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A B S T R A C T   

Excavation on jobsites is a collaborative effort, with a spotter serving as an extra set of eyes for the operator to 
ensure safety. However, current training methods using simulators are limited in immersion and primarily 
designed for individual operators to practice basic skills. This paper presents a multi-user teleoperation system 
featured with hybrid-immersive interface and between-user communication. The effectiveness of the system is 
evaluated through human subject experiments. The study’s findings indicate that operators experienced greater 
immersion, a stronger sense of presence, and improved user interaction when using an immersive interface. This 
paper has important implications for the future of excavation training, with potential benefits including reduced 
utility strike damage and the opportunity to investigate human-robot collaboration in jobsites with multiple 
workers performing various roles within a highly immersive operational environment.   

1. Introduction 

Excavators, being among the most commonly used construction 
machines, represent a significant contributor to construction accidents. 
One of the most severe accidents in excavation is the collision between 
the excavator bucket and underground utility lines. The human factor 
plays an important role in such accident occurrences. In CGA white 
paper [1], 52% of damages have been reported due to root cause 
“Excavation Practices Not Sufficient”. Operating excavators under 
challenging work environments and unskilled workforce worsen this 
situation. The increasing labor shortages have become obstacles to 
overcoming these challenges. In recent decades, there have been efforts 
to leverage automation in construction, particularly on deployment of 
construction robots in jobsites. Unmanned robotics could be imple
mented in dangerous conditions. Despite the advantages, raising prob
lems cannot be overlooked. First, it is well known that the construction 
workplace, especially urban jobsites, is particularly dynamic and un
structured, which exposes tremendous challenges in relying on the 
automation [2,3]. Second, compared to industrial robotic systems 
typically separated from human workforce, the construction robot 
usually shared the workplace with humans. It is common that certain 
tasks in a jobsite (e.g., excavation) involve multiple workers and robotic 

entities. The interaction between multiple workers and construction 
robots brings more challenges, affecting the task performance, safety, 
and human operator’s cognitive activities in a more complicated way. 
Lastly, it is noticeable that robots cannot simply fulfill the roles of the 
human workforce. Instead of taking over jobs from human counterparts, 
the goal of a healthy human-robot partnership should augment the po
tential of human workers, and free workers up to higher-level activities. 
With this regard, it is necessary to investigate a worker-centered practice 
that sheds light on resolving problems during operating the robotic 
excavator. 

To improve a human-robot partnership, it is necessary to understand 
that real-life excavation is often a worker-centered practice performed 
by a team including multiple workers rather than a single operator. 
More than one worker is engaged in the excavation since the jobsite 
requires non-operator personnel (e.g., spotter) to oversee challenges 
from the workspace and surrounding environment as well as to 
communicate with the operator simultaneously. Various unpredictable 
factors may contribute to a challenging environment, including task 
related factors (e.g., inaccurate locations & depth of buried pipeline, 
limited workspace, task difficulty levels) and distractors from jobsites (e. 
g., surrounding work activities, other workers, noise) and surrounding 
environment (e.g., visual distractor such as traffic and pedestrians, 
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auditory distractors such as noise). These factors compromise the task 
performance and safety. Moreover, previous studies showed that the 
operation systems including interfaces and control method often yield 
cross effect on the operator cognitive workload and further compromise 
safety [4,5]. Unlike a single worker being responsible for both task 
execution and safety monitoring, involving multiple workers not only 
assist on tasks, but respond to jobsite challenges better and reduces 
operator’s workloads. 

Among all the non-operator personnel in excavation, a spotter is a 
human role who can provide real-time signals to an operator while an 
operator identifies and executes these signals by performing excavator 
control accordingly. A spotter serves as an extra set of eyes and ears for 
the operator and plays an important role on jobsite safety [6]. A spotter 
can be considered as a real-human interface that delivers task execution 
or safety information to an operator via speech or hand gestures. The 
successful collaboration between multiple human counterparts and 
robot(s) with a comprehensive spatial awareness is significant to avoid 
work accidents, such as underground utility strike during excavation. 
Thus, there is a necessity to explore between-worker interaction and 
shared spatial awareness, such as between an operator and a spotter, 
towards the development of a more efficient and worker-centered 
human-robot partnership. 

This paper focuses on (1) developing a multi-user system, featured 
with hybrid-immersive and intuitive interface for communication; and 
(2) identifying challenging factors in an urban excavation site including 
buried utility lines and testing the effectiveness of the system and 
analyzing how individual factors affect work performance. The effec
tiveness of the proposed system is assessed by a user experiment from 
two aspects, (1) the user evaluation of immersion, sense of presence, and 
multi-user interaction, (2) the performance assessment of accuracy, ef
ficiency, and safety in terms of underground utility strikes. The proposed 
hybrid-immersive VR system is assessed and compared with a non- 
immersive monitor-based system. This study has the potential to make 
contributions to the body of knowledge in the following aspects: (1) 
assess the communication between users with different roles in the 
context of human-robot interaction in jobsites, (2) bridge research gaps 
through leveraging immersion and intuitiveness of teleoperation inter
face as well as enhancing the environmental reality of the simulated 
scenario, and (3) lay out the foundation work for the further investi
gation on human factors in worker-centered multi-user human-robot 
teaming contexts. In addition, this study could contribute to the prac
tice building on the developed simulator for multi-user team-based 
excavation training. 

2. Research background 

2.1. Immersive multi-user human-robot collaboration system in 
construction 

According to McKinsey 2022 Report - Technology Trends Outlook 
that lists 14 technology trends affecting the world in the next two de
cades, immersive-reality technology (IRT), along with advanced con
nectivity, applied AI, sustainable energy and consumption, shows 
particular high relevance to the construction industry among all 20 in
dustry sectors [7]. Immersive-reality technology (IRT) will greatly affect 
265 million deskless workers in the global construction workforce by 
shifting the new wave of remote work, scalability of training, saving 
cost, and testing simulations more efficiently. According to the taxon
omy of virtuality-reality, IRT includes AR, VR, MR, XR. There have been 
research efforts regarding multi-user implementation in various sub
areas. First, construction safety and training are the major sub-area of 
IRT implementation [8]. Second, IRT implementation with multi-users 
involved in building management allows to simulate indoor building 
environment and to study the related occupant behaviors such as 
emergency evacuation [9]. Third, IRT allows multiple users from 
different locations to co-work remotely in the same virtual environment 

for the design and education purposes [10]. Multiple users using the 
same VR model in multiple viewports between site works can reduce the 
time to identify the anomalies and take effective actions [11]. Lastly, it is 
well-accepted that IRT enables greater leeway in remote control such as 
teleoperation and accelerates the automation progress as well as the in- 
depth studies of human-robot collaboration, as a close-to-real work 
environment and seamless interface design are essential for human-in- 
the-loop machine control process [12,13]. With the implementation of 
simulating the virtual entities, virtual workflows, and virtual environ
ments, [14] developed a real-time immersive user interface to allow 
users to perform crane operation and avoid blind spots. Research on VR- 
based multi-user construction robot operation, often using non- 
immersive construction simulator based on monitors or mobile devices 
[14–18], has brought an acceptable yet inadequate experience of im
mersion. The inadequate level of immersion may cause less accurate task 
performance. Implementing robust IRT into excavator remote control 
has the potential to involve multiple users, and further augment the 
workforce with the inclusion of divergent groups such as women, 
elderly, and people with disabilities to be part of the excavation. Some 
research efforts have been done on implementing IRT in multi-user 
teleoperation. A previous study proposed a construction equipment 
training framework which allows trainees to use immersive headsets 
(HMD) and joysticks to interact with other users or interactable virtual 
objects such as construction vehicles [19,20]. Nevertheless, these user 
studies were conducted with limited immersive experience. The studies 
were often simplified to simulate real work scenarios and rarely 
designed the workflow for multi users with multiple roles [21]. There is 
a need for facilitating different users with a proper level of immersion or 
assessing human factors in a team-based context in robot operation. This 
paper aims to provide a close-to-real excavator teleoperation experience 
for multiple users with different roles. 

2.2. Multi-user teleoperation system requirements and related immersive 
technologies 

According to the level of robot autonomy for human-robot collabo
ration [2], human efforts in teleoperation dominate high level cognitive 
activities such as sensing and planning, and in this regard, robotic 
excavator and human operator co-act on each motion. This process re
quires carefully assigning tasks to different users and robots to level up 
efficiency and safety. As a continual evolving loop, cognitive activities in 
a multi-user teleoperation workflow, include three aspects, (1) sensing: 
sense the overall situational context as the work proceeds, such as 
selectively perceiving task-related signals and distractable stimuli, (2) 
acting: control a robotic excavator or communicate with other entities; 
and (3) planning: make decisions for the next step work, which involves 
judgement and memory. Therefore, in an immersive reality system 
suitable for multi-user teleoperation, the integration of hardware and 
software should (1) fulfill different user’s roles related to sensing and 
acting, and (2) respond to the team collaboration such as between-user 
communication and shared situational awareness to facilitate high-level 
cognitive operations in the next step work. 

IRTs have the potential to satisfy these requirements: hybrid- 
immersive interface, virtual humans, and intuitive between-user 
communication. Studies in different fields show that visual sense has 
the primacy above all other senses in the human information processing 
[22–24]. One reason is that retinas of human eye hold 70% of the body 
entire set of sensory receptors, thus when multiple sources of sensual 
input rival, visual information often receives priority [25]. In a con
struction jobsite, human workers proceed most information through 
visual perceptions and operate the construction robot through visual- 
motor integration. Visual inputs contribute the most to cognitive over
load or cognitive tunneling [26], and further lead to poor performance 
and safety issues. Visual inputs delivered by different types of interfaces 
greatly affect human operators’ visual perception. Studies showed that 
enhanced visual perception can be achieved through immersive visual 
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interface, which commonly uses wearable Head-Mounted Display 
(HMD) or CAVE-like interface to provide a first-person view (FPV), as it 
produces a high level of immersion, intuitiveness, and realistic experi
ence compared to non-immersive interface [4,27], despite drawbacks of 
motion sickness and physical discomfort [28]. In fact, prior studies 
evaluated the usability of different visual interface, e.g., immersive vi
sual interface vs. non-immersive visual interface [29,30], often coupled 
with an secondary assessment of haptic methods. Kotek et al. evaluated 
single user’s operation error rate on performing a control-button task on 
a virtual panel with two spatial arrangements (vertical arrangement, 
horizontal arrangement) and two sensory configurations (visual stim
ulus, auditory stimulus), by comparing multiple types of operation en
vironments, VR CAVE-like environment with a flystick, VR headset with 
a glove, an office PC, touchscreen tablet, and a standard control panel. 
Findings showed that the operation error with control buttons were 
higher when using VR interface. As this finding did not investigate the 
interplay effect of different visual interfaces with haptic interfaces, it is 
hard to simply conclude that the immersive visual interface leads to the 
variation of operation errors. Morosi et al. investigated several perfor
mance metrics and mental workload of operating a virtual excavator 
with a customized haptic control method in a comparison of two types of 
visual interfaces (immersive VR headset and flat monitor). And this 
study provided in-depth discussions that the stereoscopic vision and 
auditory stimuli enhanced the depth perception of the task environment 
so that caused improvements regarding making control errors and 
damages, and further confirmed that excavator simulator design can be 
benefited from utilizing IRT. In addition, prior studies proposed visual 
alerts superimposing on a FPV interface, for the purpose of collision 
avoidance and improving task performance while mitigating the influ
ence of visual data overloaded [31,32]. Despite these efforts of assessing 
immersive VR interfaces, the following still needs to be further investi
gated. First, the interplay between multiple sensory configurations, for 
instance, visual interface and control interface, is rarely investigated, 
which leads to an insufficient understanding how multi-sensory input 
methods affect performance outcomes altogether. Second, although 
conventional non-immersive displays, such as desktop monitors, has 
been discussed in terms of the limited level of immersion [32,33], it is 
notable that non-immersive interface has the advantage of allowing 
users to access a broader range of visual information from multiple 
viewports simultaneously. For instance, multiple displays represent the 
entire machine operation process and environment from different view 
aspects [34,35]. Third, in a multi-user team-based collaborative opera
tion, interface design should be operation-dependent, in other words, 
interfaces with different levels of immersion should be designed to fulfill 
different user demands based on specific operations, and there is no one- 
fits-all solution. 

Intuitive between-user communication can be achieved through 
virtual humans (avatar) and natural communication mode such as 
speech and gesture. Virtual human (avatar) can be AI-powered or 
directly controlled by a user to perform various gestures and actions that 
facilitate communication with other virtual entities or objects [36,37]. 
The input system that enables the avatar in the virtual environment 
includes conventional input hardware such as keyboard and mouse, 
gamepad, touch screen, and motion tracking devices. The avatar has a 
significant impact on user behaviors in a virtual environment, which has 
been used for the hazard recognition, safety training, and collaborative 
education [38]. Meanwhile, human communication in the real world is 
naturally delivered across channels via speech, body gestures, or facial 
expression. Similarly, as the virtual replica, intuitive communication 
can be achieved through natural interfaces such as speech and motion 
recognition between different entities. Speech was studied for designing 
intuitive modeling interface and human-building interaction [39,40], 
and is often considered to be suitable for descriptive tasks. On the other 
hand, human body movements in the real world can be detected and 
decoded by the recognition system or accurately remapped onto a 3D 
virtual model in real time. Human motions can be registered via visual 

and non-visual methods [41] [42,43], which have been implemented on 
the ergonomic studies of construction workers’ physical activities and 
risk behaviors or training machines to understand human motions 
[44–48]. For example, [49] developed a vision-based framework to 
recognize hand gestures of workers in a jobsite and tested it for the 
communication between a human worker and a dump truck. 

To summarize, on the purpose of investigating the real-life team- 
based excavation practice in the context of a worker-center human robot 
teaming, knowledge gaps were found in the excavation simulator 
design, specifically in the aspects of immersion, intuitiveness, and work 
contexts. First, as for the level of immersion, existing excavation simu
lators provide acceptable yet less-immersive operation environment, 
which is available for a single-user only. Second, despite the availability 
of various immersive reality technologies, the prior studies primarily 
focused on validating the advantage of immersive display (e.g., VR 
headset) and they lack efforts dedicatedly designed to fulfill user’s 
needs. Effective interface design could be benefited from combinations 
of utilizing both immersive and non-immersive interfaces, and there is 
no one-fits-all solution. Third, as for simulating the multi-user collabo
rative operation, it is necessary to enhance the intuitiveness of between- 
user communication. Fourth, the simulation work scenario of prior 
works is often inadequate on providing close-to-real excavation job sites 
which often include various challenging environmental factors, such as 
buried utility lines. In addition, they lack the engagement and feedbacks 
from non-operator personnel (e.g., spotter) who actively participates in 
operating a construction machine and this could lead to the insufficient 
team-wise understanding about the performance of the operator and the 
system. 

3. Hybrid-immersive interface for excavation simulation 

3.1. Excavation simulation platform 

The primary goal of the hardware design is to serve as the physical 
excavator simulator. As the main part of the proposed platform, the VR 
headset (HTC Vive Pro) was functional as the user display (for operator) 
with a resolution of 1440 by 1600 per eye. The excavator joysticks that 
have a USB connection that could be plugged into the PC were selected 
for the operation. The joystick movements were emulated as keystrokes 
to tie the joystick movements to key presses and set these key press in
puts as the inputs in the virtual model. One of the standard control 
patterns, ISO control pattern [50], is utilized in the proposed system. 
The two pedals of the excavator have been chosen to replicate the 
control in the simulator to best imitate a real excavation experience. We 
also mimic the actual pedal control of an excavator, i.e., the pedal 
threads move forward or backward as the user presses each pedal for
ward or backward, respectively. Unlike the joysticks that have a built-in 
signal conversion to the PC, we developed a specialized hardware 
interface to convey the information of the pedals as the inputs of the 
virtual model. The hardware interface was designed on a custom- 
designed printed circuit board (PCB) that consists of a voltage regu
lator, a microcontroller module, and connections for pedals and PC. The 
voltage regulator steps down the 12 V coming from the wall transformer 
to the 5 V required input to power each of the pedals. The microcon
troller module is also mounted on the PCB and being powered through 
the USB connection, and also communicated through a serial commu
nication protocol. The analog output signals that represent the position 
of the pedals are sent to two analog-to-digital pins of the microcon
troller. The digitized signals of the pedals are delivered to the PC from 
the microcontroller module. The signals from the pedals and joysticks 
could be delivered to the virtual model through Uduino, which helps 
simplify the communication between the Arduino UNO and the Unity 
Game Engine. By doing so, the excavator simulator that is designed in 
the Unity can read the interactive information from joysticks and pedals 
of the excavator. The overall block diagram of the hardware interface is 
shown in Fig. 1. 
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3.2. Hybrid-immersive visual interface and communication system 

3.2.1. Visual interface 
To properly allocate visual inputs, two attributes of the visual 

interface, namely, level of immersion (high, low) and types of visual 
awareness (comprehensive, concentrated), are adopted in the interface 
design to fulfill specific demands of different users depending on their 
roles. 

The role of the operator is to follow spotter’s signals as well as to 
control the excavator for completion of the given task while avoiding 
underground utility strikes. In this sense, the operator is primarily ex
pected to have a high level of concentration on excavator bucket and 
spotter’s signals along with a necessary amount of awareness on 
essential safety cues, such as flags that mark the approximate horizontal 
location of buried pipelines. To achieve adequate visual awareness 
which allows the operator to concentrate on a safe excavation and to 
avoid distraction from unnecessary visual information, a high level of 
immersion and concentration are critical. Thus, a full-immersive visual 

display with a first-person view was provided for the operator [Fig. 2]. 
The role of a spotter, on the other hand, who sends signals to the 

operator, monitors the excavation, detects potential utility strike risks 
and other environmental distractors, demanding a holistic spatial visi
bility. Unlike the operator, the spotter doesn’t directly interact with the 
excavator or directly concentrate on excavation task, and it is suitable to 
facilitate the spotter with a visual interface that allows to access multiple 
view perspectives so that the spotter can achieve comprehensive visual 
awareness. To this end, a set of four viewports, composed of a top view 
of the entire task space, a front view, a first-person view allowing the 
spotter to see what the operator was seeing simultaneously, was dis
played in a monitor [Fig. 2]. Multiple viewports allow the spotter to 
monitor the excavator and task executions. In addition, from the front 
view, top view and virtual spotter view, the spotter monitored the ac
curate position of buried utility lines marked by the visually enhanced 
cue which set invisible to the operator. The spotter can also check the 
avatar’s motion signals from the virtual spotter view and operator’s 
visual awareness from the operator’s view. Overall, the spotter is 

Fig. 1. Block diagram of the custom-designed hardware interface in this study.  

Fig. 2. Hybrid-Immersive visual interface.  
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facilitated with visual inputs of the excavator, task zone, and the loca
tion of buried utility lines. The visual interface with multiple viewports 
by a large display allows the spotter to enhance spatial visibility to su
pervise the operator on each step. 

To summarize the interface design, the FPV interface designed for 
the operator provides a high level of immersion and a concentrated 
awareness that ensure the direct operation with the excavator while 
trying to minimize distractions from unnecessary inputs; the multi- 
viewport interface designed for the spotter provides a comprehensive 
awareness with a low level of immersion that ensure a holistic spatial 
visibility to monitor the operator, excavator, task space, and surround
ing environment altogether [Fig. 3]. To be noted, such interface design 
ensures different types of awareness (e.g., concentrated, comprehensive) 
tailored to meet the needs of the different roles of users. 

3.2.2. Between-user communication interface 
The between-user communication happens between the operator 

and the spotter in real time. Due to their different tasks and roles, they 
sense different aspects of the environment and act accordingly. For the 
operator, visual sensing occurred through one FPV delivered by an 
immersive display, which allowed a high level of immersion and ensured 
the operator to concentrate on operating the excavator [Fig. 3]. For the 
spotter, visual sensing occurred through four different views delivered 
by a monitor, which allowed low immersion yet high comprehensive
ness, and this ensured the spotter to monitor the excavation, workspace, 
surrounding environment, and potential risks simultaneously, as well as 
to send hand/verbal signals responsively [Fig. 3]. Spotter’s motion 
signals were captured by motion controllers in real time, and the co
ordinates of body joints were mapped onto a virtual avatar at each 
frame, which was modeled with human appearance [Fig. 4]. The avatar 
is the representative of the spotter, and the operator communicated with 
the avatar, i.e., receiving signals [Fig. 4]. Avatar (spotter’s virtual 
replica) was placed right in front of the digging workspace, which 
ensured that it was perceived in the operator’s field of view when the 
operator performs given tasks. To better mimic the restriction of limited 
workspace in an urban excavation scenario, the avatar was not able to 
walk around and stand at the same position to deliver different signals to 
the operator during the entire experiment. Moreover, the spotter’s 

speech signals were captured by a microphone and transferred to the 
operator. Overall, the communication interface between the operator 
and spotter takes account of natural human communication (hand and 
speech signals) to ensure robust communication when both sensing and 
acting occur during work [Fig. 3]. 

4. Human subject experiments 

4.1. Experimental setup 

Table 1 presents the information of a total of 57 participants in the 
experiments approved by the University Institutional Review Boards 
(IRB). All participants were recruited via the bulk mail system (for those 
who are in construction-related majors) and completed an online screen 
process to ensure the eligibility of operating two joysticks and no vision 
or hearing impairment. Prior to the experiment, a pilot study has been 
conducted to test the protopype functionality with employing a small 
group of users (N < 10) [51]. 

A within-group experiment was conducted in a single day. The entire 
experiment for each participant lasted for 45–70 min approximately and 
included the following steps. After arrived for the experiment, partici
pants reviewed and signed the consent form first. A background ques
tionnaire was completed including the demographic information, 
construction work experience, VR/video game experience. Then, an 
instruction session was provided by explaining a standard excavator 
structure, the ISO control method, and showing a tutorial video of 
excavator control. After that, participants received the first training 
session by operating an excavator with two joysticks following the ISO 
control. Participants took as long as they needed to practice until they 
were confident to operate the excavator. The next two sessions were two 
trials where the participants performed an excavation task solely 
without working with a spotter. In each trial, the participants accessed 
the virtual environment using either the headset or the monitor 
respectively [Fig. 5]. The participants completed the questionnaire once 
they finished the trial. Then, the participants were provided with the 
second training session by following the spotter’s hand signals to oper
ate the excavator. The spotter introduced each signal to the participant 
and answered any related questions. The participant practiced ten hand 

Fig. 3. Hybrid-Immersive communication interface.  

D. Liu et al.                                                                                                                                                                                                                                      



Automation in Construction 156 (2023) 105143

6

signals guided by the spotter’s avatar in the virtual environment. The 
training session was conducted using an excavation scenario, and the 
spotter practiced three times with each participant. After training with 
the spotter, two experiment trials were conducted. In each trial, par
ticipants followed the hand signals from the spotter, and performed the 
excavation task using either the headset or the monitor respectively 
[Fig. 5]. Once the second set of two trials were completed, the partici
pants provided responses to the questionnaire. In addition, upon arrival 
at the experiment location, the participants were required to review 
graphic instruction for the preparation purposes. The instruction illus
trated the standard excavator components, the ISO control pattern of an 
excavator, a tutorial video about operating a standard excavator in a real 
jobsite, as well as different signals. This session helped the participants 
to familiarize and memorize the excavator control and signals. 

There was a total of four experiment trials for each participant 
[Fig. 5]. In the first set of two independent trials, the participant was 
asked to perform an excavation task three times in an urban construction 
jobsite independently. The participants were required to excavate in the 
task zone located in front of the excavator without hitting buried utility 
lines. Yellow flags marked the horizontal coordinates of the buried 
utility lines. Upon completion of excavating one load of soil, the 
participant was required to dump it into a marked dumping zone located 
on the left side of the excavator then returned to the beginning position 
for excavation. The participant operated two joysticks to control the 
bucket, stick, and boom to complete digging action, then to swing the 
excavator cabinet 90 degree approximately to the left side to dump the 
soil. This task was repeated three times in trials #1 and #2 respectively. 
In the second set of two collaborative trials, the participants followed 
hand signals from the spotter’s avatar to perform a similar excavation 
task. The spotter avatar was set in a standing pose in front of the task 
zone within the participant’s direct field-of-view (FOV) during work. To 

check signals from the spotter avatar and workspaces in a fully 
immersive FPV, the participants as the operator were allowed to rotate 
their heads during the trials. Further, task-related challenging factors 
described in the introduction section were designed in the urban jobsites 
to represent the real-world settings. The first challenging factor is un
derground utility lines within the digging zone, and the operator needs 
to avoid collisions with the buried utility line and identify approximate 
positions by checking ground flags. The second factor is the narrow 
dumping space, and the operator needs to carefully estimate the spatial 
distance when dumping soils to ensure the task accuracy. 

4.2. Performance measurements 

The user evaluation of this study is to evaluate the effectiveness of 
hybrid-immersive interface and communication system in aspects of 
immersion, presence, and between-user interaction, compared to the 
monitor-based simulator. This evaluation is composed of two parts. Part 
I is to evaluate the quality of immersion and sense of presence of the 
entire task scenario based on the first set of two independent trials. As 
Table 2 shows, a total of nine items of Part I are based on two evaluations 
to measure the immersion and sense of presence of the virtual reality 
developed by Witmer et al. and Schwind et al. [52,53]. The immersion 
was evaluated by naturalness, compelling, visual involvement, visual 
flexibility, and display quality that affect required task performance 
while the sense of presence was evaluated by the user experience in a 
virtual space compared to looking at an image. Participants evaluated 
these aspects between immersive display and a monitor by using a 7- 
point Likert scale after they finished two independent excavation tri
als. As Table 3 shows, Part II is to evaluate the between-user collabo
ration. A total of three items are included, namely, the duration of visual 
contact with the spotter avatar, the visual easiness of checking hand 

Fig. 4. Motion capture of hand signals for spotter-operator communication.  
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signals from the avatar, the visual flexibility from multiple view di
rections. Similarly, the experience of using VR display and monitor was 
compared and evaluated by a 7-point Likert scale. Part II evaluation was 
performed after the participants completed two collaborative excava
tion trials with a spotter. 

The task performance was measured based on the task accuracy and 

the completion time of each trial. The task accuracy is evaluated by 
performance errors of digging and dumping respectively. The error of 
digging was defined by the amount of soil loads dug out of the exca
vation task zone. A higher error contributes to the lower accuracy of 
digging. The error of dumping was defined by the amount of soil in the 
bucket dumped out of the dumping zone. A higher dumping error con
tributes to lower accuracy of dumping. Both digging and dumping errors 
were calculated based on soil-bucket mesh collision. As the primary 

Table 1 
Participant Background Information (n = 57).  

Categories Response Ranges Percentage 

Gender Female, Male, Other F - 37.1%, M - 
61.3% 
Other - 1.6% 

Age 18–55 years old 18–29: 80.7% 
30–39: 12.9% 
40–55: 6.7% 

Race White, African 
American, Native 
American, Asian, Pacific 
islander, multi-races, 
other 

Asian: 35.5% 
White: 58.1% 
Multi-races: 
4.8% 
Other: 1.6% 

Work 
experience 

Work in a 
construction job 
site 

0–10 years No experience - 
59.7% 
Below 5 years - 
36.5% 

Operating a 
construction 
machine/vehicle 

0–10 years, or above 10 
years 

No experience: 
72.6% 
0–10 years: 
25.8% 
10 years or 
above: 1.6% 

VR/Video 
game 
experience 

Frequency to use 
VR application  

• Never  
• Monthly or less often  
• Weekly or a few times 

a week  
• Daily 

Never = 40.3% 
Monthly or less 
often = 40.3% 
Weekly/a few 
times a week =
9.7% 

Frequency to play 
video game  

• Never  
• Monthly or less often  
• Weekly or a few times 

a week  
• Daily 

Never = 12.9% 
Monthly or less 
often = 54.8% 
Weekly/a few 
times a week =
19.4% 
Daily = 12.9% 

Previous Motion 
sickness 

Yes/No No = 82.3%, 
Yes = 17.7%  

Fig. 5. Experimental trials: (a) independent trial with a monitor, (b) collaborative trial with a monitor, (c) independent trial with HMD, and (d) collaborative trial 
with HMD. 

Table 2 
VR Effectiveness Survey – Part I.  

Immersion Evaluation  

1. [Naturalness] How natural did your interactions with the environment seem?  
2. [Visual Involvement] How much did the visual aspects of the environment involve 

you?  
3. [Compelling] How compelling was your sense of moving around inside the virtual 

environment?  
4. [Closeness] How closely were you able to examine objects?  
5. [Display Quality Interfere] How much did the visual display quality interfere with 

or distract you from performing assigned tasks or required activities?  
6. [Concentration] How well could you concentrate on the assigned tasks or required 

activities rather than on the mechanisms used to perform those tasks or activities?  
7. [Flexibility on View Directions] How flexible was your sense of checking objects 

from different view directions? 
Sense of Presence Evaluation  
1. [Images vs. Somewhere] When you think back to the experience, do you think of 

the virtual environment more as images that you saw or more as somewhere that 
you visited?  

2. [Within vs. Out of the Virtual Environment] During the time of your experience, 
did you often think to yourself that you were actually in the virtual environment?  

Table 3 
VR Effectiveness Survey – Part II.  

Collaboration Evaluation  

1. [Duration of Visual Contact] How long could you maintain visual contact with the 
spotter’s avatar? Could you see the spotter’s avatar in a limited amount of time or 
most of the time during the experiment?  

2. [Visual Easiness] How easy was your sense of checking the behaviors from the 
spotter’s avatar? Was it easy for you to detect the avatar’s behaviors or was it 
difficult for you to detect the avatar’s behaviors?  

3. [Visual Flexibility] How flexible was your sense of checking the signals from the 
spotter’s avatar from multiple view directions?  
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accident during excavation is the collision between the bucket and un
derground utility lines buried within the excavation zone, the total 
number of bucket-utility line collisions for each trial was considered as 
the metric of the unsafe behavior. In each trial, once such collisions 
occurred, the collision number (COL#) was automatically counted. 

Previous studies attempted to quantify the operator’s overall exca
vation performance by calculating soil excavation productivity. For 
example, [54] defined the task productivity by soil volume divided by 
execution time as an indicator of participant’s digging skills. Despite the 
benefits, the factor of avoiding accident occurrence was not integrated. 
In this study, the overall excavation performance is analyzed by taking 
account of accident-avoidance building upon the multi-attribute utility 
theory [55], which allows to weigh multiple attributes (e.g., accuracy, 
time, and safety) based on their utility (importance). The first step is to 
normalize each factor and assign weights based on importance. Here, 
the normalized accuracy, time, and collision rate could be defined as 
(200 – individual’s error) / 200, (individual’s task completion time – 
Min task completion time) / (Max task completion time – Min task 
completion time), and (individual’s collision number – Min collision 
number) / (Max collision number – Min collision number), respectively. 
Where 200 is a constant number of the volume of soil particles per load 
defined in a mesh deformation in this experiment, and (200 – in
dividual’s error) is the completed soil volume upon finishing excavation 
one load of soil per individual. To be noted, in the experiment, the 
constant number (200) is subject to virtual modeling resolution, such as 
refined soil particles. A Min-Max scaling method is built upon for 
normalization to control the sensitivity to outliers in the dataset. The 
normalized factors could be combined with weights as follows. 

Performance = (a* normalized accuracy)/(b*normalized time)–
(c* normalized collision rate)

(1) 

In Eq. (1), the weights (a, b, c) for each factor (accuracy, time, safety) 
are adjustable to control the importance of each factor. In this study, we 
consider accuracy, completion time, and collision-avoidance are equally 
important to the performance, and thus weights are equal to 1. So, the 
overall performance can be summarized as. 

P = A/T − COL (2) 

As for Eq. (2), a higher value of P indicates better task performance, 
defined by a higher excavation productivity and a lower collision- 
occurrence. 

Lastly, to further evaluate the effectiveness of immersive visual 
interface and between-user communication, we investigated if two in
dependent variables, display types and operation types, cause any mixed 
effect, and if they are equally attributable to the performance outcomes 
(i.e., completion time, errors, collisions). The mixed effect of two inde
pendent variables, namely, display types, operation types, was investi
gated building on a generalized linear mixed effect model (GLMM) [56] 
which is defined as below. 

Tij = β0 + β1
*DISPLAYi + β2

*OPERATIONi + βij + eij (3)  

Eij = γ0 + γ1
*DISPLAYi + γ2

*OPERATIONi + γij + εij (4)  

Cij = δ0 + δ1
*DISPLAYi + δ2

*OPERATIONi + δij + ζij (5) 

As for the Eq. (3), Tij is the completion time for the participant j (j =
1, 2, …57) in each condition (i = 1,2,3,4). β0 is the intercept, repre
senting the average completion time when both display type and oper
ation type are at their reference levels. β1 is the coefficient for display 
type, representing the effect of switching from one display type to the 
other on completion time (display types: HMD–H, Monitor-M). β2 is the 
coefficient for operation type, representing the effect of switching from 
one operation type to the other on completion time (operation types: 
operator-only vs. spotter-direct). βij is the coefficient for the participant j 
in condition i, representing the variation of individual random effect. eij 

is the residual error for the participant j in condition i, representing the 
variation in time after accounting for the fixed effects (e.g., display 
types, operation types). As for the Eq. (4), Eij is the error for the 
participant j (j = 1, 2, …57) in each condition (i = 1,2,3,4). γ0 is the 
intercept, representing the average errors when both display type and 
operation type are at their reference levels. γ1 is the coefficient for 
display type, representing the effect of switching from one display type 
to the other on errors. γ2 is the coefficient for operation type, repre
senting the effect of switching from one operation to the other on errors. 
εij is the residual error for the participant j in condition i, representing 
the variation in error after accounting for the fixed effects (e.g., display 
types, operation types). As for the Eq. (5), Cij is the number of collisions 
for the participant j (j = 1, 2, …57) in each condition (i = 1,2,3,4). δ0 is 
the intercept, representing the average collisions when both display type 
and operation type are at their reference levels. δ1 is the coefficient for 
display type, representing the effect of switching from one display type 
to the other on collisions. δ2 is the coefficient for operation type, rep
resenting the effect of switching from one operation to the other on 
collisions. ζij is the residual error for the participant j in condition i, 
representing the variation in in the number of collisions after accounting 
for the fixed effects (e.g., display types, operation types). 

5. Experimental results analysis and interpretation 

5.1. VR effectiveness 

The Shapiro-Wilk test was first performed to test the normality for 
the subjective evaluation and concluded that data are not normally 
distributed. Thus, the nonparametric Wilcoxon Signed Rank Test was 
selected for the analysis. Significant differences (p < 0.001) between the 
monitor and HMD are found in all twelve items regarding immersion, 
sense of presence, and between-user interactions [Table 4]. As for Im
mersion, Fig. 6. shows that immersive display (HMD) was evaluated 
with higher scores in naturalness, closeness, compelling, visual 
involvement, visual flexibility, concentration on tasks and activities 
compared to the monitor. The quality of the immersive display also 
showed less interference that affects required task performance than the 
monitor. The immersive display achieved a higher mean score (45.12) 
than the monitor (24.70) regarding the immersion and sense of presence 
[Fig. 6]. In addition, results of using 2D-Monitor display show higher 
variability than the results of wearing HMD on all nine dimensions of 
evaluating Immersion and sense of presence [Fig. 6] as well as on all 
three dimensions of evaluating collaboration [Fig. 7]. The difference of 
variability of using two display types indicates that using a 2D-monitor 

Table 4 
VR Effectiveness – Immersion, Sense of Presence, Between-user Interaction.   

Naturalness Visual 
Involvement 

Compelling Closeness 

Monitor 
vs. 
HMD 

Statistic = 1.0 
p = 1.93e- 
10*** 

Statistic = 7.5 
p = 1.21e-10*** 

Statistic =
16.0 
p = 4.93e- 
10*** 

Statistic =
7.5 
p = 3.12e- 
10***  

Display 
Quality 
Interfere 

Concentration Flexibility 
on view 
directions 

Images vs. 
Somewhere 

Monitor 
vs. 
HMD 

Statistic =
257.5 
p = 0.001*** 

Statistic = 43.5 
p = 3.58e-09*** 

Statistic =
16.0 
p = 2.29e- 
10*** 

Statistic =
43.5 
p = 3.58e- 
09***  

Within vs. Out 
of the virtual 
environment 

Duration of 
visual contact 

Interactive 
Visual 
Easiness 

Interactive 
Visual 
Flexibility 

Monitor 
vs. 
HMD 

Statistic = 76.0 
p = 2.02e- 
08*** 

Statistic = 4.0 
p = 3.53e-11*** 

Statistic =
23.5 
p = 5.91e- 
09*** 

Statistic =
15.0 
p = 1.43e- 
10*** 

Significant codes: < 0.001 ‘***’ < 0.01′**’ < 0.05 ‘*’ < 0.1 ‘.’. 
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may result a wide range of experiences in terms of immersion, sense of 
presence, and collaboration. Some participants may feel familiar or 
comfort of using 2D monitor, while others may struggle to feel presence 
or easy on collaboration. Results of collaboration evaluation show that 
the immersive display achieved higher scores in terms of the duration of 
visual contact with the spotter avatar, the visual easiness of checking 
hand signals from the avatar, the visual flexibility from multiple view 
directions [Fig. 7]. Overall, the effectiveness of the multi-user hybrid- 
immersive system is demonstrated in the aspects of immersion, sense of 
presence, and collaboration, by comparing it to the monitor-based sys
tem, which was validated by the VR effectiveness surveys. 

5.2. Task performance 

The performance of excavation was measured by errors at work and 
completion time. As the sample size (n = 57) is relatively small but still 
larger than 50, the Kolmogorov-Smirnov test and the Shapiro-Wilk test 
were performed to test the data normality in a numerical way. To reduce 
the oversensitivity caused by the numerical methods, graphical methods 
including the histogram and Q-Q plot were used to facilitate the 
normality test. As the Shapiro-Wilk test and the Kolmogorov-Smirnov 
test showed that data regarding the task completion time, digging er
rors, and dumping errors are not normally distributed (p < 0.05), which 
was also confirmed by Q-Q plot and histogram. Thus, the nonparametric 
Wilcoxon Signed Rank Test was selected to determine whether there 

were significant differences in task performance between the different 
operation and display types. 

5.2.1. Task accuracy 
Despite that Table 6 and Fig. 8 show that independent tasks using a 

monitor yields a slightly higher mean digging error and collaborative 
tasks using a monitor yields a slightly lower mean digging error, as 
Table 5 shows, there was no significant difference between the results of 
digging errors between different types of displays (p > 0.05). Mean
while, significant difference was found in mean dumping error when 
considering the display types (p < 0.05), regardless of independent or 
collaborative tasks. Results of dumping error demonstrated that when 
wearing an HMD, the participants tend to perform more accurately than 
using a monitor. It indicates that increasing the level of display im
mersion would enhance the user’s adaptability to the work environment 
especially with challenging factors such as a narrow workspace. This can 
be explained that, during the dumping task, due to the narrow work
space commonly found in such a crowded urban jobsite, the dumping 
zone was partially occluded in a monitor which provided a fixed view
port not allowing the participant to have a broader vision by rotating the 
head. While using HMD, the participants could easily adapt to the 
challenging environment by rotating their heads freely, and finally 
achieve a broader view of dumping zone, which is not possible when 
they were using a monitor with a fixed viewport. Consequently, for the 
simulated scenario in a busy and crowded area with challenging task 

Fig. 6. Results of VR survey – Part I: Immersion, Sense of Presence.  

Fig. 7. Results of VR survey – Part 2: Collaboration.  
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factor such as a narrow workplace, facilitating with a higher level of 
immersion provided by HMD allows the participants to have a better 
visual sense, and eventually were able to reduce task errors and achieve 
a better performance accuracy than using a monitor. Thus, it is 
conclusive that with a task related factor (i.e., narrow task space), uti
lizing an immersive display would be more beneficial in terms of 
improving the performance accuracy than a monitor because higher 
level of visual immersion allows the operator to sense the environment 
better and further adapt to the challenging environment easier. During 

two trials of wearing HMD, as for the different operation types, result of 
independent trial shows more dumping errors than collaborative trial. 
This can be explained that in the collaborative trial multiple viewports 
allow the spotter to have a comprehensive visual understanding of the 
task environment and provide the operator with more accurate spatial 
information through signal communication. While working indepen
dently, the lower level of visual comprehensiveness of FPV and the 
narrow task area were challenging for the operator to self-estimate the 
spatial distance to accurately dump soils, even though the operator 
could perceive the dumping scene fully with free head rotations. Over
all, the increased level of immersion as well as the between-user 
collaboration can enhance the user adaptability to the challenging 
work environment, reduce the obstacle of spatial distance estimation, 
thus improve performance accuracy in a jobsite with challenging fac
tors. When using 2D-monitor, however, the operator was not able to see 
the spotter during the dumping operation, yet the dumping accuracy in 
collaborative trials was significantly improved. One explanation is that 
since the operator experienced HMD trials between 2D-monitor trials, 
using HMD was likely to improve the spatial perception and leads to a 
better dumping accuracy in the second 2D-monitor trial although the 
operator could not see the spotter during the dumping operation in both 
2D-monitor trials [Fig. 8]. Fig. 8 shows the FPV of the operator in four 
trials. To be noted, in 2D-Monitor trials [Fig. 8a, Fig. 8d], the operator 
could not see the spotter through FPV during dumping, so the separated 
views outlined in red and blue at the bottom left corners are added only 
to clarify the status of spotter. 

5.2.2. Task efficiency 
Results of task completion time show that significant difference (p <

0.05) is found between different operation types, as well as different 
display types [Table 5]. Additionally, when using a monitor, indepen
dent trials (190 s) took longer time than collaborative trials (168.11 s) 
[Table 6] [Fig. 9]. In independent trials wearing an HMD took less time 
(176.88 s) to complete than using a monitor (190 s). Interestingly, 
collaborative trials wearing an HMD took much longer time (222.56 s) 
to complete than that using a monitor (168.11 s). This can be explained 
that dumping soil requires the operator to rotate 90 degrees to the left 

Fig. 8. FPV of the operator during the dumping operation: (a) Independent, 2D monitor trial (spotter stand in front of digging zone without sending any signals) (b) 
Independent, HMD trial (spotter stand in front of digging zone without sending any signals) (c) Collaborative, HMD trial (spotter stand in front of digging zone and 
was showing one hand signal) (d) Collaborative, 2D monitor trial (spotter stand in front of digging zone and was showing one hand signal). 

Table 5 
Results with four different conditions: NS_M (no spotter, monitor), NS_H (no 
spotter, HMD), S_M (spotter, monitor), S_H (spotter, HMD).  

Accuracy – Digging Error Accuracy – Dumping Error  

NS_M S_H  NS_M S_H 

NS_H stat = 471.0 
p = 0.44 

stat =
425.5 
p = 0.14 

NS_H stat = 340.0 
p = 0.0003*** 

stat = 128.5 
p =
0.0000067*** 

S_M stat = 487.0 
p = 0.21 

stat =
471.0 
p = 0.78 

S_M stat = 258.0 
p =
0.000018*** 

stat = 181.0 
p =
0.000085*** 

Efficiency - Completion Time(s) Safety – Number of Collisions  
NS_M S_H  NS_M S_H 

NS_H stat = 548.5 
p = 1.31e- 
06*** 

stat =
279.0 
p = 2.04e- 
10*** 

NS_H stat = 291.0 
p = 0.0063** 

stat = 9.0 
p = 9.47e- 
06*** 

S_M stat = 464.5 
p = 4.99e- 
08*** 

stat = 60.5 
p = 1.12e- 
13*** 

S_M stat = 0 
p = 1.04e- 
08*** 

stat = 9.0 
p = 0.72 

Performance score (P)     
NS_M S_H    

NS_H stat = 382 
p =
0.0004*** 

stat = 724 
p = 0.4177    

S_M stat = 143 
p = 5.75e- 
08*** 

stat = 107 
p = 1.11e- 
08***    

Significant codes: < 0.001 ‘***’ < 0.01′**’ < 0.05 ‘*’ < 0.1 ‘.’. 
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and cause the spotter was out of operator’s front view in a monitor. In 
this case, in HMD trials, the operator could shift back to the front view to 
the spotter by rotating the head to the right, and check the spotter’s hand 
signals; however, in monitor trials, the operator could not freely change 
the direction of front view and check hand signals thus rarely spent time 
on signal checking during dumping. The fixed direction of field-of-view 
in monitor trials disables the operator to freely switch front view to a 
perpendicular direction to check signals, so less time spent on signal 
checking. Further, results of the mixed effect demonstrate that the 
display types and operation types are not equally attributable to the task 
completion time, which will be discussed in 5.2.4. 

5.2.3. Collisions 
As Table 5 shows, there is a significant difference in the number of 

collisions made between independent trials and collaborative trials (p <
0.05). The operators made more collisions when they worked indepen
dently. For independent trials, significant difference (p < 0.05) was 
found on the collision numbers between HMD trials (2.84) and monitor 
trials (4.74) [Table 6] [Fig. 9]. Results indicate that collaborative trials 
could lead to safer practice with less collisions made. This can be 
explained by that multiple viewports and visual cue allow the spotter to 
see the accurate location of buried utility line, while the operator saw 
the utility line only by checking the ground flags which were easily 
removed during the excavation. Results also indicate that with a higher 
level of immersion, the user senses the environment better and acts 
safer. Nevertheless, although the level of immersion affects the numbers 
of collisions, the communication with the spotter played a major role in 
collision avoidance as the location information of underground utility 
lines could be delivered via the between-user communication. 

Table 6 
Results of Efficiency, Accuracy, Accidents, and overall performance (NS_M (no 
spotter, monitor), NS_H (no spotter, HMD), S_M (spotter, monitor), S_H (spotter, 
HMD)).   

NS_M NS_H S_M S_H 

Efficiency (T) 
Task 
Completion 
Time(s) 

Mean =
190.00 
(50.9, 6.74) 
Median =
177.0 

Mean =
176.88 
(53.12, 
7.04) 
Median =
164.0 

Mean ¼ 168.11 
(34.21,4.53) 
Median = 209.0 

Mean =
222.56 
(54.25, 
7.19) 
Median =
162.0 

Accuracy (e) 
Dumping 
errors 

Mean =
25.40 
(21.99, 
2.91) 
Median =
18.0 

Mean =
13.95 
(16.39, 
2.17) 
Median =
10.0 

Mean = 10.42 
(10.53, 1.40) 
Median = 0.0 

Mean ¼
3.79 (8.76, 
1.16) 
Median =
9.0 

Digging errors Mean =
2.91(7.06, 
0.94) 
Median =
1.0 

Mean =
2.51(2.89, 
0.38) 
Median =
2.0 

Mean = 1.63 
(1.80, 0.24) 
Median = 1.0 

Mean =
1.70(1.95, 
0.26) 
Median =
1.0 

Accidents 
(COL) 
Number of 
Collisions 

Mean =
4.74(4.79, 
0.63) 
Median =
4.0 

Mean =
2.84 (5.34, 
0.71) 
Median =
0.0 

Mean = 0.12 
(0.43, 0.06) 
Median = 0.0 

Mean ¼
0.09(0.39, 
0.05) 
Median =
0.0 

Performance 
Score (P) 
(200-e)/T – 
COL/16 

Mean =
0.70 (1.94, 
−0.43) 
Median =
0.72 

Mean =
0.96 
(2.63, 0.59) 
Median =
0.93 

Mean ¼ 1.16 
(1.83, 0.59) 
Median = 1.15 

Mean =
0.93 (1.54, 
0.31) 
Median =
0.96  

Fig. 9. Results under four different conditions - Independent trial with HMD [H⋅O], Independent trial with 2D-Monitor [M.O], Collaborative trial with HMD [H⋅S], 
Collaborative trial with 2D-Monitor [M.S]: (a) Completion Time (b) Number of Collisions (c) Number of Errors (d) Overall Performance. 

D. Liu et al.                                                                                                                                                                                                                                      



Automation in Construction 156 (2023) 105143

12

5.2.4. Mixed effect 
Three performance metrics (i.e., completion time, error, collision) as 

dependent variables were regressed on two independent variables, as 
well as their interaction, in a generalized linear mixed-effects model. 
The reference level in this mode is defined by the outcome of the trial in 
which the operator was using HMD display to perform the task without a 
spotter. The significances between the outcome of the reference level 
and outcomes from other three trials were analyzed [Table 7]. This 
model included random intercepts for participants, as well as random 
slopes for display_types and operation_types at the participant level. As 
Table 7 shows, as for the mixed effect on time, a significant interaction 
(p < 0.001) was found between the display types and operation types, 
with the estimated effect of using display_type_Monitor with oper
ation_type_SpotterDirect being significantly different from the combined 
effects of using display_type-Monitor with operation_type_OperatorOnly 
and using display_type_HMD with operation_type_SpotterDirect. The 
correlation between the fixed effects was low to moderate, with a cor
relation of −0.527 between intercept and display_types_Monitor, and 
0.334 between display types and operation types. As for the mixed effect 
on performance errors, a significant interaction (p < 0.01) was also 
found between the display types and operation types, with the estimated 
effect of using display_type_Monitor with operation_type_SpotterDirect 
being significantly different from the combined effects of using dis
play_type_Monitor with operation_type_OperatorOnly and using dis
play_type_HMD with operation_type_SpotterDirect. Residuals represent 
the variation in four dependent variables (time, error, collision, per
formance) that is not accounted for by the fixed effects (display_type, 
operation_type, and their interactions) or the random effects (variation 
across subjects). The fitted model of residuals shows the random scat
tering around the horizontal line at zero [Fig. 10], indicating that the 
model is properly accounting for the variation in the data. 

To further investigate which independent variable has a greater ef
fect on the performance metrics, average marginal effects were evalu
ated. As Table 8 shows, first of all, the time for task completion decreases 
by 20.6667 s when the display type is changed from HMD (reference 
level) to a monitor, which is a significant effect (p < 0.001); and the time 
for task completion increased by 11.8947 s when the operation type is 
changed from operator_only (reference level) to spotter_direct, which is 
a significant effect (p < 0.1). Changing display types has a greater 
average marginal effect on task completion time than changing opera
tion types [Fig. 11a]. Second, the dumping error increased by 0.9649 
when the display types are changed from HMD (reference level) to a 
monitor, which is a significant effect (p < 0.05); and errors decreased 
3.6842 when the operation type is changed from operator_only (refer
ence level) to spotter_direct, which is a significant effect (p < 0.001). 
Lastly, the number of collisions increased by 9.0439 when the display 
type is changed from HMD (reference level) to a monitor, which is a 
significant effect (p < 0.001); and the number of collisions decreased by 
12.5702 when the operation type is changed from operator_only 
(reference level) to spotter_direct, which is a significant effect (p <

0.001). It was observed that changing operation types has a greater 
average marginal effect on task errors, collisions, and overall perfor
mance than changing display types [Fig. 11b, c, d]. 

The results of a GLMM supported the mixed effect of four combina
tions of display types and operation types on completion time, errors, 

collisions. First, results of average marginal effects demonstrated that 
task efficiency (i.e., time) is affected more by display types than task- 
related independent variables such as operation types. This finding is 
particularly important as it indicates that to assess the performance of a 
virtual excavation, when evaluating the completion time, display type 
should be carefully specified as it may cause higher average marginal 
effect on performance than other task related variables. To be noted, it 
was observed that time as a major performance metric is more sensitive 
to the display types than other performance metrics in this experiment. 
This finding also indicates that some attributes of visual interface (e.g., 
display types) may play as a major confounding factor when we simulate 
a close-to-real virtual excavation process. Second, results indicate that 
the task accuracy and safety in a virtual excavation are mainly affected 
by the task-related variables such as the operation types (e.g., inde
pendent vs. collaborative), and they are less sensitive to the changes of 
display types. 

5.2.5. Overall performance taking account of accident-avoidance 
As shown in Table 5, for the overall performance (P), when using a 

monitor, there is a significant difference (p < 0.05) between indepen
dent and collaborative trials as collaborative trials have higher mean 
performance score (1.15) [Table 6], which indicates that the perfor
mance was improved by collaborating with a spotter. The operation 
types also show a greater average marginal effect on the overall per
formance than the display types [Table 8] [Fig. 11d]. The performance 
metric integrating task completion time, accuracy and safety generally 
reflects the outcome and has the potential to measure the operator/ 
trainee’s performance under different task-related variables such as 
operation types. Furthermore, to adjust the weights of each performance 
attribute, this metric can be implemented under different work scenarios 
to emphasize different operation aspects, such as safety, productivity, or 
task skills. Assigning appropriate weights to different attributes also 
allows to benchmark similar studies and provide insights about the best 
practice. 

5.3. User feedbacks and limitations 

User feedbacks regarding the devices and overall experience were 
collected in the post experiment debrief. As for the operator, most par
ticipants reported a better sense of presence when using VR headset than 
using 2D monitor which limited the visual flexibility as needed, which is 
consistent with the experiment outcome. Nevertheless, some partici
pants, especially female users, reported that they felt more comfortable 
of using 2D monitor due to a higher familiarity than using a wearable VR 
headset. These feedbacks are valuable indicators that to optimize the 
simulation system design there might be a necessity to conduct assess
ments on individual difference such as gender and work experience, 
which could be further investigated in future works. Another consider
ation is that when wearing VR headset for the first time in practice 
session, most participants tended to spend some time to visually explore 
the virtual environment instead of directly focusing on performing the 
task. This observation indicates that it is of importance to arrange 
practice session prior to the formal trials and allow participants to gain 
the familiarity with VR devices and reduce the distraction due to the 
excitement. 

Table 7 
Fixed effects on performance.  

Fixed effects time error collision 

t value Pr (> | t |) t value Pr (> | t |) t value Pr (> | t |) 

(Intercept) 25.142 <2e-16 *** 4.679 1.57e-05 *** 7.40 3.44e-10 *** 
display_types - M 1.914 0.0581 3.684 0.000355 *** 4.332 2.97e-05 *** 
operation_types - S 5.644 1.26e-07 *** −4.308 4.27e-05 *** −3.736 0.000289 *** 
display_types_M: operation_types_S −7.188 7.82e-11 *** −3.138 0.002173 ** −1.444 0.151618 

Significant codes: < 0.001 ‘***’ < 0.01′**’ < 0.05 ‘*’ < 0.1 ‘.’ 
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Based on the proposed system, it could be possible for the spotter to 
examine the way to effectively communicate with the operator by 
testing different communication channels. The spotter provided the 
following feedback regarding the overall performance of the collabo
rative excavation. First, the non-immersive virtual environment with 
multiple viewports allowed a comprehensive understanding on the 
excavator, task space, and surrounding environment. Among four 
viewports, a duplicated view of the operator’s FPV was especially 
helpful to understand excavation process in real-time and deliver signals 
accordingly. On the other hand, it is admitted that there is a likelihood 
that the non-immersive interface may lead to less realism for the spotter, 
and the visual interface design traded off the realism for the situational 
comprehensiveness. Second, although the motion capture technique was 
able to simulate real-time communication signals accurately, calibration 
every time before a new task trial is cumbersome. Third, the spotter 
participated in the work with a fixed standing position in an urban 
jobsite with limited workspace. Very often in a crowded urban jobsite, a 
spotter may constantly change the physical position to support the task. 
Hence it is admitted that fixed position decreased the spotter’s mobility 
and flexibility of monitoring the excavation in a dynamic environment. 
In this experiment, however, maintaining a fixed position allowed to 
minimize the confounding effect caused by the spotter’s mobility on the 
performance outcome. 

Based on the post experiment comments, it would be helpful to 
evaluate the performance of spotter in future works by including other 
situational variables, such as changing spotter’s physical mobility, in 
light of enhancing the overall realistic level. Also, there is a necessity to 
conduct an in-depth investigation on the trade-off effect between the 
level of immersion and comprehensiveness when selecting the interface 
for the spotter and how these attributes would affect the spotter’s 
communication performance and the overall team performance. These 
findings are particularly valuable to guide future experiment design and 
improve the simulation system when assessing the performance of a 
non-operator personal (e.g., a spotter) in such collaborative operation. 

6. Conclusions and future work 

This study proposed a multi-user excavator simulation system 
composed of robotic control, motion capture, and hybrid-immersive 
interfaces. The within-group experiments were conducted to evaluate 
the system effectiveness by comparing it with the conventional single- 
user monitor-based simulator. We found that HMD-based simulator 
created a more close-to-real excavation experiment than monitor-based 
simulator, measured by the higher degree of immersion, sense of pres
ence, and user interaction. Furthermore, the results of task performance 
including unsafe behaviors were analyzed, and a performance metric 

Fig. 10. Fitting residuals of the mixed effect model.  

Table 8 
Average Marginal effects of display types and operation types on performance.   

time error collision performance 

Factor AME p AME p AME p AME p 

display_types - M −20.6667 0.0000 *** 0.9649 0.0217 * 9.0439 0.0000 *** −0.0153 0.7218 
operation_types - S 11.8947 0.0711 

. 
−3.6842 0.0000 *** −12.5702 0.0000 *** 0.2105 0.0000 *** 

Significant codes: < 0.001 ‘***’ < 0.01′**’ < 0.05 ‘*’ < 0.1 ‘.’ 
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integrated with excavation productivity and accident-avoidance rate 
was used to measure trainee’s skills taking account of their safety per
formance. Results from a GLMM demonstrate that the task accuracy and 
unsafe behaviors were affected by a mixed effect of display types and 
spotter’s guidance, and primarily by the interaction with spotter. By 
collaborating with a spotter, we could observe improvements on 
reducing task errors and unsafe behaviors. On the other hand, the 
completion time is affected by a mixed effect of display types and 
interaction with the spotter, and display types cause a greater average 
marginal effect. Additionally, the overall performance integrated by task 
completion time, accuracy, and unsafe behaviors is analyzed to assess 
the operation outcome. The outcome can be a step forward in studying 
the human factors of the multi-user interaction with multi-roles in the 
human-machine teaming in jobsites. Moreover, the research outcome 
can inform the human teammate’s capacity in terms of information 
acquisition and decision selection in a teleoperated teamwork process, 
which is of importance of reducing Out-Of-The-Loop (OOTL) perfor
mance error and augmenting worker-centered practices in human- 
machine teaming. Applications foreseen are not only in designing the 
highly immersive simulator for team-based training, but also in 
advancing human-centered study in the human-machine teaming in 
jobsites. The next-step work will be related to the improvement of 
investigating the human factors between the operator and the spotter 
with increasing complexity of the scene. 
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[28] S. Martirosov, M. Bureš, T. Zítka, Cyber sickness in low-immersive, semi- 
immersive, and fully immersive virtual reality, Virtual Reality 26 (2022) 15–32, 
https://doi.org/10.1007/s10055-021-00507-4. 

[29] L. Kotek, Z. Tuma, K. Subrt, J. Kroupa, P. Blecha, J. Rozehnalova, R. Blecha, 
P. Heinrich, Testing human errors in virtual reality training, MM Sci. J. (2022) 
6263–6268, https://doi.org/10.17973/MMSJ.2022_12_2022128. 

[30] F. Morosi, G. Caruso, Configuring a VR simulator for the evaluation of advanced 
human–machine interfaces for hydraulic excavators, Virtual Reality 26 (2022) 
801–816, https://doi.org/10.1007/s10055-021-00598-z. 

[31] Z. Hong, Q. Zhang, X. Su, H. Zhang, Effect of virtual annotation on performance of 
construction equipment teleoperation under adverse visual conditions, Autom. 
Constr. 118 (2020), 103296, https://doi.org/10.1016/j.autcon.2020.103296. 

[32] M. Wallmyr, T.A. Sitompul, T. Holstein, R. Lindell, Evaluating mixed reality 
notifications to support excavator operator awareness, in: D. Lamas, F. Loizides, 
L. Nacke, H. Petrie, M. Winckler, P. Zaphiris (Eds.), Hum.-Comput. Interact. – 
INTERACT 2019, Springer International Publishing, Cham, 2019, pp. 743–762, 
https://doi.org/10.1007/978-3-030-29381-9_44. 

[33] Y. Shi, J. Du, E. Ragan, Review visual attention and spatial memory in building 
inspection: toward a cognition-driven information system, Adv. Eng. Inform. 44 
(2020), 101061, https://doi.org/10.1016/j.aei.2020.101061. 

[34] M. Kamezaki, J. Yang, R. Sato, H. Iwata, S. Sugano, A situational understanding 
enhancer based on augmented visual prompts for teleoperation using a multi- 
monitor system, Autom. Constr. 131 (2021), 103893, https://doi.org/10.1016/j. 
autcon.2021.103893. 

[35] M. Kamezaki, J. Yang, H. Iwata, S. Sugano, Visibility enhancement using 
autonomous multicamera controls with situational role assignment for 
teleoperated work machines, J. Field Robot. 33 (2016) 802–824, https://doi.org/ 
10.1002/rob.21580. 

[36] M. Peterson, Learning interaction in an avatar-based virtual environment: a 
preliminary study, PacCALL J. 1 (2005) 29–40. 

[37] J. Wen, M. Gheisari, Using virtual reality to facilitate communication in the AEC 
domain: a systematic review, Constr. Innov. 20 (2020) 509–542, https://doi.org/ 
10.1108/CI-11-2019-0122. 

[38] R. Eiris, M. Gheisari, Research trends of virtual human applications in architecture, 
engineering and construction, J. Inf. Technol. Constr. ITcon. 22 (2017) 168–184. 
https://www.itcon.org/2017/9. 

[39] S. Khan, B. Tunçer, Gesture and speech elicitation for 3D CAD modeling in 
conceptual design, Autom. Constr. 106 (2019), 102847, https://doi.org/10.1016/j. 
autcon.2019.102847. 

[40] A.M. Malkawi, R.S. Srinivasan, A new paradigm for human-building interaction: 
the use of CFD and augmented reality, Autom. Constr. 14 (2005) 71–84, https:// 
doi.org/10.1016/j.autcon.2004.08.001. 

[41] X. Wang, Z. Zhu, Vision-based hand signal recognition in construction: a feasibility 
study, Autom. Constr. 125 (2021), 103625, https://doi.org/10.1016/j. 
autcon.2021.103625. 

[42] M. Yahya, J.A. Shah, K.A. Kadir, Z.M. Yusof, S. Khan, A. Warsi, Motion capture 
sensing techniques used in human upper limb motion: a review, Sens. Rev. 39 
(2019) 504–511, https://doi.org/10.1108/SR-10-2018-0270. 

[43] W. Chang, L. Dai, S. Sheng, J. Too Chuan Tan, C. Zhu, F. Duan, A hierarchical hand 
motions recognition method based on IMU and sEMG sensors, in: 2015 IEEE Int. 
Conf. Robot. Biomim. ROBIO, 2015, pp. 1024–1029, https://doi.org/10.1109/ 
ROBIO.2015.7418906. 

[44] Y. Ye, Y. Shi, Y. Lee, G. Burks, D. Srinivasan, J. Du, Exoskeleton Training through 
Haptic Sensation Transfer in Immersive Virtual Environment, 2022, pp. 560–569, 
https://doi.org/10.1061/9780784483961.059. 

[45] T. Stranick, C. Lopez, Adaptive virtual reality exergame: promoting physical 
activity among workers, J. Comput. Inf. Sci. Eng. 22 (2021), https://doi.org/ 
10.1115/1.4053002. 

[46] Y. Shi, J. Du, C.R. Ahn, E. Ragan, Impact assessment of reinforced learning methods 
on construction workers’ fall risk behavior using virtual reality, Autom. Constr. 
104 (2019) 197–214, https://doi.org/10.1016/j.autcon.2019.04.015. 

[47] V.M. Manghisi, A.E. Uva, M. Fiorentino, M. Gattullo, A. Boccaccio, A. Evangelista, 
Automatic ergonomic postural risk monitoring on the factory shopfloor –the 
ergosentinel tool, Procedia Manuf. 42 (2020) 97–103, https://doi.org/10.1016/j. 
promfg.2020.02.091. 

[48] M. Kurien, M.-K. Kim, M. Kopsida, I. Brilakis, Real-time simulation of construction 
workers using combined human body and hand tracking for robotic construction 
worker system, Autom. Constr. 86 (2018) 125–137, https://doi.org/10.1016/j. 
autcon.2017.11.005. 

[49] X. Wang, Z. Zhu, Vision–based framework for automatic interpretation of 
construction workers’ hand gestures, Autom. Constr. 130 (2021), 103872, https:// 
doi.org/10.1016/j.autcon.2021.103872. 

[50] 14:00-17:00, ISO 10968, ISO (n.d.), https://www.iso.org/cms/render/live/en/sit 
es/isoorg/contents/data/standard/03/11/31188.html, 2004 (accessed June 8, 
2022). 

[51] D. Liu, Y. Ham, J. Kim, H. Park, Towards a collaborative future in construction 
robotics: A human-centered study in a multi-user immersive operation and 
communication system for excavation, in: Proc. 1st Future Constr. Workshop Int. 
Conf. Robot. Autom. ICRA 2022, International Association for Automation and 
Robotics in Construction (IAARC), 2022, https://doi.org/10.22260/ICRA2022/ 
0016. 

[52] B.G. Witmer, M.J. Singer, Measuring presence in virtual environments: a presence 
questionnaire, Presence Teleoperators Virtual Environ. 7 (1998) 225–240, https:// 
doi.org/10.1162/105474698565686. 

[53] V. Schwind, P. Knierim, N. Haas, N. Henze, Using Presence Questionnaires in 
Virtual Reality, CHI, 2019, https://doi.org/10.1145/3290605.3300590. 

[54] X. Su, P.S. Dunston, R.W. Proctor, X. Wang, Influence of training schedule on 
development of perceptual–motor control skills for construction equipment 
operators in a virtual training system, Autom. Constr. 35 (2013) 439–447, https:// 
doi.org/10.1016/j.autcon.2013.05.029. 

[55] R.L. Keeney, H. Raiffa, Decisions with Multiple Objectives: Preferences and Value 
Trade-Offs, Cambridge University Press, Cambridge, 1993, https://doi.org/ 
10.1017/CBO9781139174084. 

[56] A.F. Zuur, E.N. Ieno, N. Walker, A.A. Saveliev, G.M. Smith, Mixed effects models 
and extensions in ecology with R, Springer, New York, NY, 2009, https://doi.org/ 
10.1007/978-0-387-87458-6. 

D. Liu et al.                                                                                                                                                                                                                                      

https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/the%20top%20trends%20in%20tech%202022/mckinsey-tech-trends-outlook-2022-full-report.pdf
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/the%20top%20trends%20in%20tech%202022/mckinsey-tech-trends-outlook-2022-full-report.pdf
https://doi.org/10.1108/ECAM-11-2019-0647
https://doi.org/10.1108/ECAM-11-2019-0647
https://doi.org/10.1061/9780784481288.018
https://doi.org/10.1016/j.autcon.2017.10.009
https://doi.org/10.1016/j.aei.2020.101122
https://doi.org/10.1016/j.autcon.2021.104119
https://doi.org/10.1016/j.autcon.2021.104119
https://doi.org/10.1061/9780784483961.079
https://doi.org/10.1061/9780784413616.257
https://doi.org/10.1016/j.aap.2011.06.002
https://doi.org/10.1016/j.aap.2011.06.002
https://doi.org/10.1080/03043797.2020.1795085
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000170
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000170
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000137
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000137
https://doi.org/10.1016/j.autcon.2022.104188
https://doi.org/10.1016/j.autcon.2019.102853
https://doi.org/10.1016/j.autcon.2019.102853
https://doi.org/10.1016/j.autcon.2017.11.003
https://doi.org/10.1016/j.neuroimage.2012.09.054
https://www.ncbi.nlm.nih.gov/books/NBK92851/
https://doi.org/10.1038/264746a0
https://doi.org/10.1016/bs.aesp.2021.04.003
https://doi.org/10.1016/bs.aesp.2021.04.003
https://doi.org/10.2466/pms.1983.56.1.191
https://doi.org/10.1007/s10055-021-00618-y
https://doi.org/10.1007/s10055-021-00618-y
https://doi.org/10.1007/s10055-021-00507-4
https://doi.org/10.17973/MMSJ.2022_12_2022128
https://doi.org/10.1007/s10055-021-00598-z
https://doi.org/10.1016/j.autcon.2020.103296
https://doi.org/10.1007/978-3-030-29381-9_44
https://doi.org/10.1016/j.aei.2020.101061
https://doi.org/10.1016/j.autcon.2021.103893
https://doi.org/10.1016/j.autcon.2021.103893
https://doi.org/10.1002/rob.21580
https://doi.org/10.1002/rob.21580
http://refhub.elsevier.com/S0926-5805(23)00403-X/rf0180
http://refhub.elsevier.com/S0926-5805(23)00403-X/rf0180
https://doi.org/10.1108/CI-11-2019-0122
https://doi.org/10.1108/CI-11-2019-0122
https://www.itcon.org/2017/9
https://doi.org/10.1016/j.autcon.2019.102847
https://doi.org/10.1016/j.autcon.2019.102847
https://doi.org/10.1016/j.autcon.2004.08.001
https://doi.org/10.1016/j.autcon.2004.08.001
https://doi.org/10.1016/j.autcon.2021.103625
https://doi.org/10.1016/j.autcon.2021.103625
https://doi.org/10.1108/SR-10-2018-0270
https://doi.org/10.1109/ROBIO.2015.7418906
https://doi.org/10.1109/ROBIO.2015.7418906
https://doi.org/10.1061/9780784483961.059
https://doi.org/10.1115/1.4053002
https://doi.org/10.1115/1.4053002
https://doi.org/10.1016/j.autcon.2019.04.015
https://doi.org/10.1016/j.promfg.2020.02.091
https://doi.org/10.1016/j.promfg.2020.02.091
https://doi.org/10.1016/j.autcon.2017.11.005
https://doi.org/10.1016/j.autcon.2017.11.005
https://doi.org/10.1016/j.autcon.2021.103872
https://doi.org/10.1016/j.autcon.2021.103872
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/11/31188.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/11/31188.html
https://doi.org/10.22260/ICRA2022/0016
https://doi.org/10.22260/ICRA2022/0016
https://doi.org/10.1162/105474698565686
https://doi.org/10.1162/105474698565686
https://doi.org/10.1145/3290605.3300590
https://doi.org/10.1016/j.autcon.2013.05.029
https://doi.org/10.1016/j.autcon.2013.05.029
https://doi.org/10.1017/CBO9781139174084
https://doi.org/10.1017/CBO9781139174084
https://doi.org/10.1007/978-0-387-87458-6
https://doi.org/10.1007/978-0-387-87458-6

	Multi-user immersive environment for excavator teleoperation in construction
	1 Introduction
	2 Research background
	2.1 Immersive multi-user human-robot collaboration system in construction
	2.2 Multi-user teleoperation system requirements and related immersive technologies

	3 Hybrid-immersive interface for excavation simulation
	3.1 Excavation simulation platform
	3.2 Hybrid-immersive visual interface and communication system
	3.2.1 Visual interface
	3.2.2 Between-user communication interface


	4 Human subject experiments
	4.1 Experimental setup
	4.2 Performance measurements

	5 Experimental results analysis and interpretation
	5.1 VR effectiveness
	5.2 Task performance
	5.2.1 Task accuracy
	5.2.2 Task efficiency
	5.2.3 Collisions
	5.2.4 Mixed effect
	5.2.5 Overall performance taking account of accident-avoidance

	5.3 User feedbacks and limitations

	6 Conclusions and future work
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


