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Maxwell lattices are characterized by an equal number of degrees of freedom and constraints. 
A subset of them, dubbed topological lattices, are capable of localizing stress and deformation 
on opposing edges, displaying a polarized mechanical response protected by the reciprocal-space 
topology of their band structure. In two dimensions, the opportunities for topological polarization 
have been largely restricted to the kagome and square lattice benchmark configurations, due to 
the non-triviality of generating arbitrary geometries that abide by Maxwell conditions. In this 
work, we introduce a generalized family of augmented topological lattices that display full in-plane 
topological polarization. We explore the robustness of such polarization upon selection of different 
augmentation criteria, with special emphasis on augmented configurations that display dichotomous 
behavior with respect to their primitive counterparts. We corroborate our results via intuitive table- 
top experiments conducted on a lattice prototype assembled from 3D-printed mechanical links. 

 
Mechanical metamaterials feature dynamical behavior 

that transcends that of conventional elastic media [1– 

4]. Lattice metamaterials, specifically, owe their dis- 

tinctive macro-scale behavior to the periodicity of their 

microstructure, composed of tessellated unit cells [5–7]. 

Maxwell systems are a special class of lattices, character- 

ized by an equal number of degrees of freedom and con- 

straints [8–10]. They posses interesting characteristics 

such as reconfigurability [11–14], geometric behavioral 

dualities [15, 16], and, of current relevance, the ability 

to host zero-energy (floppy ) modes [17–19] – where sites 

displace without straining the bonds. 

When freed from an infinite domain by cutting certain 

bonds, Maxwell lattices localize zero modes at the edges 

due to a local imbalance between degrees of freedom and 

constraints [18, 19]. Certain Maxwell lattices have been 

shown to localize deformation and stress on opposite 

edges, a feature referred to as topological polarization, 

which is protected against defects by the momentum- 

space topology of the bulk [20–26]. This polarization 

manifests as an excess of zero modes at the floppy edge, 

while the opposite edge remains rigid. 

Topological polarization has been discussed for lattices 

with one-dimensional (1D) [20, 21], 2D [11, 20, 27–32], 

and 3D periodicity [33–35], and, more recently, for 2D- 

periodic bilayers embedded in 3D space [36, 37]. How- 

ever, in 2D, studies have largely been restricted to de- 

formed configurations of the canonical square [31, 32] 

and kagome lattice [11, 18]. A gap exists in the study 

of topological lattices with increased cell geometry com- 

plexity and kinematics. Filling this gap provides a golden 

opportunity to search into a broader design landscape for 

additional topologically polarized configurations. 

In this letter, we introduce a family of topological lat- 

tices whose augmented unit cells contain a higher number 

of sites and bonds than the kagome or square lattices. 
 
 

In general, the task of generating augmented unit cells 

adhering to Maxwell conditions is non-trivial, as con- 

figurations resulting from the process may be over- or 

under-coordinated. A promising path consists of lever- 

aging known unit cells amenable to topological polariza- 

tion as elementary building blocks. In this regard, here 

we adopt a distorted kagome cell as a primitive geometry, 

and augment it through a series of mirror-folding opera- 

tions. We document analytically an emergent topological 

polarization, and explore parametrically its robustness 

upon changes in geometry. Although we primarily focus 

on single-mirror augmentation, we introduce a general- 

ization of this approach to multi-mirror augmentation 

strategies; while generally not guaranteeing full polar- 

ization, these extended strategies still yield asymmetric 

response scenarios with an unequal number of zero modes 

localized at opposing edges. We validate our results via 

experiments on a prototype assembled from 3D-printed 

mechanical links. 

A kagome unit cell consists of two triangles meet- 

ing at a vertex. Alternatively, it can be interpreted as 

three sites ¯ri connected to each other and to adjacent 

cells by six bonds b̄ i j  = ¯rj − ̄r i ,  taken as springs of 

equal stiffness. A parametric description of the unit cell 

shown in Fig. 1(a) is given in terms of ¯r1 = [1, ∆], 

¯r2 = [cos (π/3), sin (π/3)], and ¯r3 = [0, 0], with lattice 

vectors £¯
1 = [2, sin (γ) − ∆] and £¯

2 = [1, sin (π/3) + 
0.57 sin (π/4 + γ) − ∆], where γ is a parameter that ro- 

tates, counterclockwise, bonds b̄ 13 ,  = (¯r3 + £¯
1) − ¯r1 and 

b̄ 12 ,  = (¯r2 − £¯
2 + £¯

1) − r̄1 ,  changing the length of b̄ 13 ,  

(translating ̄ r3 + £2 vertically), and ∆ adjusts the verti- 

cal position of r̄ 1 .  Starting from this, we introduce the 

augmented cell shown in Fig. 1(b), which we refer to 

as bi-kagome (BK), acquired by mirroring the kagome 

cell about an axis (dashed line) passing through ¯r1 and 

¯r3 + £¯
2. This geometry features six sites ri and 12 bonds 

bij = rj − ri per unit cell, with periodicity over £1 = 

[4, 0] and £2 = [2, sin (π/3) + 0.57 sin (π/4 + γ)], where 
∗ sgonella@umn.edu r1 = r̄1 ,  r2 = r̄2 ,  r3 = r̄3 ,  r4 = [2, 0], r5 = r2 + [1, 0], 

ar
X

iv
:2

3
0

1
.1

0
3
7
6
v
2
 
[c

o
n
d
-m

at
.m

tr
l-

sc
i]
 
2

6
 J

an
 2

0
2
3
 

mailto:sgonella@umn.edu


2 
 

(a)  (b) 
 

(c) 0.04 

r2   

r3 r3 r4 

 
r1  0 

(h)  (f) 

2x 

 
(g) 

-2 
2x 

Polarized 

-4 
-1   

 

 

-6 

 

-2 
 

 

 

 

 

4x 

 

 

 

 

 

 
0 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1. (a) Kagome (SK) and (b) bi-kagome (BK) unit cells, where orange sites belong to the unit cell and gray sites belong 

to adjacent unit cells; (c) supercell band diagram for the BK unit cell with γ = −π/4, featuring four zero modes, and (d) 
decay rate κ2 of zero modes and (e) winding number ν2 across the Brillouin Zone (BZ). (f) Supercell geometry and (g) mode 
shapes of the edge-localized zero modes at ξ1 = π. (h) κ2 at ξ1 = π, as a function of γ, with examples of fully polarized (red), 
non-polarized (green), and phase transition (blue) configurations. 

 
 

r6 = [1, sin (π/3) + 0.57 sin (π/4 − γ) + sin (γ)]. For clar- 

ity, henceforth we refer to the primitive kagome as sin- 

gle kagome (SK). Within the available landscape of aug- 

mentation and parametrization techniques, the current 

method is chosen as only one of the BK lattice vectors 

is dependent on γ. In this work, for convenience, we fix 

∆ = 0.03, reducing the parameter space to just γ (see 

supplemental Materials [SM]). 

We investigate the polarization of the augmented cell 

by adapting a general framework for Maxwell lattices 

[19]. The compatibility matrix C of a cell relates site dis- 

placements U to bond elongations E. Maxwell lattices 

can experience zero-energy modes that displace the sites 

without deforming the bonds (i.e. CU = 0), therefore 

spanning the nullspace of C, under appropriate bound- 

ary conditions. These zero modes can manifest in the 

bulk or localize to an edge. The topological polarization 

of a lattice is marked by an excess of zero modes local- 

ized on a certain edge. Focusing on the benchmark BK 

configuration with γ = −π/4, we confirm the emergence 

of zero modes by studying the supercell shown in Fig. 

1(f), encompassing 10 cells along £2, with Bloch-periodic 

boundary conditions along £1 and free boundary condi- 

tions at the top and bottom edges. Indeed, the resulting 

supercell band diagram (Fig. 1(c)) features four overlap- 

ping zero modes. Their four corresponding mode shapes 

at ξ1 = π, shown in Fig. 1(g), indicate that all four 

are edge modes localized on the top edge, denoting full 

polarization. 

The degree of localization of a mode is characterized by 

 

its decay rate into the bulk κ2 [along £2], calculated for 

each transverse wave number ξ1, sampled along £1, us- 

ing the procedure described in Ref. [37] (see SM). Decay 

rates calculated across the BZ for γ = −π/4 are shown 

in Fig. 1(d), where κ2 < 0 (> 0) denotes zero modes 

localized at the top (bottom) edge. The four zero modes 

are, indeed, localized on the top edge. Polarization along 

£2 is protected by the topological invariant integer wind- 

ing number ν2, calculated for each wavenumber ξ1 over 

a closed loop in the BZ [20] (see SM). As shown in Fig. 

1(e), ν2 = −2 for all wavenumbers; this captures a transi- 

tion [with respect to the ground state] of two zero modes 

from the stiff edge to the floppy edge, rendering the con- 

figuration fully polarized, and validates the topological 

roots of the observed behavior. 

Focusing on the short-wavelength limit (ξ1 = π), we 

study the dependence of the degree of polarization – 

embodied by κ2 – on the parameter γ.  The sweep 

γ = [−π/2.5 π/2.5] is shown in Fig. 1(h). For all values 

of γ, the decay rate curves are doubly degenerate (be- 

coming quadruple degenerate locally around γ = −π/6), 

indicating that there exists, in general, two distinct decay 

patterns allowed by the lattice. Importantly, for config- 

urations with γ < −0.4135, the lattice displays full po- 

larization, with all four zero modes localized on the top 

edge. 

We quantify the asymmetry of the static response of 

the lattice by performing full-scale static simulations of 

an 81 × 81-cell domain, loaded by a unit-amplitude force 

applied at the midpoint of the top (bottom) edge while 
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FIG. 2. (a) Edge stiffness values, as a function of γ, inferred via full-scale static simulations of an 81 × 81 BK lattice probed 
by a point load with the red (blue) curve referring to the rigid (floppy) edge. (b) Detail of the lattice with a close-up of 
an individual BK unit cell, a 3D-printed link, and the Lego® axles and bushings used as hinges. (c) Snapshots of stress 

concentration on an 11 × 11 lattice for a polarized, phase transition, and nonpolarized configurations with loading at the rigid 
edge. Quasi-static experiments performed loading from the rigid (d) and floppy (e) edges, yielding rigid-body motion and 
displacement localization, respectively (see SM Movie M1). 

 
 

constraining the other edges. We infer edge stiffness by 

dividing the applied force by the resulting displacement 

on the loaded point. We repeat this exercise for the range 

γ = [−π/2.5 π/2.5], with the stiffness of the rigid (floppy) 

edge shown in red (blue) in Fig. 2(a). For low γ values, 

the large gap between the two curves denotes asymmet- 

ric edge stiffness: the floppy edge features essentially zero 

stiffness (within computational error), while the stiff edge 

value is finite. At γ > −0.4135, the stiffness curves co- 

alesce, marking the transition to a nonpolarized regime. 

The effects of a geometry sweep on the topological phase 

have been discussed in Ref. [11] for a deformed kagome 

lattice, where the bounds of polarization were identified 

as the twist angles between the triangles for which their 

edges align to form states of self-stress (SSS). Here, the 

same condition cannot be met by the BK lattice due 

to the impossibility to form straight lines of bonds for 

all γ. However, a qualitative rationale for the driver of 

phase transition can be inferred by studying the stress 

concentration patterns developing in the lattice in differ- 

ent regimes. Snapshots of static simulations of an 11 × 11 

lattice loaded by a force applied at the rigid edge, shown 

in Fig. 2(c), reveal that, for a configuration at the phase 

transition point, force chains develop from the loading 

point into the bulk along £2, playing a role akin to an 

SSS. In stark contrast, a polarized configuration devel- 

ops stress concentration at the rigid edge, decaying into 

the bulk, while for a nonpolarized configuration, stress 

concentration patterns emanate from the lateral bound- 

aries. 

We construct a mechanical prototype resembling the 

 

ideal spring-mass system used in our theoretical predic- 

tions, with slender links 3D-printed (Prusa MK3S) out 

of polylactic acid (PLA) and connected with nearly fric- 

tionless rod-like hinges of Lego® axles and bushings. The 

assembled 5 × 8 lattice is shown in Fig. 2(b), where the 

nonperiodic bonds at the left and right boundaries help 

eliminate trivial floppy behavior of dangling bonds. Figs. 

2(d) and (e) show the behavior of the lattice when quasi- 

statically manually loaded from the rigid and floppy 

edges, respectively. When pushed from the floppy edge, 

the lattice responds by developing a soft mode that lo- 

calizes at the floppy edge, eventually morphing into geo- 

metrically non-linear deformation, involving macroscopic 

rotations of the triangles, that decays sharply into the 

bulk. Note that topological polarization theory, which 

is strictly linear, predicts only the softness of an edge 

and not the nonlinear deformation regime that unfolds. 

In contrast, loading from the rigid edge results in rigid 

body motion of the entire lattice. 

To showcase the richness of strategies for cell augmen- 

tation available within the proposed framework, we con- 

sider an alternative variant of the BK lattice, which, re- 

markably, can display polarization when its SK coun- 

terpart is unpolarized. Take the SK lattice and its BK 

counterpart in Fig.s 3(a) and (b), respectively (see SM). 

Following the procedure above, we calculate the κ2 for 

the SK and BK unit cells over the parameter space 

γ¯ = [−π/6.6 π/2.5], and plot the results for ξ1 = π in 

Fig. 3(c) and (d), respectively. The green region denotes 

a parameter range in which the BK lattice is polarized 

while its SK counterpart is not, and the red region ex- 
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figurations in Fig. 4(c), (e), and (g), respectively, using 

a 20-cell supercell, where n2 = 1 (n2 = 20) denotes the 

bottom (top) edge. Interestingly, in the bulk, for Th > 1 

the trend of localization towards the top edge persists, 

signaling robustness of the polarization against the aug- 

mentation process. However, most modes also display a 

sharp increase in displacement localized strictly to the 

last unit cell on the bottom edge. For augmented cells, 

this trivial edge effect may overwhelm the edge-selective 

attribute of the bulk that is ascribable to topological pro- 

tection. 

1  Further, it can be shown that, despite profound 

changes in geometry induced by varying Th, the effec- 

tive spatial density of the lattice remains constant (see 

SM). This implies that we can sweep the structural de- 

sign landscape of the lattice via cell augmentation, tuning 

FIG. 3. (a) SK and (b) BK unit cells parametrized in terms 
of the twist angle γ¯. κ2(ξ1 = π) for the (c) SK and (d) BK 

the polarization, without changing the effective weight, 

in the interval γ¯ = [−π/6.6 π/2.5], where the red (green) (a) Th=1 (b) 
shading highlights parameter regions where the SK (BK) is 
fully polarized while the BK (SK) is not, and the blue region 
highlights parameters where both geometries are polarized; 
winding number ν2 of the (e) SK and (f) BK lattices for an 
example case (green dotted line). 

 

 
hibits the opposite trend, with the SK polarized and the 

BK nonpolarized. In the blue region, both lattices dis- 

play polarization. As an example, winding number ν2 

calculations for γ¯ = 0.57 (green dotted line) for the SK 

(Fig. 3(e)) and BK (Fig. 3(f)) elucidate their topolog- 

ical dichotomy. For the SK lattice ν2 = 0, indicating 
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no polarization, while for the BK ν2 = −2 for shorter 
1 20 

wavelengths and ν2 = −1 for longer wavelengths, both 

signaling topological polarization, albeit with differing 

strengths. The integer change observed in ν2 is a well 

documented occurrence associated with the existence of 

a Weyl point in the bulk band diagram, which denotes 

the existence of bulk zero modes [31, 34]. 

The versatility of the cell augmentation framework can 

be appreciated by considering a generalization of the pro- 

cess involving multiple mirroring steps preceding cell tes- 

sellation, resulting in additional proliferation of sites and 

bonds in each unit cell. For example, Fig. 4(a) shows 

a unit cell generated by further mirroring the BK unit 

cell from Fig. 1(a) about sites r4 and r3 + £2 (the latter 

becoming r9 after mirroring). In principle, the process 

can involve an arbitrary number of horizontal mirroring 

operations; we introduce label Th denoting the number 

of BK units assembled along the £1 direction in the aug- 

mented cell. Fig.s 4(b), (d), and (f) show three examples 

ranging from Th = 1 (original BK) to Th = 3. The modal 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4. (a) Example of augmented unit cell featuring two 

connected BK unit cells (i.e. Th = 2). Truncated lattices for 
(b) Th = 1, (d) Th = 2, and (f) Th = 3, highlighting emergent 
void polygons, and their modal displacement Un2 (c, e, g, 
respectively) plotted as a function of the unit cell index for 
all supercell zero modes. (h) Sample augmentation strategies 
with Th = 1, 2 and Tv = 1, 2, where the Tv = 2 row depicts 
augmentation via two distinct mirroring operations about the 
£1 axis. 
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which is often a major constraint in structural design. 

However, the augmentation process exacerbates the de- 

gree of heterogeneity of the lattice: as Th increases, the 

number of purple quadrilaterals follows Th + 1 and the 

number of edges of the pink polygonal gaps is 4 + 4Th. 

This trend progressively localizes the solid phase of the 

lattice, while introducing (and progressively stretching) 

a length scale (i.e., £i) associated with periodicity of the 

augmented cell (with interesting implications on bulk 

phonons – see SM). 

Finally, mirroring is not restricted to the £1 direction; 

in fact, we can also introduce Tv vertical mirrors (in the 

£2 +£1/2 direction), or even Td diagonal mirrors (see SM). 

Fig. 4(h) tabulates unit cells generated for Th = 1, 2 and 

Tv = 1, 2, where the row Tv = 2 displays two alternative 

mirroring strategies. Frame (Th = 1 - Tv = 2) highlights 

that this augmentation strategy should be handled with 

care as certain ∆ and γ ranges may result in non-Maxwell 

lattices. The same two vertical mirroring strategies are 

shown for (Th = 2 - Tv = 2), where the resulting lat- 

tices are still Maxwell by considering the average count 

of sites and bonds over the cell, while accepting that cer- 

tain sites will be under- and over- coordinated. Validat- 

ing the topological nature of such resulting configurations 

requires future investigation (see SM). 

In summary, we introduce a family of augmented 

Maxwell lattices obtained through mirror operations per- 

formed on kagome cells, which display full polarization. 

This process begins to uncover a larger dimensional space 

for topological lattices, with implications on the versatil- 

ity of this geometry class for structural design. 
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FIG. S1. Heatmap of the decay rate κ2 for the zero mode with lowest decay from the top edge at ξ1 = π – max(κ2(ξ1 = π)) – 
for all parameter combinations γ = [−π/2/5 π/2.5] and ∆ = [−0.5 0.5]. Lighter color signifies a lower values (i.e. larger decay 
rate from the top and stronger polarization) while dark blue signifies a larger decay rate from the bottom edge and weaker/no 
polarization. 

 
Fig. ??(a) and (b) in the main text introduce a parametrization of the SK and BK unit cells where γ adjusts the 

angle of SK bonds b̄ 13 ,  = (¯r3 + e¯
1) − ¯r1 and b̄ 12 ,  = (¯r2 − e¯

2) − ¯r1 counterclockwise (so that γ = 0 results in an 
upper triangle that is isosceles) and ∆ adjusts the height of SK site ̄r3 ,  with the corresponding changes mirroring for 

BK. This parametrization is easily interpreted in the BK as an effective vertical translation of r6. In the parameter 

ranges γ = [−π/2.5 π/2.5] and ∆ = [−0.5 0.5], we calculate the decay rates κ2 of the zero modes of the BK lattice at 

ξ1 = π. We search for geometries where all four available zero modes are localized at the top edge; thus to confirm 

all κ2 < 0, it is sufficient to check max(κ1(ξ1 = π)): if this value is negative, then all modes are localized to the top 

edge – we refer to max(κ2(ξ1 = π)) as the strength of polarization. Results are summarized in the heatmap in Fig. S1 

where max(κ2(ξ1 = π)) is documented for each parameter combination. The heatmap reveals that the geometry with 

highest polarization strength is where ∆ gives the smallest perturbation, breaking the straight line of bonds along the 

pair of connected equilateral triangles - we remind the reader that in this work, we take ∆ = 0.03 for computations. 

Interestingly, if ∆ = 0, the polynomial given by det(C) reduces to an order lower than the number of available zero 

modes, therefore, in the analytical calculations ∆ = 0 is avoided. 

 
 

TOPOLOGICAL ANALYSIS 

 
The compatibility matrix of a cell, C, relates site displacements U to bond elongations E. The dynamical matrix 

D = C†kC – where k is a diagonal matrix of bond stiffness constants (henceforth taken to be unity for convenience) 
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FIG. S2. Example of (a) SK and (b) BK unit cell (with γ = −π/4) used in calculation of winding number ν2, where the solid 
lines are intracell bonds connecting sites in the unit cell to each other and dotted lines are intercell bonds that connect s ites in 
the unit cell to sites in the adjacent unit cell. 

 

 
– yields eigenfrequencies ω and eigenvectors U that capture the mode shapes. The wave response of a periodic lattice 
is obtained from that of the unit cell upon applying Bloch periodic boundary conditions relating displacements at 

site ri to those in site ri + n1e1 + n2e2 as U(n) = Ueiξ·n, where n = [n1, n2] identifies cell number n1 (n2) in the e1 

(e2) direction and the components of the wavevector ξ = (ξ1, ξ2) give the wave numbers defined along e1 and e2. The 
compatibility matrix C(ξ) becomes Bloch-periodic and the eigenfrequencies ω and mode shapes U are the eigenvalues 

and eigenvectors of the dynamical matrix D(ξ) = C(ξ)†C(ξ). 

Zero modes in Maxwell lattices can present themselves in the bulk and/or localize at the edges. Recall, from the 

main text, that the topological polarization of a lattice is characterized by an excess of edge modes localized on one 

edge. To asses the degree of polarization of a lattice, we can compare the number of zero-modes that localize on (or 

decay from) opposing edges. The number of zero modes localized along the edges of a finite lattice in the ei direction 

depends on the number of bonds connecting a cell to its neighbor along that lattice vector – four along the e2 direction 

in the case of the BK unit cell – as confirmed by examining the nullspace of C. Wave numbers, characterizing the 

spatial frequency of waves in each lattice direction, are generally complex ξ = ki + iκi, with ki and κi capturing 

the oscillatory and decaying components of the wave in the i direction, respectively. The decay rates of these edge 

modes are calculated by finding the wave vectors at which the detC vanishes (i.e. det(C(ξ1, ξ2) = 0). This operation 

boils down to a root finding effort, as det(C(ξ)) is a polynomial whose order matches the number of available zero 

modes, and whose roots capture the decay rates. In the current work, we seek the decay rates of zero modes along 

the e2 direction, thus we search for solutions ξ2 for which the equation holds for a given ξ1, across the Brilloin zone 

(BZ), with κ2 =Imag(ξ2) providing the decay. Decay rates are negative (positive) for edge modes localized to the top 

(bottom) edge. 

Topological polarization in a specific lattice direction ei is typically confirmed by studying the winding number of 

a lattice’s unit cell, which can be interpreted as giving the integer count of modes transported from one edge to the  

other, rendering the former rigid and the latter floppy. This calculation is performed along a closed contour in the BZ 

(typically defined as [−π π] in the wavevector direction corresponding to the lattice direction of interest ξi) for each 

wavenumber in the transverse direction ξj. Recall that in this work, we are interested in assessing the polarization in 

the e2 direction, thus for each wavenumber ξ1 we calculate 

 

 1  +π 

ν2(ξ1) = 
−π 

∂ 
dξ2 

ξ 

 
Im log det C(ξ1, ξ2). (S1) 

In the spirit of the bulk-boundary correspondence, this calculation is performed over a unit cell (shown in Fig. S2) 

with periodic boundary conditions, yet it provides information about the behavior of the edges of a finite version of 

the lattice. 

 
 

KAGOME ANALYSIS FOR BK COMPARISON 

 
To put the BK lattice results from the main text in context, we find the decay rates κ2 of a conventional kagome 

(SK) unit cell for γ = [−π/2.5 π/2.5], using the parametrization shown in Fig. ??(a) in the main text. The decay 

rates of each geometry at ξ1 = π (i.e. κ2(ξ1 = π)) are shown in Fig. S3(a), where we see that, for all γ, the SK is 

fully polarized. The inset shows the decay rates across the entire Brilloin Zone (BZ) for γ = −π/4. Bloch analysis 

over a 10 cell supercell gives the band diagram in Fig. S3(b), with two overlapping zero modes, whose mode shapes 
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FIG. S3. (a) Decay rates κ2(ξ1 = π) for the kagome (SK) lattice parametrized as shown in Fig. ??(a) in the main text, for 
γ = [−π/2.5, π/2.5], with the blue region in the plot serving as a reminder of the parametric region where the bi-kagome (BK) 
unit cell displays full polarization towards the top edge. The inset shows decay rates of the zero modes across the entire BZ 
for the BK parameter choice used in computations and experiments (γ = π/4, highlighted by the red vertical dotted line). (b) 
Band diagram for the SK cell with γ = −π/4 with the (c) supercell used for its calculation (left) and corresponding mode 
shapes for the two available edge zero modes (middle and right). 

 

 
at ξ1 = π are shown in Fig. S3(c), with the supercell shown on the left. The mode shapes show localization towards 

the top edge of the lattice. 

 

 
VARYING TOPOLOGICAL STATES IN KAGOME AND BK LATTICES 
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FIG. S4. (a, d) Decay rates κ2 across the BZ, (b, e) winding number ν2, and unit cells for the (c) BK and (f) SK lattice, 
respectively, at the blue dotted line of Fig. ??(c); (g) κ2 across the entire BZ, (h) ν2, and (i) unit cell for the BK and SK lattice 
in the red dotted line of Fig. ??(c), showing the geometry featuring the highest polarization strength; (j, m) κ2 across the BZ, 
(k, n) ν2, and unit cells for the (l) BK and (o) SK lattice, respectively, at the green dotted line of Fig. ??(c). 

 

In the main text, Fig.s ??(a) and (b) introduce an alternative parametrization of the SK and BK, where γ¯ and Γ 
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enforce a net nonlinear rotation of the two triangles with respect to each other, where Γ is a function of γ¯ (i.e., Γ( γ̄ )  

due to the mirror constraint about rt
1 and rt

6. The sites ˜ri and lattice vectors e˜
j of the SK in this parametrization 

are given by: 

 
˜r1 = (cos(Γ), sin(Γ)) 

˜r2 = (cos(π/3 + Γ), sin(π/3 + Γ)) 

˜r3 = (0, 0) 

e˜
1 = (cos(Γ) + cos(γ̄ ), sin(Γ) − sin(γ̄ )) 

e˜
2 = (cos(π/3 + Γ) + b cos(π/6 − γ̄ ) ,  sin(π/3 + Γ) + b sin(π/6 − γ̄ ))  . 

 
 

 

(S2) 

 

where Γ = π/3 + arccos (b cos (π/6 − γ̄ )). The sites rti and lattice vectors etj of the corresponding BK resulting from 

the mirroring are given by: 
 

rt
1 = ˜r1 

rt
2 = ˜r2 

rt
3 = r̃3 

rt
4 = (2 cos(Γ), 0) 

rt
5
 = (cos(Γ) + cos(π/3 − Γ), sin(π/3 + Γ)) 

(S3) 

rt
6 = (cos(Γ), sin(π/3 + Γ) + b sin(π/6 − γ̄ )  

et
1 = (2 cos(Γ) + 2 cos(γ̄ ), 0) 

et
2 = (cos(γ̄ ) + cos(Γ), b sin(π/6 + γ̄ )  + sin(π/3 + Γ)) , 

 

where b is the length of the shorter sides of the top isosceles triangle, and all other sides are of unit length. 

Fig. ??(c) and (d) in the main text show decay rates κ2(ξ1 = π) for the SK and BK lattices as a function of 

γ̄ ,  highlighting a blue and green region where both or only one of the two lattices is polarized, respectively, and 

specifically pointing out selected lattice configurations γ¯ at the blue, red, and green dotted line. Here we show decay 

rates κ2 and winding numbers ν2 for BK (Fig.s S4(a) and (b)) and SK (Fig.s S4(d) and E) configurations at the 

blue dotted line, whose unit cells are shown in Fig.s S4(c) and (f), respectively. We see that, in the blue region, 

indeed, both geometries display polarization where the BK has ν2 = −2 (ν2 = −1) at shorter (longer) wavelengths, 

while the SK shows ν2 = −1 across the entire BZ. Similarly, we show κ2 and ν2, for BK (Fig. S4(j)) and SK (Fig. 

S4(m)) configurations at the green dotted line, with their unit cells shown in in Fig. S4(l) and (o), respectively. 

Winding numbers ν2 for each configuration are reproduced from the main text in Fig.s S4(k) and (n), respectively, 

for convenience. Here, decay rates corroborate the winding number discussion in the main text where the BK lattice 

shows all four modes decaying from the same edge at shorter wavelengths, while the SK shows one mode localized to 

each edge. Finally, for completion, we show the BK geometry with highest strength of polarization – defined as the 

configuration with the strongest zero mode decay signature from the top edge, mathematically seen as the lowest value 

of max(κ2(ξ1 = π)) – (Fig. S4(i)) and plot κ2 and ν2 in Fig.s S4(g) and (h), respectively – in this local parametric 

region, small perturbations to γ¯ have great impact on the polarization strength. It is interesting to note that all BK 

geometries using this parametrization feature a Weyl point that progressively moves towards ξ1 = π as the parameter 

γ¯ increases. Note that the zero mode decay rates trends remain unchanged for the SK unit cell rotated 180◦ about 

the y-axis. 

 

 
STATIC BK EDGE STIFFNESS DICHOTOMY 

 
We perform computational static simulations to confirm the stiffness dichotomy between the floppy and rigid edges 

in a lattice composed of 21 × 21 BK unit cells parametrized as shown in Fig. ??(b) in the main text. We apply a unit 

force at the top (bottom) edge on the centermost cell, and confine the displacement of the other edges. The stiffness 

of an edge is taken to be the unit force divided by the displacement of the site where the force was applied. The 

stiffness of the floppy (rigid) edge is shown in Fig. S5(a) as a blue (red) curve for γ = [−π/6.6, π/2.5]. The rigid edge 

displays higher stiffness for the parametric region where the BK lattice is fully polarized, and the stiffness of both 

edges is comparable elsewhere. 
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FIG. S5. Stiffness comparison of the floppy (blue) and nonfloppy (red) edges, computed from static full-scale simulations, across 
the parameter space γ = [−π/6.6 π/2.5], for the parametrization shown in Fig. ??(b) in the main text 

. 
 
 

For this parametrization of the BK unit cell, the parametric region for which the two curves are gapped depends on 

the size of the lattice. Interestingly, as the lattice grows in size, the width of the region where the stiffness of the rigid 

edge is greater than the floppy edge decreases. This may be due to the presence of Weyl points in the band diagrams, 

where as its size grows, the lattice is able to support waves of longer wavelength, allowing for the appearance of the 

zero modes localized at the rigid edge to emerge. This does not necessarily invalidate the polarization of the lattices, 

as they still have ν2 < 0, but it means that the presence of a zero mode, regardless of wavelength, at the rigid edge 

overwhelms the edge-dichotomous response. Note that the same is not true for the BK parametrization shown in Fig. 

??(b) in the main text, where the results remain qualitatively the same regardless of lattice size, and ν2 shows no 

Weyl points. 

 

 
AUGMENTED UNIT CELL DESIGN WITH 2D ARBITRARY PERIODICITY DIRECTION 

 

 

 

FIG. S6. Augmented unit cell with arbitrary diagonal tessellation Td = 2 (i.e., two BK units in the augmented cell) over an 
angle θ, where maroon lines denote a choice of lattice vectors. 

 

In the main text, we introduce a design scheme to generate augmented unit cells by tessellating in multiple directions, 

and discuss tessellation in the horizontal direction, parallel to e1, with Th BK units. Here, we briefly expand on vertical 

Tv and diagonal Td mirrors. Fig. ??(h) shows tabulated examples of Th (Tv) horizontal (vertical) tessellation of the 

BK cell, and a combination of the two. Note that due to the restrictions of Maxwell criteria, in order to maintain 

an equal number of constraints and degree of freedom, tessellation cannot be performed in a trivial manner. Take, 
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for example, tessellation (Th = 1 - Tv = 2). Tessellating the BK cell in the top left corner of the table in Fig. S6(a) 

(with ∆ < 0 on the left and γ > 0 on the right), we cannot meet Maxwell criteria. This is true, for example, for 

all tessellations of odd valued Th when Tv = 2. However, if we take ∆ > 0 (for the mirroring scheme on the left) or 

γ < 0 (for the mirroring scheme on the right), the tessellation becomes periodic. This highlights the need for careful 

parameter selection when using this framework to generate augmented unit cells adhering to Maxwell conditions. 

In addition, tessellations need not be restricted to horizontal and vertical, and can in fact be performed in the 

diagonal direction to maintain some angle θ between the BK sub-units, where the mirror plane becomes a linear 

combination of the two [original BK] lattice vectors. The example in Fig. S6 provides one version of what this may 

look like, where the unit cell is shown in black bonds and orange sites, the grayed out cells are adjacent, and the 

maroon arrows denote lattice vectors. Here, Td = 2, signifying that in this diagonally augmented cell, we have two 

BK units. 

We do not claim that all cells generated with this framework will give full polarization, or polarization at all.  We 

simply introduce a method to generate augmented Maxwell unit cells. Further studies are required to understand the 

topological nature of this larger family of augmented lattices. 

 
 

LATTICE DENSITIES 
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FIG. S7. Examples of spatial areas used in calculating spatial density for the BK lattice with (a) Th = 1 and (b) Th = 2, 
where the blue region is taken as the solid of a cell and the green box bounds the total area of a cell. (c) Spatial density 
of the BK lattice, with the parametrization shown in Fig. ??(b), as a function of γ (solid black) with a comparison with its 
SK counterpart (blue dotted line); (d) spatial density of the BK lattice with γ = −π/4 as a function of Th (solid black) with 

a comparison of its SK counterpart (red dotted line – note that this line not plotted as a function of Th and only there for 
comparison). 

When using this framework in the design of lattices it is useful to understand how their spatial density changes 

upon transformation. Fig.s S7(a) and (b) show a BK lattice with Th = 1 and Th = 2, respectively. We consider the 

area taken up by the lattice As as that encompassed by the triangles (blue shaded), and the total area footprint of 

the lattice Atot as maker by the green box bounded by the extremes in each cartesian dimension; the effective lattice 

density is then ρ = As/Atot. Fig. S7(c) plots the density of the BK lattice as a function of γ (solid black line) and 

with a comparison to that of its SK counterpart (blue dotted line) to show that they both maintain equal densities, 

which makes sense considering the fact that the BK unit cell is mirrored from the SK. Furthermore, in Fig.  S7(b) 

we check the density of the BK lattice (solid black) as a function of Th for γ = −π/4 (results are exportable to a 

generalized value of γ) with a comparison of the SK for control (red dotted) to show that, still, a constant lattice 
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density is maintained as we expand the unit cell, despite the changes in shape and number of inter-cell polygonal 

gaps. Again, this makes sense as a simple mirroring multiplies, both, the area taken up by the lattice and the total 

area footprint. Note that using this logic, we can see that these results would carry over for arbitrary values of Tv, as 

well. 

BAND DIAGRAMS FOR BK LATTICES Th > 1 
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FIG. S8. Band diagrams for augmented BK lattices with (a) Th = 2 and (b) Th = 3. (c) Low frequency bandgap width in the 
augmented BK lattice as a function of Th. 

Band diagrams for the augmented BK lattice with Th = 2 and Th = 3 are shown in Fig.s S8(a) and (b), respectively. 

For reference, we remind the reader that the band diagram for the original BK lattice (i.e., Th = 1) is shown in the 

main text in Fig. ??(c). These band diagrams shown that, as Th increases, the low frequency band gap separating 

the zero modes and the bulk shrinks. This is no surprise considering the increase in size of the large polygonal void 

(shown in pink in Fig. ??(b), (d), and (f) in the main text) with Th, which suggests a decrease in the overall spectrum 

of the bulk (i.e., modes available at lower energies) due to the easier deformability of such lattices. An alternative 

way to look at this is to consider that the frequency range of the Bragg bandgaps in the augmented lattices – arising 

from the periodic nature of their arrangement – depends inversely on the length of the unit cell, whose length scale 

increases with Th. Thus, as Th increases, the frequency range of such gap decreases. This lowering of the bulk band 

towards the zero modes is quantified by plotting the width of the low frequency band gap as a function of Th (Fig. 

S8(c)), where we see the band gap shrink in size while the bulk approaches the zero modes. 
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