EDITORS: Konrad Hinsen, konrad.hin
Anshu Dubey, (

DEPARTMENT: SCIENTIFIC PROGRAMMING

Structured Adaptive Mesh Refinement
Adaptations to Retain Performance

Portability With Increasing Heterogeneity

Anshu Dubey ® Argonne National Laboratory, Lemont, IL, USA
Martin Berzins, University of Utah, Salt Lake City, UT, USA

Carsten Burstedde ®, University of Bonn, Bonn, Germany

Michael L. Norman, University of California, San Diego, CA, USA

Didem Unat ®, Kog University, Istanbul, Turkey

Mohammed Wahib, National Institute of Advanced Industrial Science and Technology AIST/TokyoTech, Tokyo, Japan

Adaptive mesh refinement (AMR) is an important method that enables many mesh-
based applications to run at effectively higher resolution within limited computing
resources by allowing high resolution only where really needed. This advantage
comes at a cost, however: greater complexity in the mesh management machinery
and challenges with load distribution. With the current trend of increasing
heterogeneity in hardware architecture, AMR presents an orthogonal axis of
complexity. The usual techniques, such as asynchronous communication and
hierarchy management for parallelism and memory that are necessary to obtain
reasonable performance are very challenging to reason about with AMR. Different
groups working with AMR are bringing different approaches to this challenge. Here,
we examine the design choices of several AMR codes and also the degree to which
demands placed on them by their users influence these choices.

methods for solving partial differential equations

(PDEs) play a crucial role in scientific discovery. In
many of these applications, a wide range of scales needs
to be resolved, which can make simulations intractable
without adaptivity in mesh resolution even on the largest
available supercomputers. Adaptive mesh refinement
(AMR)? is an important method that enables mesh-
based applications to run effectively at higher resolution
within available computing resources by allowing high
resolution only where needed. This advantage comes
with greater complexity in the mesh management

I n many science research domains, mesh-based

1521-9615 © 2021 IEEE
Digital Object Identifier 10.1109/MCSE.2021.3099603
Date of current version 23 September 2021.

machinery, however, which includes resolution of quanti-
ties at fine-coarse interfaces and load distribution that
changes dynamically in parallel environments.

Many of the AMR packages and codes grew when
the distributed-memory parallel model was dominant
The decomposition and distribution of work in this paral-
lelization model can be very coarse grained, and this is
reflected in the design of almost all early AMR libraries
and AMR-based codes. The intermediate years of multi-
core platforms motivated the use of threading provided
by OpenMP, which was not very invasive and, therefore,
easy to adopt. The arrival of heterogeneity in the form of
accelerators of different types on compute nodes of
supercomputing platforms poses a challenge that has
required varying degrees of intrusive changes in AMR
libraries and applications codes. Because different codes
are tackling this challenge in different ways, it is

6Rithorized licensed usedimitas tnclIni6 ole Galif San HiagerBoynloadet opi BreeniberHd, X123 ar2AXG1S HIE dym IEEE pinmm Bestidionsamsg)


mailto:Structured Adaptive Mesh Refinement Adaptations to Retain Performance Portability With Increasing Heterogeneity
mailto:Structured Adaptive Mesh Refinement Adaptations to Retain Performance Portability With Increasing Heterogeneity
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0003-3299-7426
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0001-9843-1041
https://orcid.org/0000-0002-2351-0770
https://orcid.org/0000-0002-2351-0770
https://orcid.org/0000-0002-2351-0770
https://orcid.org/0000-0002-2351-0770
https://orcid.org/0000-0002-2351-0770

interesting and useful to understand the rationale
behind the choices made by their developers.

An opportunity to do so occurred in the form of a
minisymposium at “The Platform for Advanced Scientific
Computing” conference in Zurich, Switzerand. The
theme of the minisymposium was techniques and tools
being developed and utilized by various AMR packages
and AMR-based codes for heterogeneous platforms. It
became obvious that there is considerable diversity in
perceived challenges and in approaches in response to
those challenges. The causation and correlations were
intriguing enough that several of the participants pro-
ceeded to do a deeper analysis of their respective moti-
vations and priorities that are presented in this article.

AMR is a method for reducing both the memory and
compute footprint of partial differential equation (PDE)
solvers. The method has been around for 40 years.” The
commonality among the AMR codes and packages fea-
tured here is that they have logically Cartesian mesh
cells on which the solution evolves and that the cells at
the same level of refinement have identical spatial reso-
lution. Within that commonality there are two distinct
flavors of refinement handling and AMR bookkeeping:

1) Cells are collected in equally sized blocks in
terms of number of cells per block. The blocks
are organized in one or more octrees where the
coarsest level forms the root of the trees. Usu-
ally an explicit parent—child relationship exists
between blocks at two consecutive levels. We
refer to this type as octree AMR.

2) Cells are collected in arbitrarily sized blocks called
patches. These blocks can be placed anywhere on
the physical domain as long as finer blocks are fully
contained within a region of the next coarse level.
Unlike octrees, no explicit parent—child relation-
ship exists among blocks. This flavor is referred to
as block-structured AMR hereafter.

Flash-X, a new incamation of FLASH for exascale,
was developed on top of Paramesh,? an octree AMR
library. In addition to Paramesh, Flash-X also supports
the use of AMReX,! which is natively block-structured
but mimics the behavior of octrees for Flash-X. Uin-
tah implements block-structured AMR. Enzo transi-
tioned from block-structured to octrees in its
newest version, Enzo-E, using Cello? as its underly-
ing AMR. pdest is an AMR software library managing
a forest of octrees.

Buthenzesbigenset usa tmited to: Univ of Calif San Diego. Downloaded on December 14,2023 ati 26 41 38ibHée fromriGiedpiage. Restrictions applg3

SCIENTIFIC PROGRAMMING |

Flash-X

The Flash-X approach to design can be summarized as
the distribution of compositional and performance han-
dling between source and configuration tools so that
none is too complex or difficult to maintain. The most
influential design choice of composability in the earliest
version of FLASH was driven by the need to handle a vari-
ety of physical situations that required inclusion of com-
ponents in different permutations and combinations
along with different sets of physical state variables. This
was achieved by creating a domain-specific language
(DSL) that encodes metainformation about various com-
ponents and subcomponents of the code in “config” files.
A “"setup tool” parses the config files recursively to gener-
ate a self-consistent collection of components.” This fun-
damental design choice has remained the linchpin of all
architectural enhancements including the most recent
one.

True to the philosophy of distributed complexity
handling, different abstractions and tools are being
used to address different challenges posed by het-
erogeneity. For hierarchical domain decomposition,
Flash-X uses AMReX's tiling as the base abstraction
instead of blocks. Elimination of bulk synchroniza-
tion is planned through a combination of using
asynchronous collectives from the host overlapping
with other local operations on the host or accelera-
tors and a domain-specific runtime system that
manages all data movements.

Two modes of code transformation are used to
handle platform-specific heterogeneity: one for
physics operators, and another one for timestep-
ping. Physics operators take a key-value dictionary
approach where keys can have multiple alternative
values, each one specific to a type of accelerator.
The numerics of the code are decorated with keys
to enable a single expression of the computation.
The timestepping code transformation tool gener-
ates the code from a library of platform specific
templates.

Uintah

Uintah opted for an asynchronous many-task (AMT)
dataflow approach from the outset® that consists of
tasks and a runtime system that uses a dynamic
directed acyclic graph to guide task execution. This
AMT runtime extracts the appropriate level of parallel-
ism by automatically mapping tasks to available
computational resources. The primary features of the
design include:



.;SCIENTIFIC PROGRAMMING

1) A shared memory compute-node data warehouse
that uses atomic operations to be lock-free.

2) Decentralized execution of the task graph, which
is implemented by each CPU core or GPU
requesting work itself.

3) Accelerator task execution on a node, which is
implemented through an extension of the run-
time system that uses data prefetching for effi-
cient task execution.

4) Extensive scalability through exploiting asyn-
chronous (including out-of-order) task execution,
overdecomposition of tasks, overlapping of com-
munication and computation, work stealing, and
task graph prioritization, based on communica-
tion needs and dependencies.

An important aspect of the Uintah design is the
choice of scheduler. Uintah uses two main schedulers.
The Uintah MPI scheduler executes a fixed task graph
on a core but with asynchronous communication. In con-
trast, the unified scheduler implements a completely
asynchronous approach across all available cores or
accelerators. In order to enable Uintah tasks to run with-
out code changes across multiple types of CPUs and
GPUs, the Kokkos approach was adopted over otherpor-
tability approaches after early experiments and design
studies. At scale, the use of MP1+Kokkos has allowed for
good strong-scaling to 442,368 threads across 1728
Knights Landing processors.

Enzo-E
Enzo-E® is a new, extreme-scale version of Enzo that
addresses the extensibility and scalability limitations of
Enzo through a completely new object-oriented software
design and implementation and a new, more scalable
AMR infrastructure layer called Cello inspired by pdest.
Enzo-E uses Charm++ for parallelization rather than MPIL.
This provides an abstract interface to the parallel
machine, asynchronous task execution, dynamic load
balancing, and fault tolerance, among other benefits.
The entire code is implemented in C++ except for certain
Fortran physics kemels taken from the Enzo codebase.
Enzo, like other block-structured AMR, replicates
metadata on every node. While that makes communi-
cation primitives easier to implement, the amount of
metadata grows with the size of the problem and runs
into a scaling limit eventually. The most significant
design choice for Enzo-E was to abandon block-struc-
tured AMR in favor of a forest-of-octrees-style AMR
because of its superior parallel scalability and simplic-
ity.® The entire multilevel mesh is fully distributed
across the parallel machine by using Charm++'s

chare-array data structure, and each block in the array
is assigned to a Charm++ task called a chare.

The second major design choice was to implement
the code in C++ following object-oriented design princi-
ples. This leads to a clean separation of concems
between numerical methods in the Enzo-E layer, AMR
mesh data structures and operations in the Cello layer,
and task mapping and parallel execution in the Charm++
layer. The Enzo-E application layer consists of a collec-
tion of method objects that initialize and update field
and particle data stored in the Cello blocks. Currently,
Enzo-E runs only on CPU clusters with excellent weak
and strong parallel scalability. Since the code is written
mainly in C++, however, it can in principle use perfor-
mance portability tools such as Kokkos to translate spe-
cific numerical method kemels to be executed on GPUs.

pdest

pdest is a software library that manages adaptive for-
est-of-octree meshes in the distributed memory paral-
lel model. From the beginnings, the algorithms and
data structures of pdest were designed with a strong
focus on modularity and flexibility. To this day, these
original structures have supported all newer algo-
rithms and improvements. Extensions have been intro-
duced to support new algorithmic features in a
backward-compatible way.® The observed longevity
can be attributed to the logic minimalism of both local
and global state.

pdest works with two first-class objects, the con-
nectivity of tree roots and the forest storing the pro-
cess-local leaves (and only them). The former is a
read-only global replicated object (one per MPI
shared-memory node is sufficient) that lists the num-
ber of trees and for each the face, edge, and corner
neighbors and their relative orientation. One rule of
thumb is to use the connectivity to represent the
domain topology and to leave geometric representa-
tion and accuracy to the adaptive refinement.

The forest object stores only the leaves of the for-
est. The leaves satisfy a total order and are allocated
strictly process-local: each leaf has one and only one
owner process. Mesh refinement, coarsening, and 2:1
balancing have strictly process-local effects (even
though the latter depends on one query-reply round of
communication). Since these generally offset load bal-
ance, the leaves may be repartitioned at any time to
re-establish a guaranteed =1 leaf distribution between
processes. This is possible only by routinely allowing
for partition boundaries inside trees and for tree
boundaries inside a partition, and for empty processes
as well.

BMuthorized licensed usedimited ind Inig ofeGalifSan PingeriBawnloaded on December 14,2023 at 20:41:18 UTC from IEEE Y%ptorenBesttdinnsamig



The encoding of the parallel mesh partition
requires some amount of global replicated metadata,
which does not include per-leaf refinement or geomet-
rical and numerical data. Similarly, when the metadata
depends on the total number of MPI processes, the
amount per rank is kept low. pdest, in effect, replicates
32 bytes per MPI rank on each rank. These data are
sufficient to encode the shape of all partition bound-
aries without referencing a single leaf. This is a power-
ful property of pure octree approaches and allows for
executing fast remote, general multiobjective
searches. This memory is currently redundant on mul-
tirank nodes, but prototype code exists to reduce it
further using MPI-3 shared memory. pdest currently is
MPI-only, with scalability tested to 10°+ parallel pro-
cesses. Plans exist for using OpenMP for additional
threading, multiplying the speed of intemnal algorithms
where applicable. However, the implementation
assures that threading is transparent and will not be
exposed to the public APl (beyond the passing of
hints).

The codes cover a spectrum from relatively little
change (p4est), adoption of technologies in place (Uin-
tah), complete rewrite from scratch (Enzo-E), and
ambitious architectural refactoring (Flash-X), in
increasing order of complexity.

Uintah's asynchronous task-based design from the
outset has proven to be prescient for hyperparallelism.
Although its vintage is roughly the same as that of
FLASH, it started as a new from-scratch code and
opted for C++ as the language in which to code. The
design included a separation of concems so that com-
munication and computation could evolve out of lock-
step. Since a great deal of effort has been invested in
C++ template-based tools for performance portability,
Uintah has been in a strong position to leverage those
tools.

The developers of Enzo-E took a different tack.
They evaluated the limitations of their existing AMR,
considered the forthcoming demands from science,
and concluded that block-structured AMR is funda-
mentally flawed for scalability that will be demanded
by their future science and machine directions.
Instead of patching over their existing framework,
they opted to leverage known scalable technologies,
namely, Charm++ with built-in asynchrony and scal-
ability, and built their capabilities on top of it. The key
to success here was to have a long lead time for infra-
structure development so that the project could begin
on a small scale with modest resources. Since Enzo

Bauthenzestigenseth use baited to: Univ of Calif San Diego. Downloaded on December 142623 ati 2641 368ibHé forvificaipase. Restrictions applg5

SCIENTIFIC PROGRAMMING |

had been a community-developed and community-
supported code for a while, such considerations for
resource management and a long-lead transition time
were critical in driving the directions of development.

Flash-X had the most challenging transition to
make. Even when it first came into existence, FLASH
did not start from scratch. It was an amalgamation of
legacy codes, and its architecture was gradually
imposed over it through an iterative process. That
also set the stage for FLASH to remain a Fortran code.
Over the past few years, its growth has exploded in
terms of physics solver support, but investment in
infrastructure has suffered. It supports multiple sci-
ence domains that need an operational code. The
code clearly needed a fundamental invasive rearchi-
tecting, but there also had to be a gradual transition
path for ongoing verification during transition. This is
the reason that it had to find a way to take the separa-
tion of concerns several layers deep into the architec-
ture and find a collection of tools to address different
aspects of its computational challenges.

In contrast to Uintah, Enzo, and Flash-X, pdest is
agnostic of the numerics of the solvers, and it is not
authoritative to the orchestration of computation.
While pdest does not directly address heavy-duty com-
putation that might be offloaded to an accelerator
and other special-purpose devices, it offers all the
logic necessary to support applications in device-ori-
ented data partitioning and assignment.

The codes included in this study represent a broad
coverage of the spectrum of AMR technologies and
their use in science domains. Study of their diverse
approaches to tackling performance portability in the
presence of heterogeneity proved to be an interesting
exercise. The approaches ranged from mostly nonin-
trusive (in pdest) to moderate (in Uintah) to extremely
intrusive (in Flash-X), to a complete rewrite of the
infrastructure (in Enzo-E). Each code has its own tar-
gets and accompanying biases. One feature that
emerges as a common theme is that sufficient atten-
tion must be paid to the basic design of the code
structure with an eye to flexibility.

The Uintah material is based upon work supported by
the Department of Energy, National Nuclear Security
Administration under Award Number DE-NA0002375.
Flash-Xwork was performed under the auspices of the
U.S. Department of Energy by Argonne National Labora-
tory under contract number DE-AC02-06CH11357, and



.;SCIENTIFIC PROGRAMMING

also supported in part by the Exascale Computing Proj-
ect (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the
National NuclearSecurity Administration.

Carsten Burstedde gratefully acknowledges travel
support by the Hausdorff Center for Mathematics
(HCM) funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy—EXC-2047/1-390685813.
Enzo-E development is supported in part by U.S.
National Science Foundation Grant OAC-1,835402 to
M. Norman under the Cyberinfrastructure for Sus-
tained Scientific Innovation (CSSI) program.

1. Amrex, 2020. [Online]. Available: https://amrex-codes.
github.io/

2. M. Berger and J. Oliger, “Adaptive mesh refinement for
hyperbolic partial differential equations,” J. Comput.
Phys., vol. 53, pp. 484-512, 1984.

3. M. Berzins et al., “Extending the Uintah framework
through the Petascale modeling of detonation in arrays
of high explosive devices,” SIAM J. Sci. Comput., vol. 38,
no.5, pp. S101-S122, 2016.

4. J.Bordner, Cello, 2020. [Online]. Available: https://cello-
project.org/

5. J.Bordner and M. L. Norman, “Computational
cosmology and astrophysics on adaptive meshes using
Charm-+," Oct. 2018, arXiv:1810.01319.

6. C.Burstedde, L.C.Wilcox, and O. Ghattas, “p4est:
Scalable algorithms for parallel adaptive mesh
refinement on forests of Octrees,” SIAM J. Sci. Comput.,
vol. 33, no. 3, pp. 1103-1133, 2011.

7. A.Dubey et dl., “Extensible component based
architecture for FLASH, A massively parallel,
multiphysics simulation code,” Parallel Comput., vol. 35,
pp. 512-522, 2009.

8. T.lsaac, C. Burstedde, L. C. Wilcox, and O. Ghattas,
“Recursive algorithms for distributed forests of
Octrees,” SIAM J. Sci. Comput., vol. 37, no. 5,
pp. C497-C531, 2015.

9. P.MacNeice, K. Olson, C. Mabarry, R. de Fainchtein, and

C.Packer, "PARAMESH: A parallel adaptive mesh

refinement community toolkit," Comput. Phys.

Commun., vol. 126, no. 3, pp. 330-354, 2000.

ANSHU DUBEY is a Computational Scientist in the Mathe-
matics and Computer Science Division, Argonne National
Laboratory. She is the Software Architect for Flash-X.
Contact her at adubey@anl.gov.

MARTIN BERZINS is a multidisciplinary Computational Sci-
ence Researcher whose research cuts across applied mathe-
matics, computer science, and engineering. He is a professor
of computer science in the School of Computing and in the
Scientific Computing Imaging Institute at the University of
Utah, and a visiting professor at the University of Leeds. Con-
tact him at mb@sci.utah.edu.

CARSTEN BURSTEDDE is a Professor for Scientific Comput-
ing at the Institute for Numerical Simulation, University of
Bonn, Germany. He is a physicist with a doctorate degree in
applied mathematics from Bonn University. Together with
Lucas 413 C. Wilcox, he founded the p4est software in 2007
during his postdoc at the University of Texas at Austin. Con-

tact him at burstedde@ins.uni-bonn.de.

MICHAEL L. NORMAN is the Director of the San Diego
Supercomputer Center and Distinguished Professor of Phys-
ics at the University of California, San Diego, CA, USA. There,
he also directs the Laboratory for Computational Astrophys-
ics which develops community application software for astro-
physical simulation, including the ZEUS and Enzo codes.

Contact him at minorman@ucsd.edu.

DIDEM UNAT is a Professor at Kog University, Istanbul, Tur-
key. She was the recipient of the Marie Sklodowska-Curie
Individual Fellowship from the European Commission in 2015
and the Young Scientists Award from the Science Academy
of Turkey in 2019. Contact her at dunat@ku.edu.tr.

MOHAMMED WAHIB is a Senior Scientist at AIST/TokyoTech
Open Innovation Laboratory, Tokyo, Japan. He previously
worked as a researcher at the RIKEN Center for Computa-

tional Science. Contact him at mohamed.attia@aist.go.jp.

©Githorized licensed usedimited inglUnig ofeSalifSan Birgeribawnloaded on December 14,2023 at 20:41:18 UTC from IEEE ¥pineenBesttctioisapmiy)


https://amrex-codes.github.io/
https://amrex-codes.github.io/
https://cello-project.org/
https://cello-project.org/

