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Abstract

Defining the similarity between chemical entities is an essential task in polymer informatics,
enabling ranking, clustering, and classification. Despite its importance, pairwise chemical
similarity for polymers remains an open problem. Here, a similarity function for polymers with
well-defined backbones is designed based on polymers’ stochastic graph representations generated
from canonical BigSMILES, a structurally-based line notation for describing macromolecules. The
stochastic graph representations are separated into three parts: repeat units, end groups, and
polymer topology. The earth mover’s distance is utilized to calculate the similarity of the repeat
units and end groups, while the graph edit distance is used to calculate the similarity of the topology.
These three values can be linearly or nonlinearly combined to yield an overall pairwise chemical
similarity score for polymers that is largely consistent with the chemical intuition of expert users
and is adjustable based on the relative importance of different chemical features for a given
similarity problem. This method gives a reliable solution to quantitatively calculate the pairwise
chemical similarity score for polymers and represents a vital step toward building search engines
and quantitative design tools for polymer data.

Introduction

Polymers are ubiquitous with applications spanning clothing,' food,” energy,* transportation,* and
health care.” This breadth of applications is achieved due to polymers’ versatility, low-cost
manufacturability, low density and chemical resistance. The massive design space available to
polymer chemists leaves an abundance of potentially useful polymers yet to be identified and
realized. As new polymers are discovered and current chemistries are manipulated, polymeric data
is generated, enabling large polymer databases including PolyInfo,® PIIM (A Polymer Informatics
Database of about 1 Million Polymers),” PolymerGenome,® MaterialsMine,” Open
Macromolecular Genome,!® and CRIPT (Community Resource for Innovation in Polymer
Technology).!! These databases have the potential to facilitate polymer design.'>'® However, to
accelerate polymer design, these databases must be coupled with additional functionalities.!”!® For
example, ranked search enhances data discoverability, and the ability to find similar polymers
which have been previously synthesized, can further enable new polymer chemistries.
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Additionally, classification and clustering algorithms are needed to validate, categorize and
analyze new input polymer data points.!® Such tasks are difficult or impossible without a robust
similarity scoring method that calculates the magnitude of a chemical change between polymers
and quantifies pairwise chemical similarity for polymers.?°

In the field of cheminformatics, similarity scoring methods are well-established for small
molecules. Either the graph structure?! % is retained, or it is converted into a vector, known as a
fingerprint. 2* Then, either vector or graph similarity metrics, such as Tanimoto? and Cosine,*
may be applied to calculate pairwise molecular similarity.?* These similarity scoring methods have
been used for a variety of tasks such as calculating similarity of entries in a drug molecule library,
27 designing new drug molecules, 2® ranking search results,> and calculating the magnitude of a
chemical change from one small molecule to another.?> Specialized machine learning methods also
exist for similarity calculations of sequence-defined biomacromolecules such as proteins, peptides,
and polysaccharides.?”*° Both small molecules and sequence-defined biomacromolecules have
well-defined deterministic structures that are easily represented by graphs with atoms (or
molecular fragments) as nodes and bonds as edges.?>*!*8 In contrast, the vast majority of synthetic
polymers are characterized by stochastic graphs that represent molecular ensembles or
distributions.’**° Previous studies have used monomers and compositions as representations and
utilized methods similar to those developed for small molecules to measure pairwise polymer
similarity, but those methods can only be applied to polymers with simple topologies, such as
homopolymers and copolymers.*'™* These methods do not take into consideration the variety of
topologies and stochastic configurations available to polymers; therefore, it is not possible for
these methods to obtain an accurate and meaningful similarity score for polymers with complex
topologies and stochastic properties, such as star polymers, graft polymers and segmented
polymers.

The first key challenge in developing a broadly applicable polymer similarity metric is developing
a representation for the polymer stochastic graph. Aldeghi et al.* proposed a graph representation
for polymers using stochastic edges. However, the weight of the stochastic edges may not always
be available, and when the weight is known, it is an average value that limits expressiveness. Guo
et al.*é proposed PolyGrammar, which is designed for polymer representation and generative
modeling; however, the current generation of the PolyGrammar only imitates chain growth
polymerization.*® Recently, Lin et al.>* demonstrated that polymers have a direct analogy to formal
languages, and using this, they were able to develop directed graphs and automata-like
deterministic graphs representing polymers. Rather than the graph representing the chemical
structure, the graph represents a generating function that, when the graph is traversed, produces all
possible molecules in the molecular ensemble.

Here, a method for pairwise similarity scoring of polymers based on an adaptation of Lin et al.’s
graph representation *° is proposed that is broadly applicable to stochastic ensembles across a wide



variety of polymer topologies. First, canonical polymer graph representations are generated with
repeat units and end groups as nodes. Then, these graph representations are separated into three

) 474 is utilized to

parts: repeat units, end groups, and topology. The earth mover’s distance (EMD
calculate the similarity of the repeat units, as well as the end groups. Subsequently, graph edit
distance (GED) 3%°%3! is used to calculate the similarity of the topology. Combining similarity
scores for the repeat units, end groups, and topology yields an overall pairwise chemical similarity
for polymers that is largely consistent with the chemical intuition of expert users and is tunable

based on the importance individual users place on specific substructural elements.

Methods

Stochastic Graph Representation

The first step in generating a similarity score is to generate stochastic polymer graphs. The polymer
molecular structure (see Figure 1a) is converted to a canonical BigSMILES>>>3 representation, a
structurally-based line notation for describing macromolecules (see Figure 1b) following the
priority rules of canonicalization procedures from Lin et al.** This canonicalization step is essential
as it ensures that every polymer has exactly one representation. Without this step, it is possible to
generate a similarity score smaller than one for the same polymer, as multiple non-canonicalized
BigSMILES can map to the same polymer. Next, the algorithm from Lin et al.*® parses the
canonical BigSMILES and uses connectivity information to build directed graphs, shown in Figure
Ic. Each node is labeled with either “Start,” “End,” a bonding descriptor, a repeat unit SMILES,
or an end group SMILES. For the repeat units SMILES and end group SMILES, the symbol, *, is
used as a connection point to clearly illustrate which atoms are connected in the polymers and
which part of the repeat units belong to pendant groups. For example, one of Polymer A’s
stochastic objects from its canonical BigSMILES, CC(C[>1])O[<I1], is first transferred to
CC(C*)O*. Next, CC(C*)O* is transferred to *CC(C)O*, which is more intuitive. The transfer
process to a more intuitive SMILES string does not affect the similarity calculation.

For Polymer A, a random copolymer, the directed graph® reads from the left end group OCCO*
to the stochastic bonding descriptor, which can connect either to poly(propylene glycol) (PPO)
with repeat unit *CC(C)O* or poly(ethylene glycol) (PEG) with repeat unit *CCO*. Since H* as
an end group is implicit in the canonical BigSMILES, the directed graph does not have a separate
node for the right end group H* .3 As for Polymer B, a diblock copolymer, the directed graph reads
from the left stochastic bonding descriptor, which can connect the repeat unit *C(CC)C* or its
mirror *CC(CC)*, and then the graph reads the right stochastic bonding descriptor, which can
connect the repeat unit *C(C)C* or its mirror *CC(C)*. If the repeat units are symmetric, such as
*CC*, two connection paths still exist even though these two connection paths are identical.
Therefore, to preserve the topological feature and ensure the robustness of the similarity function,
two possible connection paths are retained for symmetric repeat units. For Polymer C, an
alternating copolymer, the directed graph reads from the left stochastic bonding descriptor, which
connects the repeat unit *C(=0)C(C)CCCC(=0)* or its mirror *C(=0)CCCC(C)C(=0)*, and



then the graph reads the right stochastic bonding descriptor, which connects the second repeat unit
*OC(C)CO or its mirror *OCC(C)O*, and finally the graph returns to the left stochastic bonding
descriptor. Again, both paths are kept for symmetric repeat units.
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Figure 1: Converting polymer molecular structures into the corresponding stochastic polymer
graph representations. (a) A random copolymer (Polymer A), a diblock copolymer (Polymer B),
and an alternating copolymer (Polymer C). (b) Canonical BigSMILES representations produced
using the canonicalization procedures from Lin et al.> (c) The algorithm from Lin et al.*° parses
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the canonical BigSMILES and uses the connectivity information to build directed graphs. Each
node is labeled with either “Start,” “End,” a stochastic bonding descriptor, repeat unit SMILES, or
end group SMILES. The directed graphs are converted into stochastic graphs in panel (d), where
the nodes of “Start” and “End” are removed, stochastic bonding descriptor nodes are represented
by circles with indexes (D1, D2, ...), repeat unit SMILES nodes are represented by squares with
indexes (R1, R2,...), and end group SMILES nodes are represented by hexagons with indexes (E1,
E2,...). The colors of repeat unit SMILES nodes and end group SMILES nodes match the
corresponding repeat units and end groups in the canonical BigSMILES representations and
directed graph representations.

Finally, the directed graphs in Figure 1c are converted into polymer stochastic graphs in Figure 1d
where the nodes of “Start” and “End” are removed, stochastic bonding descriptor nodes are
represented by circles, repeat unit SMILES nodes are represented by squares, and end group
SMILES nodes are represented by hexagons. The colors of repeat unit SMILES nodes and end
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group SMILES nodes match the corresponding repeat units and end groups in the canonical
BigSMILES representations.

Overview of Similarity Method

Based on this stochastic polymer graphs representation, a method to calculate the pairwise overall
chemical similarity between two polymers is proposed, as illustrated in Figure 2. The polymer
graph is decomposed into three components: repeat units, end groups and topology. Linkers
between stochastic objects are also included into this category of end group. Topology here
represents both the local connectivity (the way the monomer units themselves are connected) and
the global topology of the graph. Individual similarity metrics are calculated for each component,
which are then combined to yield an overall similarity score. The earth mover’s distance (EMD)
is used to calculate the similarity scores of the repeat units Sy and the end groups Sgg. The
topological similarity Stop is then calculated from the stochastic graph representations with all
chemical detail removed using graph edit distance (GED). Finally, the overall similarity score Soa
between two polymers is generated by combining these three scores via either geometric or
arithmetic mean. The details of calculating EMD, GED, and overall similarity score are illustrated
in detail in the following sections.
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Figure 2: Schematic of the method for calculating the pairwise chemical similarity between two
polymers. Using the stochastic graph representation, the polymers are separated into three key
features: repeat units, end groups, and topology. Linkers between stochastic objects are also
included with end groups, and topology here represents both the local connectivity (the way the
monomer units themselves are connected) and the global topology of the graph. The similarity
scores for the repeat units Sgy and the end groups Sgg are calculated via earth mover's distance
(EMD) whereas the similarity score for topology Stop is calculated via graph edit distance (GED).



The overall pairwise similarity score Sg, between two polymers is generated by combining these
three scores via either geometric or arithmetic mean.

Earth Mover’s Distance for Sy and Sgg

The workflow of the repeat unit similarity Sgy; is shown in Figure 3 using Polymer A and Polymer
B as an example. The procedure for the end groups is identical to the procedure for repeat units.
The first step is to identify the repeat units. Polymer A has two repeat units (R1a and R24), and
Polymer B has two repeat units (R1g and R2g). Since the frequencies of the repeat units can vary,
the repeat units of each polymer can be conceptualized as a molecular fragment ensemble.
Therefore, the problem of calculating Sy is fundamentally a problem of calculating the similarity
S between different ensembles or distributions of small molecules, each of which may be
computed using existing methods for calculating the pairwise similarity of small molecules.?’
Specifically, molecular fragment ensemble P =

{(pl,wpl), (pz,wpz),..., (pi,wpi),...,(pm, me)} has m molecular fragments, where p; is a
molecular fragment such as a repeat unit or end group and w,,, > 0 is the weight, related to the

average probability (or frequency, z) of the molecular fragment being present in the polymer.
Similarly, the second ensemble Q = {(Ch,wa): (CIz,WqZ),...,(qj,wqj),...,(qn, an)} has n
molecular fragments. The sums of the weights for P and Q are both normalized and equal to one

m — n —
i=1Wp; = Xj=1Wq; = 1.
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Figure 3: Workflow of earth mover's distance (EMD) calculation for ensemble similarity using the
repeat unit sets of Polymers A and B as an example. The first step is to get the repeat units. Polymer
A has two repeats (R1a and R24) and Polymer B has two repeat units (R1s and R2g), where the
subscripts are used for distinction. The second step is to get the corresponding weight for each
repeat unit. The third step is to get the corresponding fingerprints (FPs). The fourth step is to



calculate the set of pairwise distances D = [di’ j] based on the similarity metric. Once the weights
and the set of pairwise distance D = [di, j] are obtained, the fifth step is to optimize the transport
flows F = [f; ;] to calculate the distance EM Dyy; and the similarity score Sgyy. The procedure for
the end groups is identical.

The second step is to obtain the weight of each molecular fragment. Unlike small molecules, whose
chemical structure uniquely determines the molar mass, polymers may have varying degrees of
polymerization or monomer composition for a given chemical structure. When the composition or
degree of polymerization is known, this may be used to determine the weights. For repeat units
within the stochastic objects inside the first level of curly brackets, or equivalently at the same
level as the backbone when the backbone is present, based on the canonical BigSMILES, the
weight w of a repeat unit is directly proportional to the average number of the repeat unit per
polymer, z:

Wy 2

o7 (1)

Wiy Z1

If z; is not specified, then the sum of molecular fragments connected to each stochastic bonding
descriptor shares the same relative weight, and each molecular fragment connected with the same
stochastic bonding descriptor shares the same relative weight. For example, as shown in Figure
4a, in a random copolymer, R1-7-R2, wg; = wg,. In Figure 4b, a diblock copolymer, R1-5-R2,
has wg; = wg,. Figure 4c illustrates a diblock with one block being a random copolymer (R1-7-
R2)-b-R3 such that wg; = wgr, = 0.5wg3. An alternating copolymer, R1-alt-R2 with wg; = wg,
is shown in Figure 4d.

For repeat units that are the nested stochastic objects based on the canonical BigSMILES, such as
the repeat units in the side chain of graft polymers or the repeat units in the macromonomer of
segmented polymers (see Figure 4e,f), the lengths, or equivalently the degrees of polymerization,
of the nested stochastic objects affect the polymer properties.’**> Thus, the length of nested
stochastic objects should be included into the weightings. However, if the relative weights are
proportional to the frequencies, the influence of the backbone repeat unit may be nearly zero when
the nested stochastic objects are long. Therefore, for nested stochastic objects, relative weights
between one repeat unit in the backbone and one in the nested stochastic object are given by a

logarithmic equation.

w Z
—2=1+mn=2 )
Wy Zq

where z;, and w; are the frequency and weight of the backbone repeat unit connected to a nesting
stochastic object; z,, and w, are the frequency and weight of the repeat unit in the nesting
stochastic object. This modification ensures that the weight monotonically increases with the
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monomer frequency while reducing the weight of grafts and segments at high degrees of
polymerization. For example, if z,: z; = 200: 1, then w,: w; = 6.3: 1 The range of the length of

the graft chain or segment part is typically one to hundreds, yielding a range of % of about 1 to
1
22 — 4 is a reasonable choice for a

8. If the lengths of grafts or macromonomers are not specified, "
1

default value.

The weight assignment for the end groups follows the same principles. For example, the same
weight is used for both end groups in linear polymers (see Figure 4c). For graft polymers, the
weight assignment between end groups at the end of the side chains and the end groups on the
backbone also follows Equation 2 because there is one end group per graft side chain. If the degrees
of polymerization are not specified, then the weight of the end groups at the end of the side chains
is four times the weight of the end groups at the end of the backbone chain, as shown in Figure 4e.
With these rules, the similarity algorithm can compare polymers based on chemical structure alone,
without any degree of polymerization or composition information. However, if known, this
information can be used to improve similarity scoring.
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Figure 4: Weight assignment policy for polymers as a function of polymer topology when degrees
of polymerization are not specified. Six types of polymer molecular structures, the corresponding
canonical BigSMILES and stochastic polymer graph representations are displayed. (a) A random
copolymer. (b) A diblock copolymer. (c) A diblock copolymer with one block being a random
copolymer (R1-7-R2)-b-R3. (d) An alternating copolymer. (e) A graft polymer where the
monomer on the backbone have a side chain. (f) A segmented polymer where a polymer is nested
along the backbone.

Returning to the example in Figure 3 and following the above rules, the two repeat unit ensembles
are P = {(R1,,0.5), (R24, 0.5)} for Polymer A and Q = {(R1g, 0.5), (R25, 0.5)} for Polymer B.
For Polymer B, R1p and R1g’ are different configurations in the polymer chain, but R1g and R1s’
are identical when separated from the polymer chain; therefore, the weight of R1s’ is merged to
R1g, and the same for R2p’.

With the ensembles defined, the earth mover’s distance (EMD) is a metric that is well-constructed
to calculate the similarity of ensembles or distributions such as these; it has been successfully
applied in multiple fields for ensemble similarity calculation, such as the similarity of inorganic



solids,*’ the similarity of biomarker expression levels,*® and geometric dataset distances.* EMD
may be conceptualized as the minimal amount of work to transform one distribution into another,
and it can be formulated and solved as a transportation problem. Here, the problem is transforming
one discrete molecular fragment distribution P to another Q with the minimum amount of work
done (EMD), which can be interpreted as a measure of dissimilarity. Therefore, the problem of
calculating Sy and Sgg 1s equivalent to calculating the similarity S between different ensembles
of molecular fragments, each of which may have pairwise similarity s;; computed using existing
methods for calculating the pairwise similarity of small molecules.?

Thus, the next step is to determine the pairwise similarity of the individual molecular fragments.
First, each molecular fragment is represented by a SMILES (Simplified Molecular-Input Line-
Entry System) string®®>’ containing symbols to indicate the interconnections between
monomers”**. These SMILES strings are then transformed into fingerprints using Morgan
fingerprints (radius = 2, nBits = 2048)* as implemented in RDKit>® (step 3 in Figure 2). Then, the
pairwise similarity score between the molecular fragments p; and q;, s; ; are calculated using the

Ceskr

Tanimoto similarity metric.*>>° The similarity score s; ;j ranges from 0 to 1, where self-similarity
is 1. The more similar two molecular fragments p; and q;, the larger s; ;. Apart from the Morgan

fingerprints and Tanimoto similarity metric, different settings for radius, nBits and useChirality of

Morgan fingerprints,*® many other fingerprint embedding functions,** molecular graph embedding

21-23

methods and different similarity metrics® can be utilized to obtain s; ; without modifying the

overarching algorithm for polymer similarity described here.

EMD is inherently a measure of dissimilarity instead of similarity, so first the similarity score

s;,j must be converted to a dissimilarity score using®>3

di,j =1- Si j (3)

as shown in step 4 of Figure 3. After all necessary information is obtained on the w, , Wg; and d;

and for all the entities in the ensembles, the optimized transport flows F = [f; ;] and the EMD are
determined using Equation 4a along with the constraints as specified in Equations 4b-e.

min }iL, Yaalfijdi))
EMD(P,Q) = — = mlnz Z(fi,j -di ;) (4a)
i=1 Zj:lfi.j F i=1j=1
Subjectto f;; > 0,forany1<i<m,1<j<n (4b)
n
Zfi'j =wp,foranyl <i<m (4c)
j=1
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m
Zfi’j = Wq;» foranyl1<j<n (4d)

=1

m n m n

2,2 fir = Q= D vy = 1 (4o
i=1j=1 i=1 j=1

fi,j represents the amount of weight at p; which is transported to g;. The sum of all the individual
flows originating from p; is equal to the weight wy, , and equivalently, the sum of all the individual
flows originating from q; is equal to the weight Wq,» shown in Equations 4cd. Here, f;;-d;; is

the cost for each individual flow. Thus, EMD represents the minimum overall cost to convert one
ensemble P to another ensemble Q.

These equations are coded into Pyomo,>*¢!

language with a diverse set of optimization capabilities, and solved with COIN-OR Branch-and-

a python-based, open-source optimization modeling

Cut (cbe) solver, 426 an open-source mixed integer linear programming solver written in C++.
EMD (P, Q) is bounded between 0 and 1, representing the dissimilarity score between P and Q.

Finally, the similarity score S(P, Q), for the ensemble pair P and Q, may then be defined as

Equation 5 is consistent with Equation 3 relating similarity and dissimilarity for small molecules.
The value of S(P, Q) is also between 0 and 1. The smaller EMD (P, Q), the larger S(P, Q), and the
higher the similarity between P and Q. Both the similarity between two repeat unit ensembles
Sru(P, Q), and the similarity between two end group ensembles Sgg(P, Q) are calculated through
the above EMD method. For the pair Polymer A and Polymer B, Sgy = 0.28 and Sgg = 0.10 (step
5 in Figure 2). Since not all polymers’ molecular representations include the end groups (e.g.,
rings) and implicit end groups, some complementary rules for the end group similarity scores are
set for those situations: (1) if two polymers both do not have end groups, Sgg = 1; (2) if one
polymer has end groups and the other polymer does not have end groups, then Sgg = 1.

EMD provides greater resolution of chemical differences between polymers than simple sums or
averages of the Morgan fingerprints or other fingerprints for each repeat unit. The reason is that
simply averaging or summing* prematurely reduces the dimensionality of the system, eliminating
differences among ensembles. Examples are included in the Supporting Information.

Graph Edit Distance for Stop

The next step is to compute the similarity score for the topology Stop. Since the chemical details
have already been accounted for, the topology can be treated as a homogenous version of the
stochastic graph representation where all edges and nodes are treated identically (see grey topology

11



graphs g, and gg in Figure 2). To calculate the similarity between two different polymer
topologies, Graph Edit Distance (GED) 3°°%64 is utilized. GED, first reported by Sanfeliu and Fu
in 1983,% is a measure of similarity between two graphs g; and g,. The idea behind GED is to
find the minimal set of transformations that can transform graph g, into graph g, by means of edit
operations on graph g;. The set of elementary graph edit operators®* typically includes node and
edge insertion, deletion, and substitution, although substitution is not considered here since the
topology graphs are homogeneous.

k
GED (g4, = min Zc e; 6
(919 =,  min 2, (e)) (©6)

where P (g4, g,) denotes the set of edit paths transforming g, into graph g, and c(e;) is the cost
of each graph edit operation e;. For simplicity, c(e;) = 1, the cost of each graph edit cost is set to
be one. GED(g4,9,) is zero when g; and g, are identical. GED is symmetric; the cost of
transforming graph g, into graph g, is the same as the cost of transforming graph g, into graph

g1 GED is widely used for similarity measurements in small molecules®¢-®3

and sequence-defined
biomacromolecules.**%*7° Using Figure 2 as an example, to transform g, into gg, g adds three

nodes and five edges; therefore the GED(ga, gg) = 8.

To map GED onto a topological similarity score Stop with the range of (0, 1], an exponential
GED(g1,92)
> (1911+1g21)/2

a: GED(91,92)>

decay function on the normalized graph edit distance is used:’!

(7
(N1 +N;)/2
where N; denotes the number of nodes of g;; a is a tunable parameter with the default value to be

Stor(g1,92) = exp (‘

1. Stop(91,92) is 1 when g; and g, are identical. Syop(g1,9g2) is also symmetric, so
Stor(91,92) = Stop(g1,92)- As shown in Figure 2, for Polymer A and Polymer B, Ny, = 4 and
Ny = 7; therefore, Stop(ga, gg) = 0.23.

Although the calculation of an exact GED is non-deterministic polynomial-time hard (NP-hard),
the size of the topological graph is relatively compact unlike the graph representations used for
sequence-defined biomacromolecules, which can be very complex®® for large molar masses.
Additionally, the chemical details are dropped from the stochastic topological graph, and the exact
GED is calculated on a homogenous version of the stochastic graph representation where all edges
and nodes are treated identically, which dramatically reduces computational complexity and cost.
Therefore, computing the exact GED for the stochastic topological graph for polymers represented
in this compact fashion is computationally tractable.

Overall Pairwise Chemical Similarity Score
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From the above EMD and GED calculations, three similarity scores are obtained: Sgy; for repeat
units, Sgg for end groups, and Stop for topology. To calculate the overall similarity score Sgp, a
weighted geometric average is proposed:

SOA — S}Z'{JRU . Spl‘f‘(/)ii)OP . S]?(/}EG (8)

where Wyy + Wrop + Wrg = 1 are the weights for the repeat units, topology and end groups,
respectively. These weights can be tuned to suit the user’s target application. For simplicity,
reasonable defaults of Wy = 0.475, Wrop = 0.475, and Wgg = 0.05 are chosen. The choice of

Wrg = 0.05 was motivated by the low frequency of the end group relative to the repeat unit. This
Wry

EG
and Wrop 1s grounded in the idea that both repeat units and topology are essential for capturing

choice results in = 9.5, about one order of magnitude. The choice of equal setting for Wy

polymer similarity based on chemical intuition. The repeat units reflect what the types of
monomers comprise the polymers, and the repeat units can influence physical properties, such as
glass transition temperature and density. The topology reflects how the monomers are connected
in the polymer chains and what synthesis routines are used for polymerization. The topology also
significantly impacts physical properties, such as viscosity and phase behavior. For additional
freedom for user-specific cases, a weighted arithmetic mean can also be used to calculate the
overall similarity score:

Soa = Sru - Wru + Stop - Wrop + Sk - Wee )
where Wyy + Wrop + Wi = 1 are the weights in the arithmetic function.

Applying these equations along with different weight choices for Polymer A and Polymer B from
Figure 2 yields Sos (Polymer A, Polymer B) = 0.243 with the weighted geometric mean and
Soa(Polymer A, Polymer B) = 0.248 with the weighted arithmetic mean. For this case, the results
are similar for different mean functions because Sy and Stop which occupy the major weights are
similar. If Sgyy and Spop are more distinct, then the choice of mean function evidently affects the
Soa- In the Results and Discussion section, the geometric mean is used as the default as it weighs
very small similarities more heavily. Weighted arithmetic mean values are provided in the
Supporting Information for completeness. In all the following cases, the weight settings Wy =
0.475, Wrop = 0.475, and Wig = 0.05 are used.

Results and Discussion

Case 1: Varying Repeat Units

Case 1 illustrates the computation of the pairwise similarity score of polymers with the same
topological graph representation and end groups but different repeat units, shown in Figure Sa-d.
These polymer examples are collected and modified from Shim et al.”! All four polymers are
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diblock copolymers, and they have an identical stochastic topological graph representation with
nodes’ and edges’ details shown in Figure 5e, where the colors of nodes match with the repeat
units and end groups, and the directions of the edges match with the connection paths. Therefore,
all the pairwise Syop = 1.0 and Sgg = 1.0, and Syy determines the overall pairwise similarity
Soa- The results are shown in Figure 5f,g. Taking C1-1 as a reference, the similarity order is C1-
3 > CI1-2 > Cl1-4; this is consistent with chemical intuition since adding more functional groups
increases the dissimilarity between monomers and adding functional groups to the simpler
monomers results in larger dissimilarity.

(a) (b) (C) E2 (d) E2
Eo E2 E1 Ry R2 CN Ng R1 Rz CN
E1 Ri1 Rz CN g R1 Rz CN NC

NC NC m n m "

m n m n ? O

(l) 0

7o i

C1-1 c1-2 c13 c1a

CC(C)(C#N)I$1ICC(1$1])C[$1]181 CC(C)(CHN)[$1]COC(=0)C(C)[  CC(C)(C#N) {I$1] CC(I$11)CI$1] CC(C)(CHN){[$11COC(=0)C(C)([
THIS1I$1ICC([$1])cTcceeed[$1)C  $ANCISISIHISSIICC([$1)cte  [$11M{{$1]1COC(=0)ctcee(C($INC]  SNCISTS11H{[$1]1COC(=0)ctcee

(C)(C)C#N ceeed [$11)C(C)(C)CHN $11)ccA[$17)C(C)(C)CEN (CA$ANCISNcCA[S1IC(C)(CICHN
(e) (f) Pairwise Sg, (9) Pairwise Sg, 1
R1 R2
0.8
( ) 0.6
E1 D1 D2 E2
)' 04
0.2

R1' R2'

C11 C1-2 C1-3 Cl-4 C11 C1-2 C1-3 C1-4
Figure 5: Four diblock polymers and the corresponding canonical BigSMILES, C1-1 (a), C1-2 (b),
C1-3 (¢), C1-4 (d) which have the same topological graph representation (as shown in (¢)) and end
groups but different repeat units. The polymerization degrees, m and n are not specified, so that
all the repeat units share equal weight. (f) Pairwise repeat unit ensemble Sgy; and (g) overall
similarity Sq, for four diblock polymers in Case 1.

Case 2: Varying Topologies

Apart from the repeat units, polymers’ topology can also largely affect the polymer’s properties in
many aspects. Case 2 compares the pairwise similarity score of polymers that have the same repeat
units but different topological graph representations, as shown in Figure 6a-d. These examples of
reversible addition-fragmentation chain transfer (RAFT) "> polystyrenes (C2-1: one-arm, C2-2:
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two-arm, C2-3: three-arm, C2-4: four-arm) are collected and modified from Altintas et al. ’> and
Zayas et al.”?
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E1 R1 R1 1 R1 EZO R1 E1
~o~US S ; ONAO i i
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C(C)(COC(=0)C(CY[$11I$1]CC([$1])cTcceccl[$1}SC(=S)S  C(COC(=0)C(CX[$1]1$11CC([$1])ccccect[$1]1SC(=S)SCC
CCCC)COC(=0)C(CX[$1]1$11CC([$1])c1ccecc$1]ISC(=S)  CC)(COC(=0)C(CK$1][$11CC([$1])c1cececl[$111SC(=S)SC

sccce CCC)COC(=0)C(CXI$1[$1]CC([$1])c1ccccc[$1]}SC(=S)S
CCcCC
(e) » (f) o (9) o
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C2-4| 0.07 | 0.21 C2-4 C2-4

C2-1 C2-2 C2-3 C2-4 C2-1 C2-2 C2-3 C2-4 C2-1 C2-2 C2-3 C2-4
Figure 6: Four RAFT polystyrenes, the corresponding canonical BigSMILES and stochastic graph
representations. (a) A one-arm polymer C2-1, (b) a two-arm polymer C2-2, (c) a three-arm star
polymer C2-3, and (d) a four-arm star polymer C2-4. (e) Pairwise topological similarity Stop, (f)
end group ensemble similarity Sgg, and (g) overall similarity So, for four RAFT polymers in Case
2.

All four RAFT polymers have the same styrene repeat unit. Therefore, the pairwise Sgy = 1 for
repeat unit ensembles between all polymer pairs. However, as shown in Figure 6a-d, these four
polymers have different stochastic graph representations. The results of the pairwise Stop (see
Figure 6¢) reflect these topological differences. Taking the one-arm polymer C2-1 as a reference,
Stop decreases from C2-2 to C2-4, showing that graph edit distance intuitively increases as the
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difference in the number of arms increases. The absolute graph edit distance, GED (C2-1, C2-2) =
GED(C2-2,C2-3) = GED(C2-3, C2-4), but Syop is determined by the normalized graph edit
distance. Therefore, the neighbor pairwise similarity score increases with the increasing number
of arms: Spop(C2-3, C2-4) > S;op(C2-2, C2-3) > Stop(C2-1, C2-2) . This feature is also
chemically intuitive; when the number of arms is low, adding an arm is a large change in topology,
but when the number of arms is high, adding an arm leads to a smaller change in the topology. The
end group ensembles are also slightly different because of the chemical structure changes to the
core of the star (see Figure 6f). The ranking of the overall similarity score S, (see Figure 6g)
which is mainly determined by Stop, follows the same trends as Stqop.

Case 3: Varying Both Repeat Units and Topologies

In many real-world applications, one is interested in the similarity between polymers that have
both different chemistries and different topologies. Three block copolymers which have both
different repeat units and different topological graph representations are shown in Figure 7a-c: C3-
1, adiblock polymer; C3-2, a triblock polymer; and C3-3, a tetrablock polymer. The default weight
assignment, Wry = 0.475, Wrop = 0.475, and Wrg = 0.05 is one suitable option, but this case
also illustrates how modifying the values of Wy and Wrop can change the overall pairwise
similarity scores Sp, and affect the final ranking. For simplification, all three block polymers have
the same end groups and Wyg = 0.05 is held constant.
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Figure 7: Three block polymers, the corresponding canonical BigSMILES and stochastic graph
representations. (a) a diblock polymer C3-1, (b) a triblock polymer EC-2, and (c) a tetrablock
polymer C3-3. (d) Pairwise repeat ensemble similarity Siyj, (€) topological similarity Stop, and (f)
overall similarity Sp, for three block polymers in Case 3.

The results of pairwise repeat unit similarity scores Sgy are shown in Error! Reference source
not found.Figure 7d, and the results of the pairwise topological similarity score Spop are shown
in Error! Reference source not found.Figure 7e. C3-1, C3-2, C3-3 have the same end groups;
therefore, the pairwise Sgg = 1 for all pairs. If C3-1 is taken as the reference, the repeat units of
C3-3 are closer to C3-1’s than C3-2’s based on their chemical structures in Figure 7a-c. Therefore,
(C3-3 tetrablock polymer has a higher Sgy; than C3-2 triblock polymer. With respect to topology,
GED increases with increasing difference in block number. Therefore, C3-3 tetrablock polymer
has a lower Stop than C3-2 triblock polymer. Therefore, the similarity ranking of Syy; is opposite
to the similarity ranking of Stop for this case. In this situation, modifying the values of Wy and
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Wrop can change the final ranking order of Sy, (see Supporting Information), thus demonstrating
the flexibility of the polymer similarity method proposed.

Case 4: Graft Copolymers

The polymer similarity method can be applied to complex polymer architectures. Case 4
demonstrates similarity scoring for graft polymers (see Figure 8a-d) collected from Walsh et al.*
and Su et al. ”* Here, degrees of polymerization are unspecified; therefore, the molecular fragment
weights are the defaults (see Figure 4f). Similarity calculations for graft polymers with specified
degrees of polymerization are included in the Supporting Information.
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Figure 8: Four graft polymers, the corresponding canonical BigSMILES and stochastic graph
representations. (a) C4-1 and (b) C4-2 are homo graft polymers but have different main chain
repeat units and side chain repeat units. (¢) C4-3 is a random graft copolymer, where one monomer
on the main chain has a side chain, and the other monomer on the backbone does not have a side

C4-4 BUE:L 1.00 1.00
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chain. (d) C4-4 is a diblock graft copolymer, where one monomer on the main chain has a side
chain but the other monomer does not. The polymerization degrees are not specified for all five
graft polymers, so the molecular fragment weights are the defaults in Figure 4f. (e) Pairwise repeat
ensemble similarity Sgy, (f) topological similarity Stop, (g) repeat ensemble similarity Sgg and (h)
overall similarity Sg, for four graft polymers in Case 4.

Pairwise similarity scores are shown in Figure 8e-gError! Reference source not found.. C4-1
and C4-2 have different repeat units on both backbones and side chains, but have similar topology
graphs. C4-1 and C4-3 have a significant overlapping on the repeat units, but have more different
topologies. Therefore, from chemical intuition, Sgpy(C4-1, C4-2) < Spy(C4-1, C4-3) and
Stop(C4-1, C4-2) > Syop(C4-1, C4-3). The quantitative scores in Error! Reference source not
found.Figure 8e,f are consistent with this chemical intuition. Using the default weights, the overall
similarity score Spp (C4-1, C4-2) < Soa(C4-1, C4-3) due to the larger difference in Sgy; for the
pair C4-1 and C4-2. C4-3 and C4-4 have the same repeat units and end groups; only C4-3 is a
random copolymer whereas C4-4 is a block copolymer. Taking C4-1 as a reference,
Sru(C4-1, C4-3) = Spy(C4-1, C4-4), but Stop(C4-1, C4-3) > Stop(C4-1, C4-4). Thus, the order
of the overall similarity score is Sop (C4-1, C4-3) > Soa(C4-1, C4-4). This is equivalent to the
statement that a homopolymer is closer to a random copolymer than a diblock polymer assuming
the same repeat units. While the above examples follow intuition, there are many other examples
for which a clear, intuitive answer does not exist. The method presented here provides a
quantitative similarity score for all cases and when available, is consistent with intuition.

Case 5: Segmented Polymers

Examples of segmented polyurethanes (see Figure 9a-d) are collected from Szczepanczyk et a
with the symmetric isocyanates and chain extenders modified to be asymmetric to clarify the
topological graphs shown in Figure 9e, specifically, that R1 and its mirror R1’ are chemically

1. 75

distinct. For simplicity, it is assumed that the degrees of polymerization (x, y, z, n) are not specified,
but calculations including degrees of polymerization are included in the Supporting Information.
The comparison between C5-1 and C5-2 quantifies the impact of changing isocyanate, the
comparison between C5-1 and C5-3 quantifies the impact of changing polyol, and the comparison
between C5-1 and C5-4 quantifies the impact of changing the chain extenders (see Figure 9a-d).
Since the weight of the repeat unit in the macromonomer is larger than the weights of backbone
repeat units, changing the repeat units in the macromonomer leads to a larger effect on similarity.
Thus, taking C5-1 as reference, C5-3 is the least similar (see Figure 9f,g). Additionally, for C5-2,
C5-3 and C5-4, each of them only has one different component compared to C5-1, while each of
them has two different components from the other two. For example, C5-2 has different R1 from
C5-1, while C5-2 has different R1 and R3 from C5-3, and C5-2 has different R1 and R2 from C5-
4. Therefore, for each of C5-2, C5-3 and C5-4, the similarity score with C5-1 is always larger than
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the pairwise similarity score with the other two. For instance, the overall similarity
Soa(C5-2, C5-1) > Soa(C5-2, C5-3) and Spa(C5-2, C5-1) > Soa(C5-2, C5-4) (see Figure 9g).
These results are consistent with the chemical intuition.
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Figure 9: Four segmented polymers and the corresponding canonical BigSMILES. (a) C5-1 and
(b) C5-2 have different isocyanates. C5-1 and (c) C5-3 have different polyols. C5-1 and (d) C5-4
have different chain extenders. (e) is the stochastic graph representation of all four segmented
polyurethanes. (f) Pairwise repeat ensemble similarity Spyy, (g) overall similarity So, for four
segmented polymers in Case 5.

Case 6: Unspecified Chemical Groups

In some cases, molecular fragments have variable groups, commonly called “R-groups”, shown in
Figure 10. The similarity calculation first identifies the functional groups or chains that R-groups
represent and then takes only other remaining molecular fragment structures into consideration;
therefore, polymer C6-1 has a similarity of 1 with all other polymers illustrated in Figure 10.
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Figure 10: (a) Polymer C6-1, a polymer with an unspecified “R-group”. (b) Polymer C6-2, (c)
Polymer C6-3, and (d) Polymer C6-4 are all possible polymer candidates that Polymer C6-1
represents.

Fine-Ranking Targets When the Same Overall Similarity Score Occurs

One widespread use for similarity scores is to rank target molecules with respect to their similarity
to a query molecule. The similarity methods developed herein are suitable for this purpose, but in
many cases, such as the prior examples Figure 10 and Figure S2b, ties are possible. If two targets’
similarity scores Sp, are the same, tiebreaking rules, such as those listed below, may be
implemented in order to produce a single preferred ordinal list of similarities.

1. For polymers with the same overall similarity score Spu, prioritize component similarity
scores, Sru, Stop and Sgg, in the order of their weights. For instance, in Figure S2b where
Soa(C3-1,C3-2) = Spa(C3-1, C3-3) at the weight setting Wiy = 0.53, Wrgp = 0.42 and
Weg = 0.05, so fine-ranking is carried out by prioritizing Sgy; yielding C3-3 before C3-2
when taking C3-1 as reference.

2. For pairs that are still tied, rank according to the total number of heavy atoms in the
canonicalized BigSMILES strings. Targets with a larger number of heavy atoms occupy
the higher priority order. Figure 10, for example, the results of similarity order is
C6-3 > C6-4 > C6-2 when taking C6-1 as reference.

3. [If the total number of heavy atoms is tied, rankings may be performed by individual atom
types in the order of atoms with larger atomic numbers.

4. Finally, alphabetized canonicalized BigSMILES?® can break any remaining ties.
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Areas for Future Development

One key application of our work is ranking; for this application, a computationally efficient
algorithm is essential. Thus, several compromises were made to ensure that the methods developed
here can be immediately used. Specifically, repeat units, end groups, and topology are separated,
and the nodes’ chemical details in topology are ignored in GED calculation, resulting in a loss of
the chemical connectivity between nodes. For example, this method gives a similarity score of one
for ABC and ACB triblock copolymers. For cases where these fine-grained distinctions matter and
computational speed can be compromised, this limitation can be solved by including the nodes’
chemical details in the GED calculation.®® Another simplification is that only the average
frequencies of the repeat units based on their average polymerization degrees are used in the EMD
calculation; thus, the dispersity is ignored. For instance, EMD cannot distinguish a RAFT four-
arm star polystyrene with equal arm length and a RAFT four-arm star polystyrene with various
arm lengths for each arm’®”” where the sums of the four arm-length of these two polymers are
equal. EMD cannot distinguish a random copolymer and a gradient polymer which have the same
repeat units and compositions since BigSMILES representations which are used to generate the
stochastic graph representations cannot distinguish them. Additionally, EMD cannot distinguish
bottlebrush polymers with hourglass, football, bowtie, and sphere architecture profiles for the graft
side chains® where the sums of their whole graft side chain length are the same. Again, this
simplification ensures the method is computationally efficient.

Another limitation of this work is that it requires a canonical BigSMILES to generate a
deterministic stochastic graph. Since the current BigSMILES canonicalization from Lin et al.*” is
limited to linear polymers and thus cannot handle network polymers and branched polymers, the
method only applies to polymers with a well-defined backbone. Without canonicalization, multiple
graph representations and monomer sets are possible for a single polymer, which could lead to a
similarity score smaller than one even when two polymers are identical. Once a canonicalization
method for branched and network cases is available, they can be implemented using the same
methods described herein.

Finally, tacticity has significant effects on the physical properties of polymers, such as
crystallization, melting temperature, solubility, and mechanical properties; however, the treatment
of tacticity by fingerprinting algorithms can cause challenges for similarity scoring. The influence
of tacticity on pairwise similarity calculation is studied in the Supporting Information, using an
example of four polypropylenes with the pure head-to-tail configuration and different tacticities
(two stereoisomers of isotactic polypropylene, syndiotactic polypropylene, and atactic
polypropylene). The results show that the two stereoisomers of isotactic polypropylene have the
highest similarity, and isotactic polypropylene and syndiotactic polypropylene are closer to each
other when compared to atactic polypropylene, which is chemically intuitive and constant with the
crystallinity and melting temperature. However, the Morgan fingerprint treats the two
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stereoisomers of isotactic polypropylene asymmetrically and overly differently, which results in
two areas for further improvement. Firstly, the similarity scores between the two stereoisomers of
isotactic polypropylene and syndiotactic polypropylene are found to be similar but not identical,
contrary to the expected chemical intuition. Secondly, the similarity between the two stereoisomers
of isotactic polypropylene is expected to be closer to one. One potential solution is to develop a
different embedding method for molecular fragments, which can treat stereoisomers symmetrically
and with less differentiation, but that is beyond the scope of this work.

Conclusion

This work quantitively calculates pairwise chemical similarity by first developing the polymers’
stochastic graph representation and then utilizing two similarity measurements, Earth Mover’s
Distance (EMD) and Graph Edit Distance (GED). The EMD metric captures the similarity of
repeat units and end groups by computing the similarity score between individual molecular
fragments according to their chemical structures building on current methods for small molecular
similarity calculations. EMD preserves the molecular fragments’ chemical characteristics better
than simply averaging or summing the fingerprints. The GED metric captures the topological
similarity to illustrate how the two polymers are similar in their topological connections. A series
of cases illustrate the flexibility and utility of this method across a wide range of polymer
chemistries. While there is no ground truth for polymer similarity, the method produces results
that are consistent with chemical intuition across all explored cases.

The similarity metric proposed herein gives a solution to calculate the chemical pairwise similarity
score, which enables the sorting of retrieved database entries based on a query polymer, as well as
the detection of abnormal data for polymer data validation. Additionally, the quantitative similarity
scores can be used to cluster or catalog polymer data and improve polymer discovery. Therefore,
this method is an essential contribution to the field of polymer informatics.

Code Availability

Example scripts and information necessary to run and reproduce the examples and the
corresponding similarity score results contained in this article are posted at the Github repository,
https://github.com/olsenlabmit/Polymer-Graph-Similarity.
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