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Two-dimensional, critically-coordinated mechanical networks can exhibit topologically polarized 
modes that are exponentially localized to a particular edge; however, the coupling of such in-plane 
deformation to out-of-plane curvature remains largely unexplored. Here, we investigate a class of 
mechanical bilayers as a model system for designing topologically protected edge modes beyond the 
in-plane paradigm. In particular, we apply the spring-mass modeling framework, familiar to topolog- 
ical mechanics, to bilayers with mirror-symmetric layers adjoined via a particular choice of interlayer 
connections, and we show that a unified topological index can be defined, thereby characterizing 
the omnimodal topological polarization of both in-plane and out-of-plane modes. Furthermore, we 
quantify the manner in which these flexural modes are lifted to finite frequencies while remaining 
localized when the harmonic springs are replaced by elastic beams. This analysis is supported by 
experiments conducted on a prototypical lattice fabricated via additive manufacturing where we 
confirm both the edge selectivity and the frequency selectivity of the mechanical structure. 

 
I. INTRODUCTION 

 
Topological phases of matter have properties that are 

characterized by a topological invariant, rather than by 

symmetry breaking alone. Examples include electronic 

topological insulators where the band structure of the 

bulk ensures the existence of topologically protected, con- 

ducting states on the boundary [1, 2]. Similar topological 

phases exist for a variety of mechanical systems which can 

be utilized for the design of mechanical metamaterials 

with one-way propagating elastic waves [3–8], including 

elastic plates where in-plane extensional modes couple 

to out-of-plane flexural modes [9–15]. These topological 

insulator analogues are a subset of more general topo- 

logical mechanical metamaterials [16, 17], which also in- 

clude systems that possess topologically protected static 

properties such as zero-frequency edge modes and force- 

bearing modes [18–26]; however, the coupling between in- 

plane and out-of-plane degrees of freedom for such zero 

modes remains to be explored. 

Maxwell networks are discrete mechanical systems that 

possess equal numbers of degrees of freedom and en- 

ergetic constraints, such as networks of point masses 

connected by harmonic springs [27, 28] and fiber net- 

works relevant for biological structures [29–31]. Such 

systems possess an average coordination number equal 

to twice the dimension of their embedding space, which 

places them near onset of the rigidity transition [27, 32]. 

Nonetheless, this class of materials can still exhibit var- 

ious modes of deformation such as nonlinear lattice re- 

configurations [33, 34], mechanical solitons [35, 36], me- 

 

 
∗ Authors share equal contribution. 
† maox@umich.edu 
‡ sgonella@umn.edu 

chanical Weyl modes [23–25, 37], and of present inter- 
est: exponentially localized zero frequency modes. Inter- 

estingly, an excess of these modes can be localized to a 

particular boundary, a phenomenon known as topological 
polarization, whereby opposite sides of the material are 

rendered floppy or stiff [18–26]. 

Although the in-plane, topologically polarized modes 

of two-dimensional Maxwell lattices are well understood, 

fundamental questions remain about the mechanics of 

two-dimensional Maxwell lattices embedded in three- 

dimensional space. Flexural modes dominate the low- 

energy mechanical response of thin plates due to the rel- 

ative scaling of their bending and stretching moduli [38]. 

This feature can be manipulated for the deployment and 

transformation of mechanical structures by programming 

particular flexural modes into the sheet, such as the rigid 

folding modes of origami metamaterials [39–41]. How- 

ever, triangulated origami, which lies at the Maxwell 

point, possesses a hidden symmetry that prohibits its 

topological polarization [42]. While this hidden symme- 

try can be broken by introducing an equal number of 

quadrilateral faces and holes [43], thereby yielding topo- 

logically polarized Maxwell kirigami [44], these quadri- 

lateral faces exhibit additional low-energy modes, due to 

bending of the faces [45, 46], which are not necessarily 

localized. 

Alternatively, mechanical bilayers could be used to 

generate topologically polarized flexural edge modes by 

utilizing the well-developed topological phase space of 

two-dimensional Maxwell lattices [22]. Indeed, bilay- 

ers composed of two kagome layers with mismatched 

characteristics (polarized and unpolarized) exhibit edge- 

localized, finite-frequency modes due to the coupling of 

in-plane and out-of-plane mechanics enforced by the com- 

patibility constraints at the interface between the lay- 

ers [47]. However, in contrast to the planar kagome lat- 

tice, an analytical characterization of topologically po- 
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larized edge modes in Maxwell bilayers is missing; such 

insight could provide guidance on the construction of a 

bilayer which exhibits edge modes that can be actuated 
from both in-plane and out-of-plane excitations, a con- 

dition that we refer to as omnimodal polarization. In 

addition, the observation of these edge modes at finite 
frequencies is a hallmark of experimental realizations of 

Maxwell lattices, such as the planar kagome lattice [48], 
where stiffness in the physical joints lifts the zero modes 

to finite frequencies [49–51] and can move edge modes 

into the bulk [52]. This offers a new platform for the edge 
transport of topological flexural modes, distinct from ex- 

isting topological insulator analogues. 

In the present manuscript, we introduce a family of 

mechanical structures, referred to as mirror-symmetric 

kagome bilayers, and we use analytical calculations, nu- 

merical simulations, and experimental observations to in- 

vestigate their topologically polarized edge modes, with 

particular emphasis on the out-of-plane deformations. 

We first consider the system as an idealized Maxwell lat- 

tice and show that the mirror symmetry between the lay- 

ers, along with a particular choice of interlayer connec- 

tions, controls the topological polarization of the bilayer. 

Next, we replace the harmonic springs of the Maxwell 

bilayer with elastic beams that meet at rigid joints and 

explore the dependence of the mode frequency as well 

as the mode localization on the thickness of these beams. 

Finally, we use laser vibrometry experiments to elucidate 

the topologically polarized edge modes on a 3D-printed 

bilayer prototype and support these results with numer- 

ical simulations. 

 
 

II. RESULTS AND DISCUSSION 

 
A. Topological polarization of Maxwell bilayers 

 
Maxwell bilayers are critically-coordinated spring-mass 

networks which are embedded in three-dimensional space 

and are periodic along two of these directions. Here, we 

review the topological mechanics of two-dimensional dis- 

torted kagome lattices and then introduce a family of 

tantly, each vertex possesses two linear degrees of free- 

dom whereas each edge provides one linear constraint so 

that the periodic lattice is critically coordinated. Note 

that the analysis in this section is scale-independent so 

that the lengths are written in dimensionless units. 

The mechanical response of such a spring-mass net- 

work is characterized by its normal modes. The infinites- 

imal displacements, ui and uj, of vertices i and j, respec- 

tively, extend the spring adjoining these vertices to first- 

order, rˆij (uj ui), thereby leading to a restoring force 

directed along their shared edge, rˆij, which causes the 

masses to oscillate about their equilibrium position with 

frequency ω. The linear operator, C, called the compat- 
ibility matrix, maps the vector of all displacements, U, 

to the vector of all extensions, E, so that such oscilla- 

tions correspond to the normal modes, DU = ω2MU, 

of the dynamical matrix, D = CT KC, where M (K) 

is a diagonal matrix of point masses (spring constants). 

For identical point masses, m, and spring constants, k, 

these dynamics can b e non-dimensionalized by introduc- 

ing the timescale m/k, in which case the mass and 

spring constant matrices are given by the identity matri- 

ces M = K = 1. 

For periodic networks, such as the kagome lattice, 

these normal modes are Bloch periodic in the bulk. 

Hence, the compatibility matrix can be diagonalized into 

blocks, C(ξ), for each wavevector, ξ = (ξ1, ξ2), by Fourier 

transforming the unit cell over the cell indices so that 

an intercellular bond belonging to the cell n (e.g., the 

dashed bonds in Fig. 1A) carries a Bloch factor, ein·ξ. 
The corresponding displacements vary between cells as 
U(n) = Ueiξ·n, where U is an eigenvector of the Bloch- 

periodic dynamical matrix D(ξ) = C(ξ)†KC(ξ), with 
denoting Hermitian conjugation. 

Maxwell lattices can exhibit a particular type of nor- 

mal modes, called zero modes, which do not stretch the 

springs and therefore lie in the nullspace of the compat- 
ibility matrix. This nullspace is non-empty at wavevec- 
tors for which the determinant of the square compatibil- 

ity matrix vanishes: det C(ξ) = 0. In general, this de- 
terminant is a Laurent polynomial in the Bloch factors, 

cm ,m ei(m1 ξ1 +m2 ξ2 ), where the highest (lowest) order 

Maxwell bilayers that are composed of mirror copies of 

topologically polarized kagome lattices. We show that 

the symmetry between the layers, along with a particu- 

lar choice of interlayer connections and small height mod- 

ulations, yields zero modes, including both in-plane and 

out-of-plane displacements, that topologically polarize to 

the same edge as they do in the planar lattice at large 

wavenumber. 

Consider the planar, distorted kagome lattice shown in 

Fig. 1A. The unit cell of this network is composed of point 

masses at the three vertices, r1 = (0, 0), r2 = (1, 0.3), 

and r3 = (0.5, 3 + 0.6), and harmonic springs along the 

six edges, rij, connecting the vertices. Each cell is re- 

lated to its neighbors by the lattice vectors, £1 = (2, 0) 

and £2 = (1,  3), so that the position of vertex i in 

of the sum is given by the number of intercellular bonds 

connecting to the next (previous) cell and cm
1 ,m2 

are real- 

valued coefficients that depend on the lattice geometry. 

The symmetric gauge, for which there are an equal num- 

ber of forward and backward intercellular bonds (illus- 

trated by the solid lines of the unit cell in Fig. 1A), is 

used to eliminate any overall phase factors [18, 21, 53]. 

The roots of this polynomial are generically at complex 
wavevectors which correspond to zero-frequency edge 

modes. For any value of the transverse wavenumber, ξ1, 

the determinant of the compatibility matrix in the dis- 

torted kagome lattice vanishes at two distinct ξ2 due to 

the two intercellular bonds in the £2 direction. Since the 

modes vary between cells according to Bloch’s theorem, 

the imaginary part of the wavenumber, κ2 = Im ξ2, spec- 

cell n = (n1, n2) is: ri(n) = ri + n1£1 + n2£2. Impor- ifies the decay rate which determines how the mode am- 
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FIG. 1. spring-mass model for Maxwell bilayers. (A) Topological kagome lattice and its unit cell with vertex positions, ri and 
lattice vectors £i. The solid lines indicate the bonds of the cell defined in the symmetric gauge while the dashed lines indicate 
bonds that belong to adjacent cells. (B) Decay rate, κ2, and (C) winding number, ν2, for the distorted kagome lattice shown 
in panel A. (D) Illustration of the contour taken over the bulk modes, κ2 = 0, that is used to compute the winding number. 
(E) Mirror symmetric kagome bilayer with interlayer separation h between two copies (distinguished by blue and red bonds) 

of the topological kagome lattice in panel A, vertex positions r±, and interlayer connections (indicated by black bonds). (F) 

Decay rate and (G) eigenfrequency of the lowest band, ω, of the coplanar bilayer in panel E, where the dashed lines in panel 
F are exactly the decay rates of the planar modes and the zero decay rate lines correspond to the lines of bulk modes in panel 
G. Illustration of the (H) symmetric in-plane modes, (I) antisymmetric, and (J) vertex-pair out-of-plane modes. 

 
 

plitude accumulates, U(n2) = e−in2 κ2 . These decay 

rates are computed over the real values of the transverse 
wavenumber, ξ1, in Fig. 1B, showing that this particular 

geometry has both of its zero modes localized to the top 

edge (which corresponds to positive values of n2) when 

subjected to periodic boundary conditions in the £1 di- 

rection. This means that the the top edge is inherently 

floppy relative to the bottom edge.  More general two- 

 

ibility matrix within a region by integration of its phase 
over the contour enclosing the region [55]. In particular, 
the contour can be taken over the bulk modes, κ2 = 0, 

which bound the modes localized to the top edge, κ2 < 0, 

and those localized to the bottom edge, κ2 > 0, as illus- 

trated in Fig. 1D. Thus, for any value of the transverse 

wavenumber, ξ1, the winding number, 

dimensional Maxwell lattices exhibit zero modes at one 

ξ2 = ξ2(ξ1) per intercellular bond in the £2 direction, 

but interestingly always possess two zero modes in the 

 
ν2(ξ1) = 

 1  +π 

2π −π 

 ∂ 
dξ2 

ξ2 

 

Im log det C(ξ1, ξ2), (1) 

continuum limit [53, 54]. 

The localization of these zero modes is topologically 

protected by an integer-valued invariant called the wind- 
ing number [18]. This quantity counts the relative num- 

ber of zeros and poles of the determinant of the compat- 

determines the relative number of zero modes localized 

to each edge. In the symmetric gauge, this determi- 

nant has an equal number of roots and poles at the ori- 

gin [18, 21, 53] so that an unpolarized kagome lattice, 

which has one zero mode localized on each of the two 
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opposing edges, has a winding number of ν2 = 0. For 

the polarized kagome lattice with strictly negative decay 

rates, the winding number is ν2 = 1 for every transverse 

wavenumber, as shown in Fig. 1C. Note that the winding 

number is undefined when the contour crosses zero modes 

such as the rigid body modes at ξ1 = 0 as well as bulk 

modes referred to as Weyl points where the topological 

invariant can undergo a jump discontinuity [37]. 

type, Usym, has symmetric in-plane with vanishing out- 

of-plane displacements and the other type, Uasym, has 

antisymmetric in-plane with non-vanishing out-of-plane 
displacements, 

 

Usym = (+UI, 0, +UI, 0), (4) 

Uasym = (+UI, U−, −UI, U+), (5) 

This framework for topological mechanics can be ap- ⊥ ⊥ 
plied to any Maxwell lattice, such as the symmetric 
kagome bilayer shown in Fig. 1E. This particular bilayer 

is composed of mirror copies of the polarized kagome lat- 
tice shown in Fig. 1A (distinguished by blue and red 

edges) separated by interlayer height, h = 0.75. The 

positions of the six point masses in the unit cell can be 

written in terms of the planar positions: r± = ri h zˆ, 

where +( ) specifies a mass in the upper (lower) layer. 
Since these masses now possess three linear degrees of 

where U+ = U due to asymmetry of the interlayer 

connections. The third type of zero mode, Upair is the 

strictly out-of-plane displacement of any pair of vertices 

that are coupled by the interlayer constraints, 

 

U = (0, δ−, 0, δ+), (6) 

where δ− = δ+ are the isolated out-out-of plane displace- 
freedom, six additional springs are added to the unit cell i j 

to make the bilayer critically coordinated, as indicated 

by the black edges in Fig. 1E, which connect the vertices 

in pairs between the upper and lower layers, 

ments of vertices i and j in the lower and upper layers 
respectively, which are connected via interlayer bonds. 

These vertex-pair modes exist at wavevectors for which 

the displacements of vertices that are coupled by inter- 
layer connections do not accumulate: δ (nt) = δ eξ·n

l 

= 
i i 

r+ ←→ r− ←→ r+(1, 0), 

r+ ←→ r− ←→ r+(−1, 1), 

 
(2) 

δi. Note that Maxwell bilayers with larger unit cells can 
exhibit a similar type of mode which couples more than 

r+ ←→ r− ←→ r+(0, −1), 

where the final vertices lie in adjacent cells denoted by 
n = (n , n ). While alternative choices of these inter- 

connections are of the form given in Eqn. (2). 

Since the mirror-symmetric kagome bilayer has six to- 

tal intercellular bonds along the £2 direction (two from 
1 2 each layer and another two adjoining the layers together), 

layer connections can be made, this particular connec- 
tivity yields a predictable topological phase space. 

The corresponding Bloch-periodic compatibility ma- 

trix maps in-plane ( ) and out-of-plane ( ) degrees of 

freedom in the upper (+) and lower ( ) layers to con- 

straints on the upper (+), lower ( ), and interlayer ( ) 

bonds: 

it can exhibit up to six zero modes localized to a sin- 

gle edge for any value of the transverse wavenumber ξ1. 

Both the symmetric mode in Eqn. (4) and the antisym- 

metric mode in Eqn. (5) vary between cells according 

to the wavevectors of the planar lattice zero modes so 

that their decay rates are doubly degenerate, as shown 

in Fig. 1F. The two symmetric and antisymmetric modes 

at ξ1 = π are respectively illustrated in Figs. 1H and I, 

    
− 

−  U−  matching the color of their respective decay rates. The 

E+  =  0 C+ 0 C+
  I  . (3) − + 

3 1
 

I 

E± 
C± 

⊥ 
U−  

 
 

 

ξ2 = 0 and δ2 = δ3 for ξ2 = ξ1, as illustrated in Fig. 1J. 

Importantly, the mirror symmetry implies that the in- 

tralayer, in-plane constraints are equal for each layer, 

Fig. 1G where there exists a third line corresponding to 
δ− = δ+ at ξ1 = 0, as well as boundary modes. Impor- 

1 2 
− = C+, so that the two zero modes of the planar 

lattice remain zero modes of the bilayer. The character- 

ization of the remaining modes depends on the relative 

heights of the vertices within each layer. 
For coplanar bilayers, where the upper and lower lay- 

ers are flat, the intralayer, out-of-plane constraints are 

trivially satisfied, C−U− = −C+U+ = 0, so that the 

tantly, the presence of these bulk modes at all transverse 
wavenumbers invalidates the winding number. 

The introduction of a vertex-dependent height mod- 
ulation, ηi, as illustrated in Fig. 2A, breaks the ge- 
ometry singularity that gives rise to these bulk modes. 

The corresponding vertex positions are computed r± = 

ri ± ( h + ηi)zˆ, and the intralayer edges now constrain 
out-of-plane displacements are only constrained by the 

interlayer connections which couple individual pairs of 

vertices to one another. Consequently, coplanar, mir- 

ror symmetric Maxwell bilayers have three types of zero 

modes. The first two types exist at the same wavevec- 

tors as the zero modes of the planar lattice, where one 

out-of-plane displacements, C⊥ = C⊥ = 0, so that the 
wavevectors of the zero modes cannot admit antisym- 
metric solutions of the form in Eqn. (5) and there are no 

lines of bulk modes due to the vertex-pair modes of the 

form in Eqn. (6); thus, the degeneracy of the zero modes 

is broken. Interestingly, the decay rates change by an 

⊥ U + 
⊥ 

C 

two vertices to one another provided that the interlayer 

for 

I Note that these can be both bulk modes, as shown in by 
the lines of zero frequency modes of the lowest band in 
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FIG. 2. Mirror symmetric, noncoplanar kagome bilayer. (A) 
Height modulation, η1, makes the layers noncoplanar. (B) 

Decay rates, κ2, and (D) winding number, ν2, as a function 

of the transverse wavenumber, ξ1. The black dashed lines are 
the decay rates for zero modes of the planar kagome. (C) 
Eigenfrequencies of the lowest band with Weyl points that 
yield discontinuities in the winding number in panel D. (E) 
Illustration of the localization of the two strongly decaying 
modes in panel B (with corresponding colors) at ξ1 = π, which 
couple in-plane and out-of-plane displacements. 

 

 

amount that is dependent on the size of the height mod- 

ulation so that at large transverse wavenumber, the four 

edge modes remain localized and the bulk modes localize 

to one side of the bilayer with a low decay rate. 

For the particular choice of η1 = 0.1 and η2 = η3 = 0, 

all six of the zero modes of the kagome bilayer localize 
to the top edge at large transverse wavenumber. This 

is shown by the negative decay rates, κ2(ξ1 = π) < 0, 

in Fig. 2B and the winding number, ν2(ξ1 = π) =  3, 

in Fig. 2D. In contrast to the lines of bulk modes in the 

coplanar bilayer, the noncoplanar bilayer exhibits Weyl 

points (see Fig. 2C) at low wavenumber. The localiza- 
tion of the two strongly localized, non-planar modes are 

illustrated in Fig. 2E. Thus, this construction of mirror- 

symmetric kagome bilayers fully polarizes the lattice so 
that the top is floppy and the polarization is omnimodal 

due to the in-plane and out-of-plane characteristics of 
these modes. 

The analysis of the topologically polarized, mirror- 

symmetric kagome bilayer presented here can be ex- 

tended to bilayers composed of topological square lat- 

tices [22, 37], bilayers without mirror symmetry which 

do not exhibit strictly in-plane modes, and bilayers with 

FIG. 3. 3D-printed structural lattice: (A) Top-down and 
(B) angled views of the symmetric kagome bilayer intro- 
duced in Fig. 1 constructed via SLS and composed of glass- 
fiber-reinforced nylon beams with radius R = 1.5 mm. The 
lattice geometry is proportional to that of the spring-mass 
model. (C) Close-up of the lattice unit cell with lattice vec- 
tors £1 = 2(2, 0, 0) cm and £2 = 2(1, 3, 0) cm. (D) Front 

view of the bilayer with layer height separation h = 3 cm and 
height modulation η1 = 2 mm. 

 

 
interlayer connections that yield flat bands in the copla- 

nar limit (see Appendix A). Thus, investigations of less 

restrictive geometries could provide greater control over 

the presence of bulk modes and exhibit more strongly 

polarized flexural modes. 

 

 
B. Edge modes in structural bilayers: supercell 

analysis simulations 

 
We turn our attention to realizing topological behavior 

of the bilayer in a structural lattice constructed via addi- 

tive manufacturing. Here, we model the bilayer supercell 

as a network of interconnected Timoshenko beams, and 

calculate its band diagram and mode shapes, thereby re- 

vealing the presence of polarized modes (with both in- 

plane and out-of-plane characteristics) below the bulk 

band. However, two of the six polarized edge modes pre- 

dicted in the spring-mass model rise into the bulk under 

beam kinematic conditions. We show that these modes 

localize for beams with vanishingly small radii, where the 

relatively low cost of beam bending results in the recov- 

ery of features of the ideal Maxwell conditions, although 

  

  

 

 

  

 

nonfloppy edge 

4 cm 

floppy edge 
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by D = 
f 

B K B dL, where L is the length of the 

        

 

never reaching them. 

We design a kagome bilayer featuring a geometry and 

connectivity closely matching that of the spring-mass lat- 

tice studied in the previous section, and fabricate the 

10 13-cell prototype shown in Fig. 3 via selective laser 

sintering (SLS) with glass-fiber-reinforced nylon (Strata- 

sys Nylon 12 GF - Young’s modulus = 2.896 GPa - see 

Materials and Methods). In the structural lattice, the 
springs connecting the sites are replaced with beams of 

radius R = 1.5 mm, whose mass is distributed along the 

length of the beam, rather than lumped at the sites. The 

lattice features an interlayer height h = 3 cm and mod- 

ulation at site 1 η1 = 2 mm. Note that constraints are 

printed on the left and right edges of the lattice to act as 

clamping sites in the experiments. 

The bonds of the structural lattice can be modeled as 

3D Timoshenko beams [56, 57] capable of undergoing ax- 
ial, flexural, shear, and torsional deformations. While in 

the spring-mass model connections between sites could 
be interpreted as perfect hinges, so that we refer to them 

as ideal Maxwell, here the beams are joined at internal 

clamps: the relative angles formed by beams meeting at 

under Bloch conditions. 

The resulting supercell band diagram is shown in 
Fig. 4A. We seek the edge modes among the low- 

frequency modes that fall below the bulk band, and to- 
wards the edge of the Brillouin zone, in analogy with 

the scenario described in Ref. [47] – the relevant portion 

of the branches are plotted in black. The mode shapes 

of the lowest four modes at ξ1 = π are shown so that 

the in-plane deformation is shown with color intensity 

proportional to displacement along yˆ (the Cartesian di- 

rection normal to the open boundaries of the supercell 

and lattice) and the out-of-plane deformation with color 

proportional to displacement along zˆ. 

Both in-plane and out-of-plane deformation exhibit 

strong localization at the top end of the supercell, with 

a comparable decay rate.  This means that the nodal 

displacements Ũ 
n2 

of cell n2 in the supercell increase ex- 
ponentially towards the top, n2 = 10. The strength of 

localization is effectively highlighted by the dimensionless 

mode density, 

 I 
˜  ̃

a joint are preserved during deformation. In the finite 
element method (FEM) framework (see Materials and 

Methods), each lattice bond is discretized multiple beam 

ρn
2 

= 
Un2 

· Un2 , (7) 

Ũ · Ũ 

elements, each featuring six degrees of freedom per node: 

three nodal displacements um – one axial and two lat- 

eral (in orthogonal planes) – and three cross sectional 

rotations θm – representing two tilts and a twist – where 

the subscript m is the node index along the beam (see 

Appendix D). 

The dynamical matrix of a single beam element is given 
T 

b L b 

beam element, B is a matrix of derivatives of the shape 
functions, which approximate the compatibility relations 

within one element, and Kb is a diagonal constitutive 
matrix of elastic constants, featuring rigidity contribu- 

tions for axial deformation (scaling with R2), lateral de- 

flection (scaling with R4) [encompassing the effects of, 

both, shear and bending deformability encoded in the 

beam model], and torsional deformation (scaling with 

R4). Dynamical matrices of each individual beam are 

assembled into a global dynamical matrix for the entire 

system, which is used for computational analysis. Note 

that, for each discretized beam element, B plays a role 

analogous to a single row of C in the spring-mass coun- 
terpart, for a single bond. 

We construct a supercell to calculate the band dia- 

gram of the structural lattice by connecting 10 unit cells, 

discretized using 3D Timoshenko beam elements, in the 

£2 direction with free boundary conditions at the ends, 
and Bloch-periodic boundary conditions with respect to 
wavenumber ξ1 in the £1 direction. We extract the Bloch- 

reduced arrays of generalized nodal displacements Ũ and 

cross-sectional rotations Θ̃ in the supercell as the modes 
T T 

of D̃ 
b(ξ1) Ũ Θ̃   = ω 2 M̃ 

b(ξ1) Ũ Θ̃  , where D̃ 
b(ξ1) 

[M̃ 
b(ξ1)] is the dynamical [mass] matrix of the supercell 

which quantifies the contribution of nodal displacements 
in each cell of the supercell, as shown for the lowest six 

modes at wavenumber ξ1 = π in Fig. 4D. The most strik- 

ing observation is that all four modes below the bulk band 
are localized. This is a considerable qualitative improve- 

ment over the results presented in Ref. [47], in which only 
two polarized edge modes were found and, more impor- 

tantly, where the overall signature of polarization in the 

flexural response was significantly milder. Moreover, the 
localization of these modes highlights that the top and 

bottom edges of this bilayer serve as the floppy and non- 

floppy edges, respectively, consistent with the predictions 

from the spring-mass model. Note that Ũ 
n2 

also includes 
the displacement of nodes on the boundary of the super- 

cell which were previously reduced due to application of 

periodic boundary conditions. 

In contrast to the spring-mass lattice, where all six zero 

modes localize, here, modes five and six show no signa- 

ture of localization. This suggests that the structural 

bilayer lattice is not immune from a certain degree of di- 

lution of the topological polarization observed in its ideal 

Maxwell counterpart. This dilution is a direct result of 

the non-ideality of the hinges, enforced by the beam in- 

ternal clamp boundary conditions, which invoke flexural 

mechanisms whose energy cost overwhelms the response 

of the system. Moreover, in response to the relaxation 

of ideal conditions, each of the six zero modes rises to 

finite frequencies by different amounts when compared 

to the bulk modes; this effect should to be correlated to 

the strength of their polarization, although further work 

is needed to confirm this hypothesis [52]. 

Studying the dependence of the mode landscape as a 

function of the strength of the flexural mechanisms of the 
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FIG. 4. (A) Band diagram of a 10-unit bilayer supercell (angled view shown in the inset), calculated using 3D Timoshenko beam 
finite element discretization; mode shape of modes 1-4 at ξ = π, with in-plane (IP) and out-of-plane (OOP) deformation plotted 
with color intensity proportional to displacement along yˆ and zˆ, respectively (each IP and OOP mode shape is normalized by 
the highest displacement value of that data set) - here yˆ is chosen to represent in-plane displacement due to it being normal 
to the top and bottom edges; (B) supercell band diagram for low aspect ratio (AR) beams, (approaching the spring-mass 
model limit) showing six decaying modes separated from the bulk band, whose decay rates at ξ = π - highlighted by the square 
markers - are shown in the mode density ρn2 

vs. cell index plot in the inset); (C) frequency of the six lowest modes as a function 

of AR, with inset showing the mode density ρn2 
vs. cell index plot for the spring-mass system at ξ = π (the legend here also 

applies to panel B and D); (D) ρn2 
vs. cell index for the first 6 modes of the supercell in panel A [with AR value compatible 

with manufacturing constraints] (highlighted be the circle markers), showing four decaying modes and two bulk modes. The 
green region in panel B highlights the practical region of AR - beam with ARs below are filaments outside the realization of 
most additive manufacturing methods, and those above intersect each other and become too thick to approximate with beam 
theory. 

 
 

beams provides insight in how the mechanics of the struc- 

tural lattice deviate from those of the ideal Maxwell case. 

Given the different scaling of axial and bending stiffness 

with the beam radius R (the ratio of the former to the lat- 

ter is 1/R2), the energy cost associated with flexural ef- 

fects becomes negligible as the beam thickness decreases. 

For this reason, a good metric for the strength of the flex- 

ural mechanisms is the beam aspect ratio, AR = R/L̄ ,  

where here L̄ is the length of the shortest bond in the unit 

cell. In Fig. 4C we compare the frequency of the topolog- 

ically polarized modes as a function of AR, monitoring 

the frequencies of the first six modes (the number of topo- 

 

logical modes predicted by the spring-mass model), until 
they enter the bulk band and can no longer be identified. 

As AR decreases, the frequencies tend towards zero, ap- 

proaching – but never reaching – the spring-mass model 

conditions. This implies that the energy cost of flexu- 

ral effects of the beams becomes progressively negligible 

as AR 0, but the kinematics of the internal clamps 

prevent this limit condition from fully approaching the 

behavior of an ideal Maxwell lattice. 

Interestingly, the band diagram of the low AR case 

(Fig. 4B) shows that, as we decrease AR, two additional 

modes drop from the bulk band and become localized, 
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as confirmed by the mode density shown in the inset. 

For comparison, decays for the polarized modes of the 

spring-mass system are shown in the inset of Fig. 4E. 
Note that a 100 unit-cell supercell was used for both the 

low-AR and the spring-mass cases due to the low de- 

cay rate exhibited by some of the modes, which require 
a large number of cells to appreciate. To confirm the 

contrast with the results applicable to our prototype, de- 
cay rates for a 100 unit-cell supercell with the geometric 

characteristics (i.e., AR) of the prototype are shown in 

the Appendix B; even with the longer supercell we still 
only observe four localized modes. 

 

 
C. Wave Propagation in Lattice: Experiments and 

Full-Scale Simulations 

 
We now experimentally demonstrate the activation of 

the polarized modes in the bilayer prototype shown in 
Fig. 3. To this end, we excite the bilayer with, first, 

in-plane and, later, out-of-plane tone bursts, in the fre- 
quency range of the topological edge modes found via 

supercell analysis, and we perform 3D laser Doppler vi- 

brometer measurements on the lattice sites of the bi- 
layer surface. We verify the proper activation of the 

desired bulk or edge modes through a morphological in- 

spection of the wavefield data, and a spectral analysis of 

the transformed wave response in the ξ1 ω plane. Fur- 

thermore, we ensure that the edge-selective polarization 
is frequency-selective, thus providing additional evidence 

that the activated modes are topological in nature. All 

results are corroborated by full-scale wave propagation 
simulations of a bilayer lattice, discretized by 3D Timo- 

shenko beams. 

The prototype is excited with a 5 cycle burst applied at 

the tip of the center-most cell of the top and bottom edge, 

respectively. We excite the lattice at a carrier frequency 

of 900 Hz which lies in the frequency range 760 1050 Hz, 

where the topological modes fold and display the high- 

est density of states, to maximize their signatures in the 

resulting wavefield. The relevant region of the band di- 

agram is shown by the black portions of branches 1-4 in 

Fig. 4A. 

Results for in-plane excitation with a carrier frequency 

at 900 Hz prescribed at the bottom edge are shown in 

Figs. 5A and B, and corresponding results for excitation 

at the top edge are shown in Figs. 5E and F. Snapshots of 

the resulting out-of-plane wavefields show strong asym- 

metry between the top and bottom edge excitations: the 

top edge excitation produces highly localized deforma- 

tion at that edge, while excitation at the bottom edge 

produces a bulk-like flexural wave. This corroborates 

the results from the ideal Maxwell case and the super- 

cell, where the top edge exhibits floppy edge behavior, 

while the bottom edge is nonfloppy. 

We verify activation of the topological modes via spec- 

tral analysis of the response. We collect the out-of-plane 

displacement time histories at evenly spaced points along 

the edge where the excitation is applied, perform a 2D 

discrete Fourier transform (DFT) on this spatio-temporal 

data matrix, and superimpose the contours of the result- 

ing spectral amplitude surfaces onto the supercell band 

diagram to infer which modes are predominantly acti- 

vated. The DFT analysis corroborates the conclusions 

made from the inspection of the wavefields, supporting 

the notion of topological polarization. Excitation at the 

floppy edge produces a spectral signature that is spread 

across the branches associated with the edge modes. In 

contrast, excitation of the nonfloppy edge results in ac- 

tivation of longer wavelength modes (at lower values of 

ξ1) that belong to the flexural bulk band. 

These results are confirmed by simulations performed 

on a full-scale model of the bilayer lattice, discretized 

with 3D Timoshenko beam elements (with the same ele- 

ment characteristics used in the supercell analysis). The 

results for the same excitation conditions used in the ex- 

periments (excitation from the nonfloppy edge in Figs. 

5C-D, and from the floppy edge in Figs. 5G-H) match 

the experiments qualitatively, with only a relatively small 

deviation in frequency that can be attributed to some 

inevitable discrepancies in material properties between 

the model and prototype (due to property variability in 

the material and additive manufacturing process) and to 

other non-idealities in the geometry of the specimen. 

Asymmetric behavior for flexural waves triggered by 

in-plane excitation is observed in the bilayer presented 

in Ref. [47], albeit with a significantly milder polariza- 

tion signature. However, in that case, such asymmetry 

requires a direct in-plane strain activation of the polar- 

ized layer, and is completely lost when the excitation is 

prescribed out-of-plane. We repeat the experiments with 

the current bilayer using an out-of-plane force to test the 

robustness of the asymmetry achievable against changes 

in the excitation force. We show the resulting wavefields 

and DFTs for excitations from the nonfloppy (Figs. 5I 

and J) and floppy (Figs. 5M and N) edges. The results 

are consistent with their in-plane excitation counterparts: 

the wavefield snapshots reveal a highly polarized response 

with displacement localization at the edge when we excite 

at the floppy edge, and propagation deep into the bulk for 

excitation at the nonfloppy edge. Again, the DFT plots 

confirm this dichotomy of the mode activation. The mag- 

nitude of this result can be truly appreciated by recalling 

that the topological character of the bilayer stems from 

the geometry of its two kagome layers. The dichotomous 

behavior between the edges documented in Fig. 5 con- 

firms that the coupling provided by the interlayer con- 

nections is very effective in transferring the topological 

character to the flexural modes, yielding omnimodal po- 

larization encompassing both in-plane and out-of-plane 

behavior. The results are again confirmed by full scale 

numerical simulations (Figs. 5K, L, O, and P), with the 

DFTs showing, even more clearly in this case, topological 

polarization of the edge modes. 

For completeness, we assess the frequency selectivity 

of the polarized behavior by performing experiments and 
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FIG. 5. Wavefield and DFT plots for: experiments (A-B) and simulations (C-D) with an in-plane excitation at the rigid edge, 
experiments (E-F) and simulations (G-H) with an in-plane excitation at the floppy edge, experiments (I-J) and simulations 
(K-L) with an out-of-plane excitation at the rigid edge, and experiments (M-N) and simulations (O-P) with an out-of-plane 
excitation at the floppy edge, all carried out at a carrier frequency of 900 Hz (dashed blue lines). Colorbars in panel M and N 
apply to all wavefields and contours in the figure, respectively, with the former representing the displacement intensity in the 
wavefield and the latter highlighting modal activation on the excited edge. While the wavefields capture the signature of wave 
propagation on the lattice surface, the insets of D, H, L, and P allow to appreciate propagation through the 3D structure of 
the bilayer. Note that the wavefields and contours are normalized by the highest value in their respective data sets. 

 
 

simulations at carrier frequencies away from the floppy 

modes at ξ = π (results in Appendix Figs. C). Excita- 

tions at 300 Hz reveal nearly identical wavefields when 
we switch the excitation edge from floppy to nonfloppy, 

with bulk-like characteristics activated from either side. 

Although the DFTs from the floppy edge does show some 
activation of the mode branches endowed with polarized 

character, the activation occurs at much longer wave- 

 

lengths, where the decay rate of these modes is negligible 

(making them resemble the bulk modes), overall resulting 

in bulk-like behavior dominating the response. Experi- 

ments performed with a carrier frequency at 1300 Hz also 

show largely symmetric behavior, although we still see 

the persistence of some localization when exciting from 

the floppy edge. This is likely due to the fact that the 

excitation energy is spread over a band of frequencies due 

nonfloppy edge 

OOP Displacement Mode Activation 
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to the windowing applied to the burst, which causes the 

edge of the main lobe and the side lobes to excite modes 

in the topological region. 

 

 
III. CONCLUDING REMARKS 

 
We have introduced a broad family of topological 

mechanical metamaterials, referred herein as mirror- 

symmetric kagome bilayers, and explored their mechan- 

ical response via analytical calculations, numerical sim- 

ulations, and experimental testing. We have provided 

an analytical theory of how omnimodal topological po- 

larization arises for coupled in-plane and out-of-plane vi- 

brations of spring-mass Maxwell bilayers. We have also 

explored how these modes can remain localized at finite 

frequency when the system is modeled as a frame of elas- 

tic beams connected at rigid joints. Finally, we have 

experimentally verified the existence of this omnimodal 

polarization via laser vibrometry tests. In conclusion, 

we have developed a framework to design and study me- 

chanical bilayers with topological polarization in both the 

in-plane and out-of-plane domains. 

The connection between the topologically protected 

zero modes in spring-mass models and the exponen- 

tially localized modes in beam models warrants further 

study. While the characteristic aspect ratio of the beams 

serves as an effective parameter for distinguishing be- 

tween regimes with distinct modal properties, the de- 

tailed relation between the topological modes and the 

beam geometries has yet to be fully characterized. Inter- 

estingly, the introduction of beam elements connected at 

rigid joints not only lifts the frequencies of the edge and 

bulk modes, but also modifies and hybridizes the spatial 

features of these modes, thereby opening up new oppor- 

tunities to control and reconfigure topological mechanical 

responses via bulk-edge coupling. 

Additionally, the statics of mechanical bilayer metama- 
terials could provide an interesting way to control shape 

change and provide flexural rigidity. The topological pro- 

tection of zero modes, as well as their force-bearing coun- 

terparts called states of self stress [19, 20, 28], means 

that such structures can offer flexibility or stiffness at 

designed locations in a manner that is robust against im- 
perfections and fracture [25, 58] which cannot be avoided 

during fabrication processes. Furthermore, the individ- 
ual layers possess nonlinear Guest-Hutchinson modes in 

the spring-mass limit [22, 33], whose interplay with flex- 

ural modes may generate Gaussian curvature or changes 
in the interlayer separation. 

 

 
IV. MATERIALS AND METHODS 

 
A. Lattice Details 

 
The lattice is 3D printed using selective laser sintering 

(SLS) technology [59] by Stratasys Direct. The lattice is 

first modeled using the Solidworks software and exported 

as a ”.STL” file at a resolution finer than that of the 

SLS process used ( 0.76 mm in x y, and 0.1 mm in z). 

SLS consists of depositing a fine layer of powder material 

(Stratasys Nylon 12-glass-fiber-reinforced nylon) which 

is then melted by a laser into a solid layer following the 
cross section of a given design, bonding it to all previously 

deposited layers. This printing process produces a mono- 
lithic structure, while the more commonly commercially 

available fused deposition modeling (FDM) often results 

in imperfect bonding between deposited layers and ad- 
jacent deposited lines that can detrimentally affect wave 

transport properties. These considerations were key fac- 

tors in the selection of SLS as the fabrication method for 
the current task. 

The slenderness ratio and cell size are decided con- 

currently, making sure that the thickness of the beams 

is within the resolution of the SLS 3D printing process 

and that the beams are sufficiently slender to prevent 

their flexural behavior from completely overwhelming the 

lattice response. The lattice dimensions are selected to 

be large enough to appreciate the topologically induced 
decay phenomenon, within the dimensions of the 3D 

printer’s fabrication print bed (67.31 × 34.29 cm). 

 
B. Computational Beam Model 

 
The bilayer connections are modeled as 3D Timo- 

shenko beams [57]. We discretized each beam into 9 to 11 

elements, depending on the bond length (sufficient dis- 

cretization for mode visualization), resulting in a model 

with 3240 and 29376 nodes for the supercell and full-scale 

lattice models, respectively. For supercell calculations of 

100 unit cells, the beams were discretized into only 5 el- 

ements due to computational constraints; however, com- 

paring the results of the higher and lower discretization 

reveals a change of less than 2% for all the relevant modes 

(lowest 6), meaning that this alternative discretization is 

accurate in capturing the spectral characteristics of the 

modes, despite offering a lower spatial resolution of the 

mode shapes. 

Shape functions are used to approximate compatibil- 

ity relations within one beam element, via interpolation, 

are used to calculate the elemental dynamical matrix Db. 

These shape functions are linear in axial and torsional de- 

formations, cubic in flexural deformation, and quadratic 
in rotations - each chosen to be sufficiently differentiable 

without becoming trivial. Further details can be found 
in Ref. [57]. 

 

 
C. 3D Laser Doppler Vibrometer Experiments 

 
The experimental setup is shown in Fig. 6. A 3D 

laser Doppler vibrometer (Polytec PSV-400-3D) is used 

to measure the velocity of the joints of the beams (the 

selected scan sites) on the face of the lattice closest to 
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FIG. 6. Experimental setup for the 3D scanning laser Doppler 
vibrometry (SLDV) testing of the 3D printed bilayer lattice. 

 

 
the lasers, where reflective tape is applied to increase the 

material reflectivity, in order to reduce noise in the data. 

An electromechanical shaker (Brü el & Kjær Type 4810), 

internally triggered by the vibrometry setup through an 

amplifier (Brü el & Kjær Type 2718), probes the lattice 

through a stinger at the desired excitation location, and 

a 5-cycle Hann-windowed burst, with a carrier frequency 

of 300, 900, or 1300 Hz is fired into the structure while 

velocity is measured by the laser heads at a scan point. 

The process is repeated for each scan point, automati- 
cally moving the lasers to subsequent scan locations in 

a prescribed sequence, and providing enough relaxation 

time between scans to ensure bursts have fully dissipated 
by damping before the next measurement is taken. 

The velocity data collected is decomposed into x̂ ,  yˆ and 

zˆ components using the Euler angles internally calculated 

by the vibrometry software. This data is further pro- 

cessed in MATLAB to recreate the wave fields and DFT 

plots. The temporal data of the spaces between the scan 
points is interpolated by MATLAB post-processing us- 

ing a triangulation-based linear interpolation algorithm. 

It should be noted that this interpolation favors the cre- 
ation of bulk-appearing wave fronts, which implies that 

the wave fields for experiments with excitation at the 
floppy side could potentially be experiencing higher lo- 

calization than what is shown in the result figures. 
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FIG. 7. Displacement vs cell index for 100-cell beam-discretized supercell, showing that, even at much longer supercell lengths, 
beams with the AR used in the lattice for this work do not produce six modes exhibiting floppy edge localization. 
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Appendix A: Flat bands in coplanar Maxwell bilayers 
 

The main text presents mirror-symmetric kagome bilayers with a choice of interlayer connections that exhibit lines 
of bulk modes in the absence of height modulations within the layers. Here, we present an alternative choice of 

interlayer connections that instead yields surfaces of bulk modes known as flat bands. 

The key distinction between coplanar bilayers with lines of bulk zero modes and those with surfaces of bulk zero 

modes is that the interlayer connections in the former constrain an infinite number of vertices whereas in the latter 

they constrain a finite number of vertices. For the kagome bilayer, this second condition arises for the following 

interlayer connections: 

 
 

r−(0, 0) ←→ r+(0, 0) ←→ r−(1, −1) ←→ r+(1, −1) ←→ r−(0, −1) ←→ r+(0, −1) ←→ r−(0, 0). (A1) 

Thus, the vertices can simultaneously displace out-of-plane at any wavevector provided that their displacements are 

identical to one another: 

 
 

δ− = δ+ = δ−e−i(ξ1 −ξ2 ) = δ+e−i(ξ1 −ξ2 ) = δ−eiξ2 = δ+eiξ2 . (A2) 
1 2 3 1 2 3 

 

Since such zero modes exist at arbitrary wavevectors, the lowest band is entirely flat. Importantly, the introduction 

of small height modulations to make the bilayer noncoplanar yields decay rates which cannot be described as a 

perturbation to the flat band, which makes it more difficult to use this type of connectivitiy to achieve fully polarized 

Maxwell bilayers. 

 

 
Appendix B: Decay Rate for 100-cell Beam-Discretized Supercell 

 

Decay rates for the first six modes of a 100 cell supercell, with AR used in the manufactured lattice, at ξ = π 
are shown in Fig. 7). Here we see that, unlike the low-AR or spring and mass counterparts, modes 5 and 6 remain 

bulk-like when we increase the supercell to much longer length, revealing that these are not just long decay length 

modes that simply appear bulk-like due to the relatively short size of the 10-cell supercell. Thus, their residence in 

the bulk band, as shown in the band diagram, is confirmed. 
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FIG. 8. Wavefield and DFT plots for: experiments (A-B) and simulations (C-D) with an in-plane excitation at the rigid edge, 
experiments (E-F) and simulations (G-H) with an in-plane excitation at the floppy edge, experiments (I-J) and simulations 
(K-L) with an out-of-plane excitation at the rigid edge, and experiments (M-N) and simulations (O-P) with an out-of-plane 
excitation at the floppy edge, all carried out at a carrier frequency of 300 Hz (dashed blue lines). Colorbars in panel M and N 
apply to all wavefields and contours in the figure, respectively, with the former representing the displacement intensity in the 
wavefield and the latter highlighting modal activation on the excited edge. While the wavefields capture the signature of wave 
propagation on the lattice surface, the insets of D, H, L, and P allow to appreciate propagation through the 3D structure of 
the bilayer. Note that the wavefields and contours are normalized by the highest value in their respective data sets. 

 

 
 

 
Appendix C: Supplemental Results for Experiments and Simulations away from Topological Modes 

 

 
Wavefield and DFT plots for experiments and simulations at carrier frequencies of 300 and 1300 Hz are shown 

in Fig.s 8 and 9, respectively. While the main text includes experimental figures highlighting edge-selectivity in the 

topologically polarized lattice, these images highlight frequency selectivity, an equally important ingredient in ensuring 

this behavior is not spectrally ubiquitous, providing evidence for the topological nature of the activated modes. 

nonfloppy edge 

OOP Displacement Mode Activation 
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FIG. 9. Wavefield and DFT plots for: experiments (A-B) and simulations (C-D) with an in-plane excitation at the rigid edge, 
experiments (E-F) and simulations (G-H) with an in-plane excitation at the floppy edge, experiments (I-J) and simulations 
(K-L) with an out-of-plane excitation at the rigid edge, and experiments (M-N) and simulations (O-P) with an out-of-plane 
excitation at the floppy edge, all carried out at a carrier frequency of 1300 Hz (dashed blue lines). Colorbars in panel M and N 
apply to all wavefields and contours in the figure, respectively, with the former representing the displacement intensity in the 
wavefield and the latter highlighting modal activation on the excited edge. While the wavefields capture the signature of wave 
propagation on the lattice surface, the insets of D, H, L, and P allow to appreciate propagation through the 3D structure of 
the bilayer. Note that the wavefields and contours are normalized by the highest value in their respective data sets. 

 

 

Appendix D: Computational Beam Model: Details 
 

In this work, we choose to work with Timoshenko beams to ensure that the results are robust even for short 

connections whose slenderness ratio may exceed the bounds for while Euler Bernoulli beam theory is acceptable. 

In 3D, the dynamical matrix for a single beam, Db (typically referred to as the stiffness matrix K in structural 

mechanics, although in this text K is explicitly used as the diagonal matrix of spring constants in the ideal Maxwell 

case), encompasses stiffness contributions associated with axial, shear, bending, and torsional deformation. This 

is captured by reordering rows and columns and partitioning Db into minors that highlight the contributions of 

nonfloppy edge 

OOP Displacement Mode Activation 
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0 0 0 0 EI 0  

 

∝ 

T 
M4×6 

 

different mechanisms. Recalling that Db links an array fm of nodal forces and moments, to an array [um θm]T of 

nodal displacements and rotations, the matrix partition can be written as 
 

DA2×2 
0 0  

Db12×12 
=  0 DS4×4  

DM4×6 

 . (D1) 

  
 

where DA is the contribution governing axial stiffness, DS and DB are square matrices controlling shear, and torsion 

and bending, respectively, and DM is a rectangular mixed matrix coupling shear and bending. Note that because the 

beam element matrices are calculated in a local coordinate system where the x̂ axis is along the length of the beam, 

they must be rotated upon assembly into a global system matrix. 
As previously mentioned, the dynamical matrix of a beam element is calculated by carrying out the integral 

Db = 
f
L B KbBdL over the length of the element. Kb is diagonal constitutive matrix of elastic coefficients relating 

T 

an array σ of stresses and moments to an array c of strains, shears, and curvatures (i.e. σ = Kbc) and is given by 

 

EA 0 0 0 0 0  

Kb =  

 

0 GAk 0 0 0 0 

0 0 GAk 0 0 0 
. (D2)

 

0 0 0 GJ 0 0 
 

0 0 0 0 0 EI 
 

where E is the Young’s Modulus, A = πR2 is the cross-sectional area of the beam, I is the second moment of area of 

the cross section about the yˆ and zˆ axes (I = πR4/4 with R the cross section radius), J is the polar second moment of 

area of the cross section (J = πR4/2), and k is the area shear correction factor. This matrix features elastic constants 

for axial deformation (row 1), shear deformation (rows 2 and 3), torsion (row 4), and bending (rows 5 and 6). B 
is an elemental matrix which captures a similar role in a beam element as C does in a spring-and-mass bond. B 
contains derivatives of shape functions [that interpolate the elemental displacements and rotations between nodes]. 
These shape functions are linear in axial and torsional deformation, cubic in flexural deformation, and quadratic in 

rotations. 

As we change the radius of the beam’s cross section, the elastic coefficients for axial and flexural deformation scale  

at different rates - the ratio of the former to the latter is  1/R2. Thus, even though we never lose the inherent effects 

of clamped boundary conditions and the storage of bending energy of the beams, as we reduce the cross sectional 

radius R, we asymptotically approach the dominance of axial deformability typical of the spring-mass case. 

In the Timoshenko beam framework, the mass matrix of the beam elements is also not diagonal, coupling degrees of 

freedom in the same manner as Db. This matrix is calculated by integrating the elemental shape functions, multiplied 

by material and cross-sectional properties, over the length of the element. The resulting matrix includes contribution 

from axial, lateral, rotatory (associated with the tilt of the beam cross-sections), and polar (twist about the beam 

axis) inertial effects. A detailed account of this derivation, as well as that for the beam’s dynamical [stiffness] matrix, 

is provided in ref. [57]. 
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