 

EMD provides greater resolution of chemical differences between polymers than simple sums or 

averages of the Morgan fingerprints or other fingerprints for each repeat unit.  The reason is that 

simply averaging or summing44 prematurely reduces the dimensionality of the system, eliminating 

differences among ensembles.  Examples are included in the Supporting Information. 

  

Graph Edit Distance for 𝑺TOP 

The next step is to compute the similarity score for the topology 𝑆TOP. Since the chemical details 

have already been accounted for, the topology can be treated as a homogenous version of the 

stochastic graph representation where all edges and nodes are treated identically (see grey topology 
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graphs 𝑔A  and 𝑔B  in Figure 2). To calculate the similarity between two different polymer 

topologies, Graph Edit Distance (GED) 30,50,64 is utilized.  GED, first reported by Sanfeliu and Fu 

in 1983,65 is a measure of similarity between two graphs 𝑔1 and 𝑔2. The idea behind GED is to 

find the minimal set of transformations that can transform graph 𝑔1 into graph 𝑔2 by means of edit 

operations on graph 𝑔1. The set of elementary graph edit operators64 typically includes node and 

edge insertion, deletion, and substitution, although substitution is not considered here since the 

topology graphs are homogeneous. 

 

𝐺𝐸𝐷(𝑔1, 𝑔2) = min
(e1,...,ek) ∈ 𝒫( 𝑔1,𝑔2) 

∑ 𝑐(𝑒𝑖)

𝑘

𝑖=1

 (6) 

where 𝒫(𝑔1, 𝑔2)  denotes the set of edit paths transforming 𝑔1 into graph 𝑔2 and 𝑐(𝑒𝑖) is the cost 

of each graph edit operation 𝑒𝑖. For simplicity, 𝑐(𝑒𝑖) = 1, the cost of each graph edit cost is set to 

be one. 𝐺𝐸𝐷(𝑔1, 𝑔2)  is zero when 𝑔1  and 𝑔2  are identical. GED is symmetric; the cost of 

transforming graph 𝑔1 into graph 𝑔2 is the same as the cost of transforming graph 𝑔2 into graph 

𝑔1. GED is widely used for similarity measurements in small molecules66–68 and sequence-defined 

biomacromolecules.30,69,70 Using Figure 2 as an example, to transform 𝑔A into 𝑔B, 𝑔A adds three 

nodes and five edges; therefore the 𝐺𝐸𝐷(𝑔A, 𝑔B) = 8. 

To map 𝐺𝐸𝐷 onto a topological similarity score 𝑆TOP with the range of (0, 1], an exponential 

decay function on the normalized graph edit distance, 
𝐺𝐸𝐷(𝑔1,𝑔2)

(|𝑔1|+|𝑔2|)/2
  is used:51 

𝑆TOP(𝑔1, 𝑔2) = exp (−
𝛼 ∙ 𝐺𝐸𝐷(𝑔1, 𝑔2)

(𝑁1 + 𝑁2)/2
) (7) 

where 𝑁𝑖 denotes the number of nodes of 𝑔i; 𝛼 is a tunable parameter with the default value to be 

1. 𝑆TOP(𝑔1, 𝑔2)  is 1 when 𝑔1  and 𝑔2  are identical. 𝑆TOP(𝑔1, 𝑔2)  is also symmetric, so 

𝑆TOP(𝑔1, 𝑔2) =  𝑆TOP(𝑔1, 𝑔2). As shown in Figure 2, for Polymer A and Polymer B, 𝑁A = 4 and 

𝑁B = 7; therefore, 𝑆TOP(𝑔A, 𝑔B) = 0.23. 

 

Although the calculation of an exact GED is non-deterministic polynomial-time hard (NP-hard), 

the size of the topological graph is relatively compact unlike the graph representations used for 

sequence-defined biomacromolecules, which can be very complex30 for large molar masses. 

Additionally, the chemical details are dropped from the stochastic topological graph, and the exact 

GED is calculated on a homogenous version of the stochastic graph representation where all edges 

and nodes are treated identically, which dramatically reduces computational complexity and cost. 

Therefore, computing the exact GED for the stochastic topological graph for polymers represented 

in this compact fashion is computationally tractable. 

 

Overall Pairwise Chemical Similarity Score 
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From the above EMD and GED calculations, three similarity scores are obtained: 𝑆RU for repeat 

units, 𝑆EG for end groups, and 𝑆TOP for topology. To calculate the overall similarity score 𝑆OA, a 

weighted geometric average is proposed: 

   

𝑆OA = 𝑆RU

𝑊RU ⋅ 𝑆TOP

𝑊TOP ⋅ 𝑆EG

𝑊EG 

 
(8) 

where 𝑊RU + 𝑊TOP + 𝑊EG = 1 are the weights for the repeat units, topology and end groups, 

respectively. These weights can be tuned to suit the user’s target application. For simplicity, 

reasonable defaults of 𝑊RU = 0.475, 𝑊TOP = 0.475, and 𝑊EG = 0.05 are chosen. The choice of 

𝑊EG = 0.05 was motivated by the low frequency of the end group relative to the repeat unit. This 

choice results in 
𝑊RU

𝑊EG
= 9.5, about one order of magnitude. The choice of equal setting for 𝑊RU 

and 𝑊TOP is grounded in the idea that both repeat units and topology are essential for capturing 

polymer similarity based on chemical intuition. The repeat units reflect what the types of 

monomers comprise the polymers, and the repeat units can influence physical properties, such as 

glass transition temperature and density. The topology reflects how the monomers are connected 

in the polymer chains and what synthesis routines are used for polymerization. The topology also 

significantly impacts physical properties, such as viscosity and phase behavior. For additional 

freedom for user-specific cases, a weighted arithmetic mean can also be used to calculate the 

overall similarity score: 

 

𝑆OA = 𝑆RU ⋅ 𝑊RU + 𝑆TOP ⋅ 𝑊TOP + 𝑆EG ⋅ 𝑊EG 

 

(9) 

where 𝑊RU + 𝑊TOP + 𝑊EG = 1 are the weights in the arithmetic function. 

 

Applying these equations along with different weight choices for Polymer A and Polymer B from 

Figure 2 yields 𝑆OA(Polymer A, Polymer B) = 0.243  with the weighted geometric mean and  

𝑆OA(Polymer A, Polymer B) = 0.248 with the weighted arithmetic mean. For this case, the results 

are similar for different mean functions because 𝑆RU and 𝑆TOP which occupy the major weights are 

similar. If 𝑆RU and 𝑆TOP are more distinct, then the choice of mean function evidently affects the 

 𝑆OA. In the Results and Discussion section, the geometric mean is used as the default as it weighs 

very small similarities more heavily. Weighted arithmetic mean values are provided in the 

Supporting Information for completeness. In all the following cases, the weight settings 𝑊RU =

0.475, 𝑊TOP = 0.475, and 𝑊EG = 0.05 are used. 

 

Results and Discussion 

Case 1: Varying Repeat Units 

Case 1 illustrates the computation of the pairwise similarity score of polymers with the same 

topological graph representation and end groups but different repeat units, shown in Figure 5a-d. 

These polymer examples are collected and modified from Shim et al.71 All four polymers are 
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diblock copolymers, and they have an identical stochastic topological graph representation with 

nodes’ and edges’ details shown in Figure 5e, where the colors of nodes match with the repeat 

units and end groups, and the directions of the edges match with the connection paths. Therefore, 

all the pairwise 𝑆TOP = 1.0 and 𝑆EG = 1.0, and  𝑆RU determines the overall pairwise similarity 

𝑆OA. The results are shown in Figure 5f,g. Taking C1-1 as a reference, the similarity order is C1-

3 > C1-2 > C1-4; this is consistent with chemical intuition since adding more functional groups 

increases the dissimilarity between monomers and adding functional groups to the simpler 

monomers results in larger dissimilarity. 

 

 
Figure 5: Four diblock polymers and the corresponding canonical BigSMILES, C1-1 (a), C1-2 (b), 

C1-3 (c), C1-4 (d) which have the same topological graph representation (as shown in (e)) and end 

groups but different repeat units. The polymerization degrees, 𝑚 and 𝑛 are not specified, so that 

all the repeat units share equal weight. (f) Pairwise repeat unit ensemble 𝑆RU  and (g) overall 

similarity 𝑆OA for four diblock polymers in Case 1. 

 

 

Case 2: Varying Topologies 

Apart from the repeat units, polymers’ topology can also largely affect the polymer’s properties in 

many aspects. Case 2 compares the pairwise similarity score of polymers that have the same repeat 

units but different topological graph representations, as shown in Figure 6a-d. These examples of 

reversible addition-fragmentation chain transfer (RAFT) 72,73 polystyrenes (C2-1: one-arm, C2-2: 
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two-arm, C2-3: three-arm, C2-4: four-arm) are collected and modified from Altintas et al. 72 and 

Zayas et al.73 

 
Figure 6: Four RAFT polystyrenes, the corresponding canonical BigSMILES and stochastic graph 

representations. (a) A one-arm polymer C2-1, (b) a two-arm polymer C2-2, (c) a three-arm star 

polymer C2-3, and (d) a four-arm star polymer C2-4. (e) Pairwise topological similarity 𝑆TOP, (f) 

end group ensemble similarity 𝑆EG, and (g) overall similarity 𝑆OA for four RAFT polymers in Case 

2. 

 

All four RAFT polymers have the same styrene repeat unit. Therefore, the pairwise 𝑆RU = 1 for 

repeat unit ensembles between all polymer pairs. However, as shown in Figure 6a-d, these four 

polymers have different stochastic graph representations. The results of the pairwise 𝑆TOP (see 

Figure 6e) reflect these topological differences. Taking the one-arm polymer C2-1 as a reference, 

𝑆TOP decreases from C2-2 to C2-4, showing that graph edit distance intuitively increases as the 
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difference in the number of arms increases. The absolute graph edit distance, 𝐺𝐸𝐷(C2-1, C2-2) =

𝐺𝐸𝐷(C2-2, C2-3) = 𝐺𝐸𝐷(C2-3, C2-4) , but 𝑆TOP  is determined by the normalized graph edit 

distance.  Therefore, the neighbor pairwise similarity score increases with the increasing number 

of arms: 𝑆TOP(C2-3, C2-4) > 𝑆TOP(C2-2, C2-3) > 𝑆TOP(C2-1, C2-2) . This feature is also 

chemically intuitive; when the number of arms is low, adding an arm is a large change in topology, 

but when the number of arms is high, adding an arm leads to a smaller change in the topology. The 

end group ensembles are also slightly different because of the chemical structure changes to the 

core of the star (see Figure 6f). The ranking of the overall similarity score SOA (see Figure 6g) 

which is mainly determined by STOP, follows the same trends as STOP. 

 

 

Case 3: Varying Both Repeat Units and Topologies 

In many real-world applications, one is interested in the similarity between polymers that have 

both different chemistries and different topologies. Three block copolymers which have both 

different repeat units and different topological graph representations are shown in Figure 7a-c: C3-

1, a diblock polymer; C3-2, a triblock polymer; and C3-3, a tetrablock polymer. The default weight 

assignment, 𝑊RU = 0.475, 𝑊TOP = 0.475, and 𝑊EG = 0.05 is one suitable option, but this case 

also illustrates how modifying the values of 𝑊RU  and 𝑊TOP  can change the overall pairwise 

similarity scores 𝑆OA and affect the final ranking. For simplification, all three block polymers have 

the same end groups and 𝑊EG = 0.05 is held constant. 
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Figure 7: Three block polymers, the corresponding canonical BigSMILES and stochastic graph 

representations. (a) a diblock polymer C3-1, (b) a triblock polymer EC-2, and (c) a tetrablock 

polymer C3-3. (d) Pairwise repeat ensemble similarity 𝑆RU, (e) topological similarity 𝑆TOP, and (f) 

overall similarity 𝑆OA for three block polymers in Case 3. 

 

 

 

The results of pairwise repeat unit similarity scores 𝑆RU are shown in Error! Reference source 

not found.Figure 7d, and the results of the pairwise topological similarity score 𝑆TOP are shown 

in Error! Reference source not found.Figure 7e. C3-1, C3-2, C3-3 have the same end groups; 

therefore, the pairwise 𝑆EG = 1 for all pairs. If C3-1 is taken as the reference, the repeat units of 

C3-3 are closer to C3-1’s than C3-2’s based on their chemical structures in Figure 7a-c. Therefore, 

C3-3 tetrablock polymer has a higher 𝑆RU than C3-2 triblock polymer.  With respect to topology, 

GED increases with increasing difference in block number. Therefore, C3-3 tetrablock polymer 

has a lower 𝑆TOP than C3-2 triblock polymer. Therefore, the similarity ranking of  𝑆RU is opposite 

to the similarity ranking of  𝑆TOP for this case.  In this situation, modifying the values of 𝑊RU and 
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𝑊TOP can change the final ranking order of 𝑆OA (see Supporting Information), thus demonstrating 

the flexibility of the polymer similarity method proposed. 

 

Case 4: Graft Copolymers 

The polymer similarity method can be applied to complex polymer architectures. Case 4 

demonstrates similarity scoring for graft polymers (see Figure 8a-d) collected from Walsh et al.55 

and Su et al. 74 Here, degrees of polymerization are unspecified; therefore, the molecular fragment 

weights are the defaults (see Figure 4f). Similarity calculations for graft polymers with specified 

degrees of polymerization are included in the Supporting Information. 

 
Figure 8: Four graft polymers, the corresponding canonical BigSMILES and stochastic graph 

representations. (a) C4-1 and (b) C4-2 are homo graft polymers but have different main chain 

repeat units and side chain repeat units. (c) C4-3 is a random graft copolymer, where one monomer 

on the main chain has a side chain, and the other monomer on the backbone does not have a side 
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chain. (d) C4-4 is a diblock graft copolymer, where one monomer on the main chain has a side 

chain but the other monomer does not. The polymerization degrees are not specified for all five 

graft polymers, so the molecular fragment weights are the defaults in Figure 4f. (e) Pairwise repeat 

ensemble similarity 𝑆RU, (f) topological similarity 𝑆TOP, (g) repeat ensemble similarity 𝑆EG and (h) 

overall similarity 𝑆OA for four graft polymers in Case 4. 

 

 

Pairwise similarity scores are shown in Figure 8e-gError! Reference source not found.. C4-1 

and C4-2 have different repeat units on both backbones and side chains, but have similar topology 

graphs. C4-1 and C4-3 have a significant overlapping on the repeat units, but have more different 

topologies. Therefore, from chemical intuition, 𝑆RU(C4-1, C4-2) < 𝑆RU(C4-1, C4-3)  and 

𝑆TOP(C4-1, C4-2) > 𝑆TOP(C4-1, C4-3). The quantitative scores in Error! Reference source not 

found.Figure 8e,f are consistent with this chemical intuition. Using the default weights, the overall 

similarity score 𝑆OA(C4-1, C4-2) < 𝑆OA(C4-1, C4-3) due to the larger difference in 𝑆RU for the 

pair C4-1 and C4-2. C4-3 and C4-4 have the same repeat units and end groups; only C4-3 is a 

random copolymer whereas C4-4 is a block copolymer. Taking C4-1 as a reference, 

𝑆RU(C4-1, C4-3) = 𝑆RU(C4-1, C4-4), but 𝑆TOP(C4-1, C4-3) > 𝑆TOP(C4-1, C4-4). Thus, the order 

of the overall similarity score is 𝑆OA(C4-1, C4-3) > 𝑆OA(C4-1, C4-4). This is equivalent to the 

statement that a homopolymer is closer to a random copolymer than a diblock polymer assuming 

the same repeat units. While the above examples follow intuition, there are many other examples 

for which a clear, intuitive answer does not exist. The method presented here provides a 

quantitative similarity score for all cases and when available, is consistent with intuition. 

 

 

Case 5: Segmented Polymers 

Examples of segmented polyurethanes (see Figure 9a-d) are collected from Szczepańczyk et al. 75 

with the symmetric isocyanates and chain extenders modified to be asymmetric to clarify the 

topological graphs shown in Figure 9e, specifically, that R1 and its mirror R1’ are chemically 

distinct. For simplicity, it is assumed that the degrees of polymerization (𝑥, 𝑦, 𝑧, 𝑛) are not specified, 

but calculations including degrees of polymerization are included in the Supporting Information. 

The comparison between C5-1 and C5-2 quantifies the impact of changing isocyanate, the 

comparison between C5-1 and C5-3 quantifies the impact of changing polyol, and the comparison 

between C5-1 and C5-4 quantifies the impact of changing the chain extenders (see Figure 9a-d). 

Since the weight of the repeat unit in the macromonomer is larger than the weights of backbone 

repeat units, changing the repeat units in the macromonomer leads to a larger effect on similarity. 

Thus, taking C5-1 as reference, C5-3 is the least similar (see Figure 9f,g). Additionally, for C5-2, 

C5-3 and C5-4, each of them only has one different component compared to C5-1, while each of 

them has two different components from the other two. For example, C5-2 has different R1 from 

C5-1, while C5-2 has different R1 and R3 from C5-3, and C5-2 has different R1 and R2 from C5-

4. Therefore, for each of C5-2, C5-3 and C5-4, the similarity score with C5-1 is always larger than 
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the pairwise similarity score with the other two. For instance, the overall similarity 

𝑆OA(C5-2, C5-1) > 𝑆OA(C5-2, C5-3)  and 𝑆OA(C5-2, C5-1) > 𝑆OA(C5-2, C5-4)  (see Figure 9g). 

These results are consistent with the chemical intuition. 

 
Figure 9: Four segmented polymers and the corresponding canonical BigSMILES. (a) C5-1 and 

(b) C5-2 have different isocyanates. C5-1 and (c) C5-3 have different polyols. C5-1 and (d) C5-4 

have different chain extenders. (e) is the stochastic graph representation of all four segmented 

polyurethanes. (f) Pairwise repeat ensemble similarity 𝑆RU , (g) overall similarity 𝑆OA  for four 

segmented polymers in Case 5. 

 

 

Case 6: Unspecified Chemical Groups 

In some cases, molecular fragments have variable groups, commonly called “R-groups”, shown in 

Figure 10. The similarity calculation first identifies the functional groups or chains that  R-groups 

represent and then takes only other remaining molecular fragment structures into consideration; 

therefore, polymer C6-1 has a similarity of 1 with all other polymers illustrated in Figure 10.   
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Figure 10: (a) Polymer C6-1, a polymer with an unspecified “R-group”. (b) Polymer C6-2, (c) 

Polymer C6-3, and (d) Polymer C6-4 are all possible polymer candidates that Polymer C6-1 

represents. 

 

Fine-Ranking Targets When the Same Overall Similarity Score Occurs 

One widespread use for similarity scores is to rank target molecules with respect to their similarity 

to a query molecule. The similarity methods developed herein are suitable for this purpose, but in 

many cases, such as the prior examples Figure 10 and Figure S2b, ties are possible.  If two targets’ 

similarity scores 𝑆OA  are the same, tiebreaking rules, such as those listed below, may be 

implemented in order to produce a single preferred ordinal list of similarities. 

 

1. For polymers with the same overall similarity score 𝑆OA, prioritize component similarity 

scores, 𝑆RU, 𝑆TOP and 𝑆EG, in the order of their weights. For instance, in Figure S2b where 

𝑆OA(C3-1,C3-2) = 𝑆OA(C3-1, C3-3) at the weight setting 𝑊RU = 0.53, 𝑊TOP = 0.42 and 

𝑊EG = 0.05, so fine-ranking is carried out by prioritizing 𝑆RU yielding C3-3 before C3-2 

when taking C3-1 as reference. 

 

2. For pairs that are still tied, rank according to the total number of heavy atoms in the 

canonicalized BigSMILES strings. Targets with a larger number of heavy atoms occupy 

the higher priority order. Figure 10, for example, the results of similarity order is 

C6-3 > C6-4 > C6-2 when taking C6-1 as reference. 

 

3. If the total number of heavy atoms is tied, rankings may be performed by individual atom 

types in the order of atoms with larger atomic numbers. 

 

4. Finally, alphabetized canonicalized BigSMILES39 can break any remaining ties. 
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Areas for Future Development 

One key application of our work is ranking; for this application, a computationally efficient 

algorithm is essential. Thus, several compromises were made to ensure that the methods developed 

here can be immediately used. Specifically, repeat units, end groups, and topology are separated, 

and the nodes’ chemical details in topology are ignored in GED calculation, resulting in a loss of 

the chemical connectivity between nodes. For example, this method gives a similarity score of one 

for ABC and ACB triblock copolymers. For cases where these fine-grained distinctions matter and 

computational speed can be compromised, this limitation can be solved by including the nodes’ 

chemical details in the GED calculation.30 Another simplification is that only the average 

frequencies of the repeat units based on their average polymerization degrees are used in the EMD 

calculation; thus, the dispersity is ignored. For instance, EMD cannot distinguish a RAFT four-

arm star polystyrene with equal arm length and a RAFT four-arm star polystyrene with various 

arm lengths for each arm76,77 where the sums of the four arm-length of these two polymers are 

equal. EMD cannot distinguish a random copolymer and a gradient polymer which have the same 

repeat units and compositions since BigSMILES representations which are used to generate the 

stochastic graph representations cannot distinguish them. Additionally, EMD cannot distinguish 

bottlebrush polymers with hourglass, football, bowtie, and sphere architecture profiles for the graft 

side chains55 where the sums of their whole graft side chain length are the same. Again, this 

simplification ensures the method is computationally efficient. 

 

Another limitation of this work is that it requires a canonical BigSMILES to generate a 

deterministic stochastic graph. Since the current BigSMILES canonicalization from Lin et al.39 is 

limited to linear polymers and thus cannot handle network polymers and branched polymers, the 

method only applies to polymers with a well-defined backbone. Without canonicalization, multiple 

graph representations and monomer sets are possible for a single polymer, which could lead to a 

similarity score smaller than one even when two polymers are identical. Once a canonicalization 

method for branched and network cases is available, they can be implemented using the same 

methods described herein. 

 

Finally, tacticity has significant effects on the physical properties of polymers, such as 

crystallization, melting temperature, solubility, and mechanical properties; however, the treatment 

of tacticity by fingerprinting algorithms can cause challenges for similarity scoring. The influence 

of tacticity on pairwise similarity calculation is studied in the Supporting Information, using an 

example of four polypropylenes with the pure head-to-tail configuration and different tacticities 

(two stereoisomers of isotactic polypropylene, syndiotactic polypropylene, and atactic 

polypropylene). The results show that the two stereoisomers of isotactic polypropylene have the 

highest similarity, and isotactic polypropylene and syndiotactic polypropylene are closer to each 

other when compared to atactic polypropylene, which is chemically intuitive and constant with the 

crystallinity and melting temperature. However, the Morgan fingerprint treats the two 
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stereoisomers of isotactic polypropylene asymmetrically and overly differently, which results in 

two areas for further improvement. Firstly, the similarity scores between the two stereoisomers of 

isotactic polypropylene and syndiotactic polypropylene are found to be similar but not identical, 

contrary to the expected chemical intuition. Secondly, the similarity between the two stereoisomers 

of isotactic polypropylene is expected to be closer to one. One potential solution is to develop a 

different embedding method for molecular fragments, which can treat stereoisomers symmetrically 

and with less differentiation, but that is beyond the scope of this work. 

 

Conclusion 

This work quantitively calculates pairwise chemical similarity by first developing the polymers’ 

stochastic graph representation and then utilizing two similarity measurements, Earth Mover’s 

Distance (EMD) and Graph Edit Distance (GED). The EMD metric captures the similarity of 

repeat units and end groups by computing the similarity score between individual molecular 

fragments according to their chemical structures building on current methods for small molecular 

similarity calculations. EMD preserves the molecular fragments’ chemical characteristics better 

than simply averaging or summing the fingerprints. The GED metric captures the topological 

similarity to illustrate how the two polymers are similar in their topological connections. A series 

of cases illustrate the flexibility and utility of this method across a wide range of polymer 

chemistries. While there is no ground truth for polymer similarity, the method produces results 

that are consistent with chemical intuition across all explored cases. 

 

The similarity metric proposed herein gives a solution to calculate the chemical pairwise similarity 

score, which enables the sorting of retrieved database entries based on a query polymer, as well as 

the detection of abnormal data for polymer data validation. Additionally, the quantitative similarity 

scores can be used to cluster or catalog polymer data and improve polymer discovery. Therefore, 

this method is an essential contribution to the field of polymer informatics. 

 

Code Availability 

Example scripts and information necessary to run and reproduce the examples and the 

corresponding similarity score results contained in this article are posted at the Github repository, 

https://github.com/olsenlabmit/Polymer-Graph-Similarity. 
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