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Abstract 

Molecular search is important in chemistry, biology, and informatics for identifying molecular 

structures within large data sets, improving knowledge discovery and innovation, and making 

chemical data FAIR (findable, accessible, interoperable, reusable). Search algorithms for polymers 

are significantly less developed than those for small molecules because polymer search relies on 

searching by polymer name, which can be challenging because polymer naming is overly broad 

(i.e. polyethylene), complicated for complex chemical structures, and often does not correspond 

to official IUPAC conventions.  Chemical structure search in polymers is limited to substructures 

such as monomers without awareness of connectivity or topology. This work introduces a novel 

query language and graph traversal search algorithm for polymers that provide the first search 

method able to fully capture all of the chemical structures present in polymers.  The BigSMARTS 

query language, an extension of the small molecule SMARTS language, allows users to write 

queries that localize monomer and functional group searches to different parts of the polymer, like 

the middle block of a triblock, the sidechain of a graft, and the backbone of a repeat unit. The 

substructure search algorithm is based on the traversal of graph representations of the generating 

functions for the stochastic graphs of polymers.  Operationally, the algorithm first identifies cycles 
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representing the monomers, then the end groups, and finally performs a depth-first search to match 

entire subgraphs. To validate the algorithm, hundreds of queries were searched against hundreds 

of target chemistries and topologies from the literature, with approximately 440,000 query-target 

pairs. This tool provides a detailed algorithm that can be implemented in search engines to provide 

search results with the full matching of the monomer connectivity and polymer topology. 

1. Introduction 

Molecular search is one of the most important problems at the intersection of chemistry, biology, 

and data-driven research impacting the daily lives of researchers as they rapidly find and process 

information. In cheminformatics, two-dimensional chemical structures are generally treated as 

molecular graphs with atoms as nodes and bonds as edges.1-5 Searching functional groups or 

substructures in molecular graphs is used to search and filter databases, access properties, highlight 

and count functional groups, and solve a wide range of problems.6-15 Moreover, search 

technologies and data mining tools make information easily accessible to researchers in academia, 

industry, and the general public on databases like PubChem and Reaxys.16 

Substructure search technologies are well-developed for small molecule chemistries 

because each molecule may be represented by a deterministic graph, allowing graph traversal 

algorithms to be used for structure matching. To implement search algorithms, databases index 

molecules using strings of ASCII characters, or line notations, which are very data compact.  The 

Simplified Molecular Input Line Entry System, or SMILES, is the most popular line notation to 

index small molecules as deterministic molecular graphs because it is compact and has few 

grammatical rules.2, 17 The SMARTS query language18 encodes molecular patterns or subgraphs 

to be searched; after initial steps to accelerate the search process on large databases, final matching 

is performed to SMILES molecular graphs using graph traversal algorithms that have been well-
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studied.3, 4 However, polymers are stochastic graphs, making SMILES and SMARTS technologies 

unable to fully capture their connectivity and topology within a search algorithm. 

Absent full graph traversal search that is available for small molecules, several alternative 

search technologies are currently used for polymer chemical structures.  First, users can search for 

polymers by name on a tool like Google Scholar or Web of Science.   Although IUPAC has 

developed a standardized naming convention for polymers,19, 20 common usage continues to 

involve non-standard naming conventions and abbreviations, including the use of trade names.20-

22 Common polymers like poly(styrene) are referred to by many variations of the same name 

(“poly(styrene)”, “polystyrenes”, “styrene polymer”), and for these polymers, a simple name 

search is not precise enough to effectively filter the search results to desired end groups, topologies, 

or copolymer structures.  Nomenclature gets complicated for complex polymers, and many authors 

choose not to name polymers, instead referring to them with numbers or proprietary codes that 

make them effectively unsearchable by name.  

Databases like Reaxys and PubChem allow users to search for small molecules by 

structure, but users cannot search for polymers and classify them by topology.  Users can search 

for polymer structures on some databases like SciFinder, but there are limitations. Searching for 

polymers by their monomers is valuable, but users may not be familiar with the chemistry. Finding 

a polymer according to its structural repeating unit (SRU) is beneficial, but users could query 

variations of the SRU, like frame shifts, that are valid structural identifiers of the polymer but are 

not recognized by the search algorithm. Moreover, searching for repeat units by molecular formula 

can be ambiguous because it does not specify how the atoms connect. For example, C2H4O can 

match poly(vinyl alcohol) or poly(ethylene glycol). Alternately, polymers could be queried by 

string matching to a line notation representation such as BigSMILES.23 For polymers with defined 
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backbones a solution for line notation canonicalization has been proposed that makes this a 

possibility; however, searching substructures in a BigSMILES string can be challenging and this 

solution excludes many branched and network polymers of technological importance. 

Motivated by the impacts of molecular search, this work introduces a novel query language 

for polymers called BigSMARTS, a finite graph representation for all polymer topologies inspired 

by state machines, and a substructure search algorithm that extends the depth-first search algorithm 

to check for a match. First, the query language is introduced that allows users to search chemistry 

and topology and localize chemistry queries (functional groups and repeat units) to different parts 

of the polymer topology. Then, a graph generation algorithm is presented for the query and 

target. Repeat unit graphs are cyclic and periodic in literature,24-26 and the polymer graphs in this 

work extend this idea to all topologies. From the graphs, a substructure search algorithm for a 

match is described. Finally, a validation procedure is presented with hundreds of unit tests crafted 

to test different types of queries.  

2. BigSMARTS Query Language 

Table 1. BigSMARTS Summary 

Syntax Syntax 

Origin 

Meaning Query Example 

Regular 

SMARTS 

SMARTS Searches 

functional 

groups 

anywhere 

in the 

target 

CC(c1ccccc1) 

SMARTS in 

stochastic 

objects 

BigSMILES Searches 

functional 

groups in 

the repeat 

units 

{[]CC(c1ccccc1)[]} 

SMARTS 

with 

bonding 

BigSMILES Forms 

repeat unit 

and end 

{[][$]CC(c1ccccc1)[$][]} 
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descriptors 

attached: 

{[<],[>],[$]}  

group 

queries; 

Searches 

target 

backbone 

Repeat unit 

and end 

group lists 

BigSMILES Searches 

copolymer

s  

{[][$]CC(c1ccccc1)[$],[$]CC=CC[$][]} 

Hydrogens 

written in 

repeat units 

SMARTS + 

BigSMILES 

Restricts 

pendant 

groups 

{[][$][CH2][CH](c1ccccc1)[$][]} 

 

Hydrogens 

written in 

end groups 

SMARTS + 

BigSMILES 

Designates 

terminal 

points in 

target 

chain 

[CH3]CC(C){[$][$]CC(c1ccccc1)[$][]} 

Operators 

before 

elements in 

stochastic 

objects: 

{[or],[xor],!

} 

BigSMART

S 

Logical 

operations 

{[][or1][$]CC(c1ccccc1)[$],[or1][$]CC=CC[$][]} 

!* as 

element in 

stochastic 

objects 

BigSMART

S 

No other 

repeat 

units or 

end groups 

{[][$]CC(c1ccccc1)[$],!*[]} 

?* anywhere 

an atom is 

allowed 

BigSMART

S 

Wildcard 

topological 

distances 

{[][<]C=C?*[>][]} 

 

{[][]} BigSMART

S 

Wildcard 

stochastic 

objects 

{[][]}?*{[$][$]CC(c1ccccc1)[$][$]}?*{[][]} 

!{[][]} BigSMART

S 

No other 

objects 

{[][]}?*{[$][$]CC(c1ccccc1)[$][$]}?*{[][]}!{[][]

} 

 

The BigSMARTS query language is a straightforward grammatical extension of the BigSMILES 

and SMARTS languages, and every BigSMILES23, 27 and SMARTS18 string is a valid 

BigSMARTS string. The key difference between BigSMILES and BigSMARTS is that repeat 

units and end groups in BigSMARTS are written in SMARTS syntax, whereas those in 

BigSMILES are written in SMILES syntax. A BigSMILES string represents a set of molecules (a 
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polymer), whereas a BigSMARTS string represents a set of subgraph patterns (a polymer 

query). SMARTS and BigSMARTS are more general than SMILES and BigSMILES because 

labels for a SMARTS atom require properties like the hydrogen count of the atom to be explicitly 

specified.18 Unspecified properties in SMARTS or BigSMARTS are not assumed to be a part of 

the query. Table 1 shows a summary of the query language. 

 

 

Figure 1. BigSMARTS searches and substructure hits for a variety of single stochastic object 

queries. Each box highlights an atom pair and bond that is matched, and a second color (transparent 

blue) is added to show overlapping hits. (a)-(e) have grammatical elements that combine SMARTS 

and BigSMILES: (a) functional group searched anywhere in the target; (b) localized to the repeat 

units; (c) descriptors added to form poly(ethylene glycol) backbone; (d) poly(ethylene glycol); (e) 

copolymer search; (f)-(h) have grammatical elements unique to BigSMARTS: (f) logical search; 
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(g) poly(ethylene glycol) with no other repeat units in the target object matched; (h) poly(ethylene 

glycol) with no other repeat units or end groups other than what was written.  

 

 

 

 

2.1. Functional Group Local and Global Queries  

When a user writes a BigSMARTS query using only grammatical elements from 

SMARTS, the query will search for that subgraph anywhere in the target graph.  Queries using 

specific BigSMARTS grammatical elements allow the user to localize the query to specific 

topological regions of the polymer.  For example, the query CCO in Figure 1a searches anywhere 

in the polymer, while {[]CCO[]}, without bonding descriptors searches for the specified subgraph 

anywhere within a monomer (Figure 1b).   

2.2. Repeat Unit Queries 

When bonding descriptors are specified (Figure 1c), these additionally enforce localization 

of specific atoms to the backbone of the polymer chain, as in the query  

{[][<]C(=O)CN[>][]} 

which would match any poly(amino acid) backbone because hydrogens in a SMARTS or 

BigSMARTS query are not specified.  It is important to note that only atoms and bonds of the 

repeat units and end groups match during the search, not the bonding descriptors. Therefore, a 

query with one set of bonding descriptors may match to a target with another as long as the 

monomers match according to the matching rules in the search algorithm (vide infra).  The addition 

of hydrogens (Figure 1d) yields a query that would only match poly(glycine): 
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{[][<]C(=O)[CH2][NH][>][]} 

2.3. Copolymer Queries 

Users can write queries with multiple repeat units in the stochastic object, and all listed 

repeat units must be found in the target. Therefore, the standard comma-delimited list element 

from BigSMILES is interpreted as an “and” logical operator in BigSMARTS.  The query string 

poly(alanine-co-glycine): 

{[][<]C(=O)[CH]([CH3])[NH][>],[<]C(=O)[CH2][NH][>][]} 

will only match to targets with both monomers present in the same polymer.  Figure 1e shows 

another example. In this example, if the user were not to specify hydrogens on poly(ethylene 

glycol) or [<]CCO[>]: 

{[][<]CCO[>],[<]CC(C)O[>][]} 

The repeat unit queries for poly(ethylene glycol) and poly(propylene glycol) could both match to 

the repeat unit for poly(propylene glycol) in the target, illustrated in Figure 1e.  

2.4. Joint Functional Group and Repeat Unit Queries 

The user can remove bonding descriptors from one or more repeat units to search for 

chemical substructures without regard to the polymer backbone, and both the functional group and 

repeat unit must match to the same stochastic object, and it is possible that multiple elements in 

the stochastic object can match to the same repeat unit if hydrogens are not specified: 

{[][<]C(=O)[CH]([CH3])[NH][>],C(=O)[CH2][NH][]} 

2.5. End Group Queries 

So far, all of these examples have not specified end groups.  Users can easily search 

including end groups in BigSMARTS using the same syntax for representing end groups in 
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BigSMILES; however, unless hydrogens are fully specified, the end groups may not be terminal 

points in the graph. For example, the query for PEG with end groups: 

C{[<][>]OCC[<][>]}OC(=O) 

would match the target: 

C{[<][>]OCC[<][>]}OC(=O)C=C 

However, adding hydrogens to the query: 

C{[<][>]OCC[<][>]}O[CH](=O) 

would prevent a match. 

2.6. Logical Queries 

In addition to these grammatical elements that are already present in BigSMILES and 

SMARTS, BigSMARTS adds several additional grammatical elements to fully capture polymer 

connectivity and topology.  First, because the monomer list within each stochastic object 

effectively represents a joined search, users can use logical operators “or”, “xor”, and “not” in 

order to specify more complex queries.  As described earlier, by default, no operator means “and”. 

The not operator is represented by an exclamation point and need only be included on repeat units 

to be specifically excluded from search, as in this search for polystyrene polymers specifically 

excluding poly(4-chloromethylstyrene):  

{[][$]CC(c1ccccc1)[$],![$]CC(c1ccc(CCl)cc1)[$][]}  

Queries that include “or” and “xor” apply the symbols [or] or [xor] before sets of different repeat 

units that are governed by the desired search logic, and the symbols are numbered in order to allow 

multiple simultaneous “or” and “xor” logical elements to be included in a search. Illustrating this 

on the poly(alanine-co-glycine) query, 

{[][or1][<]C(=O)[CH]([CH3])[NH][>],[or1][<]C(=O)[CH2][NH][>][]}  



10 
 

would match to poly(alanine) homopolymer, poly(glycine) homopolymer, or poly(alanine-co-

glycine).  In contrast, 

{[][xor1][<]C(=O)[CH]([CH3])[NH][>],[xor1][<]C(=O)[CH2][NH][>][]}  

would match either to poly(alanine) or to poly(glycine) but not to the copolymer. Figure 1f shows 

an additional example.   

2.7. No Other Repeat Units and End Groups 

The search logic of BigSMARTS functions such that the query is searched as a subgraph 

within BigSMILES targets, similarly to SMARTS searches within SMILES strings.  Therefore, 

any search specification for a given monomer set also hits to copolymers that include this monomer 

set as a subset.  To allow exact matches to be specified, the not symbol can be combined with a 

wild card, yielding !* which has the meaning “nothing more.”  For example, the query 

{[][<]C(=O)[CH]([CH3])[NH][>],!*[]} 

matches only to poly(alanine) homopolymer and not to any copolymers with any other monomers.  

The use of !* is further illustrated in Figures 1g and h. 
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Figure 2. BigSMARTS searches and substructure hits for a variety of topological queries: (a) 

functional group backbone search; (b) topology search with wildcard stochastic objects and 

linkers; (c) there should be no other objects other than what is specified in the query; (d)-(e) repeat 

unit chemistry localization search, with the same grammatical elements in Figure 1; (f) wildcard 

branch point. 

 

2.8. Wildcard Topological Distances 

The presence of large connecting groups in polymers also demands grammatical additions 

that can include wildcard segments in addition to wildcard atoms traditionally found in SMARTS. 

These are shown in Figure 2. Among many applications, this enables users to produce more 

nuanced searches for polymer topology.  Wildcard linear sequences of atoms are represented by 

?* which specifies a connection between the two adjoining strings without specifying the 

connection length.  A null string is allowed as a possible linker with ?*.  For example, 

{[][$]CC(c1ccccc1)[$][$]}?*{[$][$]CC(C)(C(=O)OC)[$][]} 
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specifies a query for a poly(styrene-b-methyl methacrylate) diblock copolymer without specifying 

the type of chemistry used to form the junction between the two monomers.  This type of query 

can be extremely valuable when one wishes to search across different synthetic methods (i.e. 

anionic polymerization vs. living free radical polymerization) that would use different linker 

lengths. 

The “?*” symbol is also very useful for finding all polymers with a given functional group 

along the backbone but not in side chains.  For example, 

{[][<]?*C(=O)O?*[>][]} 

would match all polyesters but not polyacrylates or polymethacrylates.  This compares favorably 

to standard substructure search for esters which is unable to differentiate even these basic polymer 

families. Grammatically, “?*” can be embedded anywhere an atom is allowed in the repeat units 

and can be used to match entire end groups.  

2.9. Wildcard Stochastic Objects 

To compose queries for polymer topologies, the user may write empty stochastic objects, 

{[][]}, which query for the presence of a polymeric segment without specifying its specific 

chemistry.  For example, to search for an unfunctionalized polystyrene homopolymer as the central 

block between two other polymer blocks, a user would write 

{[][]}?*{[$][$][CH2][CH]([c]1[cH][cH][cH][cH][cH]1)[$][$]}?*{[][]} 

Alternately, the query 

{[][]}?*{[>][<][CH2][CH]([CH3])O[>][<]}?*{[][]}  

specifies a search for a middle block of poly(propylene oxide) and would match a poloxamer. 

While the wildcard sequence element ?* need not be included between blocks in either of these 

two examples, leaving it out would convey the meaning that there are no atoms between the 
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stochastic objects, restricting the matches to the query in a way that does not reflect the most likely 

meaning of the user.   

2.10. Complex Topological Queries  

 The user may write more complex topological queries using the ?* operator. For example, 

to search for a 4-arm star polymer 

{[][]}?*(?*{[][]})(?*{[][]})(?*{[][]}) 

in which each arm contains the poly(ethylene glycol) repeat unit backbone, the user can write  

{[][<]CCO[>][<]}?*(?*{[>][<]CCO[>][]})(?*{[>][<]CCO[>][]})(?*{[>][<]CCO[>][]}) 

These repeat units can be frame-shifted: 

{[][<]COC[>][<]}?*(?*{[>][<]COC[>][]})(?*{[>][<]COC[>][]})(?*{[>][<]COC[>][]}) 

To search for an H-polymer, the user can write:  

{[][]}?*(?*{[][]})?*{[][]}?*(?*{[][]})?*{[][]} 

in which the center block can contain the PEG repeat unit: 

{[][]}?*(?*{[][]})?*{[>][<]CCO[>][<]}?*(?*{[][]})?*{[][]} 

2.11. No Other Objects 

Because SMARTS and BigSMARTS specify query subgraphs within a larger target graph, 

there is a possibility that the target graph contains stochastic objects not in the query.  A final 

additional grammatical element added to the query language allows the user to specify that the 

query cannot contain stochastic objects that are not explicitly specified.  To make this 

specification, the user combines the not operator and the empty stochastic object, !{[][]}, as the 
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final two grammatical elements in a query.  For example, this query can be used to specify a search 

for all block copolymers with exactly two blocks: 

{[][]}?*{[][]}!{[][]} 

or for star polymers with exactly three arms: 

{[][]}?*(?*{[][]})?*{[][]}!{[][]} 

3. Atomistic and Topological Graphs 

A polymer is an extremely large ensemble of molecules with distinct chemical structures.  

Therefore, they are represented by stochastic graphs.  This complicates the generalization of graph 

traversal algorithms used for small molecules to perform substructure search for polymers because 

different members of the ensemble may give different results for any query, and a query of a 

polymer against another polymer has an impossibly large number of binary pairs of molecular 

graphs to compare.  Therefore, building on previous work that has demonstrated that polymers are 

directly analogous to automata,28 BigSMARTS converts polymers into a deterministic graph 

representation based on the generating function that is used to construct the molecules, fully 

capturing the molecular topology, connectivity, and chemical rules from molecular synthesis. In 

the previously published automata representation, nodes are states, edges are the building blocks, 

cycles in the graph represent effective repeat units, and these graphs generate sequences of building 

blocks from the start to the stop state. State machine minimization algorithms can be used to find 

a canonicalized or unique representation for a polymer, an equivalent machine with redundant 

states removed (an entirely separate problem). In this work, the graphs for substructure search have 

atoms as nodes and bonds (closely analogous to states of automata) as edges, a transformation of 

the original automata concept that facilitates graph traversal searching. These graphs do not show 
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probabilities of repeat units and end groups connecting, but rather the set of possible connections 

that generate the ensemble.  

 

Figure 3. Every BigSMARTS or BigSMILES string is converted into an atomistic and topology 

graph. First, a BigSMARTS or BigSMILES is converted into a SMARTS or SMILES by replacing 

stochastic objects, “?*”, and “{[][]}” with SMILES atoms. In this example, the input string can be 

replaced with [OH][Bk][Es] (“Bk” for stochastic object and “Es” for empty end group), which is 

a valid SMILES. RDKit converts SMILES into a molecular graph, and NetworkX is the graph 

package used to create polymer graphs and execute substructure search. Each cycle in the graph 

represents a repeat unit path. An edge labeled “1” connects an atom to its descriptor neighbor in 

the string and “2” connects an atom to the compatible version of its descriptor neighbor. Thus, 

oxygen (“O”) connects to the terminal descriptor “[>1]” with a “1”. Because of string replacement, 

topological strings in BigSMARTS like “?*” and “{[][]}” are embedded in the graph. Non-repeat 

unit strings in the stochastic object like “!*” and SMARTS are stored as attributes in the descriptor 
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nodes. The “!{[][]}” is saved by the algorithm. Attributes in each graph are shown: the integer 

topology ID links the atomistic graph to the topology graph. In the atomistic graph, only the 

colored nodes, atoms and bonds, are searched during traversal, not the descriptors. 
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Figure 4. Atomistic and topology graphs for five polymers: (a) poly(methyl methacrylate) or 

{[][$]CC(C)(C(=O)OC)[$][]}, in which the same repeat unit is represented twice in the graph to 

illustrate head-to-head tail-to-tail addition; (b) poly(ethylene glycol-b-styrene) or 

{[][<]CCO[>][<]}CCO{[$][$]CC(c1ccccc1)[$][]}; (c) Poly(ethylene succinate) or 

{[][<]OCCO[<],[>]C(=O)CCC(=O)[>][]}; (d) poly(styrene) with poly(ethylene glycol) sidechain 

or {[][$]CC(C(=O)O{[>][<]CCO[>][]})[$][]}; (e) branched polyester or 

{[][<]C(=O)CCC(=O)[<],[>]OCCC(O[>])CO[>][]}.  

 

To convert a polymer into a molecular graph inspired by automata, the algorithm 

determines all possible paths through the repeat units and end groups. Figure 3 shows a flowchart 

and an example, and Figure 4 shows examples of a chain-growth polymer, block, AA-BB 

copolymer, graft, and branched polymer. Figure 5 illustrates these graphs for BigSMARTS 
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grammatical extensions mentioned in the previous section. Supporting Information Section 1 

shows a comprehensive flowchart, and Supporting Information 2 shows examples of different 

topologies. 

 

 
 

Figure 5. Graphs with BigSMARTS grammatical extensions for queries in Figure 2 except for 

segmented polymer (b) and “!{[][]}” added to (d). Specifically, “?*” and “{[][]}” are embedded 

into the graph and are checked during traversal. The string “{[][]}” constructs a wildcard cycle in 

the query graph, but during search, it matches to an entire stochastic object or set of repeat units; 

stored in the descriptor node is a Boolean value that this cycle represents a wildcard object. 

Moreover, “!{[][]}”, which means no other objects in the target, is checked before graph traversal 

begins (does the number of query objects equal the number of target objects?). Non-repeat unit 

elements, including functional groups (SMARTS) localized to the target repeat units and “!* in 

the descriptors, are checked during or after substructure search completes.  
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By way of example, consider the poly(alanine-co-glycine) query with hydrogens 

mentioned earlier in Figure 3, encoded in BigSMARTS as: 

[OH]{[>][<]C(=O)[CH]([CH3])[NH][>],[<]C(=O)[CH2][NH][>][]} 

The first step is converting the BigSMARTS or BigSMILES into a valid SMARTS or SMILES by 

replacing the stochastic objects with heavy atoms ([Bk]), empty end groups with [Es], and saving 

the repeat units. The SMARTS or SMILES “[OH][Bk][Es]” is converted into an RDKit molecular 

graph with labels for each node, including the element symbol, formal charge, aromaticity, and 

hydrogen count, and labels for each edge, including the bond type (see Supporting Information 

Section 1 for full list). For each stochastic object, the algorithm determines all possible paths 

through the repeat units and inserts them in place of [Bk]: since each repeat unit is head-to-tail 

addition, there is a single path for each denoted with the list: 

[ [<], C(=O)[CH]([CH3])[NH], [>] ] 

[ [<], C(=O)[CH2][NH], [>] ] 

These lists can be connected to form a graph by combining compatible bonding descriptors ([>n] 

is compatible with [<n] and [$n] is compatible with itself), and a graph with two cycles for two 

repeat units can be generated. As shown in Figures 3-5, state machine-inspired polymer graphs are 

directed, and the direction is determined based on how the string is written, parsing the repeat units 

and end groups from left to right, which means there can be many ways of encoding the same 

polymer. Nevertheless, if the ensembles generated by the string are the same, then the search 

algorithm ensures a match. This algorithm does not explicitly construct lists, but at a high level, 

this is how the state-machine-inspired graphs are generated. 



20 
 

This tool is robust to equivalent transformations of the stochastic object string, including 

repeat unit inversions, changes to the SMARTS or SMILES string, repeat unit order, and bonding 

descriptors. For example, consider poly(alanine-co-glycine) query: 

[OH]{[>][<]C(=O)[CH]([CH3])[NH][>],[<]C(=O)[CH2][NH][>][]} 

The following poly(alanine) strings all produce a graph with a single equivalent cycle: 

O=C([<])C(C)N[>] (changes to the SMILES) 

[>]C(=O)C(C)N[<] (changes to the bonding descriptors) 

[<]NC(C)C(=O)[>] (inversion) 

This is because in all three cases, the repeat unit is the same, and the nitrogen must connect with 

the carbonyl carbon, forming a cycle.  

The mapping from repeat units and end groups in the strings to the cycles in the graph is 

not necessarily one-to-one. If there are multiple modes of propagation, a single repeat unit maps 

to multiple cycles. For example, consider a chain-growth repeat polymer poly(methyl 

methacrylate) with the BigSMILES in Figure 4: 

{[][$]CC(C)(C(=O)OC)[$][]} 

The algorithm parses the repeat units and bonding descriptors and determines that there are two 

paths through the repeat unit for H-H and H-T addition, represented by two lists with the repeat 

unit inverted: 

[ [$], CC(C)(C(=O)OC), [$] ] 

[ [$], C(C)(C(=O)OC)C, [$] ] 

This forms a graph with two cycles. Conversely, for AA-BB polycondensation reactions, multiple 

repeat units can form a single cycle of the graph. The BigSMILES string for poly(ethylene 

succinate): 



21 
 

{[][<]OCCO[<],[>]C(=O)CCC(=O)[>][]} 

There are two paths through each repeat unit, but the effective repeat unit for this polymer is the 

diacid-diamine units joined together, and this would form four linked cycles, shown in Figure 4. 

Supporting Information Section 2.8 shows a more advanced example. 

 

 

 

Figure 6. Topological graphs that resemble finite automaton for a: (a) homopolymer, (b) statistical 

copolymer, (c) block copolymer, (d) polymer with multiple modes of termination, (e) segmented, 

(f) graft, (g) star, and (h) dendrimer. The nodes represent repeat units, end groups, or bonding 

descriptors. The only attribute in these graphs is an integer ID (see Figure 3) that connects nodes 

in this graph to sets of nodes in the atomistic graph.  

 

In order to detect cycles or repeat units for substructure search, the algorithm builds a 

second graph, the topology graph, which is a directed graph. In order to do this, every SMARTS 

and SMILES in the atomistic graph is contracted into a single node using NetworkX’s 
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contracted_edge function, which inputs a pair of nodes to merge, and the descriptors become 

separate nodes in the topological graph. Figures 4 and 5 show several examples of the resulting 

topological graphs, and Figure 6 shows drawings of polymer graphs for different topologies 

produced from this algorithm, from block copolymers that contain cycles in series to star polymers 

that contain cycles connected to a central core.  

4. Substructure Search Algorithm 

 

Figure 7. Polymer search requires the atomistic graph for substructure search and topology graph 

for cycle detection. During graph traversal, descriptors are skipped. 

 

A match between a BigSMARTS query and a BigSMILES target is defined on the basis of 

sets.  Each BigSMARTS query represents a set of SMARTS objects, while each BigSMILES string 

represents a set of SMILES objects.  For a query to match a target, every SMARTS in the set 

defined by the BigSMARTS must be found as a substructure in at least one of the SMILES in the 
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set defined by the BigSMILES. Because a pairwise comparison of the two sets would be extremely 

computationally intensive, the proposed algorithm instead performs substructure search through 

graph traversal of the state-machine graphs in the previous section, yielding equivalent results. 

Figure 7 outlines the algorithm.  

 

Figure 8. A triblock query with a wildcard linker and no other repeat units in the middle block 

(!*) is searched in a triblock target. The cycles are searched first #1-3, followed by the end groups 

(EG) #4-5. PEG (poly(ethylene) glycol) in the left-most block #1 matches to the left-most block 

(labeled 1-3 in yellow). PEG and PPO (poly(propylene) oxide) in the query midblock #2 match to 

the same cycle in the target midblock because hydrogens were not added (labeled 1-3 in green and 

4-7 in blue). Multiple query objects cannot match to the same target object, so the left two blocks 

cannot both match the middle block. The lactide repeat unit in the right block #3 re-traverses the 

target lactic acid repeat unit, such that multiple query atoms map to the same target atom (labeled 

1-10 in red). The EG #4 in blue matches to all target repeat units because hydrogens were not 

added, but in the final solution matches to the left object due to adjacency. Wildcard EG #5 can 
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match to either target EG, but in the final solution matches the red one due to adjacency. Enforcing 

adjacency is important: if triblock ABC was reversed to CBA, the match would still return True, 

but for BCA would return False.  

  

A necessary condition for a match between a query and a target is that both contain the 

same polymeric segments, represented by sets of conjoined cycles and end groups in the atomistic 

and topological graphs.  Therefore, the search algorithm first determines all query and target cycles 

using the topological graphs (NetworkX’s function simple_cycles), determines sets of conjoined 

cycles or stochastic objects (NetworkX’s function connected_components), and a substructure 

search is executed on the cycles in the atomistic graphs to match different sets of conjoined cycles. 

Searching cycles first allows rapid down-selection of molecules, reducing computational cost later 

in the algorithm. When searching a query cycle in a target cycle, the nodes and edges in the 

molecular graph are traversed using a depth-first search (DFS) algorithm (Supporting Information 

Section 3 provides a flowchart), in which the algorithm starts from a start node and traverses as 

far as it can down a given branch before backtracking, checking whether the node and edge 

information matches, shown in Figures 8 and 9. For the purpose of graph traversal, bonding 

descriptors are treated as null symbols, so atoms connected through bonding descriptors are treated 

as equivalent to directly connected.   
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Figure 9. (a) Poly(ethylene succinate) or {[][<]OCCO[<],[>]C(=O)CCC(=O)[>][]} has two repeat 

units in the AA-BB representation in Figure 4(c) and is searched in a target with a single repeat 

unit {[][<]OCCOC(=O)CCC(=O)[>][]} in the AB representation. Every query cycle can be found 

in the target and is connected, yielding a match. The query from Figure 5(a) or 

{[][<]?*C(=O)O?*[>][]} is searched in the same target. (b) The algorithm detects wildcard end 

groups and matches them to entire target end groups depending on the number of stochastic objects 

the wildcard end group connects. The wildcard end group in this figure, the same star polymer 

query in Figure 5(c) or {[][]}?*(?*{[>][<]CCO[>][]})?*{[][]}, is a substructure of any target end 

group that connects at least 3 objects and would match to Tetra-PEG, shown in Figure 2(f). (c) 

When querying polymers with nested repeat units, like grafts and segmented copolymers, nested 

repeat units must match to nested repeat units. 
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Then, the query end groups are searched in the target using the DFS, but as previously 

mentioned, end groups with atoms written can traverse cycles and match exclusively to repeat 

units if hydrogens are not written in the query. This is because end groups in a query represent 

deterministic patterns, which can match to substructures of repeat units but may not necessarily 

match to terminal points in the target chain. An example is shown in Figure 8. For each cycle and 

end group, a list of matches is stored, and the final match is True if there exists one match for each 

RU and EG such that connected cycles and EGs in the query map to connected segments in the 

target. After adjacency between cycles and end groups is enforced, a set of final conditions are 

checked: the not RU element “!*”, multiple query stochastic objects cannot match to the same 

target object, and nested objects must match to nested objects. 

The key differences between polymer search and small molecule search is cycles and end 

groups are searched separately, query cycles can traverse target cycles multiple times, and the 

grammatical extensions in Section 2 and Figure 9 (“{[][]}”, “?*”) enable chemistry and topological 

classification. The string “?*” embedded as an atom allows for functional group searches along 

the backbone. When a “?*” node is encountered during DFS traversal, NetworkX’s function 

simple_paths is used to generate paths in the target that connect 𝑓(prev) to 𝑓(next), where prev 

and next are atoms in the query before and after “?*”, 𝑓 is the mapping function, and “?*” maps 

to a set of atoms. Moreover, end groups can be entirely wildcard with “?*”; in this case, no graph 

traversal is executed, the algorithm will simply match wildcard end groups connecting n stochastic 

objects to entire target end groups that connect at least that many stochastic objects. 

5. Database Validation 

To validate the algorithm, a matrix of BigSMARTS and BigSMILES strings was constructed, and 

the match state was recorded as true or false for each pair. Overall, there are approximately 900 
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BigSMARTS queries searched over the entire target dataset of 500 BigSMILES for polymer 

chemistries from literature. The authors used domain knowledge and made a concerted effort to 

add diverse chemistries and topologies to the BigSMILES database from Google Scholar, Web of 

Science, open-source polymer datasets,24 and textbooks.29 Nevertheless, in order to grow this 

polymer database in size and scope, users can deposit structures and references to Community 

Resource for Innovation in Polymer Technology (CRIPT),30 a data ecosystem to organize polymer 

data. Different rules are tested for regular SMARTS, single objects like homopolymers, statistical 

copolymers, alternating copolymers, block copolymers, segmented, grafts, stars, networks, chiral 

polymers, macrocycles, polyelectrolytes, dendrimers, and H-polymers.  

Tables 2-5 shows four case studies, and a database validation sheet is provided with all 

other case studies.  The first case study in Table 2 explores mutations to the query string that do 

not change its chemical meaning and demonstrates that the algorithm is robust such that these 

mutations do not affect the search results.   The second case study in Table 3 illustrates classifying 

polymers according to their backbone. The third case study in Table 4 provides examples of queries 

to search functional groups along the backbone, illustrating the ability to perform substructure 

search across a wide range of functionalities. The fourth case study in Table 5 provides examples 

of queries that classify topology.  

A substructure match is perfect: either true or false. In all of these case studies, every query-

target pair that is expected to match, either as a substructure match or a full match, is marked with 

a true in the spreadsheet, and the algorithm always returns true. Every query-target pair that is not 

expected to match is marked with a false in the spreadsheet (that is, at least one query atom or 

element cannot be found in the target), and the algorithm always returns false. Across all 

chemistries and topologies, it takes approximately 15-20 seconds for a single query to search all 
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of the targets. The authors are building algorithms to execute filtering steps to speed up search, as 

discussed in the next section. 

 

Table 2. Database validation examples for repeat unit mutations with increasing restriction on the 

target ensemble.  

BigSMARTS  

Queries 

Meaning # BigSMILES Hits Example 

CCO Functional group search 

anywhere in target 

207 C#CCOC(=O)C(C)

(C){[$][$]CC(c1ccc

cc1)[$][$]}SC(=S)c

1ccccc1 

Poly(styrene) with 

end group match 

{[]CCO[]} Localized to RUs 198 {[][$]CC(C(=O)OC

CCC)[$][]} 

Poly(n-butyl 

acrylate) with side 

chain match 

{[][<]CCO[>][]} PEG 68 O{[>][<]C(=O)C(C

)O[>][<]} 

Poly(lactic acid) 

{[][<]COC[>][]} Frameshift 68 Same matches 

{[][<]CC[<2],[>2]O[>]

[]} 

Split, but same RU 68 Same matches 

{[][<]OCC[>][]} Inversion 68 Same matches 

{[][>3]CCO[<3][]} Changes to descriptor 

IDs 

68 Same matches 

{[]O([<])CC[>][]} Bonding descriptors not 

at ends 

68 Same matches 
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{[][<]CCO[>],[<]CCO[

>][]} 

Duplication (both 

match to same target 

unit) 

68 Same matches 

{[][<]OCC[>][<]}OCC Repeat unit in end 

group 

68 Same matches 

{[][<][CH2][CH2]O[>]

[]} 

No other pendant 

groups with hydrogens 

57 C(c1ccccc1)O{[>][

<]CCO[>],[<]CC(C

OCCN(C(C)C)(C(C

)C))O[>][<]}[H] 

Poly(ethylene 

oxide-co-DEGE) 

{[][<][CH2][CH2]O[>]

,!*[]} 

No other pendant 

groups and no other RU 

45 {[][$]CC(c1ccccc1)

[$][$]}{[>][<]CCO

[>][]} 

Poly(styrene-b-

ethylene oxide) 

{[][<]CCO[>];!{[][]}[]

} 

Eliminates multi-blocks 34 {[][$]CC(C(=O)O)[

$],[$]CC(C(=O)O{[

>][<]CCO[>][<]}C)

[$][]} 

Poly(acrylic  

acid-graft-ethylene 

oxide) 

{[][<]CCO[>],!*;!{[][]}

[]} 

Matches to PEG with 

no other repeat units 

and deterministic end 

groups 

17 

 

{[>][<]OCC[>][<]}

O 

Hydroxy-

terminated PEG 

{[][<][CH2][CH2]O[>]

,!*;!*[]} 

No other RU and EG 1 {[][<]CCO[>][]} 

PEG 
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Table 3. Database validation examples for repeat unit backbone classification. 

BigSMARTS  

Queries 

Meaning # BigSMILES Hits Example 

{[][$]CC[$][]} 

 

Poly(ethylene) 

backbone 

257 {[][$]CC(C)(C)[$][

]} 

Poly(isobutylene) 

{[][<][Si]O[>][]} Poly(siloxane) 

backbone 

23 {[][<][Si](C)(C)O[

>][]} 

Poly(dimethyl 

siloxane) 

{[][$]CC(C(=O)O)[$][]

} 

Poly(acrylate) 

backbone 

64 {[][$]CC(C(=O)OC

C)[$][]} 

Poly(ethyl acrylate) 

{[][$]CC(OC(=O))[$][]

} 

Poly(acetate) backbone 6 {[][$]CC(OC(=O)C

C)[$][]} 

Poly(vinyl 

propionate) 

{[][$]CC(c1ccccc1)[$][

]} 

Poly(styrene) backbone 115 {[][$]CC(c1ccc(OC

)cc1)[$][]} 

Poly(4-

methoxystyrene) 

{[][$]CC=CC[$][]} Poly(diene) backbone 29 {[][$]CC=C(C)C[$]

[]} 

Poly(isoprene) 
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Table 4. Database validation examples for repeat unit chemistry classification according to 

functional groups along backbone. 

BigSMARTS  

Queries 

Meaning # BigSMILES Hits Example 

{[][<]C(=O)O?*[>][]} Polyester 75 {[][<]OCCO[<],[>]

C(=O)c1ccc(cc1)C(

=O)[>][]} 

Poly(ethylene 

terephthalate) 

{[][<]OC(=O)O?*[>][]

} 

Polycarbonate 29 {[][<]Oc1ccc(cc1)C

(C)(C)c2ccc(cc2)O[

<],[>]C(=O)[>][]} 

Bisphenol A 

polycarbonate 

{[][<]NC(=O)O?*[>][]

} 

Polyurethane 1 {[][>]C(=O)Nc1ccc

(C)c(c1)NC(=O)[>]

,[<]OCC{[>][<]OC

C[>][<]}O[<],[<]O

CCCO[<][]} 

Poly(urethane) with 

nested PEG 

{[][<]C=C?*[>][]} Polydiene 31 {[][$]CC=C(Cl)C[$

][]} 

Poly(chloroprene) 

{[][<]NC(=O)N?*[>][]

} 

Polyurea 6 {[][<]NCCC{[>][<]

[Si](C)(C)O[>][<]}

[Si](C)(C)CCCN[<]

,[>]C(=O)NC(CC1)

CCC1CC(CC2)CC

C2NC(=O)[>][]} 

Segmented 

Poly(urea) 

 



32 
 

Table 5. Database validation examples for topology searches. 

BigSMARTS  

Queries 

Meaning # BigSMILES Hits Example 

{[][]} Matches to all polymers 

(not small molecules in 

database)  

489 {[][$]CC(c1ccccc1)

[$][$]}{[>][<]CCO

[>][]} 

Poly(styrene-b-

ethylene oxide) 

{[][]}!{[][]} Prohibits matches to 

multiblocks 

382 {[][$]CC(F)(F)[$][]

} 

Poly(vinylidene 

fluoride) 

{[][]}?*{[][]} Diblock substructure 107 {[][<]OCC[>][<]}{

[<][>]OC(C)C[<][>

]}{[>][<]OCC[>][]

} 

Pluronic 

{[][$]CC(c1ccccc1)[$][

$]}?*{[>][<]CCO[>][]} 

 

Unspecified midblock 

between styrene and 

PEG 

14 CCC(C){[$][$]CC(

c1ccccc1)[$][$]}{[$

][$]C\C=C(C)/C[$],

[$]C\C=C(C)\C[$],[

$]CC(C(C)=C)[$],[

$]CC(C)(C=C)[$][$

]}{[$][$]CC(c1cccc

c1)[$][$]}{[>][<]C

CO[>][<]}[H] 

SISO tetrablock 

{[][]}?*{[][]}!{[][]} No other blocks 78 CCC(C){[$][$]CC(

c1ccccc1)[$][$]}{[$

][$]CC(c1ncccc1)[$

][$]}[H] 

Poly(styrene-b-2-

vinyl pyridine) 
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{[][]}?*{[][]}?*{[][]} Triblock substructure  15 CCC(C){[$][$]CC(

c1ccccc1)[$][$]}{[$

][$]C\C=C(C)/C[$],

[$]C\C=C(C)\C[$],[

$]CC(C(C)=C)[$],[

$]CC(C)(C=C)[$][$

]}{[$][$]CC(c1cccc

c1)[$][$]}{[>][<]C

CO[>][<]}[H] 

SISO tetrablock 

{[][<]?*{[>][<]?*[>][<]

}?*[>][]} 

Segmented copolymer 

with repeat unit along 

backbone 

10 {[][<]NCCC{[>][<]

[Si](C)(C)O[>][<]}

[Si](C)(C)CCCN[<]

,[>]C(=O)NC(CC1)

CCC1CC(CC2)CC

C2NC(=O)[>][]} 

Segmented 

Poly(urea) 

{[][<]?*{[>][<]CCO[>]

[<]}?*[>][]} 

Segmented copolymer 

with nested PEG  

5 {[][>]C(=O)Nc1ccc

(C)c(c1)NC(=O)[>]

,[<]OCC{[>][<]OC

C[>][<]}O[<],[<]O

CCCO[<][]} 

Poly(urethane) with 

nested PEG 

{[][<]?*(?*{[>][<]?*[>

][]})?*[>][]} 

Graft copolymer with 

repeat unit in sidechain 

11 {[][$]CC(c(cc1)ccc

1CCCC{[>][<]OC

C[>][<]}S)[$],[$]C

C(c1ccccc1)[$][]} 

Poly(styrene)-graft-

Poly(ethylene 

oxide) 

{[][]}?*(?*{[][]})?*{[][

]} 

3-arm star polymer 

substructure 

21 C(c1ccccc1)OCC{[

>][<]OCC[>][<]}O

C(COC(=O)C(C)(C

){[$][$]CC(C(=O)

OC(C)(C)C)[$][$]}

Br)CC(c1ccccc1)C
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{[$][$]CC(c1ccccc

1)[$][$]}CCCC 

3-Miktoarm Star 

Polymer: PS-PEO-

(PtBA-Br) 

 

6. Discussion 

Current polymer chemical structure search capability is limited. Users can search for polymers by 

name on tools like Google Scholar or Web of Science, but multiple strings could match to the same 

polymer (PEG vs PEO vs poly(ethylene glycol)), and polymer nomenclature is non-standardized 

and complex. Users could search for monomers or structural repeat units on tools like SciFinder, 

but searches for complex topologies can be difficult, limiting our ability to discover data. This 

algorithm allows the user to write queries of polymer structures, including a single repeat unit 

substructure without knowledge of the monomer chemistry, repeat unit sets in a stochastic object 

forming copolymers, chemistries with desired end functionalities, and advanced chemistries and 

topologies with branched repeat units and end groups. For those unfamiliar with the grammar of 

line notations, a drawing tool is also available so that the user can draw any query topology and 

use copy the generated BigSMARTS query string to feed to this algorithm.31 A key feature of the 

algorithm is its ability to search across all of these rich features while still being robust to variations 

in the way that users may have represented the chemical structure of a target or query, overcoming 

limitations in current canonicalization technology. Several of the features of this algorithm, 

including classifying polymers by localizing functional groups to specific parts of the target 

topology, including the backbone, or searches for arbitrary topological structures, have not 

previously been achievable.  
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 This tool has been validated on hundreds of thousands of query-target pairs that produce 

the expected match/no match results. However, the search algorithm has a time complexity that 

scales O(N), making implementation on large databases challenging.  The overall search 

performance can be accelerated by implementing filtering steps before the substructure search. 

There are several simple classifiers that can be applied to polymers that are easily indexed and can 

assist with such filtering.  First, the number of stochastic objects in the query should be less than 

or equal to the number of stochastic objects in the target, which is a simple check. For example, a 

block copolymer cannot match a homopolymer. Second, a branched polymer cannot match a linear 

polymer; this can be simply determined by classifying polymers based on the number of bonding 

descriptors on the repeat units. Finally, every cycle in the graph can be treated as a small molecule 

cycle and searched using RDKit, which has already been optimized for small molecule search. If 

the repeat units are properly canonicalized and indexed, then repeat units from the atomistic graphs 

can be searched using string-based search algorithms that scale well in large data systems.17, 32 

The finite state machine-inspired graph representations have several advantages over 

existing polymer graph representations for polymer search and have broad applications in many 

fields. These graphs are finite, machine-readable, and work for different polymer topologies. 

Beyond search, these graphs can be converted into vector representations or fingerprints, in which 

bits contain information on the presence or absence of substructures. These fingerprints can be 

used to compare molecules (similarity metrics) and can be used in machine learning to connect the 

structure to the property.33  

7. Conclusions 

This work introduces a query language for polymers, a molecular graph representation inspired by 

state machines for different topologies, and a substructure search algorithm that together provide 
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a search functionality for polymer chemical structure that is fully aware of polymer chemical 

connectivity and topology. The query language allows users to search combinations of linear and 

branched repeat units and end groups with the connections specified, and query wildcard elements, 

including wildcard stochastic objects, wildcard end groups, searches targeting the target objects, 

and searches along the target backbone. The molecular graph representation is finite and accurately 

represents a set of molecules, and wildcard elements are embedded in the graph. The substructure 

search algorithm runs a graph traversal of the repeat unit cycles first, followed by the end groups, 

and then checks whether matches are adjacent in the target graph. The depth-first search algorithm 

is extended to wildcard elements embedded in the graph.  

This tool offers advantages over existing search technologies. Users can search by structure 

rather than by name, resolving challenges in searching complex structures according to polymer 

nomenclature. Moreover, users can search any polymer chemistry and topology including wildcard 

elements, which extends the capabilities in SciFinder and allow users to discover data for complex 

polymers. This search technology will allow polymer chemists to enjoy the same benefits of 

molecular search that small molecule chemists have enjoyed and support FAIR data principles by 

making data much more discoverable, accelerating materials innovation. 
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Supporting Information: list of node and edge attributes in graphs; examples of graphs for 

different polymer chemical structures; substructure search flowcharts 
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