
EDITORS: Konrad Hinsen, konrad.hinsen@cnrs.fr
Anshu Dubey, adubey@anl.gov

DEPARTMENT: SCIENTIFIC PROGRAMMING

Structured Adaptive Mesh Refinement
Adaptations to Retain Performance
Portability With Increasing Heterogeneity
Anshu Dubey ,Argonne National Laboratory, Lemont, IL, USA

Martin Berzins,University of Utah, Salt Lake City, UT, USA

Carsten Burstedde ,University of Bonn, Bonn, Germany

Michael L. Norman,University of California, San Diego, CA, USA

Didem Unat ,Koç University, Istanbul, Turkey

Mohammed Wahib,National Institute of Advanced Industrial Science and Technology AIST/TokyoTech, Tokyo, Japan

Adaptive mesh refinement (AMR) is an important method that enables many mesh-

based applications to run at effectively higher resolution within limited computing

resources by allowing high resolution only where really needed. This advantage

comes at a cost, however: greater complexity in the mesh management machinery

and challenges with load distribution. With the current trend of increasing

heterogeneity in hardware architecture, AMR presents an orthogonal axis of

complexity. The usual techniques, such as asynchronous communication and

hierarchy management for parallelism and memory that are necessary to obtain

reasonable performance are very challenging to reason about with AMR. Different

groups working with AMR are bringing different approaches to this challenge. Here,

we examine the design choices of several AMR codes and also the degree to which

demands placed on them by their users influence these choices.

I
n many science research domains, mesh-based

methods for solving partial differential equations

(PDEs) play a crucial role in scientificdiscovery.In

many of these applications, a wide range of scales needs

to be resolved, which can make simulations intractable

without adaptivity in mesh resolution even on the largest

available supercomputers. Adaptive mesh refinement

(AMR)2 is an important method that enables mesh-

based applications to run effectively at higher resolution

within available computing resources by allowing high

resolution only where needed. This advantage comes

with greater complexity in the mesh management

machinery, however, which includes resolution of quanti-

ties atfine-coarse interfaces and load distribution that

changes dynamically in parallel environments.

Many of the AMR packages and codes grew when

the distributed-memory parallel model was dominant.

The decomposition and distribution of work in this paral-

lelization model can be very coarse grained, and this is

reflected in the design of almost all early AMR libraries

and AMR-based codes. The intermediate years of multi-

core platforms motivated the use of threading provided

by OpenMP, which was not very invasive and, therefore,

easy to adopt. The arrival of heterogeneity in the form of

accelerators of different types on compute nodes of

supercomputing platforms poses a challenge that has

required varying degrees of intrusive changes in AMR

libraries and applications codes. Because different codes

are tackling this challenge in different ways, it is

1521-9615 2021 IEEE

Digital Object Identifier 10.1109/MCSE.2021.3099603
Date of current version 23 September 2021.

Computing in Science & Engineering Published by the IEEE Computer Society September/October 202162Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 14,2023 at 20:41:18 UTC from IEEE Xplore. Restrictions apply.

mailto:Structured Adaptive Mesh Refinement Adaptations to Retain Performance Portability With Increasing Heterogeneity
mailto:Structured Adaptive Mesh Refinement Adaptations to Retain Performance Portability With Increasing Heterogeneity
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0002-2351-0770
https://orcid.org/0000-0002-2351-0770
https://orcid.org/0000-0002-2351-0770
https://orcid.org/0000-0002-2351-0770
https://orcid.org/0000-0002-2351-0770

interesting and useful to understand the rationale

behind the choices made by their developers.

An opportunity to do so occurred in the form of a

minisymposium at“The Platform for Advanced Scientific

Computing”conference in Zurich, Switzerland. The

theme of the minisymposium was techniques and tools

being developed and utilized by various AMR packages

and AMR-based codes for heterogeneous platforms. It

became obvious that there is considerable diversity in

perceived challenges and in approaches in response to

those challenges. The causation and correlations were

intriguing enough that several of the participants pro-

ceeded to do a deeper analysis of their respective moti-

vations and priorities that are presented in this article.

ADAPTIVE MESH REFINEMENT
AMR is a method for reducing both the memory and

compute footprint of partial differential equation (PDE)

solvers. The method has been around for 40 years.2The

commonality among the AMR codes and packages fea-

tured here is that they have logically Cartesian mesh

cells on which the solution evolves and that the cells at

the same level of refinement have identical spatial reso-

lution. Within that commonality there are two distinct

flavors of refinement handling and AMR bookkeeping:

1) Cells are collected in equally sized blocks in

terms of number of cells per block. The blocks

are organized in one or more octrees where the

coarsest level forms the root of the trees. Usu-

ally an explicit parent–child relationship exists

between blocks at two consecutive levels. We

refer to this type asoctree AMR.

2) Cells are collected in arbitrarily sized blocks called

patches. These blocks can be placed anywhere on

the physical domain as long asfiner blocks are fully

contained within a region of the next coarse level.

Unlike octrees, no explicit parent–child relation-

ship exists among blocks. Thisflavor is referred to

asblock-structured AMRhereafter.

Flash-X, a new incarnation of FLASH for exascale,

was developed on top of Paramesh,9an octree AMR

library. In addition to Paramesh, Flash-X also supports

the use of AMReX,1which is natively block-structured

but mimics the behavior of octrees for Flash-X. Uin-

tah implements block-structured AMR. Enzo transi-

tioned from block-structured to octrees in its

newest version, Enzo-E, using Cello4as its underly-

ing AMR.p4estis an AMR software library managing

a forest of octrees.

DESIGN CHOICES

Flash-X
The Flash-X approach to design can be summarized as

the distribution of compositional and performance han-

dling between source and configuration tools so that

none is too complex or difficult to maintain. The most

influential design choice of composability in the earliest

version of FLASH was driven by the need to handle a vari-

ety of physical situations that required inclusion of com-

ponents in different permutations and combinations

along with different sets of physical state variables. This

was achieved by creating a domain-specific language

(DSL) that encodes metainformation about various com-

ponents and subcomponents of the code in“config”files.

A“setup tool”parses the configfiles recursively to gener-

ate a self-consistent collection of components.7This fun-

damental design choice has remained the linchpin of all

architectural enhancements including the most recent

one.

True to the philosophy of distributed complexity

handling, different abstractions and tools are being

used to address different challenges posed by het-

erogeneity. For hierarchical domain decomposition,

Flash-X uses AMReX’s tiling as the base abstraction

instead of blocks. Elimination of bulk synchroniza-

tion is planned through a combination of using

asynchronous collectives from the host overlapping

with other local operations on the host or accelera-

tors and a domain-specific runtime system that

manages all data movements.

Two modes of code transformation are used to

handle platform-specific heterogeneity: one for

physics operators, and another one for timestep-

ping. Physics operators take a key-value dictionary

approach where keys can have multiple alternative

values, each one specific to a type of accelerator.

The numerics of the code are decorated with keys

to enable a single expression of the computation.

The timestepping code transformation tool gener-

atesthecodefromalibrary of platformspecific

templates.

Uintah
Uintah opted for an asynchronous many-task (AMT)

dataflow approach from the outset3that consists of

tasks and a runtime system that uses a dynamic

directed acyclic graph to guide task execution. This

AMT runtime extracts the appropriate level of parallel-

ism by automatically mapping tasks to available

computational resources. The primary features of the

design include:

September/October 2021 Computing in Science & Engineering 63

SCIENTIFIC PROGRAMMING

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 14,2023 at 20:41:18 UTC from IEEE Xplore. Restrictions apply.

1) A shared memory compute-node data warehouse

that uses atomic operations to be lock-free.

2) Decentralized execution of the task graph, which

is implemented by each CPU core or GPU

requesting work itself.

3) Accelerator task execution on a node, which is

implemented through an extension of the run-

time system that uses data prefetching for effi-

cient task execution.

4) Extensive scalability through exploiting asyn-

chronous (including out-of-order) task execution,

overdecomposition of tasks, overlapping of com-

munication and computation, work stealing, and

task graph prioritization, based on communica-

tion needs and dependencies.

An important aspect of the Uintah design is the

choice of scheduler. Uintah uses two main schedulers.

The Uintah MPI scheduler executes afixed task graph

on a core but with asynchronous communication. In con-

trast, the unified scheduler implements a completely

asynchronous approach across all available cores or

accelerators. In order to enable Uintah tasks to run with-

out code changes across multiple types of CPUs and

GPUs, the Kokkos approach was adopted over other por-

tability approaches after early experiments and design

studies. At scale, the use of MPI+Kokkos has allowed for

good strong-scaling to 442,368 threads across 1728

Knights Landing processors.

Enzo-E
Enzo-E5is a new, extreme-scale version of Enzo that

addresses the extensibility and scalability limitations of

Enzo through a completely new object-oriented software

design and implementation and a new, more scalable

AMR infrastructure layer calledCelloinspired byp4est.

Enzo-E uses Charm++ for parallelization rather than MPI.

This provides an abstract interface to the parallel

machine, asynchronous task execution, dynamic load

balancing, and fault tolerance, among other benefits.

The entire code is implemented in C++ except for certain

Fortran physics kernels taken from the Enzo codebase.

Enzo, like other block-structured AMR, replicates

metadata on every node. While that makes communi-

cation primitives easier to implement, the amount of

metadata grows with the size of the problem and runs

into a scaling limit eventually. The most significant

design choice for Enzo-E was to abandon block-struc-

tured AMR in favor of a forest-of-octrees-style AMR

because of its superior parallel scalability and simplic-

ity.6 The entire multilevel mesh is fully distributed

across the parallel machine by using Charm++’s

chare-arraydata structure, and each block in the array

is assigned to a Charm++ task called achare.

The second major design choice was to implement

the code in C++ following object-oriented design princi-

ples. This leads to a clean separation of concerns

between numerical methods in the Enzo-E layer, AMR

mesh data structures and operations in the Cello layer,

and task mapping and parallel execution in the Charm++

layer. The Enzo-E application layer consists of a collec-

tion of method objects that initialize and updatefield

and particle data stored in the Cello blocks. Currently,

Enzo-E runs only on CPU clusters with excellent weak

and strong parallel scalability. Since the code is written

mainly in C++, however, it can in principle use perfor-

mance portability tools such as Kokkos to translate spe-

cific numerical method kernels to be executed on GPUs.

p4est
p4estis a software library that manages adaptive for-

est-of-octree meshes in the distributed memory paral-

lel model. From the beginnings, the algorithms and

data structures ofp4estwere designed with a strong

focus on modularity andflexibility. To this day, these

original structures have supported all newer algo-

rithms and improvements. Extensions have been intro-

duced to support new algorithmic features in a

backward-compatible way.8 The observed longevity

can be attributed to the logic minimalism of both local

and global state.

p4estworks with two first-class objects, thecon-

nectivityof tree roots and theforeststoring the pro-

cess-local leaves (and only them). The former is a

read-only global replicated object (one per MPI

shared-memory node is sufficient) that lists the num-

ber of trees and for each the face, edge, and corner

neighbors and their relative orientation. One rule of

thumb is to use the connectivity to represent the

domain topology and to leave geometric representa-

tion and accuracy to the adaptive refinement.

The forest object stores only the leaves of the for-

est. The leaves satisfy a total order and are allocated

strictly process-local: each leaf has one and only one

owner process. Mesh refinement, coarsening, and 2:1

balancing have strictly process-local effects (even

though the latter depends on one query-reply round of

communication). Since these generally offset load bal-

ance, the leaves may be repartitioned at any time to

re-establish a guaranteed 1leaf distribution between

processes. This is possible only by routinely allowing

for partition boundaries inside trees and for tree

boundaries inside a partition, and for empty processes

as well.

64 Computing in Science & Engineering September/October 2021

SCIENTIFIC PROGRAMMING

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 14,2023 at 20:41:18 UTC from IEEE Xplore. Restrictions apply.

The encoding of the parallel mesh partition

requires some amount of global replicated metadata,

which does not include per-leaf refinement or geomet-

rical and numerical data. Similarly, when the metadata

depends on the total number of MPI processes, the

amount per rank is kept low.p4est, in effect, replicates

32 bytes per MPI rank on each rank. These data are

sufficient to encode the shape of all partition bound-

aries without referencing a single leaf. This is a power-

ful property of pure octree approaches and allows for

executing fast remote, general multiobjective

searches. This memory is currently redundant on mul-

tirank nodes, but prototype code exists to reduce it

further using MPI-3 shared memory.p4estcurrently is

MPI-only, with scalability tested to 106þ parallel pro-

cesses. Plans exist for using OpenMP for additional

threading, multiplying the speed of internal algorithms

where applicable. However, the implementation

assures that threading is transparent and will not be

exposed to the public API (beyond the passing of

hints).

ANALYSIS AND INFERENCES
The codes cover a spectrum from relatively little

change (p4est), adoption of technologies in place (Uin-

tah), complete rewrite from scratch (Enzo-E), and

ambitious architectural refactoring (Flash-X), in

increasing order of complexity.

Uintah’s asynchronous task-based design from the

outset has proven to be prescient for hyperparallelism.

Although its vintage is roughly the same as that of

FLASH, it started as a new from-scratch code and

opted for C++ as the language in which to code. The

design included a separation of concerns so that com-

munication and computation could evolve out of lock-

step. Since a great deal of effort has been invested in

C++ template-based tools for performance portability,

Uintah has been in a strong position to leverage those

tools.

The developers of Enzo-E took a different tack.

They evaluated the limitations of their existing AMR,

considered the forthcoming demands from science,

and concluded that block-structured AMR is funda-

mentally flawed for scalability that will be demanded

by their future science and machine directions.

Instead of patching over their existing framework,

they opted to leverage known scalable technologies,

namely, Charm++ with built-in asynchrony and scal-

ability, and built their capabilities on top of it. The key

to success here was to have a long lead time for infra-

structure development so that the project could begin

on a small scale with modest resources. Since Enzo

had been a community-developed and community-

supported code for a while, such considerations for

resource management and a long-lead transition time

were critical in driving the directions of development.

Flash-X had the most challenging transition to

make. Even when it first came into existence, FLASH

did not start from scratch. It was an amalgamation of

legacy codes, and its architecture was gradually

imposed over it through an iterative process. That

also set the stage for FLASH to remain a Fortran code.

Over the past few years, its growth has exploded in

terms of physics solver support, but investment in

infrastructure has suffered. It supports multiple sci-

ence domains that need an operational code. The

code clearly needed a fundamental invasive rearchi-

tecting, but there also had to be a gradual transition

path for ongoing verification during transition. This is

the reason that it had tofind a way to take the separa-

tion of concerns several layers deep into the architec-

ture andfind a collection of tools to address different

aspects of its computational challenges.

In contrast to Uintah, Enzo, and Flash-X,p4estis

agnostic of the numerics of the solvers, and it is not

authoritative to the orchestration of computation.

While p4estdoes not directly address heavy-duty com-

putation that might be offloaded to an accelerator

and other special-purpose devices, it offers all the

logic necessary to support applications in device-ori-

ented data partitioning and assignment.

CONCLUSION
The codes included in this study represent a broad

coverage of the spectrum of AMR technologies and

their use in science domains. Study of their diverse

approaches to tackling performance portability in the

presence of heterogeneity proved to be an interesting

exercise. The approaches ranged from mostly nonin-

trusive (inp4est) to moderate (in Uintah) to extremely

intrusive (in Flash-X), to a complete rewrite of the

infrastructure (in Enzo-E). Each code has its own tar-

gets and accompanying biases. One feature that

emerges as a common theme is that sufficient atten-

tion must be paid to the basic design of the code

structure with an eye toflexibility.

ACKNOWLEDGMENTS
The Uintah material is based upon work supported by

the Department of Energy, National Nuclear Security

Administration under Award Number DE-NA0002375.

Flash-Xwork was performed under the auspices of the

U.S. Department of Energy by Argonne National Labora-

tory under contract number DE-AC02-06CH11357, and

September/October 2021 Computing in Science & Engineering 65

SCIENTIFIC PROGRAMMING

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 14,2023 at 20:41:18 UTC from IEEE Xplore. Restrictions apply.

also supported in part by the Exascale Computing Proj-

ect (17-SC-20-SC), a collaborative effort of the U.S.

Department of Energy Office of Science and the

National Nuclear Security Administration.

Carsten Burstedde gratefully acknowledges travel

support by the Hausdorff Center for Mathematics

(HCM) funded by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) under Ger-

many’s Excellence Strategy—EXC-2047/1–390685813.

Enzo-E development is supported in part by U.S.

National Science Foundation Grant OAC-1,835,402 to

M. Norman under the Cyberinfrastructure for Sus-

tained Scientific Innovation (CSSI) program.

REFERENCES
1. Amrex, 2020. [Online]. Available: https://amrex-codes.

github.io/

2. M. Berger and J. Oliger,“Adaptive mesh refinement for

hyperbolic partial differential equations,”J. Comput.

Phys., vol. 53, pp. 484–512, 1984.

3. M. Berzinset al.,“Extending the Uintah framework

through the Petascale modeling of detonation in arrays

of high explosive devices,”SIAM J. Sci. Comput., vol. 38,

no. 5, pp. S101–S122, 2016.

4. J. Bordner, Cello, 2020. [Online]. Available: https://cello-

project.org/

5. J. Bordner and M. L. Norman,“Computational

cosmology and astrophysics on adaptive meshes using

Charmþþ,”Oct. 2018,arXiv:1810.01319.

6. C. Burstedde, L. C. Wilcox, and O. Ghattas,“p4est:

Scalable algorithms for parallel adaptive mesh

refinement on forests of Octrees,”SIAM J. Sci. Comput.,

vol. 33, no. 3, pp. 1103–1133, 2011.

7. A. Dubeyet al.,“Extensible component based

architecture for FLASH, A massively parallel,

multiphysics simulation code,”Parallel Comput., vol. 35,

pp. 512–522, 2009.

8. T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas,

“Recursive algorithms for distributed forests of

Octrees,”SIAM J. Sci. Comput., vol. 37, no. 5,

pp. C497–C531, 2015.

9. P. MacNeice, K. Olson, C. Mobarry, R. de Fainchtein, and

C. Packer,“PARAMESH: A parallel adaptive mesh

refinement community toolkit,”Comput. Phys.

Commun., vol. 126, no. 3, pp. 330–354, 2000.

ANSHU DUBEYis a Computational Scientist in the Mathe-

matics and Computer Science Division, Argonne National

Laboratory. She is the Software Architect for Flash-X.

Contact her at adubey@anl.gov.

MARTIN BERZINS is a multidisciplinary Computational Sci-

ence Researcher whose research cuts across applied mathe-

matics, computer science, and engineering. He is a professor

of computer science in the School of Computing and in the

Scientific Computing Imaging Institute at the University of

Utah, and a visiting professor at the University of Leeds. Con-

tact him at mb@sci.utah.edu.

CARSTEN BURSTEDDEis a Professor for Scientific Comput-

ing at the Institute for Numerical Simulation, University of

Bonn, Germany. He is a physicist with a doctorate degree in

applied mathematics from Bonn University. Together with

Lucas 413 C. Wilcox, he founded the p4est software in 2007

during his postdoc at the University of Texas at Austin. Con-

tact him at burstedde@ins.uni-bonn.de.

MICHAEL L. NORMAN is the Director of the San Diego

Supercomputer Center and Distinguished Professor of Phys-

ics at the University of California, San Diego, CA, USA. There,

he also directs the Laboratory for Computational Astrophys-

ics which develops community application software for astro-

physical simulation, including the ZEUS and Enzo codes.

Contact him at mlnorman@ucsd.edu.

DIDEM UNATis a Professor at Koç University, Istanbul, Tur-

key. She was the recipient of the Marie Sklodowska-Curie

Individual Fellowship from the European Commission in 2015

and the Young Scientists Award from the Science Academy

of Turkey in 2019. Contact her at dunat@ku.edu.tr.

MOHAMMED WAHIBis a Senior Scientist at AIST/TokyoTech

Open Innovation Laboratory, Tokyo, Japan. He previously

worked as a researcher at the RIKEN Center for Computa-

tional Science. Contact him at mohamed.attia@aist.go.jp.

66 Computing in Science & Engineering September/October 2021

SCIENTIFIC PROGRAMMING

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 14,2023 at 20:41:18 UTC from IEEE Xplore. Restrictions apply.

https://amrex-codes.github.io/
https://amrex-codes.github.io/
https://cello-project.org/
https://cello-project.org/

