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Omnimodal topological polarization of bilayer networks: theoretical characterization
in the Maxwell limit and experiments on a 3D-printed prototype
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Two-dimensional, critically-coordinated mechanical networks can exhibit topologically polarized
modes that are exponentially localized to a particular edge; however, the coupling of such in-plane
deformation to out-of-plane curvature remains largely unexplored. Here, we investigate a class of
mechanical bilayers as a model system for designing topologically protected edge modes beyond the
in-plane paradigm. In particular, we apply the spring-mass modeling framework, familiar to topolog-
ical mechanics, to bilayers with mirror-symmetric layers adjoined via a particular choice of interlayer
connections, and we show that a unified topological index can be defined, thereby characterizing
the omnimodal topological polarization of both in-plane and out-of-plane modes. Furthermore, we
quantify the manner in which these flexural modes are lifted to finite frequencies while remaining
localized when the harmonic springs are replaced by elastic beams. This analysis is supported by
experiments conducted on a prototypical lattice fabricated via additive manufacturing where we
confirm both the edge selectivity and the frequency selectivity of the mechanical structure.

I. INTRODUCTION

Topological phases of matter have properties that are
characterized by a topological invariant, rather than by
symmetry breaking alone. Examples include electronic
topological insulators where the band structure of the
bulk ensures the existence of topologically protected, con-
ducting states on the boundary [1, 2]. Similar topological
phases exist for a variety of mechanical systems which can
be utilized for the design of mechanical metamaterials
with one-way propagating elastic waves [3—8], including
elastic plates where in-plane extensional modes couple
to out-of-plane flexural modes [9-15]. These topological
insulator analogues are a subset of more general topo-
logical mechanical metamaterials [16, 17], which also in-
clude systems that possess topologically protected static
properties such as zero-frequency edge modes and force-
bearing modes [18-26]; however, the coupling between in-
plane and out-of-plane degrees of freedom for such zero
modes remains to be explored.

Maxwell networks are discrete mechanical systems that
possess equal numbers of degrees of freedom and en-
ergetic constraints, such as networks of point masses
connected by harmonic springs [27, 28] and fiber net-
works relevant for biological structures [29-31]. Such
systems possess an average coordination number equal
to twice the dimension of their embedding space, which
places them near onset of the rigidity transition [27, 32].
Nonetheless, this class of materials can still exhibit var-
ious modes of deformation such as nonlinear lattice re-
configurations [33, 34], mechanical solitons [35, 36], me-
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chanical Weyl modes [23-25, 37], and of present inter-
est: exponentially localized zero frequency modes. Inter-
estingly, an excess of these modes can be localized to a
particular boundary, a phenomenon known as topological
polarization, whereby opposite sides of the material are
rendered floppy or stiff [18-26].

Although the in-plane, topologically polarized modes
of two-dimensional Maxwell lattices are well understood,
fundamental questions remain about the mechanics of
two-dimensional Maxwell lattices embedded in three-
dimensional space. Flexural modes dominate the low-
energy mechanical response of thin plates due to the rel-
ative scaling of their bending and stretching moduli [38].
This feature can be manipulated for the deployment and
transformation of mechanical structures by programming
particular flexural modes into the sheet, such as the rigid
folding modes of origami metamaterials [39—41]. How-
ever, triangulated origami, which lies at the Maxwell
point, possesses a hidden symmetry that prohibits its
topological polarization [42]. While this hidden symme-
try can be broken by introducing an equal number of
quadrilateral faces and holes [43], thereby yielding topo-
logically polarized Maxwell kirigami [44], these quadri-
lateral faces exhibit additional low-energy modes, due to
bending of the faces [45, 46], which are not necessarily
localized.

Alternatively, mechanical bilayers could be used to
generate topologically polarized flexural edge modes by
utilizing the well-developed topological phase space of
two-dimensional Maxwell lattices [22]. Indeed, bilay-
ers composed of two kagome layers with mismatched
characteristics (polarized and unpolarized) exhibit edge-
localized, finite-frequency modes due to the coupling of
in-plane and out-of-plane mechanics enforced by the com-
patibility constraints at the interface between the lay-
ers [47]. However, in contrast to the planar kagome lat-
tice, an analytical characterization of topologically po-
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larized edge modes in Maxwell bilayers is missing; such
insight could provide guidance on the construction of a
bilayer which exhibits edge modes that can be actuated
from both in-plane and out-of-plane excitations, a con-
dition that we refer to as omnimodal polarization. In
addition, the observation of these edge modes at finite
frequencies is a hallmark of experimental realizations of
Maxwell lattices, such as the planar kagome lattice [48],
where stiffness in the physical joints lifts the zero modes
to finite frequencies [49—51] and can move edge modes
into the bulk [52]. This offers a new platform for the edge
transport of topological flexural modes, distinct from ex-
isting topological insulator analogues.

In the present manuscript, we introduce a family of
mechanical structures, referred to as mirror-symmetric
kagome bilayers, and we use analytical calculations, nu-
merical simulations, and experimental observations to in-
vestigate their topologically polarized edge modes, with
particular emphasis on the out-of-plane deformations.
We first consider the system as an idealized Maxwell lat-
tice and show that the mirror symmetry between the lay-
ers, along with a particular choice of interlayer connec-
tions, controls the topological polarization of the bilayer.
Next, we replace the harmonic springs of the Maxwell
bilayer with elastic beams that meet at rigid joints and
explore the dependence of the mode frequency as well
as the mode localization on the thickness of these beams.
Finally, we use laser vibrometry experiments to elucidate
the topologically polarized edge modes on a 3D-printed
bilayer prototype and support these results with numer-
ical simulations.

II. RESULTS AND DISCUSSION
A. Topological polarization of Maxwell bilayers

Maxwell bilayers are critically-coordinated spring-mass
networks which are embedded in three-dimensional space
and are periodic along two of these directions. Here, we
review the topological mechanics of two-dimensional dis-
torted kagome lattices and then introduce a family of
Maxwell bilayers that are composed of mirror copies of
topologically polarized kagome lattices. We show that
the symmetry between the layers, along with a particu-
lar choice of interlayer connections and small height mod-
ulations, yields zero modes, including both in-plane and
out-of-plane displacements, that topologically polarize to
the same edge as they do in the planar lattice at large
wavenumber.

Consider the planar, distorted kagome lattice shown in
Fig. 1A. The unit cell of this network is composed of point
masses at the three vertices, r1 = (0, 0), r> = (1, 0.3),
and r3 = (0.5, 3+ 0.6), and harmonic springs along the
six edges, ri, connecting the vertices. Each cell is re-
lated to its neighbors by the lattice vectors, £1 = (2, 0)
and £, = (1, 3), so that the position of vertex i in
cell n = (n1, np) is: r{n) = r;+ £ + nafs. Impor-

tantly, each vertex possesses two linear degrees of free-
dom whereas each edge provides one linear constraint so
that the periodic lattice is critically coordinated. Note
that the analysis in this section is scale-independent so
that the lengths are written in dimensionless units.

The mechanical response of such a spring-mass net-
work is characterized by its normal modes. The infinites-
imal displacements, w: and w;, of vertices i and j, respec-
tively, extend the spring adjoining these vertices to first-
order, . (wj i), thereby leading to a restoring force
directed along their shared edge, r"ij, which causes the
masses to oscillate about their equilibrium position with
frequency w. The linear operator, C, called the compat-
ibility matrix, maps the vector of all displacements, U,
to the vector of all extensions, E, so that such oscilla-
tions correspond to the normal modes, DU = ©2MU,
of the dynamical matrix, D = CT KC, where M (K)
is a diagonal matrix of point masses (spring constants).
For identical point masses, m, and spring constants, k,
these dynamics can_p_e non-dimensionalized by introduc-
ing the timescale m/k, in which case the mass and
spring constant matrices are given by the identity matri-
cesM=K=1.

For periodic networks, such as the kagome lattice,
these normal modes are Bloch periodic in the bulk.
Hence, the compatibility matrix can be diagonalized into
blocks, C(§), for each wavevector, § = (&1, &), by Fourier
transforming the unit cell over the cell indices so that
an intercellular bond belonging to the cell n (e.g., the
dashed bonds in Fig. 1A) carries a Bloch factor, em-$.
The corresponding displacements vary between cells as
U(m)=Ue# n, where U is an eigenvector of the Bloch-
periodic dynamical matrix D(§) = C(§)tKC(§), with
denoting Hermitian conjugation.

Maxwell lattices can exhibit a particular type of nor-
mal modes, called zero modes, which do not stretch the
springs and therefore lie in the nullspace of the compat-
ibility matrix. This nullspace is non-empty at wavevec-
tors for which the determinant of the square compatibil-
ity matrix vanishes: detC(§) = 0. In general, this de-
IE:rminant is a Laurent polynomial in the Bloch factors,
Crp ,m eimi $1+m2£2) where the highest (lowest) order
of the sum is given by the number of intercellular bonds
connecting to the next (previous) cell and ¢m; ,m, are real-
valued coefficients that depend on the lattice geometry.
The symmetric gauge, for which there are an equal num-
ber of forward and backward intercellular bonds (illus-
trated by the solid lines of the unit cell in Fig. 1A), is
used to eliminate any overall phase factors [18, 21, 53].

The roots of this polynomial are generically at complex
wavevectors which correspond to zero-frequency edge
modes. For any value of the transverse wavenumber, i,
the determinant of the compatibility matrix in the dis-
torted kagome lattice vanishes at two distinct & due to
the two intercellular bonds in the £, direction. Since the
modes vary between cells according to Bloch’s theorem,
the imaginary part of the wavenumber, k2 = Im &, spec-
ifies the decay rate which determines how the mode am-
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FIG. 1. spring-mass model for Maxwell bilayers. (A) Topological kagome lattice and its unit cell with vertex positions, r; and
lattice vectors £;. The solid lines indicate the bonds of the cell defined in the symmetric gauge while the dashed lines indicate
bonds that belong to adjacent cells. (B) Decay rate, x», and (C) winding number, w», for the distorted kagome lattice shown
in panel A. (D) [llustration of the contour taken over the bulk modes, x> = 0, that is used to compute the winding number.
(E) Mirror symmetric kagome bilayer with interlayer separation h between two copies (distinguished by blue and red bonds)
of the topological kagome lattice in panel A, vertex positions ry, and interlayer connections (indicated by black bonds). (F)
Decay rate and (G) eigenfrequency of the lowest band, @, of the coplanar bilayer in panel E, where the dashed lines in panel
F are exactly the decay rates of the planar modes and the zero decay rate lines correspond to the lines of bulk modes in panel
G. Ilustration of the (H) symmetric in-plane modes, (I) antisymmetric, and (J) vertex-pair out-of-plane modes.

plitude accumulates, |U(n2)| = €-in2 *2|. These decay
rates are computed over the real values of the transverse
wavenumber, i1, in Fig. 1B, showing that this particular
geometry has both of its zero modes localized to the top
edge (which corresponds to positive values of nz) when
subjected to periodic boundary conditions in the £; di-
rection. This means that the the top edge is inherently
floppy relative to the bottom edge. More general two-
dimensional Maxwell lattices exhibit zero modes at one
& = &(&) per intercellular bond in the £ direction,
but interestingly always possess two zero modes in the
continuum limit [53, 54].

The localization of these zero modes is topologically
protected by an integer-valued invariant called the wind-
ing number [18]. This quantity counts the relative num-
ber of zeros and poles of the determinant of the compat-

ibility matrix within a region by integration of its phase
over the contour enclosing the region [55]. In particular,
the contour can be taken over the bulk modes, xy = 0,
which bound the modes localized to the top edge, ko < 0,
and those localized to the bottom edge, xz > 0, as illus-
trated in Fig. 1D. Thus, for any value of the transverse
wavenumber, &, the winding number,

+mT

0
v(&1) = i d§28_§ ImlogdetC(&1, &), (1)

—T
determines the relative number of zero modes localized
to each edge. In the symmetric gauge, this determi-
nant has an equal number of roots and poles at the ori-
gin [18, 21, 53] so that an unpolarized kagome lattice,
which has one zero mode localized on each of the two



opposing edges, has a winding number of v2 = 0. For
the polarized kagome lattice with strictly negative decay
rates, the winding number is v2 = _1 for every transverse
wavenumber, as shown in Fig. 1C. Note that the winding
number is undefined when the contour crosses zero modes
such as the rigid body modes at & = 0 as well as bulk
modes referred to as Weyl points where the topological
invariant can undergo a jump discontinuity [37].

This framework for topological mechanics can be ap-
plied to any Maxwell lattice, such as the symmetric
kagome bilayer shown in Fig. 1E. This particular bilayer
is composed of mirror copies of the polarized kagome lat-
tice shown in Fig. 1A (distinguished by blue and red
edges) separated by interlayer height, h = 0.75. The
positions of the six point masses in the unit cell can be
written in terms of the planar positions: ry = ri 4t 2,
where +(-) specifies a mass in the upper (lower) layer.
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to make the bilayer critically coordinated, as indicated

by the black edges in Fig. 1E, which connect the vertices
in pairs between the upper and lower layers,
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While alternative ‘choices of these inter-
layer connections can be made, this particular connec-
tivity yields a predictable topological phase space.

The corresponding Bloch-periodic compatibility ma-
trix maps in-plane ( ) and out-of-plane () degrees of
freedom in the upper (+) and lower (—) layers to con-
straints on the upper (+), lower (), and interlayer &)
bonds:
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Importantly, the mirror symmetry implies that the in-
tralayer, in-plane constraints are equal for each layer,
Ci = C so that the two zero modes of the planar
lattice remain zero modes of the bilayer. The character-
ization of the remaining modes depends on the relative
heights of the vertices within each layer.

For coplanar bilayers, where the upper and lower lay-
ers are flat, the intralayer, out-of-plane constraints are
trivially satisfied, C-U; = —C+U* = 0, so that the
out-of-plane displacements are only constrained by the
interlayer connections which couple individual pairs of
vertices to one another. Consequently, coplanar, mir-
ror symmetric Maxwell bilayers have three types of zero
modes. The first two types exist at the same wavevec-
tors as the zero modes of the planar lattice, where one

type, Usym, has symmetric in-plane with vanishing out-
of-plane displacements and the other type, Uasym, has
antisymmetric in-plane with non-vanishing out-of-plane
displacements,

Usym = (+U|; o,+U, O); (4)
Uasym = (+U|; U-, -0, U+): (5)

L 1

where U = U due to asymmetry of the interlayer
connections. The third type of zero mode, Upair is the
strictly out-of-plane displacement of any pair of vertices
that are coupled by the interlayer constraints,

Upair = (0) 6;) o, 6;): (6)

where 617 = 6;, are the isolated out-out-of plane displace-

ments of vertices i and j in the lower and upper layers
respectively, which are connected via interlayer bonds.
These vertex-pair modes exist at wavevectors for which
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0:. Note that Maxwell bilayers with larger unit cells can
exhibit a similar type of mode which couples more than
two vertices to one another provided that the interlayer
connections are of the form given in Eqn. (2).
Since the mirror-symmetric kagome bilayer has six to-

tal intercellular bonds along the £5 direction (two from
each layer and another two adjoining the layers together),

it can exhibit up to six zero modes localized to a sin-
gle edge for any value of the transverse wavenumber &;.
Both the symmetric mode in Eqn. (4) and the antisym-
metric mode in Eqn. (5) vary between cells according
to the wavevectors of the planar lattice zero modes so
that their decay rates are doubly degenerate, as shown
in Fig. 1F. The two symmetric and antisymmetric modes
at & = m are respectively illustrated in Figs. 1H and 1,
matching the color of their respective decay rates. The
vertex-pair modes in Eqn. (6) are given by 6> = &* for
&=0and §, = §; for & = &1, as illustrated in Fig. 1J.
Note that these can be both bulk modes, as shown in by

the lines of zero frequency modes of the lowest band in

Fig. 1G where there exists a third line corresponding to

6 =0% at & =0, as well as boundary modes. Impor-
1 2

tantly, the presence of these bulk modes at all transverse

wavenumbers invalidates the winding number.

The introduction of a vertex-dependent height mod-
ulation, n;, as illustrated in Fig. 2A, breaks the ge-
ometry singularity that gives rise to these bulk modes.
The corresponding vertex positions are computed r% =

ri+ (5 + 1)z, and the intralayer edges now constrain
out-of-plane displacements, C, =—C[ = 0, so that the
wavevectors of the zero modes cannot admit antisym-
metric solutions of the form in Eqn. (5) and there are no
lines of bulk modes due to the vertex-pair modes of the
form in Eqn. (6); thus, the degeneracy of the zero modes
is broken. Interestingly, the decay rates change by an
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FIG. 2. Mirror symmetric, noncoplanar kagome bilayer. (A)
Height modulation, 7:, makes the layers noncoplanar. (B)
Decay rates, rz, and (D) winding number, 1», as a function
of the transverse wavenumber, . The black dashed lines are
the decay rates for zero modes of the planar kagome. (C)
Eigenfrequencies of the lowest band with Weyl points that
yield discontinuities in the winding number in panel D. (E)
Mlustration of the localization of the two strongly decaying
modes in panel B (with corresponding colors) at § = m, which
couple in-plane and out-of-plane displacements.

amount that is dependent on the size of the height mod-
ulation so that at large transverse wavenumber, the four
edge modes remain localized and the bulk modes localize
to one side of the bilayer with a low decay rate.

For the particular choice of 171 =0.1 and 12 = 173 =0,
all six of the zero modes of the kagome bilayer localize
to the top edge at large transverse wavenumber. This
is shown by the negative decay rates, x2(& = m) < 0,
in Fig. 2B and the winding number, v2(& = m) = -3,
in Fig. 2D. In contrast to the lines of bulk modes in the
coplanar bilayer, the noncoplanar bilayer exhibits Weyl
points (see Fig. 2C) at low wavenumber. The localiza-
tion of the two strongly localized, non-planar modes are
illustrated in Fig. 2E. Thus, this construction of mirror-
symmetric kagome bilayers fully polarizes the lattice so
that the top is floppy and the polarization is omnimodal
due to the in-plane and out-of-plane characteristics of
these modes.

The analysis of the topologically polarized, mirror-
symmetric kagome bilayer presented here can be ex-
tended to bilayers composed of topological square lat-
tices [22, 37], bilayers without mirror symmetry which
do not exhibit strictly in-plane modes, and bilayers with
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FIG. 3. 3D-printed structural lattice: (A) Top-down and
(B) angled views of the symmetric kagome bilayer intro-
duced in Fig. 1 constructed via SLS and composed of glass-
fiber-reinforced nylon beams with radius R= 1.5 mm. The
lattice geometry is proportional to that of the spring-mass
model. (C) Close-up of the lattice unir\'gell with lattice vec-
tors £1 = 2(2, 0, 0) cm and £ = 2(1, 3, 0) cm. (D) Front
view of the bilayer with layer height separation h = 3 cm and
height modulation 7; =2 mm.

interlayer connections that yield flat bands in the copla-
nar limit (see Appendix A). Thus, investigations of less
restrictive geometries could provide greater control over
the presence of bulk modes and exhibit more strongly
polarized flexural modes.

B. Edge modes in structural bilayers: supercell
analysis simulations

We turn our attention to realizing topological behavior
of the bilayer in a structural lattice constructed via addi-
tive manufacturing. Here, we model the bilayer supercell
as a network of interconnected Timoshenko beams, and
calculate its band diagram and mode shapes, thereby re-
vealing the presence of polarized modes (with both in-
plane and out-of-plane characteristics) below the bulk
band. However, two of the six polarized edge modes pre-
dicted in the spring-mass model rise into the bulk under
beam kinematic conditions. We show that these modes
localize for beams with vanishingly small radii, where the
relatively low cost of beam bending results in the recov-
ery of features of the ideal Maxwell conditions, although



never reaching them.

We design a kagome bilayer featuring a geometry and
connectivity closely matching that of the spring-mass lat-
tice studied in the previous section, and fabricate the
10 x13-cell prototype shown in Fig. 3 via selective laser
sintering (SLS) with glass-fiber-reinforced nylon (Strata-
sys Nylon 12 GF - Young’s modulus = 2.896 GPa - see
Materials and Methods). In the structural lattice, the
springs connecting the sites are replaced with beams of
radius R = 1.5 mm, whose mass is distributed along the
length of the beam, rather than lumped at the sites. The
lattice features an interlayer height A = 3 cm and mod-
ulation at site 1 771 = 2 mm. Note that constraints are
printed on the left and right edges of the lattice to act as
clamping sites in the experiments.

The bonds of the structural lattice can be modeled as
3D Timoshenko beams [56, 57] capable of undergoing ax-
ial, flexural, shear, and torsional deformations. While in
the spring-mass model connections between sites could
be interpreted as perfect hinges, so that we refer to them
as ideal Maxwell, here the beams are joined at internal
clamps: the relative angles formed by beams meeting at
a joint are preserved during deformation. In the finite
element method (FEM) framework (see Materials and
Methods), each lattice bond is discretized multiple beam
elements, each featuring six degrees of freedom per node:
three nodal displacements um — one axial and two lat-
eral (in orthogonal planes) — and three cross sectional
rotations 8m — representing two tilts and a twist — where
the subscript m is the node index along the beam (see
Appendix D).

The dynpmical matrix of a single beam element is given
by D,= B K B dL, where L is the length of the
beam element, B is a matrix of derivatives of the shape
functions, which approximate the compatibility relations
within one element, and Ky is a diagonal constitutive
matrix of elastic constants, featuring rigidity contribu-
tions for axial deformation (scaling with R2), lateral de-
flection (scaling with R*) [encompassing the effects of,
both, shear and bending deformability encoded in the
beam model], and torsional deformation (scaling with
R*). Dynamical matrices of each individual beam are
assembled into a global dynamical matrix for the entire
system, which is used for computational analysis. Note
that, for each discretized beam element, B plays a role
analogous to a single row of C in the spring-mass coun-
terpart, for a single bond.

We construct a supercell to calculate the band dia-
gram of the structural lattice by connecting 10 unit cells,
discretized using 3D Timoshenko beam elements, in the
£, direction with free boundary conditions at the ends,
and Bloch-periodic boundary conditions with respect to
wavenumber & in the £; direction. We extract the Bloch-
reduced arrays of generalized nodal displacements U and

cross-sectional rotTations O in the supercgll as the modes
of Dp(§1)) UO® = 02M (&) UO , where Du(&)

[IVIb(§1)] is the dynamical [mass] matrix of the supercell

under Bloch conditions.

The resulting supercell band diagram is shown in
Fig. 4A. We seek the edge modes among the low-
frequency modes that fall below the bulk band, and to-
wards the edge of the Brillouin zone, in analogy with
the scenario described in Ref. [47] — the relevant portion
of the branches are plotted in black. The mode shapes
of the lowest four modes at & = m are shown so that
the in-plane deformation is shown with color intensity
proportional to displacement along y” (the Cartesian di-
rection normal to the open boundaries of the supercell
and lattice) and the out-of-plane deformation with color
proportional to displacement along z".

Both in-plane and out-of-plane deformation exhibit
strong localization at the top end of the supercell, with
a comparable decay rate. This means that the nodal
displacements Un, of cell ny in the supercell increase ex-
ponentially towards the top, nz = 10. The strength of
localization is effectively highlighted by the dimensionless
mode density,

1
U, - Uy,
U-U

Pny; = ™

which quantifies the contribution of nodal displacements
in each cell of the supercell, as shown for the lowest six
modes at wavenumber & = 1 in Fig. 4D. The most strik-
ing observation is that all four modes below the bulk band
are localized. This is a considerable qualitative improve-
ment over the results presented in Ref. [47], in which only
two polarized edge modes were found and, more impor-
tantly, where the overall signature of polarization in the
flexural response was significantly milder. Moreover, the
localization of these modes highlights that the top and
bottom edges of this bilayer serve as the floppy and non-
floppy edges, respectively, consistent with the predictions
from the spring-mass model. Note that U, also includes
the displacement of nodes on the boundary of the super-
cell which were previously reduced due to application of
periodic boundary conditions.

In contrast to the spring-mass lattice, where all six zero
modes localize, here, modes five and six show no signa-
ture of localization. This suggests that the structural
bilayer lattice is not immune from a certain degree of di-
lution of the topological polarization observed in its ideal
Maxwell counterpart. This dilution is a direct result of
the non-ideality of the hinges, enforced by the beam in-
ternal clamp boundary conditions, which invoke flexural
mechanisms whose energy cost overwhelms the response
of the system. Moreover, in response to the relaxation
of ideal conditions, each of the six zero modes rises to
finite frequencies by different amounts when compared
to the bulk modes; this effect should to be correlated to
the strength of their polarization, although further work
is needed to confirm this hypothesis [52].

Studying the dependence of the mode landscape as a
function of the strength of the flexural mechanisms of the
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FIG. 4. (A) Band diagram of a 10-unit bilayer supercell (angled view shown in the inset), calculated using 3D Timoshenko beam
finite element discretization; mode shape of modes 1-4 at { = m, with in-plane (IP) and out-of-plane (OOP) deformation plotted
with color intensity proportional to displacement along y~ and z~, respectively (each IP and OOP mode shape is normalized by
the highest displacement value of that data set) - here y~ is chosen to represent in-plane displacement due to it being normal
to the top and bottom edges; (B) supercell band diagram for low aspect ratio (AR) beams, (approaching the spring-mass
model limit) showing six decaying modes separated from the bulk band, whose decay rates at { = m - highlighted by the square
markers - are shown in the mode density pn, vs. cell index plot in the inset); (C) frequency of the six lowest modes as a function
of AR, with inset showing the mode density pn, vs. cell index plot for the spring-mass system at = r (the legend here also
applies to panel B and D); (D) pn, vs. cell index for the first 6 modes of the supercell in panel A [with AR value compatible
with manufacturing constraints] (highlighted be the circle markers), showing four decaying modes and two bulk modes. The
green region in panel B highlights the practical region of AR - beam with ARs below are filaments outside the realization of
most additive manufacturing methods, and those above intersect each other and become too thick to approximate with beam
theory.

logical modes predicted by the spring-mass model), until
they enter the bulk band and can no longer be identified.
As AR decreases, the frequencies tend towards zero, ap-
proaching — but never reaching — the spring-mass model
conditions. This implies that the energy cost of flexu-

beams provides insight in how the mechanics of the struc-
tural lattice deviate from those of the ideal Maxwell case.
Given the different scaling of axial and bending stiffness
with the beam radius R (the ratio of the former to the lat-
ter is 1/ R2), the energy cost associated with flexural ef-

fects becomes negligible as the beam thickness decreases.
For this reason, a good metric for the strength of the flex-
ural mechanisms is the beam aspect ratio, AR= R/ L,
where here L is the length of the shortest bond in the unit
cell. In Fig. 4C we compare the frequency of the topolog-
ically polarized modes as a function of AR, monitoring
the frequencies of the first six modes (the number of topo-

ral effects of the beams becomes progressively negligible
as AR _0, but the kinematics of the internal clamps
prevent this limit condition from fully approaching the
behavior of an ideal Maxwell lattice.

Interestingly, the band diagram of the low AR case
(Fig. 4B) shows that, as we decrease AR, two additional
modes drop from the bulk band and become localized,



as confirmed by the mode density shown in the inset.
For comparison, decays for the polarized modes of the
spring-mass system are shown in the inset of Fig. 4E.
Note that a 100 unit-cell supercell was used for both the
low-AR and the spring-mass cases due to the low de-
cay rate exhibited by some of the modes, which require
a large number of cells to appreciate. To confirm the
contrast with the results applicable to our prototype, de-
cay rates for a 100 unit-cell supercell with the geometric
characteristics (i.e., AR) of the prototype are shown in
the Appendix B; even with the longer supercell we still
only observe four localized modes.

C. Wave Propagation in Lattice: Experiments and
Full-Scale Simulations

We now experimentally demonstrate the activation of
the polarized modes in the bilayer prototype shown in
Fig. 3. To this end, we excite the bilayer with, first,
in-plane and, later, out-of-plane tone bursts, in the fre-
quency range of the topological edge modes found via
supercell analysis, and we perform 3D laser Doppler vi-
brometer measurements on the lattice sites of the bi-
layer surface. We verify the proper activation of the
desired bulk or edge modes through a morphological in-
spection of the wavefield data, and a spectral analysis of
the transformed wave response in the §i_ ® plane. Fur-
thermore, we ensure that the edge-selective polarization
is frequency-selective, thus providing additional evidence
that the activated modes are topological in nature. All
results are corroborated by full-scale wave propagation
simulations of a bilayer lattice, discretized by 3D Timo-
shenko beams.

The prototype is excited with a 5 cycle burst applied at
the tip of the center-most cell of the top and bottom edge,
respectively. We excite the lattice at a carrier frequency
0of 900 Hz which lies in the frequency range 7601050 Hz,
where the topological modes fold and display the high-
est density of states, to maximize their signatures in the
resulting wavefield. The relevant region of the band di-
agram is shown by the black portions of branches 1-4 in
Fig. 4A.

Results for in-plane excitation with a carrier frequency
at 900 Hz prescribed at the bottom edge are shown in
Figs. SA and B, and corresponding results for excitation
at the top edge are shown in Figs. 5E and F. Snapshots of
the resulting out-of-plane wavefields show strong asym-
metry between the top and bottom edge excitations: the
top edge excitation produces highly localized deforma-
tion at that edge, while excitation at the bottom edge
produces a bulk-like flexural wave. This corroborates
the results from the ideal Maxwell case and the super-
cell, where the top edge exhibits floppy edge behavior,
while the bottom edge is nonfloppy.

We verify activation of the topological modes via spec-
tral analysis of the response. We collect the out-of-plane
displacement time histories at evenly spaced points along

the edge where the excitation is applied, perform a 2D
discrete Fourier transform (DFT) on this spatio-temporal
data matrix, and superimpose the contours of the result-
ing spectral amplitude surfaces onto the supercell band
diagram to infer which modes are predominantly acti-
vated. The DFT analysis corroborates the conclusions
made from the inspection of the wavefields, supporting
the notion of topological polarization. Excitation at the
floppy edge produces a spectral signature that is spread
across the branches associated with the edge modes. In
contrast, excitation of the nonfloppy edge results in ac-
tivation of longer wavelength modes (at lower values of
&) that belong to the flexural bulk band.

These results are confirmed by simulations performed
on a full-scale model of the bilayer lattice, discretized
with 3D Timoshenko beam elements (with the same ele-
ment characteristics used in the supercell analysis). The
results for the same excitation conditions used in the ex-
periments (excitation from the nonfloppy edge in Figs.
5C-D, and from the floppy edge in Figs. 5G-H) match
the experiments qualitatively, with only a relatively small
deviation in frequency that can be attributed to some
inevitable discrepancies in material properties between
the model and prototype (due to property variability in
the material and additive manufacturing process) and to
other non-idealities in the geometry of the specimen.

Asymmetric behavior for flexural waves triggered by
in-plane excitation is observed in the bilayer presented
in Ref. [47], albeit with a significantly milder polariza-
tion signature. However, in that case, such asymmetry
requires a direct in-plane strain activation of the polar-
ized layer, and is completely lost when the excitation is
prescribed out-of-plane. We repeat the experiments with
the current bilayer using an out-of-plane force to test the
robustness of the asymmetry achievable against changes
in the excitation force. We show the resulting wavefields
and DFTs for excitations from the nonfloppy (Figs. 51
and J) and floppy (Figs. SM and N) edges. The results
are consistent with their in-plane excitation counterparts:
the wavefield snapshots reveal a highly polarized response
with displacement localization at the edge when we excite
at the floppy edge, and propagation deep into the bulk for
excitation at the nonfloppy edge. Again, the DFT plots
confirm this dichotomy of the mode activation. The mag-
nitude of this result can be truly appreciated by recalling
that the topological character of the bilayer stems from
the geometry of its two kagome layers. The dichotomous
behavior between the edges documented in Fig. 5 con-
firms that the coupling provided by the interlayer con-
nections is very effective in transferring the topological
character to the flexural modes, yielding omnimodal po-
larization encompassing both in-plane and out-of-plane
behavior. The results are again confirmed by full scale
numerical simulations (Figs. 5K, L, O, and P), with the
DFTs showing, even more clearly in this case, topological
polarization of the edge modes.

For completeness, we assess the frequency selectivity
of the polarized behavior by performing experiments and
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FIG. 5. Wavefield and DFT plots for: experiments (A-B) and simulations (C-D) with an in-plane excitation at the rigid edge,
experiments (E-F) and simulations (G-H) with an in-plane excitation at the floppy edge, experiments (I-J) and simulations
(K-L) with an out-of-plane excitation at the rigid edge, and experiments (M-N) and simulations (O-P) with an out-of-plane
excitation at the floppy edge, all carried out at a carrier frequency of 900 Hz (dashed blue lines). Colorbars in panel M and N
apply to all wavefields and contours in the figure, respectively, with the former representing the displacement intensity in the
wavefield and the latter highlighting modal activation on the excited edge. While the wavefields capture the signature of wave
propagation on the lattice surface, the insets of D, H, L, and P allow to appreciate propagation through the 3D structure of

the bilayer. Note that the wavefields and contours are normalized by the highest value in their respective data sets.

simulations at carrier frequencies away from the floppy
modes at § = 1 (results in Appendix Figs. C). Excita-
tions at 300 Hz reveal nearly identical wavefields when
we switch the excitation edge from floppy to nonfloppy,
with bulk-like characteristics activated from either side.
Although the DFTs from the floppy edge does show some
activation of the mode branches endowed with polarized
character, the activation occurs at much longer wave-

lengths, where the decay rate of these modes is negligible
(making them resemble the bulk modes), overall resulting
in bulk-like behavior dominating the response. Experi-
ments performed with a carrier frequency at 1300 Hz also
show largely symmetric behavior, although we still see
the persistence of some localization when exciting from
the floppy edge. This is likely due to the fact that the
excitation energy is spread over a band of frequencies due



to the windowing applied to the burst, which causes the
edge of the main lobe and the side lobes to excite modes
in the topological region.

III. CONCLUDING REMARKS

We have introduced a broad family of topological
mechanical metamaterials, referred herein as mirror-
symmetric kagome bilayers, and explored their mechan-
ical response via analytical calculations, numerical sim-
ulations, and experimental testing. We have provided
an analytical theory of how omnimodal topological po-
larization arises for coupled in-plane and out-of-plane vi-
brations of spring-mass Maxwell bilayers. We have also
explored how these modes can remain localized at finite
frequency when the system is modeled as a frame of elas-
tic beams connected at rigid joints. Finally, we have
experimentally verified the existence of this omnimodal
polarization via laser vibrometry tests. In conclusion,
we have developed a framework to design and study me-
chanical bilayers with topological polarization in both the
in-plane and out-of-plane domains.

The connection between the topologically protected
zero modes in spring-mass models and the exponen-
tially localized modes in beam models warrants further
study. While the characteristic aspect ratio of the beams
serves as an effective parameter for distinguishing be-
tween regimes with distinct modal properties, the de-
tailed relation between the topological modes and the
beam geometries has yet to be fully characterized. Inter-
estingly, the introduction of beam elements connected at
rigid joints not only lifts the frequencies of the edge and
bulk modes, but also modifies and hybridizes the spatial
features of these modes, thereby opening up new oppor-
tunities to control and reconfigure topological mechanical
responses via bulk-edge coupling.

Additionally, the statics of mechanical bilayer metama-
terials could provide an interesting way to control shape
change and provide flexural rigidity. The topological pro-
tection of zero modes, as well as their force-bearing coun-
terparts called states of self stress [19, 20, 28], means
that such structures can offer flexibility or stiffness at
designed locations in a manner that is robust against im-
perfections and fracture [25, 58] which cannot be avoided
during fabrication processes. Furthermore, the individ-
ual layers possess nonlinear Guest-Hutchinson modes in
the spring-mass limit [22, 33], whose interplay with flex-
ural modes may generate Gaussian curvature or changes
in the interlayer separation.

IV. MATERIALS AND METHODS
A. Lattice Details

The lattice is 3D printed using selective laser sintering
(SLS) technology [59] by Stratasys Direct. The lattice is
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first modeled using the Solidworks software and exported
as a ”.STL” file at a resolution finer than that of the
SLS process used ( 0.76 mm in x- y, and 0.1 mm in 2).
SLS consists of depositing a fine layer of powder material
(Stratasys Nylon 12-glass-fiber-reinforced nylon) which
is then melted by a laser into a solid layer following the
cross section of a given design, bonding it to all previously
deposited layers. This printing process produces a mono-
lithic structure, while the more commonly commercially
available fused deposition modeling (FDM) often results
in imperfect bonding between deposited layers and ad-
jacent deposited lines that can detrimentally affect wave
transport properties. These considerations were key fac-
tors in the selection of SLS as the fabrication method for
the current task.

The slenderness ratio and cell size are decided con-
currently, making sure that the thickness of the beams
is within the resolution of the SLS 3D printing process
and that the beams are sufficiently slender to prevent
their flexural behavior from completely overwhelming the
lattice response. The lattice dimensions are selected to
be large enough to appreciate the topologically induced
decay phenomenon, within the dimensions of the 3D
printer’s fabrication print bed (67.31 X 34.29 cm).

B. Computational Beam Model

The bilayer connections are modeled as 3D Timo-
shenko beams [57]. We discretized each beam into 9 to 11
elements, depending on the bond length (sufficient dis-
cretization for mode visualization), resulting in a model
with 3240 and 29376 nodes for the supercell and full-scale
lattice models, respectively. For supercell calculations of
100 unit cells, the beams were discretized into only 5 el-
ements due to computational constraints; however, com-
paring the results of the higher and lower discretization
reveals a change of less than 2% for all the relevant modes
(lowest 6), meaning that this alternative discretization is
accurate in capturing the spectral characteristics of the
modes, despite offering a lower spatial resolution of the
mode shapes.

Shape functions are used to approximate compatibil-
ity relations within one beam element, via interpolation,
are used to calculate the elemental dynamical matrix Dp.
These shape functions are linear in axial and torsional de-
formations, cubic in flexural deformation, and quadratic
in rotations - each chosen to be sufficiently differentiable
without becoming trivial. Further details can be found
in Ref. [57].

C. 3D Laser Doppler Vibrometer Experiments

The experimental setup is shown in Fig. 6. A 3D
laser Doppler vibrometer (Polytec PSV-400-3D) is used
to measure the velocity of the joints of the beams (the
selected scan sites) on the face of the lattice closest to



FIG. 6. Experimental setup for the 3D scanning laser Doppler
vibrometry (SLDV) testing of the 3D printed bilayer lattice.

the lasers, where reflective tape is applied to increase the
material reflectivity, in order to reduce noise in the data.
An electromechanical shaker (Briiel & Kjer Type 4810),
internally triggered by the vibrometry setup through an
amplifier (Briiel & Kjar Type 2718), probes the lattice
through a stinger at the desired excitation location, and
a 5-cycle Hann-windowed burst, with a carrier frequency

11

0of 300, 900, or 1300 Hz is fired into the structure while
velocity is measured by the laser heads at a scan point.
The process is repeated for each scan point, automati-
cally moving the lasers to subsequent scan locations in
a prescribed sequence, and providing enough relaxation
time between scans to ensure bursts have fully dissipated
by damping before the next measurement is taken.

The velocity data collected is decomposed into £, y" and
Z" components using the Euler angles internally calculated
by the vibrometry software. This data is further pro-
cessed in MATLAB to recreate the wave fields and DFT
plots. The temporal data of the spaces between the scan
points is interpolated by MATLAB post-processing us-
ing a triangulation-based linear interpolation algorithm.
It should be noted that this interpolation favors the cre-
ation of bulk-appearing wave fronts, which implies that
the wave fields for experiments with excitation at the
floppy side could potentially be experiencing higher lo-
calization than what is shown in the result figures.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation (NSF Grant No. EFRI-1741618 M.C., S.G.)
and the Office of Naval Research (MURI N00014-20-1-
2479 J.M., K.S., X.M.) and leveraged the High Perfor-
mance Computing (HPC) systems at the Minnesota Su-
percomputing Institute (MSI).

[1] M. Z. Hasan and C. L. Kane, Colloquium: topological
insulators, Reviews of modern physics 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and
superconductors, Reviews of Modern Physics 83, 1057
(2011).

[3] E. Prodan and C. Prodan, Topological phonon modes
and their role in dynamic instability of microtubules,
Physical review letters 103, 248101 (2009).

[4] R. Stisstrunk and S. D. Huber, Observation of phononic
helical edge states in a mechanical topological insulator,
Science 349, 47 (2015).

[5] P. Wang, L. Lu, and K. Bertoldi, Topological phononic
crystals with one-way elastic edge waves, Physical review
letters 115, 104302 (2015).

[6] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M.
Turner, and W. T. Irvine, Topological mechanics of
gyroscopic metamaterials, Proceedings of the National
Academy of Sciences 112, 14495 (2015).

[7] Y.-T. Wang, P.-G. Luan, and S. Zhang, Coriolis force
induced topological order for classical mechanical vibra-
tions, New Journal of Physics 17, 073031 (2015).

[8] J. Ma, K. Sun, and S. Gonella, Valley hall in-plane edge
states as building blocks for elastodynamic logic circuits,
Physical Review Applied 12, 044015 (2019).

[9] D. Torrent, D. Mayou, and J. Sanchez-Dehesa, Elastic
analog of graphene: Dirac cones and edge states for flex-
ural waves in thin plates, Physical Review B 87, 115143

(2013).

[10] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Topolog-
ically protected elastic waves in phononic metamaterials,
Nature communications 6, 1 (2015).

[11] J. Vila, R. K. Pal, and M. Ruzzene, Observation of topo-
logical valley modes in an elastic hexagonal lattice, Phys-
ical Review B 96, 134307 (2017).

[12] M. Miniaci, R. Pal, B. Morvan, and M. Ruzzene, Experi-
mental observation of topologically protected helical edge
modes in patterned elastic plates, Physical Review X 8,
031074 (2018).

[13] R. Chaunsali, C.-W. Chen, and J. Yang, Subwavelength
and directional control of flexural waves in zone-folding
induced topological plates, Physical Review B 97, 054307
(2018).

[14] R. K. Pal and M. Ruzzene, Edge waves in plates with
resonators: an elastic analogue of the quantum valley
hall effect, New Journal of Physics 19, 025001 (2017).

[15] M. Miniaci, R. K. Pal, R. Manna, and M. Ruzzene,
Valley-based splitting of topologically protected helical
waves in elastic plates, Physical Review B 100, 024304
(2019).

[16] K. Bertoldi, V. Vitelli, J. Christensen, and M. Van Hecke,
Flexible mechanical metamaterials, Nature Reviews Ma-
terials 2, 1 (2017).

[17] X. Li, S. Yu, H. Liu, M. Lu, and Y. Chen, Topologi-
cal mechanical metamaterials: A brief review, Current



Opinion in Solid State and Materials Science 24, 100853
(2020).

[18] C. Kane and T. Lubensky, Topological boundary modes
in isostatic lattices, Nature Physics 10, 39 (2014).

[19] T. Lubensky, C. Kane, X. Mao, A. Souslov, and K. Sun,
Phonons and elasticity in critically coordinated lattices,
Reports on Progress in Physics 78, 073901 (2015).

[20] X. Mao and T. C. Lubensky, Maxwell lattices and topo-
logical mechanics, Annual Review of Condensed Matter
Physics 9, 413 (2018).

[21] D. Z. Rocklin, Directional mechanical response in the
bulk of topological metamaterials, New Journal of
Physics 19, 065004 (2017).

[22] D. Rocklin, S. Zhou, K. Sun, and X. Mao, Transformable
topological mechanical metamaterials, Nature communi-
cations 8, 1 (2017).

[23] O. Stenull, C. Kane, and T. Lubensky, Topological
phonons and weyl lines in three dimensions, Physical re-
view letters 1177, 068001 (2016).

[24] J. E. Socolar, T. C. Lubensky, and C. L. Kane, Mechani-
cal graphene, New Journal of Physics 19, 025003 (2017).

[25] G. Baardink, A. Souslov, J. Paulose, and V. Vitelli, Lo-
calizing softness and stress along loops in 3d topological
metamaterials, Proceedings of the National Academy of
Sciences 115, 489 (2018).

[26] D. Zhou, L. Zhang, and X. Mao, Topological edge floppy
modes in disordered fiber networks, Physical review let-
ters 120, 068003 (2018).

[27] J. C. Maxwell, L. on the calculation of the equilibrium
and stiffness of frames, The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science
27, 294 (1864).

[28] C. R. Calladine, Buckminster fuller’s “tensegrity” struc-
tures and clerk maxwell’s rules for the construction of stiff
frames, International journal of solids and structures 14,
161 (1978).

[29] J. Wilhelm and E. Frey, Elasticity of stiff polymer net-
works, Physical review letters 91, 108103 (2003).

[30] D. A. Head, A. J. Levine, and F. MacKintosh, Deforma-
tion of cross-linked semiflexible polymer networks, Phys-
ical review letters 91, 108102 (2003).

[31] C. P. Broedersz, X. Mao, T. C. Lubensky, and F. C.
MacKintosh, Criticality and isostaticity in fibre net-
works, Nature Physics 77, 983 (2011).

[32] D. J. Jacobs and M. F. Thorpe, Generic rigidity percola-
tion: the pebble game, Physical review letters 75, 4051
(1995).

[33] S. Guest and J. Hutchinson, On the determinacy of repet-
itive structures, Journal of the Mechanics and Physics of
Solids 51, 383 (2003).

[34] C. S. Borcea and I. Streinu, Periodic frameworks and flex-
ibility, Proceedings of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences 466, 2633 (2010).

[35] B. G.-g. Chen, N. Upadhyaya, and V. Vitelli, Nonlinear
conduction via solitons in a topological mechanical insu-
lator, Proceedings of the National Academy of Sciences
111, 13004 (2014).

[36] Y. Zhou, B. G.-g. Chen, N. Upadhyaya, V. Vitelli, et al.,
Kink-antikink asymmetry and impurity interactions in
topological mechanical chains, Physical Review E 95,
022202 (2017).

[37] D. Z. Rocklin, B. G.-g. Chen, M. Falk, V. Vitelli,
and T. Lubensky, Mechanical weyl modes in topologi-
cal maxwell lattices, Physical review letters 116, 135503

12

(2016).

[38] L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P.
Pitaevskii, Theory of elasticity: volume 7, Vol. 7 (Else-
vier, 1986).

[39] C. D. Santangelo, Extreme mechanics: self-folding
origami, Annual Review of Condensed Matter Physics
8, 165 (2017).

[40] C. D. Santangelo, Theory and practice of origami in sci-
ence, Soft matter 16, 94 (2020).

[41] P. Dieleman, N. Vasmel, S. Waitukaitis, and M. van
Hecke, Jigsaw puzzle design of pluripotent origami, Na-
ture Physics 16, 63 (2020).

[42] J. Mclnerney, B. G.-g. Chen, L. Theran, C. D. Santan-
gelo, and D. Z. Rocklin, Hidden symmetries generate
rigid folding mechanisms in periodic origami, Proceed-
ings of the National Academy of Sciences 117, 30252
(2020).

[43] W. Finbow, E. Ross, and W. Whiteley, The rigidity of
spherical frameworks: Swapping blocks and holes, SIAM
Journal on Discrete Mathematics 26, 280 (2012).

[44] B. G.-g. Chen, B. Liu, A. A. Evans, J. Paulose, I. Cohen,
V. Vitelli, and C. Santangelo, Topological mechanics of
origami and kirigami, Physical review letters 116, 135501
(2016).

[45] M. Schenk, S. D. Guest, et al., Origami folding: A struc-
tural engineering approach, Origami 5, 291 (2011).

[46] E. Filipov, K. Liu, T. Tachi, M. Schenk, and G. H.
Paulino, Bar and hinge models for scalable analysis of
origami, International Journal of Solids and Structures
124, 26 (2017).

[47] M. Charara, K. Sun, X. Mao, and S. Gonella, Topologi-
cal flexural modes in polarized bilayer lattices, Physical
Review Applied 16, 064011 (2021).

[48] J. Ma, D. Zhou, K. Sun, X. Mao, and S. Gonella, Edge
modes and asymmetric wave transport in topological lat-
tices: Experimental characterization at finite frequencies,
Physical review letters 121, 094301 (2018).

[49] A. Souslov, A. J. Liu, and T. C. Lubensky, Elasticity
and response in nearly isostatic periodic lattices, Physical
review letters 103, 205503 (2009).

[50] X. Mao, N. Xu, and T. Lubensky, Soft modes and elas-
ticity of nearly isostatic lattices: Randomness and dissi-
pation, Physical review letters 104, 085504 (2010).

[51] X. Mao and T. C. Lubensky, Coherent potential approx-
imation of random nearly isostatic kagome lattice, Phys-
ical Review E 83,011111 (2011).

[52] O. Stenull and T. Lubensky, Signatures of topological
phonons in superisostatic lattices, Physical review letters
122, 248002 (2019).

[53] K. Sun and X. Mao, Continuum theory for topological
edge soft modes, Physical Review Letters 124, 207601
(2020).

[54] A. Saremi and Z. Rocklin, Topological elasticity of flexi-
ble structures, Physical Review X 10, 011052 (2020).

[55] M. Stone and P. Goldbart, Mathematics for physics
(2002).

[56] J. N. Goodier and S. Timoshenko, Theory of elasticity
(McGraw-Hill, 1970).

[57] H. Karadeniz, M. P. Saka, and V. Togan, Finite element
analysis of space frame structures, in Stochastic Analysis
of Offshore Steel Structures (Springer, 2013) pp. 1-119.

[58] L. Zhang and X. Mao, Fracturing of topological maxwell
lattices, New Journal of Physics 20, 063034 (2018).

[59] S. Kumar, Selective laser sintering: a qualitative and ob-



13

10

10-10 L

png

——Mode 1 ——Mode 2
——Mode 3 ——Mode 4
——Mode 5 ——Mode 6

-20 ‘ |
10
50 100

FIG. 7. Displacement vs cell index for 100-cell beam-discretized supercell, showing that, even at much longer supercell lengths,
beams with the AR used in the lattice for this work do not produce six modes exhibiting floppy edge localization.
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Appendix A: Flat bands in coplanar Maxwell bilayers

The main text presents mirror-symmetric kagome bilayers with a choice of interlayer connections that exhibit lines
of bulk modes in the absence of height modulations within the layers. Here, we present an alternative choice of
interlayer connections that instead yields surfaces of bulk modes known as flat bands.

The key distinction between coplanar bilayers with lines of bulk zero modes and those with surfaces of bulk zero
modes is that the interlayer connections in the former constrain an infinite number of vertices whereas in the latter
they constrain a finite number of vertices. For the kagome bilayer, this second condition arises for the following
interlayer connections:

r7(0,0) —— £50,0) —— r3(1, —1) == (1, —1) == 150, —1) —— 140, —1) —— r7(0,0). (A1)

Thus, the vertices can simultaneously displace out-of-plane at any wavevector provided that their displacements are
identical to one another:

—=8" =0 e U§1=82) = Fre U182 = F iz = Fteil2
61 62 636 1782 61e 1762 626 63e . (A2)
Since such zero modes exist at arbitrary wavevectors, the lowest band is entirely flat. Importantly, the introduction
of small height modulations to make the bilayer noncoplanar yields decay rates which cannot be described as a
perturbation to the flat band, which makes it more difficult to use this type of connectivitiy to achieve fully polarized
Maxwell bilayers.

Appendix B: Decay Rate for 100-cell Beam-Discretized Supercell

Decay rates for the first six modes of a 100 cell supercell, with AR used in the manufactured lattice, at { = 1
are shown in Fig. 7). Here we see that, unlike the low-AR or spring and mass counterparts, modes 5 and 6 remain
bulk-like when we increase the supercell to much longer length, revealing that these are not just long decay length
modes that simply appear bulk-like due to the relatively short size of the 10-cell supercell. Thus, their residence in
the bulk band, as shown in the band diagram, is confirmed.
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FIG. 8. Wavefield and DFT plots for: experiments (A-B) and simulations (C-D) with an in-plane excitation at the rigid edge,
experiments (E-F) and simulations (G-H) with an in-plane excitation at the floppy edge, experiments (I-J) and simulations
(K-L) with an out-of-plane excitation at the rigid edge, and experiments (M-N) and simulations (O-P) with an out-of-plane
excitation at the floppy edge, all carried out at a carrier frequency of 300 Hz (dashed blue lines). Colorbars in panel M and N
apply to all wavefields and contours in the figure, respectively, with the former representing the displacement intensity in the
wavefield and the latter highlighting modal activation on the excited edge. While the wavefields capture the signature of wave
propagation on the lattice surface, the insets of D, H, L, and P allow to appreciate propagation through the 3D structure of
the bilayer. Note that the wavefields and contours are normalized by the highest value in their respective data sets.

Appendix C: Supplemental Results for Experiments and Simulations away from Topological Modes

Wavefield and DFT plots for experiments and simulations at carrier frequencies of 300 and 1300 Hz are shown
in Fig.s 8 and 9, respectively. While the main text includes experimental figures highlighting edge-selectivity in the
topologically polarized lattice, these images highlight frequency selectivity, an equally important ingredient in ensuring
this behavior is not spectrally ubiquitous, providing evidence for the topological nature of the activated modes.
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FIG. 9. Wavefield and DFT plots for: experiments (A-B) and simulations (C-D) with an in-plane excitation at the rigid edge,
experiments (E-F) and simulations (G-H) with an in-plane excitation at the floppy edge, experiments (I-J) and simulations
(K-L) with an out-of-plane excitation at the rigid edge, and experiments (M-N) and simulations (O-P) with an out-of-plane
excitation at the floppy edge, all carried out at a carrier frequency of 1300 Hz (dashed blue lines). Colorbars in panel M and N
apply to all wavefields and contours in the figure, respectively, with the former representing the displacement intensity in the
wavefield and the latter highlighting modal activation on the excited edge. While the wavefields capture the signature of wave
propagation on the lattice surface, the insets of D, H, L, and P allow to appreciate propagation through the 3D structure of
the bilayer. Note that the wavefields and contours are normalized by the highest value in their respective data sets.

Appendix D: Computational Beam Model: Details

In this work, we choose to work with Timoshenko beams to ensure that the results are robust even for short
connections whose slenderness ratio may exceed the bounds for while Euler Bernoulli beam theory is acceptable.

In 3D, the dynamical matrix for a single beam, Dy (typically referred to as the stiffness matrix K in structural
mechanics, although in this text K is explicitly used as the diagonal matrix of spring constants in the ideal Maxwell
case), encompasses stiffness contributions associated with axial, shear, bending, and torsional deformation. This
is captured by reordering rows and columns and partitioning Dp into minors that highlight the contributions of
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different mechanisms. Recalling that Dy links an array fn of nodal forces and moments, to an array [Um 0m]T of
nodal displacements and rotations, the matrix partition can be written as

O
Da,., o o
Dpyisi, = 0 o Ds,yy DM4XSD . (D1)
o DIY\;[ALXG DB

where Da is the contribution governing axial stiffness, Ds and D5 are square matrices controlling shear, and torsion
and bending, respectively, and Du is a rectangular mixed matrix coupling shear and bending. Note that because the
beam element matrices are calculated in a local coordinate system where the X axis is along the length of the beam,

they must be rotated upon assembly into. ag lobal systgm matrix.
Xsn%)revmus 1¥ ment oneg the &ynamlca matrix of a boam element is calculated b carrying out the integral
D= ,B dL over the length of the element. Ky, is diagonal constitutive matrix of elastic coefficients relating

an array o of stresses and moments to an array c of strains, shears, and curvatures (i.e. 0= Kpc) and is given by

“BA 0 0 o0 o oF
50 GAk 0 0 0 0
Y0 0 GAkK 0 0 0
Kb_H 0 0 0 GJ 0 0 (D2)
0 0 0 0 EI 0
0 0 0 0 0 EI

where E is the Young’s Modulus, A = mR2 is the cross-sectional area of the beam, I is the second moment of area of
the cross section about the y" and Z" axes (I = mR*/4 with R the cross section radius), J is the polar second moment of
area of the cross section (J = mR*/2), and k is the area shear correction factor. This matrix features elastic constants
for axial deformation (row 1), shear deformation (rows 2 and 3), torsion (row 4), and bending (rows 5 and 6). B
is an elemental matrix which captures a similar role in a beam element as C does in a spring-and-mass bond. B
contains derivatives of shape functions [that interpolate the elemental displacements and rotations between nodes].
These shape functions are linear in axial and torsional deformation, cubic in flexural deformation, and quadratic in
rotations.

As we change the radius of the beam’s cross section, the elastic coefficients for axial and flexural deformation scale
at different rates - the ratio of the former to the latter is «1/R2. Thus, even though we never lose the inherent effects
of clamped boundary conditions and the storage of bending energy of the beams, as we reduce the cross sectional
radius R, we asymptotically approach the dominance of axial deformability typical of the spring-mass case.

In the Timoshenko beam framework, the mass matrix of the beam elements is also not diagonal, coupling degrees of
freedom in the same manner as Dy. This matrix is calculated by integrating the elemental shape functions, multiplied
by material and cross-sectional properties, over the length of the element. The resulting matrix includes contribution
from axial, lateral, rotatory (associated with the tilt of the beam cross-sections), and polar (twist about the beam
axis) inertial effects. A detailed account of this derivation, as well as that for the beam’s dynamical [stiffness] matrix,
is provided in ref. [57].



