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This article explores various uncertain control co-design (UCCD) problem formulations.

While previous work offers formulations that are method-dependent and limited to only a
handful of uncertainties (often from one discipline), effective application of UCCD to
real-world dynamic systems requires a thorough understanding of uncertainties and how
their impact can be captured. Since the first step is defining the UCCD problem of interest,
this article aims at addressing some of the limitations of the current literature by identifying
possible sources of uncertainties in a general UCCD context and then formalizing ways in
which their impact is captured through problem formulation alone (without having to imme-
diately resort to specific solution strategies). We first develop and then discuss a generalized

UCCD formulation that can capture uncertainty representations presented in this article.
Issues such as the treatment of the objective function, the challenge of the analysis-type
equality constraints, and various formulations for inequality constraints are discussed.

Then, more specialized problem formulations such as stochastic in expectation, stochastic
chance-constrained, probabilistic robust, worst-case robust, fuzzy expected value, and pos-
sibilistic chance-constrained UCCD formulations are presented. Key concepts from these
formulations, along with insights from closely-related fields, such as robust and stochastic
control theory, are discussed, and future research directions are identified.
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1 Introduction

With the ever-growing complexity and integrated nature of
dynamic engineering systems, the need for effective control
co-design (CCD) strategies, i.e., integrated consideration of the
physical and control system design, is ever present [1,2]. When
investigating a CCD problem, it is often the case that some of its
elements (e.g., inputs, model parameters, and/or some aspects of
system dynamics) are inherently uncertain or not entirely known.
In this paper, we refer to both of these characteristics as uncertainty.
Overlooking the impact of uncertainties in CCD may result in solu-
tions that are no longer effective in realistic scenarios.
These uncertainties may stem from multiple sources and affect

various elements of the CCD activity. For example:

• The noise acting through the control channel transforms the
deterministic control trajectories into stochastic ones;

• Plant optimization variables may be uncertain due to imperfect
manufacturing processes, measurement errors, and mass pro-
duction of components;

• Uncertain problem data (such as wind speeds, wave energy
densities, earthquake loads, and material properties) may
also affect various elements of the problem;

• Fidelity of the dynamic model (i.e., unmodeled or neglected
dynamics) may be another source of uncertainty that often
arises as a trade-off between model simplicity and accuracy;

All of these uncertainties may propagate through the dynamic
system and transform the states into uncertain trajectories. Conse-
quently, such uncertainties transform the CCD problem into an
uncertain control co-design (UCCD) problem. Even before
attempting to solve such problems, a necessary step is to identify
ways in which the impact of such uncertainties can be mathemati-
cally captured in an optimization formulation context. Therefore,
it is critical to establish and understand various possible UCCD
problem formulations.
This paper aims to identify the sources of uncertainties and for-

malize their inclusion in various UCCD formulations. This contri-
bution is motivated by the fact that, currently, uncertainty
quantification is reasonably well understood in specific control
and plant design optimization communities [3–7]. However,
current UCCD studies in the literature generally suffer from the
lack of a holistic view toward uncertainties, focusing on specific
uncertainties, often motivated by a particular solution technique
[8–12]. Therefore, the distinction between various UCCD
problem formulations is rarely discussed.
In this article, we present an initial effort at a generalized UCCD

problem formulation. Various problem elements, including the opti-
mization variables, objective function, equality and inequality con-
straints, and relevant concepts such as risk, are discussed. Next, we
transition toward specialized formulations that are motivated by
concepts from stochastic programming [13,14], robust optimization
[15–17], and fuzzy programming [18–20]. These formulations
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provide the necessary framework for the development and wide-
spread adoption of UCCD formulations in order to meet the ever-
increasing demands on performance, robustness, and reliability of
real-world dynamic systems. For more information on the imple-
mentations and specific engineering applications, readers are
encouraged to consult the references provided within the article.
Detailed reviews on uncertainty-based approaches for various engi-
neering applications, such as aerospace vehicles, distributed energy
systems, motion planning, process scheduling, power systems,
building energy assessment, and wind power forecasting, can be
found in Refs. [21–27], respectively.
The remainder of this article is organized as follows: Sec. 2

describes the deterministic CCD problem formulation and various
representations of uncertainty; Sec. 3 provides a mathematical foun-
dation for a general UCCD problem formulation; Sec. 4 describes
some of the specialized UCCD formulations that are inspired by sto-
chastic, worst-cast robust, and fuzzy programming frameworks,
including stochastic in expectation UCCD, stochastic chance-
constrained UCCD, probabilistic robust UCCD, worst-case robust
UCCD, fuzzy expected value UCCD, and possibilistic chance-
constrained UCCD; and Sec. 5 discusses several more specific
topics in the context of UCCD. Finally, Sec. 6 presents the
conclusions.

2 Uncertainty Representations in UCCD

In this section, the deterministic CCD, which is a special case of
UCCD formulation, is introduced. For mathematical clarity, we
define sets associated with both time-dependent and time-
independent deterministic and uncertain variables. This section
also introduces three distinct ways to represent uncertainties in
UCCD context: stochastic, crisp, and possibilistic.

2.1 Deterministic Control Co-Design. We begin by introduc-
ing the nominal continuous-time, deterministic, all-at-once (AAO),
simultaneous, CCD problem

minimize :
u, ξ, p

o =

∫tf

t0

ℓ(t, u, ξ, p, d) dt + m(p, ξ0, ξ f , d) (1a)

subject to : g(t, u, ξ, p, ξ0, ξ f , d) ≤ 0 (1b)

h(t, u, ξ, p, ξ0, ξ f , d) = 0 (1c)

ξ̇ − f (t, u, ξ, p, ξ0, ξ f , d) = 0 (1d)

where: ξ(t0) = ξ0, ξ(tf ) = ξ f , u(t) = u, ξ(t) = ξ

d(t) = d
(1e)

where t∈ [t0, tf] is the time horizon, {u, ξ, p} are the collection of
optimization variables including the open-loop control trajectories
u(t) ∈ R

nu , state trajectories ξ(t) ∈ R
ns , and the vector of time-

independent optimization variables p ∈ R
np , respectively. Note

that p may entail plant optimization variables pp, and/or time-
independent control optimization variables [28,29] (i.e., gains pc,
such that p= [pp, pc]). The objective function o(·) is composed of
the Lagrange term ℓ(·) and the Mayer term m(·). The vectors of
inequality and equality constraints are described by g(·) and h(·),
respectively. The transition or state derivative function f(·) describes
the evolution of the system through time in terms of a set of ordinary
differential equations (ODEs). All of the data associated with the
problem formulation is represented through d ∈ R

nd . This data,
which may be time-dependent or time-independent, includes infor-
mation such as problem constants, environmental signals, initial/
final times, etc.

In the remainder of this article, we assume that constraints
associated with the initial and final conditions {ξ0, ξf} are already
included in h(·) or g(·). In addition, we will often drop the
explicit dependence on t from time-dependent quantities such as
control and state trajectories, as well as the problem data. For
more details on deterministic CCD, the readers are referred to
Refs. [2,30].

2.2 Representation of Uncertainties. The first step in
accounting for uncertainties in a UCCD problem is the representa-
tion of input and model uncertainties. In the risk assessment context,
these uncertainties are either aleatory (irreducible) or epistemic
(reducible) [31]. Aleatory uncertainty is associated with the inherent
irregularity of the phenomenon, while epistemic uncertainty is asso-
ciated with the lack of knowledge. Accordingly, acquiring more
knowledge cannot reduce aleatory uncertainties, but it can reduce
epistemic uncertainties. In fact, epistemic uncertainty captures the
analyst’s confidence in the model by quantifying their degree of
belief in how well the model represents the reality [32]. As an
example, consider the uncertainty in plant optimization variables
due to imperfect manufacturing processes. Noting that manufactur-
ing processes remain imperfect even when improved, this uncer-
tainty is intrinsically aleatory or irreducible. This is because
acquiring more knowledge cannot reduce this uncertainty (no two
plants are identical). However, the uncertainty in the true probabil-
ity distribution of plant optimization variables can be reduced by
acquiring more knowledge (observations). Therefore, this is an
epistemic-type uncertainty. Another example of aleatory uncer-
tainty is randomness in material properties or flipping a biased
coin. However, our belief in the probabilistic and distributional
information of such a phenomenon is epistemic.
Conventionally, these two types of uncertainty are segregated in

a nested algorithm, with aleatory analysis in the inner loop and epi-
stemic analysis on the outer loop [33]. While this allows for the
simple separation and tracking of each type of uncertainty, a
uniform treatment of aleatory and epistemic uncertainties has
been implemented in the literature [34] and assumed in this
article. It is important to note that information scarcity on epistemic
uncertainties may render the output probabilistic information
impractical. Therefore, when complete distributional information
is available, it should be integrated into the UCCD problem.
However, in the case of incomplete and limited information,
methods associated with epistemic uncertainties, such as fuzzy pro-
gramming, are generally preferred.
Elements in a UCCD problem formulation may be deterministic

or uncertain. In this article, the notation •̃ is used to distinguish
uncertain quantities from deterministic ones. Stochastic processes
are distinguished by a time argument •̃(t). We note that while a
common assumption is the discretization of the time dimension,
nearly all aspects of the continuous definitions of the uncertainties
could be considered for discrete realizations at particular time
instances only (as is often done for realizability through information
availability updates and solution strategies implementations). For
the sake of consistency, all of the formulations in the article are pre-
sented in continuous time. In addition, properties such as time-
dependence between the various time-dependent signals, such as
cross-correlation, are not assumed. Such properties might be used
to define uncertain quantities and their relations to aspects of a
UCCD problem.
To better distinguish between these quantities in the future sec-

tions, we first define four general types of variables along with
their associated sets. Any arbitrary, time-independent deterministic
variable x is defined in the setD. As an example,Dmay be the set of
real numbers R, or natural numbers N, or integers Z, etc.
Figure 1(a) shows an arbitrary value belonging to D.
The set associated with a time-dependent deterministic variable

(i.e., a trajectory) is defined as

Dt : = {x(t) | t ∈ [t0, t f ], x(t) ∈ D} (2)
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In other words, at every point in time, the trajectory is defined
within a deterministic set. Figure 1(b) shows an arbitrary value
belonging to Dt .
For an arbitrarily uncertain variable x̃, the sampling space is

defined as U. As an example, U may be a set of time-independent
uncertain variables with a Gaussian distribution, as shown in
Fig. 1(c). Note that while the term sampling space implies uncer-
tainty, it does not have any implications on probability. Therefore,
U may be an uncertainty set with or without a probability measure.
Finally, for an arbitrary uncertain trajectory, the sampling space

is defined as

U t : = {x̃(t) | t ∈ [t0, t f ], x̃(t) ∈ U} (3)

Similarly, U t makes no assumptions regarding the probability
measure. Figure 1(d ) shows an arbitrary time-dependent uncertain
trajectory along with its associated sampling space. Any uncertain
variable belonging to U and U t may be represented in three ways:
(i) probabilistic, (ii) crisp, and (iii) possibilistic [15]. In this
article, we use these uncertainty representations to develop special-
ized UCCD formulations outlined in Fig. 2.
Stochastic (Probabilistic). In the stochastic representation of

uncertainties (also known as probabilistic), it is assumed that the
associated probability distribution is known or can be estimated.
Therefore, if U and/or U t is endowed with a probability measure,
uncertainties can be described probabilistically. For an arbitrary,
time-independent, continuous uncertain variable x̃, the stochastic
set is defined as

X stc : = {(x̃, Fx̃(x)) | x̃ ∈ U, Fx̃(x) = P[x̃ ≤ x] ∈ [0, 1]} (4)

where the subscript stc stands for stochastic, X stc is the probabilistic
set characterized by Fx̃(x), which is the distribution function of x̃,
and x is a realization. The probabilistic set for a time-dependent
uncertain variable x̃(t) is described as

X stc(t) : = {x̃(t) | t ∈ [t0, t f ], x̃(t) ∈ X stc} (5)

An example of the probabilistic representation of uncertainties is the
assumption of a Gaussian distribution for uncertainties in a plant
optimization variable’s value. Samples of a multivariate Gaussian
distribution are shown in Fig. 3(a). This description of uncertainties
motivates stochastic UCCD formulations.
Crisp. In the crisp representation of uncertainties, no probability

measure is available, and uncertainties are assumed to belong to a
crisp, deterministic set that can be finite, infinite, bounded,
unbounded, discrete, or continuous. For an arbitrary, time-

independent uncertain variable x̃, the crisp representation of uncer-
tainties entails a membership function that assigns one to all
members and zero to all non-members

X crisp : = {(x̃, Mcrisp(x)) | x̃ ∈ U, Mcrisp(x) ∈ {0, 1}} (6)

where X crisp is the crisp set characterized by its associated member-
ship functionMcrisp(x). For a time-dependent uncertain variable x̃(t),
the crisp representation is described as

X crisp(t) : = {x̃(t) | t ∈ [t0, t f ], x̃(t) ∈ X crisp} (7)

Figure 3(a) compares samples from an arbitrary multivariate Gauss-
ian distribution to the bounded, crisp representation of uncertainties
associated with box, ellipsoidal, and hexagonal sets. Among these
uncertainty sets, the box and hexagonal uncertainty sets are
convex polytopes. For linear programs, when uncertainties are
restricted to a polytope, the number of function evaluations for
uncertainty propagation may be reduced to function evaluations at
the vertices of the polytope [35].
Possibilistic. Uncertainty representations discussed so far are

based on some available information, i.e., the known (or estimated)
probability distribution function or geometry and size of the uncer-
tainty set. However, when too little is known about the uncertainty,

Fig. 2 Specialized UCCD formulations based on the uncertainty
representation

(b)(a)

Fig. 3 Various representations of uncertainties: (a) comparison
of samples of Gaussian multivariate distribution for random var-
iables x̃1 and x̃2 to the box, ellipsoidal, and hexagonal uncertainty
sets and (b) several examples of fuzzy set membership functions

(b)(a)

(b)(c)

Fig. 1 Illustration of sets associated with time-independent
and time-dependent deterministic and uncertain variables:
(a) time-independent deterministic, (b) time-dependent determi-
nistic, (c) time-independent uncertain, and (d) time-dependent
uncertain
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one might utilize descriptive (and often vague) language (also
known as linguistic variables) to express the desired or expected
events. This information is interpreted by an expert in the field
and is best represented through a fuzzy set, which is a class with
a continuum of grades of membership.
For an arbitrary, time-independent uncertain variable x̃, the fuzzy

set is defined as

X fuzzy : = {(x̃, Mfuzzy(x) | x̃ ∈ U, Mfuzzy(x) ∈ [0, 1]} (8)

where X fuzzy is the fuzzy set characterized by its associated mem-
bership function Mfuzzy(x). This membership function practically
quantifies the degree of membership of an element, or the possibil-
ity that an element belongs to the set–leading to concepts from pos-
sibility theory [18,19]. For a time-dependent variable x̃(t), the fuzzy
set is defined as

X fuzzy(t) : = {x̃ | t ∈ [t0, t f ], x̃(t) ∈ X fuzzy} (9)

Figure 3(b) compares the membership function of a crisp uncer-
tainty set to that of a triangular, sigmoid, and Gaussian fuzzy mem-
bership functions.

2.3 Other Considerations. In general, it is natural to assume
that in an arbitrary UCCD problem, uncertainties are represented
based on the availability of information. The choice of uncertainty
representation, to some degree, informs the associated class of for-
mulation. Despite that, the decision-making process may entail
other factors that ultimately demand an alternative choice of uncer-
tainty representation. For instance, the risk associated with specific
performance criteria may be so critical that no constraint violation
can be tolerated. In this case, even if the distributional information
is available, a worst-case robust formulation (see Secs. 3.5.8 and
4.4) may be more practical.
A general UCCD problem may entail known uncertainties requir-

ing one or more of the aforementioned representations. Therefore,
comprehensive treatment of uncertainties in UCCD problems
requires the development of hybrid methods that are adept at
integrating, combining, and interpreting all of such known uncer-
tainties. These methods are generally referred to as hybrid program-
ming [20] and have not yet been investigated for UCCD problems.
It is also important to note that many real-world systems may also
entail some unknown unknowns. These are uncertainties that we
don’t know we don’t know. Unknown unknowns will most likely
be present in UCCD formulations and require additional protective
measures [32]. In this article, we only focus on known unknowns.

3 Mathematical Foundations for UCCD Formulations

In this section, we start by introducing a generalized UCCD
problem formulation using concepts from probability theory. Defin-
ing this formulation in the probability space is without any loss of
generality because specialized forms of this formulation can be
derived through the appropriate selection of the objective function
and constraints. This is specifically evident for crisp uncertainty
sets as the associated expectation of the objective function and con-
straints reduce to deterministic quantities. For fuzzy uncertainties,
several formulations become viable, such as deterministic (crisp)
formulation [36], expected value [37,38], optimistic/pessimistic,
and credibility measures [20]. Due to the general correlation
between operators in the probability and fuzzy space, specialized
problem formulations in the fuzzy space can also be derived from
the proposed formulation. The generalized UCCD formulation is
capable of capturing uncertainty descriptions that are introduced
in this article. Such descriptions are commonly used in areas such
as control co-design, optimal control, operations research, robust
design, and reliability-based design optimization (RBDO) and
encompass a large portion of uncertainty-based considerations in
the literature.

Preliminaries. The stochastic modeling of any arbitrary vector
x ∈ R

nx consists in introducing a sampling space Θ (such that any
element of Θ is a combination of causes that affect the state of x),
and then endowing it with an event space F , and a probability
measure P, which results in the probability space (Θ, F , P) [39].
A stochastic variable x̃ = (x̃1, , x̃nx ) defined on (Θ, F , P) and
endowed with a measurable space is then a mapping from Θ

to R
nx such that x̃ ∈ X stc. A stochastic process x̃(t) ∈ X stc(t),

is defined on the probability space and has values in R
nx . x̃(t)

is indexed by any finite or infinite subset T and is a mapping
t 7! x̃(t) from T × (Θ, F , P) into L0(Θ, Rnx ). Here, L0(Θ, Rnx ) is
the vector space of all Rnx -valued random variables defined on
(Θ, F , P). For any fixed θ∈Θ, the mapping t 7! x̃(t, θ) is a trajec-
tory or a sample path. For an arbitrary stochastic variable x̃, xμ is the
mean value and xσ is the standard deviation. In addition, P[·] is the
probability measure, and E[·] is the expected value operator. For an
arbitrary function of random variables, o(x̃), its expected value is
defined as E[o(x̃)] =

�∞

−∞
· · ·

�∞

−∞
o(x)fx̃(x) dx1 · · · dxnx for a contin-

uous random vector and E[o(x̃)] =
∑

x1
· · ·

∑

xnx
o(x)px̃(x) for a dis-

crete random vector. In these definitions, fx̃(x) and px̃(x) are the
probability distribution functions and mass functions, respectively.
We use �•(·) to indicate a specified function composition of •(·).
Specifically, �o(·) describes a function of the original objective func-
tion o(·) such that �o = y ◦ o(·) = y(o(·)), where y(·) is an explicit or
implicit function such that, when uncertainties are not present,
�o(·) is reduced to its original deterministic form o(·). With these def-
initions, the generalized UCCD problem formulation can be
introduced.

3.1 A Generalized UCCD Formulation. A generalized,
AAO, continuous-time, simultaneous UCCD problem can be for-
mulated as

minimize:
ũ, ξ̃, p̃

E �o(t, ũ, ξ̃, p̃, d̃)
[ ]

(10a)

subject to: E �g(t, ũ, ξ̃, p̃, d̃)
[ ]

≤ 0 (10b)

h(t, ũ, ξ̃, p̃, d̃) = 0 (10c)

˙̃
ξ(t) − f (t, ũ, ξ̃, p̃, d̃) = 0 (10d)

where: ũ = ũ(t) ∈ U t , ξ̃ = ξ̃(t) ∈ U t

p̃ ∈ U, d̃ = d̃(t) ∈ U t

(10e)

In this equation, the expectation of the composite function �o(·)
(i.e., a function of the original objective o(·)) is optimized over
the set of optimization variables (ũ, ξ̃, p̃), and is subject to the
expectation of the composite functions �g(·) (i.e., functions of the
original inequality constraint vector g(·)), analysis-type equality
constraints h(·), and uncertain dynamic system equality constraints
in Eq. (10d). Note that E[�o(·)] and E[�g(·)] refer to any of the varia-
tions that will be discussed in Sec. 3.5 (such as the nominal, worst-
case, expected value, etc.).
This formulation includes the vector of uncertain control pro-

cesses ũ(t) ∈ U t , uncertain state processes ξ̃(t) ∈ U t , time-
independent uncertain optimization variables p̃ ∈ U, and time-
dependent d̃(t) ∈ U t and/or time-independent uncertain problem
data d̃ ∈ U. Note that d̃(t) may entail some noise or disturbances
that affect system dynamics. Such uncertainties generally enter
through the dynamic system model and captured through Eq.
(10d) (see Refs. [5,10]).
The proposed UCCD formulation is infinite-dimensional in time

and uncertainty dimensions. We can draw an analogy between the
infinite-dimensional time vector and the infinite-dimensional uncer-
tainty vector. To transcribe Eq. (10) in time, numerical methods
such as direct transcription have been implemented [2,40–43].
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Similarly, different uncertainty propagation techniques, such as
Monte Carlo simulation (MCS), generalized polynomial chaos, as
well as special interpretations, such as worst-case, have been pro-
posed to parameterize the uncertain dimensions [35]. In this
article, we discuss some of these formulations and special consider-
ations but generally leave the discussion on specialized solution
methods to future work. By emphasizing various uncertainty inter-
pretations through generalized and then specialized formulations,
this article aims to provide an improved understanding of some of
the design challenges and insights into the presence of uncertainties.
We emphasize that describing optimization variables (ũ, ξ̃, p̃) in

the uncertain space is to avoid introducing any unnecessary assump-
tions/structure at this point. Furthermore, this description should not
imply that the designer has complete control over all uncertainties;
instead, it suggests that the decision space may entail elements asso-
ciated with uncertainties. In other words, these uncertain quantities
may entail some deterministic part the designer/optimizer has
decision-making power over. This deterministic part may be associ-
ated with the mean values, parameters of an entire distribution,
shape or geometry of the deterministic uncertainty set, or parame-
ters of the fuzzy membership function.

3.2 Uncertainties in Optimization Variables. CCD is an
enticing approach because it simultaneously explores the plant
and control design spaces to improve the dynamic system’s perfor-
mance [2]. When uncertainties are present, it is imperative to main-
tain this advantage by introducing balanced UCCD formulations in
which the whole space of optimization variables is leveraged in
response to uncertainties. Therefore, in a balanced formulation,
uncertain control and state trajectories, as well as the vector of time-
independent optimization variables, must be utilized to achieve a
system-level, integrated solution. To accomplish this vision, it is
critical to understand where uncertainties in optimization variables
(ũ, ξ̃, p̃) originate from and how they affect various elements of the
problem.

3.2.1 Control Trajectories. In Eq. (10), control trajectories are
modeled as stochastic processes because d̃ may entail noise ele-
ments (induced by factors such as electrical noise, actuator impreci-
sion, etc.) that directly affect control signals. This, in the control
community, is referred to as matching (or lumped) uncertainties
because uncertainties act on the system through the same channels
as the control input. If uncertainties do not act through the control
channel, they are called mismatched uncertainties [5]. Therefore,
the above formulation entails both matched and mismatched uncer-
tainties. However, it is possible to model the control input determi-
nistically since possible disturbances on the control can be modeled
in the dynamics as multiplicative noise [44]. Note that “closing the
control loop” with feedback controller architectures in a UCCD
problem may also transform the control trajectories into stochastic
quantities. Reference [45] describes the development and applica-
tion of a reference adaptive control design scheme with matched
uncertainties for an F-16 aircraft case study.

3.2.2 State Trajectories. In Eq. (10), state trajectories are
uncertain due to a variety of reasons. The uncertainties from
(ũ, p̃, d̃) may propagate through the dynamic system and transform
them into stochastic processes. Note that the resulting stochastic
systems are not necessarily the same as the classical stochastic dif-
ferential equations (SDEs) where the inputs are some idealized pro-
cesses, such as Wiener or Poisson [46]. The vector of problem data,
d̃, may entail some information about uncertain initial/final condi-
tions. In addition, d̃ entails some noise elements that may enter
the state equation in a linear or nonlinear manner. This noise may
be stationary or non-stationary, exogenous (independent of deci-
sions), or dependent on states and controls. As an example of the
dependence of noise on states and controls, consider a system that
starts to witness more chaotic changes after it is steered through
the control command to a specific state. However, note that this

dependency is already captured through the dynamic model in
Eq. (10d). Note that ξ̃ may also entail variables that are being con-
trolled, or parameters of a distribution (such as mean and variance)
describing the time-evolution of uncertainties in the system.
However, the distributional (or set) information of these parameters
is specified and already included in the vector of uncertain problem
data d̃. Also, note that the effects of unmodeled, mismodeled, and
neglected dynamics can be captured in Eq. (10) [5]. The implemen-
tation of a robust adaptive fuzzy tracking controller for a hypersonic
flight vehicle subject to uncertainties from unmodeled and
neglected dynamics is discussed in Ref. [47].

3.2.3 Time-Independent Optimization Variables. The vector of
time-independent optimization variables may also be uncertain due
to factors such as imperfect manufacturing processes, plant mea-
surement errors, or mass production of plants. In addition, over
time, the dynamics of the plant may change (e.g., due to aging),
which causes deviations compared to the original model. This
deviation is known as model plant mismatch [48]. Therefore, p̃ is
modeled as a random variable whose distributional (or set) informa-
tion is known. This uncertainty will be propagated through state
equations, transforming all of its associated parameter-dependent
functions and variables into uncertain quantities. In addition, for
free-final-time UCCD problems, uncertainties may transform tf
into an uncertain variable, requiring a transformation similar to
the one described in Ref. [29]. Reference [49] investigates the
impact of time-independent uncertainties on the CCD solution of
a hybrid electric vehicle powertrain.

3.3 Risk in UCCD Formulations. In a UCCD formulation,
uncertainties must be represented in a way that their impact on
decision-making is completely captured. This brings us to the
notion of risk, which is a fundamental element of any uncertain
problem. In general, risk measures can be qualitative or quantitative
[50]. In a qualitative risk measure, the amount by which a threshold
is surpassed does not matter. An example of qualitative risk mea-
sures are failures that result in the loss of life. In quantitative risk
measures, on the other hand, it is important to know the extent to
which the threshold is violated. For example, a quantitative risk
measure may be associated with the energy consumption of a
vehicle following a reference trajectory. When the energy consump-
tion exceeds the threshold, it is important to know by how much.
This type of risk measure can be dealt with by introducing a
penalty term or constraining the amount of extra energy. In
general, due to mathematical difficulties associated with probabilis-
tic constraints, it is recommended to use probabilistic descriptions
only for qualitative failure problems. Other risk measures, such as
conditional value-at-risk that offer mathematical properties (such
as convexity), may be more suitable for quantitative constraint
problems [50,51].
The notion of risk is so central in decision-making under uncer-

tainty that it is used to classify various problem classes based on the
designer’s attitude toward risk. These include risk-neutral,
risk-averse, risk-aware, and risk-sensitive problem formulations. It
is the designer’s understanding of the risk associated with uncertain-
ties in an arbitrary problem that determines the associated risk atti-
tude in that formulation. The focus of this article is mainly on
risk-neutral and risk-averse UCCD formulations. References
[52,53] present a risk-neutral and risk-averse approach for
optimal scheduling of a virtual power plant and motion planning
of a robotic system, respectively.

3.4 Objective Function in Epigraph Form. While some of
the elements of a UCCD problem require specific treatment in the
presence of uncertainties, an important point to emphasize is that
there’s no conceptual distinction between the treatment of an objec-
tive function and inequality constraints [54]. This statement is
without any loss of generality because, for any uncertain UCCD
problem, the uncertain objective function may be transferred to
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the vector of inequality constraints through the addition of a new
decision variable. This form is referred to as the epigraph represen-
tation of the objective function and allows us to deal with all of the
complications resulting from uncertainties separately within
inequality constraints. Depending on the problem structure and
the extent to which uncertainties affect various elements of the for-
mulation, one may decide to keep or transfer the objective function.
The computational efficiency and resulting implications of such
decisions on various classes of UCCD problems remain to be inves-
tigated. The treatment of an uncertain objective function as an
inequality constraint using epigraph representation for a simple
strain-actuated solar array system is demonstrated in Ref. [35].

3.5 Inequality Constraints. The formulation presented in Eq.
(10) allows us to select �o(·) and �g(·) in order to formulate various
desired forms of the objective function and constraints. In this
section, these formulations are described only for the uncertain
vector of inequality constraints g(·). However, the same principles
can be applied to formulate the objective function per the discussion
in Sec. 3.4.

3.5.1 Nominal. In this formulation, uncertain quantities are
prescribed and evaluated at their nominal (deterministic) values.
This concept, which is referred to as guessing the future [54],
attempts to estimate the unknown information for uncertain quanti-
ties. As an example, instead of creating a probabilistic model for
wind velocity at a given altitude, one may use a fixed, nominal
input to evaluate and solve the problem. This estimate, however,
does not capture the impacts of uncertainties and makes no practical
provisions for the risk associated with such uncertainties. Recalling
that the expected value of a deterministic term is a deterministic
quantity, Eq. (10b) can be formulated by selecting a nominal
value for uncertain factors

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

= gi(t, uN , ξN , pN , dN ) ≤ 0 (11)

where •N refers to the nominal values of uncertain quantities in the
ith inequality constraint. As as example, Ref. [40] employs a
nominal rough road profile for CCD of an active suspension system.

3.5.2 Expected Value. One of the most common probabilistic
descriptions of uncertain inequality constraints is to utilize their cor-
responding average values [14,44,53,55]. In the stochastic program-
ming community, this formulation is known as the expected value
model. This description, however, does not hedge against the
risks associated with constraint violation. Therefore, the expected
value model is more suitable for objective function descriptions
or risk-neutral formulations. As an example, the expected value
model may be used to maximize the average energy production
of a wind farm. The expected value model for the ith constraint is
described as

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

= gμ,i(t, ũ, ξ̃, p̃, d̃) ≤ 0 (12)

A risk-neutral bidding model for wind power producers is presented
in Ref. [56].

3.5.3 Long-Run Expected Value. The long-run expected
average [57,58], which is also known as the infinite-horizon
expected average, is important in applications where the horizon
is considered infinite, and it is desired to minimize the cost per
unit time or satisfy some constraints over this infinite horizon.
Similar to the expected value model, the long-run expected value
is most suitable for the description of the objective function or
risk-neutral formulations. As an example, this model may be used
to describe the objective of minimizing the long-run average cost
in a stochastic manufacturing system [59]. While infinite-horizon
problems may take different forms, here, we introduce the

formulation with a discounted cost

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

= lim sup
t�∞

E gi(t, ũ, ξ̃, p̃, d̃, γ)
[ ]

≤ 0 (13)

where γ≥ 0 is a discount parameter and lim sup is used to highlight
that it is not known whether the limit exists. The discount rate is
included to emphasize short-term rewards versus rewards that
might be obtained in the distant future. A long-run expected value
implementation for online stochastic control of hybrid electric vehi-
cles is discussed in Ref. [60].

3.5.4 Higher-Order Moments. Sometimes, the higher-order
moments of an uncertain quantity, particularly its variance, are
used as a measure to hedge against uncertainties. This is motivated
by the fact that expected value alone does not consider the distribu-
tion or worst-case characteristics of the outcome. As an example, a
risk measure might be defined to limit the standard deviation (or
variance) of one of the performance criteria, such as ride comfort,
in an automotive active suspension design. This can be accom-
plished by defining

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

=

�������������������

E[gi(·)2] − gμ,i(·)2
√

= gi,σ(·) ≤ σa,i (14)

where gi,σ refers to the standard deviation of the constraint and σa,i
is the allowable standard deviation associated with the ith con-
straint. This description, which is generally accompanied by the
expectation or the nominal value of the constraint (or objective
function) is studied in Refs. [9,13,49,61,62], and is further dis-
cussed in Sec. 5.3. An implementation of this type for aircraft
robust trajectory optimization is presented in Ref. [62].

3.5.5 Conditional Value-at-Risk. In addition to higher-order
moments described in Sec. 3.5.4, an alternative risk measure,
known as conditional value-at-risk (CVaR), may be utilized
[50,51]. CVaR is the expected value of the worst scenarios (i.e.,
realizations). This risk measure leverages the distributional infor-
mation of the quantity of interest to identify undesirable outcomes,
thereby providing insights into decisions that reduce the risks
involved with the perceived worst scenarios. For the ith inequality
constraint, CVaR is defined as

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

= E[gi(·) ∣ gi(·) ≥ αq(Γ)] = gi,CVaR(·) (15)

where αq(Γ) is the quantile function of the distribution of gi with Γ

being the confidence level, also known as value-at-risk CVaR. Ref-
erence [63] develops a fault tolerant control strategy using CVaR
for wind energy conversion systems.

3.5.6 Expected Utility Theory. Normative decision theory,
which is mainly concerned with how agents ought to make deci-
sions, typically utilizes some axioms to formalize the requirements
associated with rational and logical decision-making. The decision-
maker’s preferences and risk attitude are often captured by selecting
an appropriate utility function U(·) that assigns a subjective value to
each outcome. In the presence of uncertainties, expected utility
theory is a normative theory that attempts to find the action that
results in maximum expected utility [64]. The choice of the utility
function is strongly dependent on decision-maker’s preferences
and risk attitude. While a utility function is commonly used to rep-
resent an objective, here we use this representation for the ith con-
straint. This is because, as mentioned in Sec. 3.4, the objective
function may be transferred to the vector of inequality constraints
through the epigraph representation. Utilizing the expected utility
as a normative decision theory, the ith constraint is described as

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

= E[Ui(t, ũ, ξ̃, p̃, d̃)] = Uμ,i(·) ≤ 0 (16)

where Uμ,i(·) is the expected utility associated with the ith con-
straint. An example of a utility function is discussed in Sec. 5.3,
and an application of expected utility theory for strategic route
choice is presented in Ref. [65].
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3.5.7 Probabilistic Chance-Constrained. Sometimes, it is
desirable to express and satisfy constraints in terms of the probabil-
ity of an event. For example, the probability that a constraint asso-
ciated with stress or deflection on a part is satisfied within a given
threshold. This can be done by defining the ith constraint in terms
of an indicator function of an arbitrary event E

IE(t, u, ξ, p, d) =
1 if {u, ξ, p, d} ∈ E

0 if {u, ξ, p, d} ∉ E

{

(17)

Then, the probability can be defined through the expectation of the
indicator function

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

= E IE(t, u, ξ, p, d)[ ] = P[E] (18)

This formulation is the basis for the well-known chance-constraint
programs and has resulted in wide range of methods that attempt to
handle uncertain constraints reliably by prescribing a target failure
probability P f ,i for the ith constraint [8,11,53], such that

P[gi(t, ũ, ξ̃, p̃, d̃) ≥ 0] ≤ P f ,i (19)

An application of the probabilistic chance-constrained formulation
to the trajectory optimization of robotic spacecraft simulator is pre-
sented in Ref. [53].
Alternative chance-constrained formulations can also be devel-

oped in which the emphasis is on the system performance. For
example, in a series configuration, the probabilistic system chance-
constrained formulation is described as [4]

Psys = P

⋃

ng

i=1

gi(t, ũ, ξ̃, p̃, d̃) ≥ 0

[ ]

≤ P f ,sys (20)

where P f ,sys is the system failure probability. The system-level reli-
ability for the design of an internal combustion engine case study is
investigated in Ref. [66].

3.5.8 Worst-Case. When uncertainties are represented as crisp
sets, it is generally desired to solve the UCCD problem such that the
resulting solution is feasible for all realizations of randomness
within the specified uncertainty set. This interpretation is equivalent
to a worst-case design philosophy, in which every constraint is sat-
isfied for its associated worst-case uncertainty realization within the
uncertainty set. As an example, consider the design of an automo-
tive brake system subject to uncertainties from the road surface,
velocity, temperature, etc. For such a design problem, it is impera-
tive that the brake system is capable of bringing the vehicle to a halt
within a reasonable amount of time under any circumstances. If the
bounds on uncertainties are known, one can minimize the worst
combination of uncertainties in order to make sure that the brake
system performs well for all other cases.
The parameters of the uncertainty set, which determine its

characteristics such as shape, size, and geometry, are in fact a
modeling choice. In addition, these uncertainty sets are often
defined using some nominal parameters. For decision variables,
the optimizer often has control over such parameters and uses
them to navigate the design space. For uncertain problem
data, these nominal parameters are prescribed within the vector d̃.
These nominal parameters are formally described as q̂T = [p̂, d̂]
and q̂Tt (t) = [û(t), ξ̂(t), d̂(t)], for time-independent and time-
dependent problem elements, respectively. From here, we
can define the time-independent uncertainty set as R(q̂)=
{R(p̂) ×R(d̂)} ⊆ X crisp, and the time-dependent uncertainty set
as Rt(q̂t) = {R(û) ×R(ξ̂) ×R(d̂)} ⊆ X crisp(t).
In the worst-case description, the ith inequality constraint can

then be represented as

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

=maximize
(u, ξ, d)∈Rt (q̂t )

p∈R(q̂)

gi(t, u, ξ, p, d)
{ }

≤ 0 (21)

When this treatment is applied for the complete optimization
problem, it results in a bi-level formulation known as the min−

max or minimax [10,67]. We note that for UCCD problems, this
maximization problem must be solved subject to analysis-type
system equality constraints, which will be discussed in more
detail in Sec. 4.4. This description is used to find a robust UCCD
solution of an aircraft thermal management system using model pre-
dictive control in Ref. [10].

3.5.9 Possibilistic Chance-Constrained. When uncertainties
are defined through fuzzy variables/processes, equivalent chance-
constrained formulations may be developed in the possibility
space. As an example, when little information is known about
uncertainties in the vehicle side-impact performance problem, one
may formulate a chance constraint such that the possibility of
failure is below a given threshold. The associated possibility-based
constraint can be written as

POS[gi(t, ũ, ξ̃, p̃, d̃) ≥ 0] ≤ POS f ,i (22)

where POS[ · ] is the possibility measure defined on a proper pos-
sibility space, andPOS f ,i is the failure possibility for ith constraint.
For the sake of brevity, in this article, we avoid a detailed mathemat-
ical description of the possibility space and refer the readers to Refs.
[37,38,68] for further discussion. A possibilistic framework for the
design of unmanned electric vehicles is discussed in Ref. [69].

3.5.10 Dempster–Shafer (Evidence) Theory. Evidence theory,
also known as the theory of belief measures, deals with situations
where limited information on uncertainties is available. As
opposed to probability theory which offers only a single measure
(i.e., probability), evidence theory provides two uncertainty mea-
sures, known as belief and plausibility, both of which are deter-
mined from the known evidence for a proposition [70]. This
evidence, also referred to as a body of evidence, is characterized
by the basic probability assignment function. Belief and plausibility
give the lower and upper bounds of the event, respectively.

E �gi(t, ũ, ξ̃, p̃, d̃)
[ ]

= UM
i,r − UM

i (t, ũ, ξ̃, p̃, d̃) ≤ 0 (23)

where UM
i is either belief or plausibility and UM

i,r is the required
uncertainty measure for ith constraint. Interested readers may
refer to Refs. [70,71] for further details.
The formulations introduced above are among the common

descriptions of uncertain inequality constraints (and objective func-
tions). Other variations exist that generally attempt to address some
of the shortcomings of these formulations. For example, multiple
formulations, such as min-max regret models, have been developed
to address the issue of the conservativeness of the minimax
approach [72].

3.6 Equality Constraints. In the presence of uncertainties,
equality constraints are divided into two categories [73,74]: (i)
those that must be strictly satisfied regardless of uncertainties
(Type I), and (ii) those that cannot be strictly satisfied due to uncer-
tainties (Type II).
Type I equality constraints, which are also referred to as analysis-

type constraints, generally describe the laws of nature or dynamics
of the system, such as Eqs. (10c) and (10d). Therefore, for the
problem to be physically meaningful, these constraints must be
strictly satisfied at all parameterized points along the uncertain
dimension. These constitute all points at which the problem will
be evaluated, such as samples generated through MCS, expected
values of optimization variables, most-probable-points in reliabil-
ity-based design optimization approaches, or collocation grids in
generalized polynomial chaos expansion.
For an example of a Type II equality constraint, assume that the

sum of two length dimensions is required to be a constant value. If
both of these quantities are uncertain, this condition cannot be
strictly satisfied. Rather, the constraint may be relaxed or satisfied
at its expected value while its standard deviation is minimized. In
this article, we assume that all Type II equality constraints are

Journal of Mechanical Design SEPTEMBER 2023, Vol. 145 / 091709-7

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

e
c
h
a
n
ic

a
ld

e
s
ig

n
/a

rtic
le

-p
d
f/1

4
5
/9

/0
9
1
7
0
9
/7

0
3
2
2
1
1
/m

d
_
1
4
5
_
9
_
0
9
1
7
0
9
.p

d
f b

y
 C

o
lo

ra
d

o
 S

ta
te

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 1

4
 D

e
c
e
m

b
e
r 2

0
2
3



already relaxed and included in the vector of inequality constraints
in Eq. (10b).
For the simplicity of notation when deriving the specialized for-

mulations in Sec. 4, we define the feasible set of Type I equality
constraints as E

E = {(t, u, ξ, p, d) ∣ h(·) = 0, ξ̇(t) = f (·)} (24)

When the inputs to this set are defined probabilistically
((ũ, ξ̃, d̃) ∈ X stc(t), and p̃ ∈ X stc), then E represent a set in which
the analysis-type equality constraints are satisfied almost surely
(a.s.) or with the probability of one.
A fundamental step in formulating the general UCCD problem is

identifying the sources of uncertainties that affect ODEs. When the
source of uncertainty is some white noise, idealized process, such as
Wiener and Poisson processes, the resulting differential equations
are termed SDEs [75]. As an example, the motion of electrons in
a conductor can be modeled through the Wiener process. SDEs
have been studied extensively and generally require methods
based on Itô and Stratonovich calculus [76]. However, for general
engineering applications, modeling disturbances as an idealized
process is not always sufficient. Therefore, in this article, we
focus on the case where the disturbance vector is a generalized
process. For fuzzy uncertainties, a natural way to model uncertainty
propagation in the dynamic system is through fuzzy differential
equations (FDEs) [77–79].

4 Specialized Formulations

Based on the previous discussion, it is evident that both uncer-
tainties and problem elements can be represented in different
ways—resulting in multiple interpretations of uncertainties with
distinct implications on the integrated UCCD solution. Therefore,
it is necessary to formalize some of these interpretations through
existing UCCD formulations.

4.1 Stochastic in Expectation (SE-UCCD). Stochastic pro-
gramming assumes that the probability distributions of the uncertain
factors are known. In these situations, constraints can be modeled in
different ways, such as almost surely, in expectation, or in probabil-
ity [50]. Constraints that are described as “almost surely” (a.s.) must
be satisfied with the probability of one. All Type I equality con-
straints described in Sec. 3.6 are a.s. constraints. According to
Sec. 3.5.2, a risk-neutral UCCD problem can be formulated by
using the expectation of the objective function and inequality con-
straints

minimize :
ũ, ξ̃, p̃

oμ(t, ũ, ξ̃, p̃, d̃) (25a)

subject to : gμ(t, ũ, ξ̃, p̃, d̃) ≤ 0 (25b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (25c)

Note that in this formulation (ũ, ξ̃, d̃) ∈ X stc(t) and p̃ ∈ X stc, and E,
which was described in Eq. (24), represents a set in which analysis-
type equality constraints are satisfied almost surely. Also, the satis-
faction of inequality constraints in expectation points to the
risk-neutral nature of this formulation. A lot of real-world CCD
problems, however, require explicit risk measures for safety
and functionality. Note that this formulation overlooks some impor-
tant aspects regarding uncertainty distributions. For example, the
formulation may result in an acceptable mean value but unaccept-
ably low (worst-case) performance. Reference [35] implements a
risk-neutral stochastic in expectation UCCD formulation for
a simplified strain-actuated solar array system.

4.2 Stochastic Chance-Constrained (SCC-UCCD). Prob-
lems with probabilistic inequality constraints are generally
referred to as chance-constrained programming. They are ubiqui-
tous in various research fields, such as RBDO and trajectory opti-
mization. Recently, novel UCCD formulations based on RBDO
have been developed in Refs. [8,11]. Here we introduce a
more general chance-constrained formulation referred to as sto-
chastic chance-constrained UCCD. The problem formulation is
described as

minimize :
ũ, ξ̃, p̃

oμ(t, ũ, ξ̃, p̃, d̃) (26a)

subject to : P[gi(t, ũ, ξ̃, p̃, d̃) > 0] ≤ P f ,i i = 1, . . . , ng (26b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (26c)

Again, in this formulation we have (ũ, ξ̃, d̃) ∈ X stc(t) and p̃ ∈ X stc.
Analysis-type equality constraints are satisfied almost surely, and
the probabilistic representation of inequality constraints ensures
that they are satisfied with a given target reliability of 1 − Pf ,i.
The stochastic interpretation of path constraints is further illus-
trated in Fig. 4(a). In this figure, blue areas (shaded region
surrounding the trajectory) have failure probabilities that do
not exceed Pf , while red regions (shaded column between tk
and tk+n) violate the constraint with probabilities higher than
Pf . When used only with open-loop control, the above formula-
tion may lead to conservative trajectories. This is because, in
practice, feedback controllers are often implemented for such
systems and have the capacity to compensate for some of
these uncertainties. However, when only open-loop control is
considered, Eq. (26) often neglects the possible role of feedback
controller at the time of implementation [80]. Therefore, closing
the control loop in such UCCD problems may entail improve-
ments in performance and cost. A chance-constrained stochastic,
nonlinear control strategy for motion planning of robotic systems
is introduced in Ref. [53]. Furthermore, a stochastic chance-
constrained implementation for UCCD case studies, using con-
cepts from reliability-based design optimization, are presented
in Refs. [8,11].

4.3 Probabilistic Robust (PR-UCCD). If we assume that the
decision-maker has some knowledge about the probabilistic beha-
vior of uncertainties, a robust interpretation, which is often credited
to Genichi Taguchi [81], may be utilized. In this interpretation,
robustness is defined as the reduced sensitivity of the objective
function and constraints to variations in uncertain quantities.
Robustness measures commonly used with this interpretation are
the expectancy and dispersion, which were described in Secs.
3.5.2 and 3.5.4, respectively, and are commonly used together in

(b)(a)

Fig. 4 Illustration of uncertain probabilistic constraints: (a) sto-
chastic path constraint with prescribed failure probability of Pf

and (b) probabilistic robust constraint interpretation with con-
straint shift index ks=3
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a multiobjective optimization problem to find a compromise solu-
tion. Thus, methods from robust multiobjective optimization are
generally used with such formulations [82]. The PR-UCCD
problem can be written as

minimize :
ũ, ξ̃, p̃

αwoμ(t, ũ, ξ̃, p̃, d̃) + (1 − αw)oσ(t, ũ, ξ̃, p̃, d̃) (27a)

subject to : gμ(t, ũ, ξ̃, p̃, d̃) + ksgσ(t, ũ, ξ̃, p̃, d̃) ≤ 0 (27b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (27c)

where (ũ, ξ̃, d̃) ∈ X stc(t) and p̃ ∈ X stc. In addition, αw and (1− αw)
are weights associated with the multiobjective optimization
problem. In the above formulation, a constraint shift index ks,
selected by the designer, is used to reduce the feasibility region of
constraints. This approach practically moves the optimal solution
away from constraint boundaries but does not always offer a prob-
abilistic interpretation. Alternatively, the problem can be formu-
lated as

minimize :
ũ, ξ̃, p̃

αwoμ(t, ũ, ξ̃, p̃, d̃) + (1 − αw)oσ(t, ũ, ξ̃, p̃, d̃) (28a)

subject to : gμ(t, ũ, ξ̃, p̃, d̃) ≤ 0 (28b)

gσ(t, ũ, ξ̃, p̃, d̃) − σa ≤ 0 (28c)

(t, ũ, ξ̃, p̃, d̃) ∈ E (28d)

where σa is the allowable standard deviation for g(·). In this formu-
lation, the uncertain inequality constraints are satisfied at their
expected value, and their corresponding standard deviation (or var-
iance) is below the allowable limit. Probabilistic robust path con-
straints are further illustrated in Fig. 4(b), under the assumption
of a Gaussian distribution with zero skew. In the top part of the
illustration, the reduced feasible space for constraints with simple
bounds is demonstrated, while the bottom shows the 3gσ bound
for an arbitrary path constraint. One of the limitations of the
PR-UCCD formulation is that all of the scenarios that differ from

the expectation are penalized, regardless of performance. In other
words, the formulation penalizes the superior (i.e., better than the
mean value) and the poor performance (i.e., worse than the mean
value) simultaneously. A more detailed discussion on the implica-
tions of using dispersion as a robustness measure is provided in
Sec. 5.3. References [49,83] use the probabilistic UCCD formula-
tion for the UCCD problem of a hybrid electric vehicle powertrain
and a fuel cell hybrid electric truck, respectively.
A major challenge associated with the probabilistic formulations

presented so far is that obtaining distributional information about
the uncertain factors is not always viable. In addition, even if this
information can be estimated, the resulting formulation is generally
computationally intractable [84]. The first challenge is generally
addressed by using concepts from robust optimization, which is dis-
cussed next.

4.4 Worst-Case Robust (WCR-UCCD). Robustness in
UCCD is motivated by the fact that when a solution to a determinis-
tic CCD problem exhibits large sensitivities to perturbations in
problem parameters, it becomes highly infeasible and impractical.
This issue has been traditionally addressed by robust control, as
well as robust design optimization communities in disparate
efforts. However, to utilize the full synergistic performance poten-
tial of UCCD, both plant design and control system domains must
be explored simultaneously in a balanced way. While robust UCCD
has only been investigated in a handful of studies [9,10,49], there’s
a need for practical formulations and interpretations of robustness in
UCCD problems. In this section, we first describe robustness and its
associated worst-case realization and then introduce the
WCR-UCCD formulation.

4.4.1 Robust Interpretation. In its most common interpreta-
tion, a solution is robust if it remains feasible for all of the realiza-
tions of uncertainty within the uncertainty set. This notion naturally
leads to the definition of an equivalent deterministic formulation
that is referred to as the robust counterpart (RC). Utilizing the epi-
graph representation of the objective function introduced in Sec.
3.4, the RC of the general UCCD problem can then be formulated
as

minimize :
û, ξ̂, p̂, v

v

subject to :
g(t, u, ξ, p, d) ≤ 0

o(t, u, ξ, p, d) − v ≤ 0
(t, u, ξ, p, d) ∈ E

⎫

⎬

⎭

∀ (u, ξ, d) ∈ Rt(q̂t)
∀ p ∈ R(q̂)

(29)

where (û, ξ̂, d̂) ∈ Rt(q̂t) and p̂ ∈ R(q̂) are nominal set parame-
ters that result in the smallest value of the objective function
v that can simultaneously satisfy all of the constraints for all
uncertainty realizations within the set. Note that the entirety of
uncertainty sets is imposed on the constraint feasible space.
Depending on the properties of our uncertainty sets, this may
result in a finite or infinite number of hard constraints. In the
remainder of this section, we assume that the new deterministic
optimization variable v is included in the vector of time-
independent optimization variables p, and the new inequality
constraint is included in g(·).
If Eq. (29) is to be satisfied for every realization of uncertainties,

thenRt(q̂t) ×R(q̂) must be contained within the constraint feasibil-
ity set. Mathematically, the constraint feasible space can be defined
as

ID : = (u, ξ, p, d) | { g(·) ≤ 0
{ }

∩ E(·)}
{ }

(30)

and the feasible space of the RC problem can be described as

IRC : = (u, ξ, p, d) ∈ {{Rt(q̂t) ×R(q̂)} ∩ ID}
{ }

(31)

Fig. 5 Illustration of the worst-case solution in context of the
constraint feasible space and uncertainty sets.
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where IRC ⊆ ID. This definition, which is required for the solution
of Eq. (29), sheds some light on some of the considerations in con-
structing uncertainty sets for practical robust implementations. For
some bounded uncertainty set, this notion is conceptually illustrated
for IRC and ID in Fig. 5.

4.4.2 Worst-Case Robust Interpretation. When the uncertainty
set is infinite, Eq. (29) is a semi-infinite problem where there’s a
finite number of decision variables and an infinite number of con-
straints. Generally, this RC problem is large, intractable, and diffi-
cult to solve. For instance, the RC of a linear optimization problem
is typically a nonlinear optimization problem. Despite such difficul-
ties, the robust interpretation offers a certain relative simplicity and
computational viability compared to other interpretations, making it
a valuable tool for understanding and addressing uncertainties in
many engineering problems, including UCCD.
One approach to deal with this semi-infinite problem is to replace

the infinite uncertainty set with a finite subset or a sequence of suc-
cessively refined grids [85]. A more constructive approach,
however, is to replace semi-infinite constraints with the solution
of the constraint maximization problem. To understand this idea,
we draw an analogy from the game theory literature. Assume that
the optimizer has a natural adversarial opponent [86,87]. Therefore,
for every decision the optimizer makes, the adversarial opponent
makes a decision (over uncertainties) to disturb constraints as
strongly as possible. This notion leads to the realization of worst-
case uncertainties and, consequently, the concept of min−max,
or minimax robust formulation, which was briefly introduced in
Eq. (21).

4.4.3 WCR-UCCD Formulation. To adopt the WCR interpre-
tation for UCCD, we need to differentiate between the decision
space of the optimizer and the decision space of the adverse
player. In addition to the analysis-type feasibility space, which
affects both players, the adverse player is restricted in its decisions
to uncertainties contained within Rt(q̂t) ×R(q̂). The WCR-UCCD
problem is now formulated such that the deterministic objective
function v is minimized over the set of optimizations variables
[û, ξ̂, p̂], subject to constraint maximization problems, Type I feasi-
bility set, and (potentially) additional feasibility constraints

minimize :
û, ξ̂, p̂

v (32a)

subject to : Φi(t, û, ξ̂, p̂, d̂) ≤ 0 for i = 1, . . . , ng (32b)

(t, û, ξ̂, p̂, d̂) ∈ E (32c)

ψ(û, ξ̂, p̂, d̂) ≤ 0 (32d)

where (û, ξ̂, d̂) ∈ Rt(q̂t) ⊆ X crisp(t) and p̂ ∈ R(q̂) are inputs to the
inner-loop optimization problem for all ng inequality constraints.
Equation (32c) ensures that the nominal set parameters satisfy the
analysis-type equality constraints. ψ(·) are optional additional feasi-
bility constraints, similar to the ones used in Ref. [30]. The inner-
loop maximization problem Φi(·) is

maximize :
u, ξ, p, d

gi(t, u, ξ, p, d) (33a)

subject to : (t, u, ξ, p, d) ∈ E (33b)

(u, ξ, d) ∈ Rt(q̂t), p ∈ R(q̂) (33c)

where (u, ξ, d) ∈ Rt(q̂t) ⊆ X crisp(t) and p ∈ R(q̂) ⊆ X crisp are the
worst-case combination of uncertainties belonging to their associ-
ated sets for constraint i. This inner-loop optimization problem
attempts to maximize gi by selecting the worst-case combination
of uncertainties, subject to all of the Type I equality constraints
and the definition of the uncertainty sets. The feasibility sets

associated with the inner-loop and outer-loop problem structure
require special considerations similar to the ones described in
Ref. [30]. This WCR-UCCD formulation, which presents the
broad case of independent uncertainties within all problem ele-
ments, is decomposed such that the optimization problem of the
decision-maker is formulated in the outer loop, and the optimization
of the adversarial player is formulated in the inner loop. Depending
on the problem at hand, other coordination strategies may also be
used. This interpretation of robustness has been used along with a
model predictive control strategy to find a robust UCCD solution
of an aircraft thermal management system in Ref. [10]. In addition,
Ref. [35] compares the worst-case robust UCCD solution of a sim-
plified strain-actuated solar array to that of the stochastic in expec-
tation UCCD.

4.5 Fuzzy Expected Value (FE-UCCD). When uncertainties
in UCCD are represented as fuzzy variables and processes, the
UCCD problem can be formulated using a fuzzy expected-value
model. The challenge is to choose optimization variables such
that the objective function, which is related to some fuzzy processes
(through fuzzy differential equations), is optimized. Here, we use
the expected-value model [38,68]

minimize :
ũ, ξ̃, p̃

E[o(t, ũ, ξ̃, p̃, d̃)] (34a)

subject to : E[g(t, ũ, ξ̃, p̃, d̃)] ≤ 0 (34b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (34c)

where we note that in this formulation (ũ, ξ̃, d̃) ∈ X fuzzy(t) and
p̃ ∈ X fuzzy. In this formulation, E refers to the feasibility set of
analysis-type equality constraints that now contain fuzzy differen-
tial equations. Reference [88] uses the fuzzy expected value
model for optimal pricing and inventory policies.

4.6 Possibilistic Chance-Constrained (PCC-UCCD). As
opposed to FE-UCCD, which is a risk-neutral formulation,
PCC-UCCD utilizes a possibility measure to hedge against uncer-
tainties. This measure ensures that fuzzy constraints hold within a
given confidence threshold [68]. The possibility-based chance-
constrained UCCD formulation can be written as

minimize :
ũ, ξ̃, p̃

E[o(t, ũ, ξ̃, p̃, d̃)] (35a)

subject to : POS[gi(t, ũ, ξ̃, p̃, d̃) > 0] ≤ POS f ,i (35b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (35c)

where POS f ,i is the target possibility of failure of constraint i, and

(ũ, ξ̃, d̃) ∈ X fuzzy(t) and p̃ ∈ X fuzzy and
˙̃
ξ − f (·) = 0 contained in E

are now fuzzy differential equations. A possibilistic chance-
constrained formulation for a unit commitment problem involving
demand response, electric vehicles, and wind power is presented
in Ref. [89].

5 Discussion

With various formulations now defined, we discuss several
aspects of them in more detail, focusing on their connections and
existing research.

5.1 Norm-Induced Uncertainty Sets. The worst-case robust
formulation, introduced in Sec. 4.4.3, is directly related to the
choice ofRt(q̂t) andR(q̂). In robust optimization, these uncertainty
sets are generally defined according to some norm. Using only the
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notation for time-independent variables, these norm-induced uncer-
tainty sets are mathematically defined as

N : = q ∣ z q̂ − q
( )

≤ ηq
{ }

(36)

where z(·) is a specified function chosen to represent the geometry
of the uncertainty set, often through an applied norm such as ℓ1, ℓ2,
ℓp, D, CVaR, etc. [90]. The resulting uncertainty sets may have dif-
ferent shapes and geometries, such as box, ellipsoidal, polyhedron,
etc. The size of the uncertainty sets, which is also a modeling
choice, is prescribed through ηq, which is included in the vector
of problem data. Through these parameters, the decision-maker
has the advantage of leveraging the size and structure of the uncer-
tainty set to benefit from different properties of the resulting sets
[16,17,91,92]. As an example, a simple box uncertainty set for
plant optimization variables can be defined as z(p̂) = |p̂ − p| and
ηp=Δ p.
Note that if the size of the selected set compared to the reality of

the uncertain phenomenon is too large or too small, it might result in
a solution that is too conservative or high-risk, respectively. To
address this issue, one may attempt to optimally leverage the uncer-
tainty set’s size, shape, and structure to obtain a meaningful solution
for a given metric. This requires that the uncertainty sets are treated
as additional optimization variables, leading to the concept of
adjustable uncertainty sets as described in Refs. [67,93]. Robust
unit commitment with adjustable uncertainty sets for uncertain
wind generation is discussed in Ref. [94].

5.2 Linking Stochastic and Worst-Case Robust
Formulations. Different forms of uncertainty representation lead
to different interpretations and, therefore, problem formulations.
Specifically, in SCC-UCCD, it is assumed that the probability dis-
tribution of uncertainties is known or can be estimated. In contrast,
the WCR-UCCD assumes that uncertainties belong to a crisp set
and no probabilistic information is available. Therefore, while the
SCC-UCCD gives a probabilistic measure to quantify the risks
associated with constraint violation, the robust UCCD cannot
offer such a measure. Nevertheless, strict satisfaction of (infinitely
many) hard constraints in WCR-UCCD in Eq. (29) (when an
appropriately sized/shaped uncertainty set is selected) is equivalent
(in the limit) to the satisfaction of probabilistic constraints in
SCC-UCCD with an infinitesimally small failure probability.
In addition, in modern robust approaches, the size and geometry

of the uncertainty sets may be leveraged to adjust the associated
risk. For instance, increasing the size of the uncertainty set in the
WCR-UCCD increases the number of constraints that need to be
satisfied in Eq. (29), which is equivalent to reducing the probability
of failure P f in SCC-UCCD formulations. Finally, Refs. [15,17]
offer probabilistic interpretations of robust formulations, which
practically bridge the gap between the minimax interpretation of
robust formulations and the probabilistic interpretation of stochastic
chance-constrained problems. This interpretation leads to the notion
of probabilistic guarantees for robust optimization problems and
seeks to connect robust feasibility to the probability of feasibility.
Consequently, even when the underlying distribution is known,
benefits from the tractability of robust formulations may compel

one to use such probabilistic guarantees in robust formulations
instead of using stochastic ones. Such probabilistic guarantees
may be computed a priori as a function of the structure and size
of the uncertainty set and lead to the notion of a budget of uncer-
tainty [17].

5.3 Robustness in the PR-UCCD Formulation. For an arbi-
trary objective function, the probabilistic robust interpretation,
along with the Pareto optimal front between the expectancy and dis-
persion terms for notional small, medium, and large uncertainties
are presented in Fig. 6. From Fig. 6(b), it is clear that PR-UCCD
is not always a risk-averse formulation because the optimal, multi-
objective solution is invariant with respect to variance for the major-
ity of weighting factors. However, as uncertainties increase in size,
the objective function exhibits more deviations compared to the
deterministic case. While, in Fig. 6(b), this behavior is attributed
to the magnitude of uncertainties, studies have shown that the
usage of variance as a measure to quantify robustness has some lim-
itations and requires restrictive assumptions [95–98]. For instance,
Malak et al. argue that using variance to quantify robustness can
bias decision-makers toward demonstrably riskier alternatives,
e.g., when the underlying distributions have nonzero skew [95].
To address such limitations, one approach is to use concepts from

normative decision theory, such as representation theorems [99],
that often result in a mathematical description of decision-maker’s
preferences through a utility function. The shape of this utility
function conveys information about decision-maker’s risk attitude.
For example, a locally concave utility function corresponds to a
risk-averse attitude; a linear utility function corresponds to a
risk-neutral attitude; and a convex utility function corresponds to
a risk-taking attitude [95].
The usage of expected utility theory for the arbitrary objective

function of Fig. 6, is presented in Fig. 7. In this illustration, we
define a constant relative risk-averse utility function as
U(x̃) = o(x̃)(1−ρ)−1

1−ρ . The relative degree of risk aversion in this utility
function is the constant ρ; therefore, the changes in o(x̃) do not
affect the decision-maker’s attitude towards risk. From Fig. 7(a),
it is notable that when ρ is close to zero, the utility function tends
to linearity (i.e., risk neutral), while for larger values of ρ the
utility function becomes concave (i.e., risk-averse). Here, the
increasingly risk-averse behavior of the decision-maker (as ρ goes
from 0 to 1) is modeled through utility functions with increasingly
less extreme changes over the function domain. In other words, as
we become more risk-averse, the loss incurred from possibly losing
the lottery (i.e., not being able to realize the best objective function)
decreases. Figures 7(b)–7(d ) present these utility functions for
notional small, medium, and large uncertainties.

5.4 Insights From Robust Control Theory. Robust control
theory is involved with the analysis and synthesis of controllers
that can mitigate the impact of uncertainties on performance speci-
fications and stability. In classical control theory, these performance
specifications are described through frequency or time domain mea-
sures. Various tools such as gain and phase margins [100], disk

(b) (c) (d)(a)

Fig. 6 Illustration of a Pareto trade-offs in the probabilistic robust objective function for several different levels of uncertainty
(xσ ) of a single uncertain variable x̃=N (xμ, x

2
σ ): (a) deterministic o(x), (b) small uncertainty, (c) medium uncertainty, and (d) large

uncertainty
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margins [101], H2, H∞, and μ-synthesis [6] have been developed to
address uncertainty-related challenges.
The development of robust control theory has been largely

dependent upon the benefits of feedback control. First, it should
be emphasized that the generalized formulation introduced in Eq.
(10) may entail control gains pc that are used to establish a feedback
control. In addition, while closed-loop control plays an essential
role in mitigating the impact of some uncertainties in UCCD prob-
lems, these uncertainties still affect the dynamic system behavior
and the overall system performance. As shown in Fig. 8, a notional
infinite-horizon linear-quadratic regulator (LQR) (which is an
optimal controller for its associated cost function) reduces uncer-
tainty in the system response over time to the reference value,
assuming stability under the uncertainties.

5.5 Insights From Stochastic Control Theory. In stochastic
control theory, idealized processes such as stationary, normal,
Markov, second-order, and Wiener are used to characterize the dis-
tribution of stochastic processes. Many of the disturbances affecting
the control system can be modeled by processes generated from
Wiener processes [7]. While we previously assumed that the
noise vector is included in the vector of problem data d̃, to keep
the notation consistent with stochastic control theory, here, we
use w̃ to describe an nw-dimensional standard Brownian motion
defined on a complete probability space. The nonlinear stochastic
system model can be described as

dξ̃(t) = f (t, ũ, ξ̃, p̃, d̃) dt + b(t, ũ, ξ̃, p̃, d̃) dw̃(t) (37)

where the f(·) and b(·) are maps that are commonly referred to as the
drift and diffusion terms, respectively [102]. Because standard
Brownian motion is not differentiable, its associated integral form
is commonly used instead and requires It̂o, Stratonovich, or back-
ward integral approaches.
A special case of Eq. (37) is when the dynamics are linear and the

objective function is quadratic in (ξ̃(t), ũ(t)). This problem, referred
to as a stochastic linear-quadratic problem (SLQ-UCCD), is signif-
icant because the optimal control law can be synthesized into a feed-
back form of the optimal state, and the corresponding proportional
coefficients may be specified through the associated Ricatti equa-
tion. This unique control law is a combination of the Kalman
filter and LQR. Additionally, we note that for linear systems with
additive white noise, several tools become available. For
example, using linear filters such as the Wiener filter in the fre-
quency domain and Kalman filters in the state-space domain, one
can separate the noise from the signal of interest by minimizing
the mean-square error [103]. Finally, there are other cases studied
when the state equation is linear [102,104,105].

5.6 Open-Loop Control Structure Under Uncertainties.
There is an essential question on the role of optimal control trajec-
tories in the open-loop formulation of UCCD problems. In response
to uncertainties, one may use an open-loop single-control (OLSC)

or an open-loop multiple-control (OLMC) structure. OLSC is struc-
tured to find a single control command, which is often used for ref-
erence tracking applications, while OLMC elicits a range of optimal
control responses based on the realization of uncertainties. Distinc-
tions between the two structures are best manifested when solving
boundary-value UCCD problems. This is because, unlike OLMC,
the single control command in OLSC cannot satisfy all of the pre-
scribed initial and terminal boundary conditions in the presence of
uncertainties.
This issue has been dealt with in two different ways in the liter-

ature: (i) relaxing the prescribed terminal boundary conditions
[8,49], or (ii) minimizing the variance of the terminal state in a mul-
tiobjective optimization problem [106,107]. These remedies enable
a solution to the OLSC-UCCD problem, but they have limitations
because they do not enforce the terminal boundary conditions.
This caveat is problematic because relaxing the boundary condi-
tions is not practically viable for many real-world applications.
Therefore, OLSC should be used selectively in the appropriate
context.
On the other hand, OLMC is based on the idea that uncertainty real-

izations should elicit a distinct optimal control response from the
UCCD problem (which has conceptual similarities to how closed-loop
systems respond). Because each distinct optimal control response is
only associated with a specific uncertainty realization, all the initial
and terminal boundary conditions may be satisfied in this control struc-
ture. Through this, OLMC provides additional insights into the
uncertainty-informed limits of the system performance. Therefore,
OLMC is suitable during early-stage design, where plant and control
spaces are being explored, not only for optimal performance but
also for reliability, robustness, or any other risk measures. OLSC
and OLMC structures are compared in Ref. [35].

5.7 Stochastic and Robust Model Predictive Control. While
all formulations introduced in this article consider a single-horizon
UCCD problem, model predictive control (MPC) solves a sequence
of such problems to find a cost-minimizing control action for a rel-
atively short horizon in the future. For online implementations, this
controller has the advantage of the current state information to

(b) (c) (d)(a)

Fig. 7 Illustration of a constant relative risk-averse utility function, Uμ(x̃)=−E
o(x̃)(1−ρ)−1

1− ρ

[ ]

with various relative risk aver-

sion levels ρ for three levels of uncertainty (xσ ) of a single uncertain variable x̃=N (xμ, x
2
σ ): (a) utility functions, (b) small

uncertainty, (c) medium uncertainty, and (d) large uncertainty

Fig. 8 Reference tracking of a stable control system with
several uncertainties using an infinite-horizon LQR
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predict state trajectories that emanate from the current state. The
issue of uncertainties considered with robust and stochastic MPC
[10,108,109].

5.8 Moving Forward. Addressing uncertainty-related chal-
lenges in various engineering domains requires identifying ways
to characterize that domain’s uncertainties. A critical aspect of
this task is understanding the availability of information at different
stages of the design process. This, along with the risks involved in
the specific application of interest, to some degree inform the
designer’s decision to employ any of the formulations presented
in this article. Additionally, the choice of solution strategies is of
great theoretical and practical importance. It requires consideration
of several factors, including the suitability of the approach for spe-
cific designer preferences, domains, computational cost, accuracy,
convergence, etc. The impact of solution strategies on the integrated
UCCD solution and their inclusion in various coordination strate-
gies must be further investigated in order to provide answers to
issues such as scalability. An initial effort is Ref. [35], which
offers some preliminary insights into comparisons between an
SE-UCCD and WCR-UCCD using MCS and generalized polyno-
mial chaos expansion.

6 Conclusion

With all the recent advances and applications of (deterministic)
control co-design, significant work is still needed to handle uncer-
tainty when developing effective combined plant and control solu-
tions. Investigating the current state-of-the-art for UCCD, we have
identified several significant assumptions. Generally, the scope of
uncertainties is limited to a single discipline (often either with a
plant or control or even solution method emphasis). Additionally,
different interpretations and representations of uncertainty affect
different problem elements, including the objective function, equal-
ity/inequality constraints, and optimization variables.
To start addressing these shortcomings, this article discussed a

broad range of relevant uncertainties and the multitude of ways to
characterize UCCD problem elements. The discussion naturally
led to six specialized UCCD problem formulations, including sto-
chastic in expectation, stochastic chance-constrained, probabilistic
robust, worst-case (minimax) robust, fuzzy expectation, and possi-
bilistic chance-constrained. These formulations are not discon-
nected; the link between minimax robust and stochastic
chance-constrained UCCD was also discussed.
Overall, this article aims at providing a concrete framework to

discuss and represent uncertainties in UCCD, providing a founda-
tion for additional advances, both in theory and applications of
UCCD. Understanding how to represent and interpret a domain’s
uncertainties is one of the first challenges. A natural next step is
to investigate methods and solution strategies corresponding to
these formulations, seeking to balance various design goals and
computational expense.
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Nomenclature

Key Variables

n = number of elements in a set
t = time
v = objective function variable in epigraph form
x = an arbitrary deterministic variable
d = vector of problem data
p = vector of time-independent optimization variables
u = control vector
D = set of deterministic variables
E = expected value
E = feasible set of Type I equality constraints
I = indicator function
P = probability measure
R = uncertainty set used in WCR
U = set of uncertain variables
d̃ = vector of uncertain problem data
p̃ = time-independent uncertain optimization variables
q̂ = vector of nominal variables
ũ = uncertain control vector
w̃ = uncertain noise vector
ks = constraint shift index
pc = time-independent control optimization variables
pp = time-independent plant optimization variables
ID = constraint feasible set
IRC = feasible space of the RC problem

X crisp = crisp description of uncertainty set
X fuzzy = fuzzy description of uncertainty set
X stc = stochastic description of uncertainty set
ℓ(·) = Lagrange term
m(·) = Mayer term
o(·) = objective function
f(·) = state derivative function
g(·) = inequality constraint vector
h(·) = equality constraint vector
M(·) = set membership function
P f ,i = target failure probability of ith constraint

P f ,sys = system target failure level
POS f ,i = failure possibility for the ith constraint

αw = weighting factor
βt = target reliability level
ξ = state vector
ξ̃ = uncertain state vector
σa = allowable standard deviation vector associated with g

Φ(·) = constraint maximization problem in Eq. (32)
ψ(·) = feasibility constraint in Eq. (32)

Subscripts

f = final
i = counter
t = time-dependent
N = nominal values
0 = initial
μ = mean value
σ = standard deviation

Acronyms

a.s. = almost surely
AAO = all-at-once
CCD = control co-design
CVaR = conditional value-at-risk
FDE = fuzzy differential equations
FE = fuzzy expected value

LQR = linear quadratic regulator
MCS = Monte Carlo simulation
MPC = model predictive control

OLMC = open-loop multiple control
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OLSC = open-loop single control
ODE = ordinary differential equations
PCC = possibilistic chance-constrained
PR = probabilistic robust

RBDO = reliability-based design optimization
RC = robust counterpart

SCC = stochastic chance-constrained
SDE = stochastic differential equations
SE = stochastic in expectation

UCCD = uncertain control co-design
WCR = worst-case robust
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