BigSMARTS: A Topologically-Aware Query Language and Substructure Search

Algorithm for Polymer Chemical Structures

Nathan J. Rebello,! Tzyy-Shyang Lin,' Heeba Nazeer,? and Bradley D. Olsen!

'Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States

2Department of Computer Science, Wellesley College, 106 Central St, Wellesley, Massachusetts,
02481, United States

Corresponding Author: Bradley D. Olsen, E-mail: bdolsen@mit.edu

Abstract

Molecular search is important in chemistry, biology, and informatics for identifying molecular
structures within large data sets, improving knowledge discovery and innovation, and making
chemical data FAIR (findable, accessible, interoperable, reusable). Search algorithms for polymers
are significantly less developed than those for small molecules because polymer search relies on
searching by polymer name, which can be challenging because polymer naming is overly broad
(i.e. polyethylene), complicated for complex chemical structures, and often does not correspond
to official IUPAC conventions. Chemical structure search in polymers is limited to substructures
such as monomers without awareness of connectivity or topology. This work introduces a novel
query language and graph traversal search algorithm for polymers that provide the first search
method able to fully capture all of the chemical structures present in polymers. The BigSMARTS
query language, an extension of the small molecule SMARTS language, allows users to write
queries that localize monomer and functional group searches to different parts of the polymer, like
the middle block of a triblock, the sidechain of a graft, and the backbone of a repeat unit. The
substructure search algorithm is based on the traversal of graph representations of the generating
functions for the stochastic graphs of polymers. Operationally, the algorithm first identifies cycles

1

mailto:bdolsen@mit.edu

representing the monomers, then the end groups, and finally performs a depth-first search to match
entire subgraphs. To validate the algorithm, hundreds of queries were searched against hundreds
of target chemistries and topologies from the literature, with approximately 440,000 query-target
pairs. This tool provides a detailed algorithm that can be implemented in search engines to provide

search results with the full matching of the monomer connectivity and polymer topology.

1. Introduction

Molecular search is one of the most important problems at the intersection of chemistry, biology,
and data-driven research impacting the daily lives of researchers as they rapidly find and process
information. In cheminformatics, two-dimensional chemical structures are generally treated as
molecular graphs with atoms as nodes and bonds as edges.! Searching functional groups or
substructures in molecular graphs is used to search and filter databases, access properties, highlight
and count functional groups, and solve a wide range of problems.®!> Moreover, search
technologies and data mining tools make information easily accessible to researchers in academia,
industry, and the general public on databases like PubChem and Reaxys. '

Substructure search technologies are well-developed for small molecule chemistries
because each molecule may be represented by a deterministic graph, allowing graph traversal
algorithms to be used for structure matching. To implement search algorithms, databases index
molecules using strings of ASCII characters, or line notations, which are very data compact. The
Simplified Molecular Input Line Entry System, or SMILES, is the most popular line notation to
index small molecules as deterministic molecular graphs because it is compact and has few
grammatical rules.> !” The SMARTS query language'® encodes molecular patterns or subgraphs
to be searched; after initial steps to accelerate the search process on large databases, final matching

is performed to SMILES molecular graphs using graph traversal algorithms that have been well-

studied.’* However, polymers are stochastic graphs, making SMILES and SMARTS technologies
unable to fully capture their connectivity and topology within a search algorithm.

Absent full graph traversal search that is available for small molecules, several alternative
search technologies are currently used for polymer chemical structures. First, users can search for
polymers by name on a tool like Google Scholar or Web of Science. Although IUPAC has

19: 20 common usage continues to

developed a standardized naming convention for polymers,
involve non-standard naming conventions and abbreviations, including the use of trade names.?*
22 Common polymers like poly(styrene) are referred to by many variations of the same name
(“poly(styrene)”, “polystyrenes”, “styrene polymer”), and for these polymers, a simple name
search is not precise enough to effectively filter the search results to desired end groups, topologies,
or copolymer structures. Nomenclature gets complicated for complex polymers, and many authors
choose not to name polymers, instead referring to them with numbers or proprietary codes that
make them effectively unsearchable by name.

Databases like Reaxys and PubChem allow users to search for small molecules by
structure, but users cannot search for polymers and classify them by topology. Users can search
for polymer structures on some databases like SciFinder, but there are limitations. Searching for
polymers by their monomers is valuable, but users may not be familiar with the chemistry. Finding
a polymer according to its structural repeating unit (SRU) is beneficial, but users could query
variations of the SRU, like frame shifts, that are valid structural identifiers of the polymer but are
not recognized by the search algorithm. Moreover, searching for repeat units by molecular formula
can be ambiguous because it does not specify how the atoms connect. For example, C2H4O can

match poly(vinyl alcohol) or poly(ethylene glycol). Alternately, polymers could be queried by

string matching to a line notation representation such as BigSMILES.? For polymers with defined

backbones a solution for line notation canonicalization has been proposed that makes this a
possibility; however, searching substructures in a BigSMILES string can be challenging and this
solution excludes many branched and network polymers of technological importance.

Motivated by the impacts of molecular search, this work introduces a novel query language
for polymers called BigSMARTS, a finite graph representation for all polymer topologies inspired
by state machines, and a substructure search algorithm that extends the depth-first search algorithm
to check for a match. First, the query language is introduced that allows users to search chemistry
and topology and localize chemistry queries (functional groups and repeat units) to different parts
of the polymer topology. Then, a graph generation algorithm is presented for the query and

target. Repeat unit graphs are cyclic and periodic in literature,*2

and the polymer graphs in this
work extend this idea to all topologies. From the graphs, a substructure search algorithm for a

match is described. Finally, a validation procedure is presented with hundreds of unit tests crafted

to test different types of queries.

2. BigSMARTS Query Language

Table 1. BigSMARTS Summary

Syntax Syntax Meaning Query Example
Origin
Regular SMARTS Searches CC(clecccecel)
SMARTS functional
groups
anywhere
in the
target
SMARTS in | BigSMILES | Searches {[1CC(clcccec])[]}
stochastic functional
objects groups in
the repeat
units
SMARTS | BigSMILES Forms {[I[$1CC(cleccec)[S][]}
with repeat unit
bonding and end

descriptors group
attached: queries;
{[<L.[>1.[8]} Searches
target
backbone
Repeat unit | BigSMILES | Searches {III$]CC(clcccec)[$],[$]ICC=CC[S$][]}
and end copolymer
group lists S
Hydrogens | SMARTS + | Restricts {{II$][CH2][CH](clcccee)[$1[1}
written in | BigSMILES pendant
repeat units groups
Hydrogens | SMARTS + | Designates [CH3]CC(C){[S][$]CC(cleccec DS][}
written in | BigSMILES | terminal
end groups points in
target
chain
Operators | BigSMART Logical {[I[or1][$]CC(clccccel)[$],[or1][$S]CC=CC[S][1}
before S operations
elements in
stochastic
objects:
{[or],[x0r],!
}
I* as BigSMART | No other {[1[$]CC(clccccc)[S].I*[1}
element in S repeat
stochastic units or
objects end groups
?7* anywhere | BigSMART | Wildcard {[II<IC=C?*[>][1}
an atom is S topological
allowed distances
{r; BigSMART | Wildcard {01} 7*{[S1[S]1CC(cleceeeDSI[$1} 27* {111}
S stochastic
objects
K BigSl\S/IART Nipther {[][]}?*{[$][$]CC(ClcCi001)[$][$]}?*{[][]}!{[][]
objects

The BigSMARTS query language is a straightforward grammatical extension of the BigSMILES

and SMARTS languages, and every BigSMILES?: 2’ and SMARTS' string is a valid

BigSMARTS string. The key difference between BigSMILES and BigSMARTS is that repeat

units and end groups in BigSMARTS are written in SMARTS syntax, whereas those in

BigSMILES are written in SMILES syntax. A BigSMILES string represents a set of molecules (a

5

polymer), whereas a BigSMARTS string represents a set of subgraph patterns (a polymer
query). SMARTS and BigSMARTS are more general than SMILES and BigSMILES because
labels for a SMARTS atom require properties like the hydrogen count of the atom to be explicitly
specified.!® Unspecified properties in SMARTS or BigSMARTS are not assumed to be a part of

the query. Table 1 shows a summary of the query language.

BigSMARTS Single Object Queries PMMA PEG PEG-b-(PEG-stat-PPO)

HO H :
a cco \/\S{ﬁ ool /‘QMH
Functional group anywhere in target o e " ' f
HO H 0Ll o a6 H
b {lccop} _ _ %sﬁﬁ oy %@ﬁﬁ){g@;
Functional group in repeat units 0 4? n y
¢ {DI<Iccorn} sty O)(v%)g“
P Hofﬁdi” Q%;\ﬁ n i

PEG backbone search (no hydrogens)

d {[l[<][CH2][CH2]O[>][]} HO~ H NP Y H
PEG with no other pendant groups Sﬁﬁo HO{&\O)“H %Woa

e {[l[<I[CH2][CH2]O[>],[<][CH2][CH]([CH3])O[>][]} MO~~~ HO H 0\ LA \\H
PEG and (comma) PPO random copolymer Sﬁﬁo O)" /O%\OX&VQ@Q};’
| ¥

f {[l[or1][<][CH2][CH2]O[>],[or1][<]CC[>][]} HO._~., H HOW‘, Rl H 0 E& '\-j{t;.(p H
PEG or PE backbone Sﬁo - 8K j"{)\oa

g {NI<ICH2][CH2]0[>].1* 1} Y o g /Oz(a’“no)x@d)f*o}y
0¥ 0 T Th y

No other repeat units in the object matched
[

h [OHI{[>][<][CH2][CH2IOL>], ;1 ¥[<]} st o /O{/\OZ(uo)f/Lo@H
o7 "o n Y

No other repeat units and end groups :

Figure 1. BigSMARTS searches and substructure hits for a variety of single stochastic object
queries. Each box highlights an atom pair and bond that is matched, and a second color (transparent
blue) is added to show overlapping hits. (a)-(e) have grammatical elements that combine SMARTS
and BigSMILES: (a) functional group searched anywhere in the target; (b) localized to the repeat
units; (c) descriptors added to form poly(ethylene glycol) backbone; (d) poly(ethylene glycol); (e)

copolymer search; (f)-(h) have grammatical elements unique to BigSMARTS: (f) logical search;

(g) poly(ethylene glycol) with no other repeat units in the target object matched; (h) poly(ethylene

glycol) with no other repeat units or end groups other than what was written.

2.1. Functional Group Local and Global Queries

When a user writes a BigSMARTS query using only grammatical elements from
SMARTS, the query will search for that subgraph anywhere in the target graph. Queries using
specific BigSMARTS grammatical elements allow the user to localize the query to specific
topological regions of the polymer. For example, the query CCO in Figure 1a searches anywhere
in the polymer, while {[JCCO[]}, without bonding descriptors searches for the specified subgraph

anywhere within a monomer (Figure 1b).

2.2. Repeat Unit Queries

When bonding descriptors are specified (Figure 1¢), these additionally enforce localization
of specific atoms to the backbone of the polymer chain, as in the query

{J[<IC(=O0)CN[>][]}

which would match any poly(amino acid) backbone because hydrogens in a SMARTS or
BigSMARTS query are not specified. It is important to note that only atoms and bonds of the
repeat units and end groups match during the search, not the bonding descriptors. Therefore, a
query with one set of bonding descriptors may match to a target with another as long as the
monomers match according to the matching rules in the search algorithm (vide infra). The addition

of hydrogens (Figure 1d) yields a query that would only match poly(glycine):

{[I[<IC(=O)[CH2][NH][>][]}

2.3. Copolymer Queries

Users can write queries with multiple repeat units in the stochastic object, and all listed
repeat units must be found in the target. Therefore, the standard comma-delimited list element
from BigSMILES is interpreted as an “and” logical operator in BigSMARTS. The query string
poly(alanine-co-glycine):

{J[<ICEO)[CH]([CH3])INH][>[<]C(=0)[CH2][NH][>][]}
will only match to targets with both monomers present in the same polymer. Figure le shows
another example. In this example, if the user were not to specify hydrogens on poly(ethylene
glycol) or [<]CCO[>]:
{[I[<ICCO[>],[<ICC(C)O>][1}

The repeat unit queries for poly(ethylene glycol) and poly(propylene glycol) could both match to
the repeat unit for poly(propylene glycol) in the target, illustrated in Figure le.
2.4. Joint Functional Group and Repeat Unit Queries

The user can remove bonding descriptors from one or more repeat units to search for
chemical substructures without regard to the polymer backbone, and both the functional group and
repeat unit must match to the same stochastic object, and it is possible that multiple elements in
the stochastic object can match to the same repeat unit if hydrogens are not specified:

{{I[<IC(=O)[CH]([CH3)[NH][>],C(=0)[CHZ][NH][]}

2.5. End Group Queries

So far, all of these examples have not specified end groups. Users can easily search

including end groups in BigSMARTS using the same syntax for representing end groups in

BigSMILES; however, unless hydrogens are fully specified, the end groups may not be terminal
points in the graph. For example, the query for PEG with end groups:
C{[<I[>]OCC[<][>]}OC(=0)
would match the target:
C{[<][>]OCC[<][>]}OC(=0)C=C
However, adding hydrogens to the query:
C{[<I[>]OCC[<][>]} O[CH](=0O)

would prevent a match.
2.6. Logical Queries

In addition to these grammatical elements that are already present in BigSMILES and
SMARTS, BigSMARTS adds several additional grammatical elements to fully capture polymer
connectivity and topology. First, because the monomer list within each stochastic object
effectively represents a joined search, users can use logical operators “or”, “xor”, and “not” in
order to specify more complex queries. As described earlier, by default, no operator means “and”.
The not operator is represented by an exclamation point and need only be included on repeat units
to be specifically excluded from search, as in this search for polystyrene polymers specifically
excluding poly(4-chloromethylstyrene):

{[][$]CC(clcceec])[$],!1[$]CC(clcec(CClec)[S][]}

Queries that include “or” and “xor” apply the symbols [or] or [xor] before sets of different repeat
units that are governed by the desired search logic, and the symbols are numbered in order to allow
multiple simultaneous “or”” and “xor” logical elements to be included in a search. Illustrating this
on the poly(alanine-co-glycine) query,

{{Ilor1][<]C(=0)[CH]([CH3])[NH][>],[or1][<]C(=O)[CHZ][NH][>][]}

would match to poly(alanine) homopolymer, poly(glycine) homopolymer, or poly(alanine-co-
glycine). In contrast,

{[I[xor][<]C(=O)[CH]([CH3])[NH][>],[xor1][<]C(=O)[CHZ][NH][>][]}
would match either to poly(alanine) or to poly(glycine) but not to the copolymer. Figure 1f shows

an additional example.

2.7. No Other Repeat Units and End Groups

The search logic of BigSMARTS functions such that the query is searched as a subgraph
within BigSMILES targets, similarly to SMARTS searches within SMILES strings. Therefore,
any search specification for a given monomer set also hits to copolymers that include this monomer
set as a subset. To allow exact matches to be specified, the not symbol can be combined with a
wild card, yielding !* which has the meaning “nothing more.” For example, the query

{[J[<IC(=0)[CH]([CH3[NH][>],!*[1}

matches only to poly(alanine) homopolymer and not to any copolymers with any other monomers.

The use of !* is further illustrated in Figures 1g and h.

10

BigSMARTS Topological Queries PEG-b-(PEG-stat-PPO) PEG-b-(PEG-stat-PPO)-b-PLA Tetra-PEG

M NH;

- ﬂ#c R
0 A
o
0 o O}{/Lo H) o}{)\ OT(L H b J
?* means 0 or {/\ 26\/ n A \{/\Ox h 0 i O! UXOF\
more atoms § a1 B Wt

a {llkPP*c(=0)0?*[>]l}
Ester functional group on backbone (polyester)

b {0000

Diblock substructure with wildcard linker

c {0RHO0MN0
Diblock with no other blocks

d {I0P*>1<Icc(C)o=]<1}*{[1}
Middle block contains PPO backbone

e {[Jur*rl<lccc)o=>]* [<I*{1}
Middle block contains only PPO backbone

f {00 CH{>I<Iccol>10h {00}

3-arm substructure with wildcard core

2 30 9 I NE N
XRLEKLS
LXK

Figure 2. BigSMARTS searches and substructure hits for a variety of topological queries: (a)
functional group backbone search; (b) topology search with wildcard stochastic objects and
linkers; (c) there should be no other objects other than what is specified in the query; (d)-(e) repeat
unit chemistry localization search, with the same grammatical elements in Figure 1; (f) wildcard

branch point.

2.8. Wildcard Topological Distances

The presence of large connecting groups in polymers also demands grammatical additions
that can include wildcard segments in addition to wildcard atoms traditionally found in SMARTS.
These are shown in Figure 2. Among many applications, this enables users to produce more
nuanced searches for polymer topology. Wildcard linear sequences of atoms are represented by
?7* which specifies a connection between the two adjoining strings without specifying the
connection length. A null string is allowed as a possible linker with ?*. For example,

{[II81CC(cleceecD[$][$]} 7* {[S[S]ICC(CY(C(=0)OO) [T}

11

specifies a query for a poly(styrene-b-methyl methacrylate) diblock copolymer without specifying
the type of chemistry used to form the junction between the two monomers. This type of query
can be extremely valuable when one wishes to search across different synthetic methods (i.e.
anionic polymerization vs. living free radical polymerization) that would use different linker
lengths.

The “?*” symbol is also very useful for finding all polymers with a given functional group
along the backbone but not in side chains. For example,

{{I[<I7*C(=0)O7*[>][1}

would match all polyesters but not polyacrylates or polymethacrylates. This compares favorably
to standard substructure search for esters which is unable to differentiate even these basic polymer
families. Grammatically, “?*” can be embedded anywhere an atom is allowed in the repeat units

and can be used to match entire end groups.

2.9. Wildcard Stochastic Objects

To compose queries for polymer topologies, the user may write empty stochastic objects,
{[1[1}, which query for the presence of a polymeric segment without specifying its specific
chemistry. For example, to search for an unfunctionalized polystyrene homopolymer as the central
block between two other polymer blocks, a user would write

{1013 27*{[SI[S][CH2][CH]([c]1 [cH][cH][cH][cH][cH]1)[$][$1} 7*{[1[1}
Alternately, the query
{003 7*{=1<I[CH2][CH]([CH3DO[>][<13 7* {[1[1}

specifies a search for a middle block of poly(propylene oxide) and would match a poloxamer.
While the wildcard sequence element ?* need not be included between blocks in either of these

two examples, leaving it out would convey the meaning that there are no atoms between the

12

stochastic objects, restricting the matches to the query in a way that does not reflect the most likely

meaning of the user.

2.10. Complex Topological Queries
The user may write more complex topological queries using the ?* operator. For example,

to search for a 4-arm star polymer

{7 {00HE*00HE*3)

in which each arm contains the poly(ethylene glycol) repeat unit backbone, the user can write

{II<ICCOFI<T3 7* (7 {[ZI[<ICCO=][TH?* {[ZI[<ICCO=][TH(?* {[>][<ICCO[>][T})

These repeat units can be frame-shifted:

{II<ICOCI=]I< 7*(?* {[ZII<ICOC>1TN* {Z<ICOC=1H?*{[Z1[<ICOC[>][1})

To search for an H-polymer, the user can write:

200?700 7** 005 ?* {003
in which the center block can contain the PEG repeat unit:
{2007 {F<ICCOFI<T3 7*(?* {105 ?* {111}

2.11. No Other Objects

Because SMARTS and BigSMARTS specify query subgraphs within a larger target graph,
there is a possibility that the target graph contains stochastic objects not in the query. A final
additional grammatical element added to the query language allows the user to specify that the
query cannot contain stochastic objects that are not explicitly specified. To make this

specification, the user combines the not operator and the empty stochastic object, !{[][]}, as the

13

final two grammatical elements in a query. For example, this query can be used to specify a search
for all block copolymers with exactly two blocks:

{5 2* L0003

or for star polymers with exactly three arms:

(I 2* =007 {003 {003

3. Atomistic and Topological Graphs

A polymer is an extremely large ensemble of molecules with distinct chemical structures.
Therefore, they are represented by stochastic graphs. This complicates the generalization of graph
traversal algorithms used for small molecules to perform substructure search for polymers because
different members of the ensemble may give different results for any query, and a query of a
polymer against another polymer has an impossibly large number of binary pairs of molecular
graphs to compare. Therefore, building on previous work that has demonstrated that polymers are
directly analogous to automata,”®> BigSMARTS converts polymers into a deterministic graph
representation based on the generating function that is used to construct the molecules, fully
capturing the molecular topology, connectivity, and chemical rules from molecular synthesis. In
the previously published automata representation, nodes are states, edges are the building blocks,
cycles in the graph represent effective repeat units, and these graphs generate sequences of building
blocks from the start to the stop state. State machine minimization algorithms can be used to find
a canonicalized or unique representation for a polymer, an equivalent machine with redundant
states removed (an entirely separate problem). In this work, the graphs for substructure search have
atoms as nodes and bonds (closely analogous to states of automata) as edges, a transformation of

the original automata concept that facilitates graph traversal searching. These graphs do not show

14

probabilities of repeat units and end groups connecting, but rather the set of possible connections

that generate the ensemble.

-
Input BigSMARTS or
BigSMILES string

¥

~

Input atomistic graph

¥

J

Replace objects with Bk,
making SMARTS/SMILES

Oy
LN
HO [N7
Terminal descriptor o} Empty right EG
. ; 4 mpty rig

[OH|{[>1][<1]C(=0)[CH]([CH3])[NH][>1],[<1]C(=0)[CH2][NH][>1][]}

Merge non-descriptor N

nodes until a single node
represents an entire
SMARTS or SMILES

¥ g o) 7
(" Build end group A A “1” is compatible | SINGLE)
T R .
molecular graph using with a “2” - Terminal descr\lgtor: [Return topology graph
SMARTS/SMILES tools: (e Sy";m;?;' ’ ’
RDKit and NetworkX) Ve N f..(T~
¥ . l/ZfSINGLE / 2 STNGLE ™. 1

y

Replace Bk with

. . AC / c

terminal descriptors - f ™ .
T KOUBLE |SINGLE ~ [1_SINGLE DOUBLRSJNGLE\‘ 1_SINGLE
- I ‘ | \ symbol,
Connect repeat unit 0 e | 0 C | D
paths to terminal - /"‘ \ /
descriot /SINGLE\SINGLE T |SINGLE/
L escriptors) w N/ NS
C N symbol, ID, charge,

aromaticity, #
hydrogens, nested

2 3

Topology Graph

[Return atomistic graph]

Atomistic Graph

Figure 3. Every BigSMARTS or BigSMILES string is converted into an atomistic and topology
graph. First, a BigSMARTS or BigSMILES is converted into a SMARTS or SMILES by replacing
stochastic objects, “?*”, and “{[][]}” with SMILES atoms. In this example, the input string can be
replaced with [OH][Bk][Es] (“Bk” for stochastic object and “Es” for empty end group), which is
a valid SMILES. RDKit converts SMILES into a molecular graph, and NetworkX is the graph
package used to create polymer graphs and execute substructure search. Each cycle in the graph
represents a repeat unit path. An edge labeled “1” connects an atom to its descriptor neighbor in
the string and “2” connects an atom to the compatible version of its descriptor neighbor. Thus,
oxygen (“O”) connects to the terminal descriptor “[>1]” with a “1”. Because of string replacement,
topological strings in BigSMARTS like “?*” and “{[][]}” are embedded in the graph. Non-repeat

unit strings in the stochastic object like “!*” and SMARTS are stored as attributes in the descriptor

15

nodes. The “!{[][]}” is saved by the algorithm. Attributes in each graph are shown: the integer
topology ID links the atomistic graph to the topology graph. In the atomistic graph, only the

colored nodes, atoms and bonds, are searched during traversal, not the descriptors.

- [5})

a @ p .

BT ASNGLE ™ (SINGLE\2_SINGLE /%\/ 9*/\0
el e ’/ N " ¢ "" L !

(LSIGLIE [\1SNGLE o7 o 3 c) (1)

it f h | /S]NGLE e / ‘-\

c w1 _SINGLE ([€ |2 sINGLE | . | T

: . :‘\ c SINGLE I" S]:NGLE
S]]\GLE/ :\S]NGLE/' 2 cycles for — { T o c \

\ [B 2 modes of 'S\‘NGL,}E A sm:}[E‘z SINGLE\1 SINGLE'\ \ ’,“'.‘LSD'GLE e ‘I‘LSINGLE 2 represents
o ~ - o c o i,
ANCID\SINGLE AINGLE\SINGLE addition P | PEG
| | |) ISL\GLE'POT.'BLE [SINGLE 2_SINGLE 1 [s11] [o] |
o \ P | -

c c c . TN c o ¢ ey o f ™
v S) \ fsmele 7 |LSNGLE| \SINGLE | 3
/DOUBLE |SINGLE POBLESNGLE (173 | — lmvare | / / I =115 |
|) | \ F i c (1 smeie” ¢ lz smoLE [0 \

o o o o c | ¢ | .
/7—. 1 | ‘ | \SINGLE/ [SINGLE | T
’SH\'GLE ‘SH\'GLE v/ c |51NGLE |/ b S~ 1
) T ~c lis
[® 1 2 o] ' ! :
/ SINGLE SINGLE linker
SINGLE F SINGLE;: [2_SINGLE l
(o] C
TN [>1] P e / O
c o - \ p ‘-’ARDMATIC‘-,‘ IAROM.AIIC*:I‘ t [s116)
{ OM | [<1]5 ,‘I ‘ /‘i;SL\GLE‘LSINGLE c c \
/\\\/ Y e | -
o h /ﬁr-«%\ c < AROMATIC pROVEATIC Py
o A \ ’DOU‘ELE [DOUBLE'SINGLE : ‘)
(3 4\ ! L C © © 3 4
1 and 2 represent paths |‘ Vo F %mommc AROMATIC }ARDMAIIC AROMATIC
. _i INGLE
through the diol ‘I ~ \ . = c 3and 4 are
3and 4 represen.t p.aths \ ([>l] 6 \, . lsmezz) larosamic Pmmc 2 modes of
through the diacid { N c polystyrene
4 cycles (repeat units) each] / pouece |arosuame/ \arouamic/ addition
contain diol-diacid combo 0 @ ‘e Y = e

16

_Cc.

™ - e @]
d . s N e /DOUBLE SINGLE",
1] n [OH
N ~ o0 o c HO

fLéNGLE [N sn\s\ A [NCLE A, ©
| // \ \l [[1] @©
C [1_SINGLE c b_SINGLE T +
V\ f‘ ,-‘JI A= *f/\ 7 1 SENGLEf SINGLE", L sL\GLE smsuz
.\‘SINGL} I{INGL:Z/ = o’)m I ® ® & N\ HO \/Y\OH
- { K’D\'GLE'\DOUELE SINGLE DOUBLE \ 2 SINGLE
€ < [OH
c o C (o] B
‘SINGLE ‘STNGLE S ‘smu; 3
¢ g | [$117 | 5 5 A
N 4 \ }SJNGLE ‘SL\'GLE "'x. 1,2are A,
.‘-‘DOUBLE'-\:SDSIGLE (DOUBLE\\ISI'NGLE / \\ o o e \ 4,6, 8are B3
6 o o 6 3 4 |DDUBLE S/]NGLE" 2 sméﬁ' »,-;"“
. N N
1 SINGLE llisl'NGLE J\ pervee @ f\[)” ! \ SweE [<l]
\ / \ \ -\‘ 'S‘lbiGLE l SL\GLE 1 S]NGLEII SlNCJ.EK] SL\'GLF;:‘ {2 SINGLE
Ny S
ft =17 | [=11) [>1]8 | Q\"l]g J o ,/ o o Y o \
‘.\ \ . \ A]
/\ \r—/\ \’_/ | FINGLE SINGLE | 4
|; SINGLE\ |;273INGLE\ 1] 7 / ¢ E |
\ /
\ 5 6 / FINGLE SINGLE 1SINGLE
C‘ \ C “" hsmaz ¢ c |),J L<
ISINGLE ‘|1751'_\IGLE '\SJNGLE ‘|Ls]NGLE ‘ jwete smae | \ L [>1]10 \ /
pa / (': / 3and4areacrylic | € c mj / /
| f" | f;‘/ acid addition _\77 I‘SL\GLE‘S]NGLE .AESFBGLE‘EIEW 5 \ »\ /
\SINGLE, \SINGLE, . . o0 ¢ ¢ o
AN N 5 and 6 are sidechain L . ‘
AN ~ Y /SINGLE - SINGLE /' 1
o o PEG cycles o ~@

Figure 4. Atomistic and topology graphs for five polymers: (a) poly(methyl methacrylate) or
{[II]ICC(C)C(=0O)OO)[$][]}, in which the same repeat unit is represented twice in the graph to
illustrate head-to-head tail-to-tail addition; (b) poly(ethylene glycol-b-styrene) or
{[II<ICCO[>][<]}CCO{[S][SICC(clcccec)[$][]}; (c) Poly(ethylene succinate) or
{[I[<]OCCOI[<],[>]C(=O)CCC(=0)[>]1[1}; (d) poly(styrene) with poly(ethylene glycol) sidechain
or {[IISICC(CE=EO)OL[>]I<ICCO=1NISIL; (e) branched polyester or

{[II<IC(O)CCC(=0)[<].[>]OCCC(O[>)CO[>][1} -

To convert a polymer into a molecular graph inspired by automata, the algorithm
determines all possible paths through the repeat units and end groups. Figure 3 shows a flowchart
and an example, and Figure 4 shows examples of a chain-growth polymer, block, AA-BB

copolymer, graft, and branched polymer. Figure 5 illustrates these graphs for BigSMARTS

17

grammatical extensions mentioned in the previous section. Supporting Information Section 1

shows a comprehensive flowchart, and Supporting Information 2 shows examples of different

topologies.
[<1] ‘ ;;'\‘[<1]‘:': . (114
a ’1/\511:1(}1,(]\& Y b ‘-"i;S]i\i(;L];"x.Z_STNGLE r
{[Il<I?*c(=0)0?*[>][1} L~ \ / 1] 2 A {[<1?*{[>][<]ccol>][<]}?*[>](1} pon g &
Functional group along backbone (2* V) Repeat unit along backbone [[]
Matches to polyesters SINGLE \‘*N/ o~ "/
& 2_SINGLE 1 [=11] |-]_\ [<115)
P - S
c /DOUBLE |SINGLE d _ _ /T
2 ‘ . 1* i5 stored in o3
*is Ve ! o o node

1 |
ISINGLE _SINGLE
L]

X) |
wildcard /SINGLE'2_SINGLE lsoveLE/ . 2 ey

- \ o > | / \
branch [~, Ll \ g a8 I P c / [B)

D (1) % 1 SINGLE /4 SIvGLR\ [
B ([2-SINGLE\1_SINGLE /2 SINGLE\1_SINGLE | g1z,

point \. . S
el — N {[{1} constructs S 4 A N /T
//SINGLESINGLE Iw,zfsmGLE"a . | awildcard cycle [=11 (=11 [=11) o 1 3
' ; | / N A\ / \ / \ .
2% > 2% Jl_SNGLE =116 ‘ . /,] \"‘I' / ‘_} . -/\". _T_/ .\\\ B L\
' " / \ J [(2SBYGLE | [2_smveLE} _SINGLE', /
L SINGLE |1 SINGLE \SINGLE/ P ‘ I \ [\ (117)
L Py /1t o* lsmeLe ¢ | o |i_seLE y
/ A4 N g . / . / T
| [>1]/J “.\[>1]/7- . o Y € \SINGLE/ SINGLE [I_SINGLE \SINGLE/ B ‘4‘
TN NN SN Mg’ N
(2SINGLE | 2 SINGLE', s ' Ve ™ * _c “I * g
¢ 2 ;:I_SL\IGLE \ =1 7/! "-\\Pl] 8/,“' 2% + * means one I‘-'éﬂ\'GLE\?‘U‘TGLE."‘ (s)
ISINGLE /1_SINGLE “"-‘SJNGLL;" I i or more wildcard c ‘o o 4
@ ,‘J N7 4 5 atoms in cycle y
SRR NI H{l<Iccol>IN +{ {y*{=l<lcc(c)ol>], * [<Iy2*{IHI}
o Star with wildcard core Repeat unit in midblock

Figure 5. Graphs with BigSMARTS grammatical extensions for queries in Figure 2 except for
segmented polymer (b) and “!{[][]}” added to (d). Specifically, “?*” and “{[][]}” are embedded
into the graph and are checked during traversal. The string “{[][]}” constructs a wildcard cycle in
the query graph, but during search, it matches to an entire stochastic object or set of repeat units;
stored in the descriptor node is a Boolean value that this cycle represents a wildcard object.
Moreover, “!{[][]}”, which means no other objects in the target, is checked before graph traversal
begins (does the number of query objects equal the number of target objects?). Non-repeat unit
elements, including functional groups (SMARTS) localized to the target repeat units and “!* in

the descriptors, are checked during or after substructure search completes.

18

By way of example, consider the poly(alanine-co-glycine) query with hydrogens

mentioned earlier in Figure 3, encoded in BigSMARTS as:
[OH]{[>][<]C(=0)[CH]([CH3])INH][>],[<]C(=O)[CH2][NH][>][]}
The first step is converting the BigSMARTS or BigSMILES into a valid SMARTS or SMILES by
replacing the stochastic objects with heavy atoms ([Bk]), empty end groups with [Es], and saving
the repeat units. The SMARTS or SMILES “[OH][Bk][Es]” is converted into an RDKit molecular
graph with labels for each node, including the element symbol, formal charge, aromaticity, and
hydrogen count, and labels for each edge, including the bond type (see Supporting Information
Section 1 for full list). For each stochastic object, the algorithm determines all possible paths
through the repeat units and inserts them in place of [Bk]: since each repeat unit is head-to-tail
addition, there is a single path for each denoted with the list:
[[<], C(=O)[CH]([CH3])[NH], [>]]
[[<], C(=O)[CH2][NH], [>]]

These lists can be connected to form a graph by combining compatible bonding descriptors ([>7]
is compatible with [<n] and [$#] is compatible with itself), and a graph with two cycles for two
repeat units can be generated. As shown in Figures 3-5, state machine-inspired polymer graphs are
directed, and the direction is determined based on how the string is written, parsing the repeat units
and end groups from left to right, which means there can be many ways of encoding the same
polymer. Nevertheless, if the ensembles generated by the string are the same, then the search
algorithm ensures a match. This algorithm does not explicitly construct lists, but at a high level,

this is how the state-machine-inspired graphs are generated.

19

This tool is robust to equivalent transformations of the stochastic object string, including
repeat unit inversions, changes to the SMARTS or SMILES string, repeat unit order, and bonding
descriptors. For example, consider poly(alanine-co-glycine) query:

[OH]{[>][<]C(=0)[CH]([CH3])INH][>],[<]C(=O)[CH2][NH][>][]}
The following poly(alanine) strings all produce a graph with a single equivalent cycle:
O=C([<])C(C)N[>] (changes to the SMILES)
[>]C(=O)C(C)N[<] (changes to the bonding descriptors)
[<KINC(C)C(=0)[>] (inversion)
This is because in all three cases, the repeat unit is the same, and the nitrogen must connect with
the carbonyl carbon, forming a cycle.

The mapping from repeat units and end groups in the strings to the cycles in the graph is
not necessarily one-to-one. If there are multiple modes of propagation, a single repeat unit maps
to multiple cycles. For example, consider a chain-growth repeat polymer poly(methyl
methacrylate) with the BigSMILES in Figure 4:

{{II$1CC(CUC(=0)OO)[$][1}
The algorithm parses the repeat units and bonding descriptors and determines that there are two
paths through the repeat unit for H-H and H-T addition, represented by two lists with the repeat
unit inverted:

[[$], CC(C)(C(=0)OC), [$]1]

[[$], C(CXYC(=0)OC)C, [3]]
This forms a graph with two cycles. Conversely, for AA-BB polycondensation reactions, multiple
repeat units can form a single cycle of the graph. The BigSMILES string for poly(ethylene

succinate):

20

{[I[<]OCCOI[<],[>]C(=0)CCCEO)>][1}
There are two paths through each repeat unit, but the effective repeat unit for this polymer is the
diacid-diamine units joined together, and this would form four linked cycles, shown in Figure 4.

Supporting Information Section 2.8 shows a more advanced example.

Figure 6. Topological graphs that resemble finite automaton for a: (a) homopolymer, (b) statistical
copolymer, (c) block copolymer, (d) polymer with multiple modes of termination, (e) segmented,
(f) graft, (g) star, and (h) dendrimer. The nodes represent repeat units, end groups, or bonding
descriptors. The only attribute in these graphs is an integer ID (see Figure 3) that connects nodes

in this graph to sets of nodes in the atomistic graph.

In order to detect cycles or repeat units for substructure search, the algorithm builds a
second graph, the topology graph, which is a directed graph. In order to do this, every SMARTS
and SMILES in the atomistic graph is contracted into a single node using NetworkX’s

21

contracted_edge function, which inputs a pair of nodes to merge, and the descriptors become
separate nodes in the topological graph. Figures 4 and 5 show several examples of the resulting
topological graphs, and Figure 6 shows drawings of polymer graphs for different topologies
produced from this algorithm, from block copolymers that contain cycles in series to star polymers

that contain cycles connected to a central core.

4. Substructure Search Algorithm

(Search query end

Input query and Identify cycles and Search every query Is any query Every query
target atomistic stochastic objects cycle in every cycle not groups anywhere cycle and EG
and topology (conjoined cycles) target object using found? in target using has list of
graphs in topology graphs atomistic graphs Return False _ atomistic graphs matches
H (Adjacent cycles and EGs in query
'N}@r"\ must map to adjacent elements in
’ o H _target. Check '*. Return True or False)

X

[OHI{[>1][<1]C(=0)[CH]([CH3])[NH][>1],[<1]C(=O)[CH2]INH][>1][]}

Must map to L~ @
adjacent atoms in 1_SINGLE
t t e "\ /H\/
1 arge 1 [}]] .\ }
\|

‘\ /2_SINGLE / 2 S]NGLE \ H
\\ [=1]4 W‘ A& .“"" c ™ Match target N Be frame-shifted «y\ J\}

/ ™ N,
i | / h \
,'DOUBLE‘ISL\'GLE ;LSJNGLEIDOUBI_E\smGLE‘..LSL\’GLE backbone

™, q‘/ ' | ; \ substructure
o c o c |
"/‘ A\ //"/ v !"I | /
€ N N
Detect cycles and end groups Run graph traversal on atomistic
(EG) in topology graph graph for cycles first, then EGs

Check: symbol (shown), charge, Re-traverse Traverse another
aromaticity, # hydrogens, bond order same target cycle target cycle

Each cycle can...

Figure 7. Polymer search requires the atomistic graph for substructure search and topology graph

for cycle detection. During graph traversal, descriptors are skipped.

A match between a BigSMARTS query and a BigSMILES target is defined on the basis of
sets. Each BigSMARTS query represents a set of SMARTS objects, while each BigSMILES string
represents a set of SMILES objects. For a query to match a target, every SMARTS in the set

defined by the BigSMARTS must be found as a substructure in at least one of the SMILES in the

22

set defined by the BigSMILES. Because a pairwise comparison of the two sets would be extremely
computationally intensive, the proposed algorithm instead performs substructure search through
graph traversal of the state-machine graphs in the previous section, yielding equivalent results.

Figure 7 outlines the algorithm.

o o]
/(] (o] O\H)\ H
ey o

co{[~] [<IH[Z]I<]CCOl=],[<IcC(C)Ol=], * [<1}?*{[>][<]C(=0)C(C)oC(=0)C(C)O[=1[1} {[I[<]CCOl>][<]IH[>] [<I{I=1<Ic(=0)c(C)or=1M}
T I* stored Wildcard linker #5
SINGLE i i .
G in node matches EGs with ~ -

v |, @ Fo. 7 > / at least 2 objects J,-ﬁ_smGLE_smaLE /,"’E_S]]\'GLE\\‘I_SH\IGLE
‘I_SENGLE‘,." 3 SINGLE™ 1 SINGLE _~ 5 SINGLE 1_SINGLE ' \\-‘ f’ \\: VA
P) - A - 1 / \ Pl]ﬂ ([/l\

e (1) e F et N
NS - AN N T (2_SINGLE | /2_SINGLE|, 2 SINGLE",
/2 SINGLE | /2 SINGLE 12 SINGLE", 2 SINGLE ™,) " ;4! 4 1, i
{ | { /o] \ \ [c \ ¥ \
@ 1 (¢ ."’ 4 g8 | 5. | ' | \ /" (\
\SINGLE ‘LSNGLE\SH\'GLE ‘-flis]]\IGLEI‘,SH\'GLE IlfS]NGLE FH\'GI}_"-‘DOUBLE \SH\GLE Jlfssz;,E ‘SNGLE ‘LSNGLE‘* S]NGLEPOUBLE ‘ILSDIGLE
1 | | [5 4 | \ C [24, @ "‘I C (0] /
c 120 |0 | 0 @2 2) osc 13,8097
It ‘S]:NGL% w,\SINGLE’I'.' /SINGLE | SINGLE/ ‘!S]I\'GLE \ ?NGLE 1’ \SINGLE/ { SH\’GLE‘-\S]:NGLE.‘:' FH\’GLE YH\’GLE;‘
S0’ 3 o ¢ \04 4C 50 i_SINGLE \0/ @ \0 T ‘0/
6 7 . '\:5““ 2, 6 3,7 4,9 5,10
| teft#r | | Midblockia | P
[SINGLE',DOUBLE - - -
Lc 'b Left #1 hits Midblock #2 Right #3 traverses
Search 1=>2->3->4 using graph 83©. @7 | PEG hits PPO green cycle twice
traversal |SNGLE\§NGLFT'
Check adjacency: 4> 1222523 c 0 o 10 EG #4 matches to same atoms as 7, 7, since they must
Check !* in target midblock (yellow), be adjacent, but the query “[CH3]0” cannot match
no un-matched cycles Right #3 anywhere, returning Falsel

Figure 8. A triblock query with a wildcard linker and no other repeat units in the middle block
(™) 1s searched in a triblock target. The cycles are searched first #1-3, followed by the end groups
(EG) #4-5. PEG (poly(ethylene) glycol) in the left-most block #1 matches to the left-most block
(labeled 1-3 in yellow). PEG and PPO (poly(propylene) oxide) in the query midblock #2 match to
the same cycle in the target midblock because hydrogens were not added (labeled 1-3 in green and
4-7 in blue). Multiple query objects cannot match to the same target object, so the left two blocks
cannot both match the middle block. The lactide repeat unit in the right block #3 re-traverses the
target lactic acid repeat unit, such that multiple query atoms map to the same target atom (labeled
1-10 in red). The EG #4 in blue matches to all target repeat units because hydrogens were not

added, but in the final solution matches to the left object due to adjacency. Wildcard EG #5 can

23

match to either target EG, but in the final solution matches the red one due to adjacency. Enforcing
adjacency is important: if triblock ABC was reversed to CBA, the match would still return True,

but for BCA would return False.

A necessary condition for a match between a query and a target is that both contain the
same polymeric segments, represented by sets of conjoined cycles and end groups in the atomistic
and topological graphs. Therefore, the search algorithm first determines all query and target cycles
using the topological graphs (NetworkX’s function simple_cycles), determines sets of conjoined
cycles or stochastic objects (NetworkX’s function connected components), and a substructure
search is executed on the cycles in the atomistic graphs to match different sets of conjoined cycles.
Searching cycles first allows rapid down-selection of molecules, reducing computational cost later
in the algorithm. When searching a query cycle in a target cycle, the nodes and edges in the
molecular graph are traversed using a depth-first search (DFS) algorithm (Supporting Information
Section 3 provides a flowchart), in which the algorithm starts from a start node and traverses as
far as it can down a given branch before backtracking, checking whether the node and edge
information matches, shown in Figures 8 and 9. For the purpose of graph traversal, bonding
descriptors are treated as null symbols, so atoms connected through bonding descriptors are treated

as equivalent to directly connected.

24

o — / \
A TN | =11}
_~SINGLE { | TN Py
a o \\ [=1]5 / (=1) b [o} l\'/lisDIGLE'\ZislNG].E
d N A \
TGLE /‘\ I '1/{ 1/ STNGLE) ™ ™
N [A T All 4 cycles are [\ | .
c [=11 L { \2_SINGLE/1_SINGLE
) P e [(3) 4 | searched 4,1 @ No DFS: Nested cycles | <"/
i:?H{GL}E,"'l-leNGLECflisINGLE“‘.‘lj]ZNGLE\\‘ I‘ A 7_!/ [separately |S]NGLE wildcard EG must match to [[=11)
"o y o 1 2» ™~ 4 2 matches target nested cycles A,
p | / v) cC ! o
émvetEpovmie etz | psmee | | [Z1]6) All match to same EG with at least \ [1SINGLE!,
{ f / b\ /| | SINGLE A \
c @ @©2 L / target cycle! 3 connections 7= c \
k \ 7V / 4,3 (e : - \
FD\'GLE s \] / ’ to objects \' [SINGLE})_SINGLE lsvore b sveLE
f hind [[
o3 N 1 2 |SINGLE L ‘/[}1]\‘ ‘ /
| I ! \
c ‘SINGLE | i 3,4 @ 2 SINGLE P N ‘-‘.STNGLE,""
. / |S]ZNGLE _,-’SD'GLEF]NGLE 2 SINGLE", N
o / ! \
;/[<1]\\ 1,5 g o o kS 1_SINGLE
SINGLE F’SLNGL["' 2_SINGLE ") 7 / —~ T T { -
Y i DOUBLE|SINGLE 1_SINGLE J}SINGLE \svoLE/
(1) [LSINGLE\ | 4andSmapto | 2,6/ { /.,L A N/
N ¥ o c { V[) i
‘ / /‘i_sL\'GLE|1_s]1~IGLL 5@ the same path a7 '\\[H]_ AN Pl]’ ~ . . Thereis an
’ NGLE , ~r " N o
€ ¢ 5 FFNGLE |SB\GL (2 spvarE | FﬁS]NGLF:‘-_ indicator that
’DGU‘BLE /DOUBLE' SDIGLE P _SINGLE c “C ‘| o “|1 STNGLE this cycle
0 g0 7 ¢ (bouBLE|sINGLE 4,8 {smore/ ! \ /- represents a
chuz 2@ 3@ When ?* are embedded g [INGLE I_SINGLE '.S\”C‘LE,‘ wildcard object
8 ¢ TemvaLs/ in repeat units, DFS is 4,9 c J *
— N executed on atoms until [pOUBLE \swvere/ \
i i ?* is encountered, then (o] N/
Sc 4 : ’ 10 o No DFS for {[][]}: algorithm
o paths are generated that automatically matches all
DOUBLE
Query 11 10 Query #2 connect /(3] to (1) and Target DFS stochastic objects in target
o contain descriptor

TN

Figure 9. (a) Poly(ethylene succinate) or {[][<]JOCCOI[<],[>]C(=0)CCC(=0)[>][]} has two repeat
units in the AA-BB representation in Figure 4(c) and is searched in a target with a single repeat
unit {[][<]JOCCOC(=0)CCC(=0)[>][]} in the AB representation. Every query cycle can be found
in the target and is connected, yielding a match. The query from Figure 5(a) or
{[II<I?7*C(=0)O?*[>][1} is searched in the same target. (b) The algorithm detects wildcard end
groups and matches them to entire target end groups depending on the number of stochastic objects
the wildcard end group connects. The wildcard end group in this figure, the same star polymer
query in Figure 5(c) or {[][1}?*(?*{[>1[<ICCO[>][1})?*{[]1[1}, is a substructure of any target end
group that connects at least 3 objects and would match to Tetra-PEG, shown in Figure 2(f). (c)
When querying polymers with nested repeat units, like grafts and segmented copolymers, nested

repeat units must match to nested repeat units.

25

Then, the query end groups are searched in the target using the DFS, but as previously
mentioned, end groups with atoms written can traverse cycles and match exclusively to repeat
units if hydrogens are not written in the query. This is because end groups in a query represent
deterministic patterns, which can match to substructures of repeat units but may not necessarily
match to terminal points in the target chain. An example is shown in Figure 8. For each cycle and
end group, a list of matches is stored, and the final match is True if there exists one match for each
RU and EG such that connected cycles and EGs in the query map to connected segments in the
target. After adjacency between cycles and end groups is enforced, a set of final conditions are
checked: the not RU element “!*”, multiple query stochastic objects cannot match to the same
target object, and nested objects must match to nested objects.

The key differences between polymer search and small molecule search is cycles and end
groups are searched separately, query cycles can traverse target cycles multiple times, and the
grammatical extensions in Section 2 and Figure 9 (“{[][]}”, “?*”) enable chemistry and topological
classification. The string “?*” embedded as an atom allows for functional group searches along
the backbone. When a “?*” node is encountered during DFS traversal, NetworkX’s function
simple_paths is used to generate paths in the target that connect f(prev) to f(next), where prev
and next are atoms in the query before and after “?*”, f is the mapping function, and “?*” maps
to a set of atoms. Moreover, end groups can be entirely wildcard with “?*”; in this case, no graph
traversal is executed, the algorithm will simply match wildcard end groups connecting # stochastic

objects to entire target end groups that connect at least that many stochastic objects.

5. Database Validation
To validate the algorithm, a matrix of BigSMARTS and BigSMILES strings was constructed, and

the match state was recorded as true or false for each pair. Overall, there are approximately 900

26

BigSMARTS queries searched over the entire target dataset of 500 BigSMILES for polymer
chemistries from literature. The authors used domain knowledge and made a concerted effort to
add diverse chemistries and topologies to the BigSMILES database from Google Scholar, Web of
Science, open-source polymer datasets,?* and textbooks.”’ Nevertheless, in order to grow this
polymer database in size and scope, users can deposit structures and references to Community
Resource for Innovation in Polymer Technology (CRIPT),* a data ecosystem to organize polymer
data. Different rules are tested for regular SMARTS, single objects like homopolymers, statistical
copolymers, alternating copolymers, block copolymers, segmented, grafts, stars, networks, chiral
polymers, macrocycles, polyelectrolytes, dendrimers, and H-polymers.

Tables 2-5 shows four case studies, and a database validation sheet is provided with all
other case studies. The first case study in Table 2 explores mutations to the query string that do
not change its chemical meaning and demonstrates that the algorithm is robust such that these
mutations do not affect the search results. The second case study in Table 3 illustrates classifying
polymers according to their backbone. The third case study in Table 4 provides examples of queries
to search functional groups along the backbone, illustrating the ability to perform substructure
search across a wide range of functionalities. The fourth case study in Table 5 provides examples
of queries that classify topology.

A substructure match is perfect: either true or false. In all of these case studies, every query-
target pair that is expected to match, either as a substructure match or a full match, is marked with
a true in the spreadsheet, and the algorithm always returns true. Every query-target pair that is not
expected to match is marked with a false in the spreadsheet (that is, at least one query atom or
element cannot be found in the target), and the algorithm always returns false. Across all

chemistries and topologies, it takes approximately 15-20 seconds for a single query to search all

27

of the targets. The authors are building algorithms to execute filtering steps to speed up search, as

discussed in the next section.

Table 2. Database validation examples for repeat unit mutations with increasing restriction on the

target ensemble.

BigSMARTS Meaning # BigSMILES Hits Example
Queries
CCO Functional group search 207 C#CCOC(=0)C(C)
anywhere in target (O){[S][$]CC(clcee
cc)[$][$]}SC(=S)c
Iceeeel
Poly(styrene) with
end group match
{[ICCO[]} Localized to RUs 198 {[1[$]CC(C(=0)0C
CCO)[S$][1}
Poly(n-butyl
acrylate) with side
chain match
{[I[<ICCO[>][]} PEG 68 O{[>][<IC(=0)C(C
JO=1I<1}
Poly(lactic acid)
{[II<ICOCI=][1} Frameshift 68 Same matches
{[1[<]CC[<2],[>2]0[>] Split, but same RU 68 Same matches
(1
{[I[<1OCCI>1[1} Inversion 68 Same matches
{[1[>3]CCO[<3][1} Changes to descriptor 68 Same matches
IDs
{[10([<DHCC[=][1} Bonding descriptors not 68 Same matches

at ends

28

{J[<KICCO>],[<]CCO[Duplication (both 68 Same matches
>1[1} match to same target
unit)
{[I[<]OCC[>][<]}OCC Repeat unit in end 68 Same matches
group
{[J[<I[CH2][CH2]O[>] No other pendant 57 C(clcccee)O{[>][
[} groups with hydrogens <]JCCO[>],[<]CC(C
OCCN(C(O)C)(C(C
)C)O[>][<]} [H]
Poly(ethylene
oxide-co-DEGE)
{[1I[<][CH2][CH2]O[>] No other pendant 45 {[1[$]ICC(clecccecl)
SE} groups and no other RU [$1[$]} {[>][<]CCO
[>1[1}
Poly(styrene-b-
ethylene oxide)
{{II<ICCO>];!{[1131] | Eliminates multi-blocks 34 {[1[$]CC(C(=0)0)[
} SLISICC(C=O)O{]
>1[<ICCO>][<]}O)
(3101}
Poly(acrylic
acid-graft-ethylene
oxide)
{[I[<ICCO>L,!*;H{[1[1} | Matches to PEG with 17 {>1[<IOCC>][<]}
[} no other repeat units O
and deterministic end
groups Hydroxy-
terminated PEG
{[II<][CH2][CH2]O[>] | No other RU and EG 1 {{II<1CCOr>][1}
SRR PEG

29

Table 3. Database validation examples for repeat unit backbone classification.

BigSMARTS Meaning # BigSMILES Hits Example
Queries
{SICCISIII} Poly(ethylene) 257 {IS1ICCOO)SII
backbone 1}
Poly(isobutylene)
{[<I[S1]O>][1} Poly(siloxane) 23 {I<1[SI(C)CO)O[
backbone >}
Poly(dimethyl
siloxane)
{[I[$]CC(C(=0)O)[SII] Poly(acrylate) 64 {[1[$]CC(C(=0)0C
} backbone O[30}
Poly(ethyl acrylate)
{{II$]CC(OC(=0))[$]1[] | Poly(acetate) backbone 6 {[II$]CC(OC(=0)C
} OS101}
Poly(vinyl
propionate)
{[II$]CC(cleccec])[S][| Poly(styrene) backbone 115 {III$]CC(clcec(OC
1})eeD[$][1}
Poly(4-
methoxystyrene)
{[II$1CC=CC[S$I[1} Poly(diene) backbone 29 {[I[$]CC=C(C)C[$]

[1}
Poly(isoprene)

30

Table 4. Database validation examples for repeat unit chemistry classification according to

functional groups along backbone.

BigSMARTS
Queries

Meaning

BigSMILES Hits

Example

{{II<ICEO)O?*[>111}

Polyester

75

{[I[<]OCCO[<],[>]
C(=0)clcee(cecl)C(
=0)[>1[1}

Poly(ethylene
terephthalate)

{[][<]0C(=}0)0?*[>] []

Polycarbonate

29

{[N[<]1Oclcce(cel)C
(C)(C)c2ccee(cec2)O[
<LZICEO)>1}
Bisphenol A
polycarbonate

{[][<]NC(=}0)0?*[>][]

Polyurethane

{[1[>]C(=0O)Nclccc
(O)e(c)NC(=0)[>]
[<IOCC{[>][<]OC
C[>][<]}O[<L[<]O
CCCO[<][I}

Poly(urethane) with
nested PEG

{I<1IC=C™*[>111}

Polydiene

31

{[IIs]CC=C(CDHC[$

113
Poly(chloroprene)

{[][<]NC(=}0)N?*[>][]

Polyurea

{LII<INCCCA[>][<]
[Si(OO)O[>][<]}
[SiJ(CHCO)CCENI[<]
J[>]C(=0)NC(CC1)
CCC1CC(CC2)CC
C2NCEO)>][1}

Segmented
Poly(urea)

31

Table 5. Database validation examples for topology searches.

BigSMARTS
Queries

Meaning

BigSMILES Hits

Example

{0

Matches to all polymers
(not small molecules in
database)

489

{[1[$]CC(clccecel)
[S1($T3{[>1[<]CCO
[>1[1}

Poly(styrene-b-
ethylene oxide)

03 S

Prohibits matches to
multiblocks

382

{{IIS1ICCENE)[S]I]
b

Poly(vinylidene
fluoride)

05 240003

Diblock substructure

107

{[II<IOCCI>][<13+

[<][Z]OCOCI<I[>

BAFI<10CCI~10
}

Pluronic

{[1[$1CC(clcceee DS][
$13 7*{[>1[<ICCO[>][T}

Unspecified midblock
between styrene and
PEG

14

CCC(O){[S]Is1CC(
clcceee)[S][$]}{[$
1[$]C\C=C(C)/C[$],
[$]C\C=C(O)\C[S$].[
$]CC(C(C)=O)[$].
$JCC(CY(C=0O)[$][$
1H{[SI[$]CC(clecce
cD[SI[$]}{[>][<]IC
CO[>][<I}[H]

SISO tetrablock

{5 2* 00 003

No other blocks

78

CCC(O){[S18]CC(
cleccec)[S1[$]} {[$
J[$]CC(cInccec])[$

10813 [H]

Poly(styrene-b-2-
vinyl pyridine)

32

{24003 74005

Triblock substructure

15

CCC(O){[S]Is1CC(
clcceec])[S][$]} {[$
1[$]C\C=C(C)/C[$],
[$]C\C=C(C)\C[S].]
$1CC(C(O=O)[S].[
SICC(O)(C=O)[$][$
1H{IS1[$]CC(clccce
cD[SI[S1} {[Z][<IC
CO[>][<]}[H]

SISO tetrablock

{17 {>1<T?*[>1[<]
P

Segmented copolymer
with repeat unit along
backbone

10

{[<INCCC{[>][<]
[SHCOO>][<];
[Si](C)(C)CCCN[<]
[ZIC(=ONC(CCT)
CCCICC(CC2)CC
C2NCEO)>[

Segmented
Poly(urea)

{[I[<]?*{[>][<]ICCO[>]
[<I?7*[=1003

Segmented copolymer
with nested PEG

{[1[>]C(=0O)Nclccc
(O)e(c)NC(=0)[>]
[<IOCC{[>][<]OC
C[>I[<I}O[<L[<]O
CCCO[<][1}

Poly(urethane) with
nested PEG

{<17** =<1 [>
1OH7* =1

Graft copolymer with
repeat unit in sidechain

11

{[I[$ICC(c(cel)cee
ICCCC{[>][<]OC
CI>I[<I3S)[$]1.[$1C
C(cleccec)[S][1}

Poly(styrene)-graft-
Poly(ethylene
oxide)

{[][]}?*(?*]{}[][]})?* il

3-arm star polymer
substructure

21

C(cleceecl)OCC{[
>][<]OCC[>][<]}O
C(COC(=O)C(O)(C
NHISISICC(C(=0)
OC(O)O)O)[S][$1}
Br)CC(clcceecl)C

33

{[$][$]CC(clccece
D[$][$]}CCCC

3-Miktoarm Star
Polymer: PS-PEO-
(PfBA-Br)

6. Discussion

Current polymer chemical structure search capability is limited. Users can search for polymers by
name on tools like Google Scholar or Web of Science, but multiple strings could match to the same
polymer (PEG vs PEO vs poly(ethylene glycol)), and polymer nomenclature is non-standardized
and complex. Users could search for monomers or structural repeat units on tools like SciFinder,
but searches for complex topologies can be difficult, limiting our ability to discover data. This
algorithm allows the user to write queries of polymer structures, including a single repeat unit
substructure without knowledge of the monomer chemistry, repeat unit sets in a stochastic object
forming copolymers, chemistries with desired end functionalities, and advanced chemistries and
topologies with branched repeat units and end groups. For those unfamiliar with the grammar of
line notations, a drawing tool is also available so that the user can draw any query topology and
use copy the generated BigSMARTS query string to feed to this algorithm.?! A key feature of the
algorithm is its ability to search across all of these rich features while still being robust to variations
in the way that users may have represented the chemical structure of a target or query, overcoming
limitations in current canonicalization technology. Several of the features of this algorithm,
including classifying polymers by localizing functional groups to specific parts of the target
topology, including the backbone, or searches for arbitrary topological structures, have not

previously been achievable.

34

This tool has been validated on hundreds of thousands of query-target pairs that produce
the expected match/no match results. However, the search algorithm has a time complexity that
scales O(N), making implementation on large databases challenging. The overall search
performance can be accelerated by implementing filtering steps before the substructure search.
There are several simple classifiers that can be applied to polymers that are easily indexed and can
assist with such filtering. First, the number of stochastic objects in the query should be less than
or equal to the number of stochastic objects in the target, which is a simple check. For example, a
block copolymer cannot match a homopolymer. Second, a branched polymer cannot match a linear
polymer; this can be simply determined by classifying polymers based on the number of bonding
descriptors on the repeat units. Finally, every cycle in the graph can be treated as a small molecule
cycle and searched using RDKit, which has already been optimized for small molecule search. If
the repeat units are properly canonicalized and indexed, then repeat units from the atomistic graphs
can be searched using string-based search algorithms that scale well in large data systems.!” ¥

The finite state machine-inspired graph representations have several advantages over
existing polymer graph representations for polymer search and have broad applications in many
fields. These graphs are finite, machine-readable, and work for different polymer topologies.
Beyond search, these graphs can be converted into vector representations or fingerprints, in which
bits contain information on the presence or absence of substructures. These fingerprints can be

used to compare molecules (similarity metrics) and can be used in machine learning to connect the

structure to the property.>

7. Conclusions
This work introduces a query language for polymers, a molecular graph representation inspired by

state machines for different topologies, and a substructure search algorithm that together provide

35

a search functionality for polymer chemical structure that is fully aware of polymer chemical
connectivity and topology. The query language allows users to search combinations of linear and
branched repeat units and end groups with the connections specified, and query wildcard elements,
including wildcard stochastic objects, wildcard end groups, searches targeting the target objects,
and searches along the target backbone. The molecular graph representation is finite and accurately
represents a set of molecules, and wildcard elements are embedded in the graph. The substructure
search algorithm runs a graph traversal of the repeat unit cycles first, followed by the end groups,
and then checks whether matches are adjacent in the target graph. The depth-first search algorithm
is extended to wildcard elements embedded in the graph.

This tool offers advantages over existing search technologies. Users can search by structure
rather than by name, resolving challenges in searching complex structures according to polymer
nomenclature. Moreover, users can search any polymer chemistry and topology including wildcard
elements, which extends the capabilities in SciFinder and allow users to discover data for complex
polymers. This search technology will allow polymer chemists to enjoy the same benefits of
molecular search that small molecule chemists have enjoyed and support FAIR data principles by

making data much more discoverable, accelerating materials innovation.

Acknowledgements

Funding: This work was funded by the National Science Foundation Convergence Accelerator

award number ITE-2134795.

Data and Materials Availability: The unit testing spreadsheet for database validation is provided

as an Excel sheet at https://github.com/olsenlabmit/BigSMARTS. The drawing tool for

BigSMARTS can be found at https://github.com/olsenlabmit/BigSMILES builder.

36

https://github.com/olsenlabmit/BigSMARTS
https://github.com/olsenlabmit/BigSMILES_builder

Supporting Information: list of node and edge attributes in graphs; examples of graphs for

different polymer chemical structures; substructure search flowcharts

References

(1) Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions:
moving beyond fingerprints. Journal of computer-aided molecular design 2016, 30, 595-608.
(2) Weininger, D. SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. Journal of chemical information and computer sciences 1988,
28 (1), 31-36.

(3) David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular representations in Al-driven
drug discovery: a review and practical guide. Journal of Cheminformatics 2020, 12 (1), 1-22.
(4) Landrum, G. Rdkit documentation. Release 2013, 1, 1-79.

(5) O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R.
Open Babel: An open chemical toolbox. Journal of cheminformatics 2011, 3 (1), 33.

(6) Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.; Jensen, K. F. Prediction of organic
reaction outcomes using machine learning. ACS central science 2017, 3 (5), 434-443.

(7) Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. ZINC: a free tool
to discover chemistry for biology. Journal of chemical information and modeling 2012, 52 (7),
1757-1768.

(8) Kenny, P. W.; Sadowski, J. Structure modification in chemical databases. Chemoinformatics
in drug discovery 2005, 23, 271-285.

(9) Jeliazkova, N.; Kochev, N. AMBIT-SMARTS: Efficient Searching of Chemical Structures
and Fragments. Molecular Informatics 2011, 30 (8), 707-720.

(10) Brown, N.; Fiscato, M.; Segler, M. H.; Vaucher, A. C. GuacaMol: benchmarking models for
de novo molecular design. Journal of chemical information and modeling 2019, 59 (3), 1096-
1108.

(11) Sushko, I.; Salmina, E.; Potemkin, V. A.; Poda, G.; Tetko, I. V. ToxAlerts: a web server of
structural alerts for toxic chemicals and compounds with potential adverse reactions. ACS
Publications: 2012.

(12) Harper, G.; Bravi, G.; Pickett, S. D.; Hussain, J.; Green, D. V. The reduced graph descriptor
in virtual screening and data-driven clustering of high-throughput screening data. Journal of
chemical information and computer sciences 2004, 44 (6), 2145-2156.

(13) Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper,
T.; Kelley, B.; Mathea, M. Analyzing learned molecular representations for property prediction.
Journal of chemical information and modeling 2019, 59 (8), 3370-3388.

(14) Coley, C. W.a. B.R.a. G. W. H. a. J. T. S. a. J. K. F. Convolutional Embedding of
Attributed Molecular Graphs for Physical Property Prediction. Journal of Chemical Information
and Modeling 2017, 57 (8), 1757-1772. DOI: 10.1021/acs.jcim.6b00601.

(15) Coley, C. W.; Green, W. H.; Jensen, K. F. Machine learning in computer-aided synthesis
planning. Accounts of chemical research 2018, 51 (5), 1281-1289.

(16) Wilkinson, M. D.; Dumontier, M.; Aalbersberg, L. J.; Appleton, G.; Axton, M.; Baak, A.;
Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.; Bourne, P. E. The FAIR Guiding Principles
for scientific data management and stewardship. Scientific data 2016, 3 (1), 1-9.

37

(17) Weininger, D.; Weininger, A.; Weininger, J. L. SMILES. 2. Algorithm for generation of
unique SMILES notation. Journal of chemical information and computer sciences 1989, 29 (2),
97-101.

(18) SMARTS - A Language for Describing Molecular Patterns. 2022.
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html (accessed Dec. 2020).

(19) Kahovec, J. a.; Fox, R.; Hatada, K. Nomenclature of regular single-strand organic polymers
(IUPAC Recommendations 2002). Pure and Applied Chemistry 2002, 74 (10), 1921-1956.

(20) Jones, R. G.; Division, I. U. 0. P. a. A. C. P.; Wilks, E. S. Compendium of polymer
terminology and nomenclature: IUPAC recommendations, 2008; RSC Pub., 2009.

(21) Audus, D. J.; de Pablo, J. J. Polymer informatics: opportunities and challenges. ACS
Publications: 2017.

(22) Hu, B.; Lin, A.; Brinson, L. C. ChemProps: A RESTful API enabled database for composite
polymer name standardization. Journal of cheminformatics 2021, 13 (1), 1-13.

(23) Lin, T.-S.; Coley, C. W.; Mochigase, H.; Beech, H. K.; Wang, W.; Wang, Z.; Woods, E.;
Craig, S. L.; Johnson, J. A.; Kalow, J. A. BigSMILES: A Structurally-Based Line Notation for
Describing Macromolecules. ACS central science 2019, 5 (9), 1523-1531.

(24) Arora, A.; Lin, T.-S.; Rebello, N. J.; Av-Ron, S. H.; Mochigase, H.; Olsen, B. D. Random
forest predictor for diblock copolymer phase behavior. ACS Macro Letters 2021, 10 (11), 1339-
1345.

(25) Antoniuk, E. R.; Li, P.; Kailkhura, B.; Hiszpanski, A. M. Representing Polymers as Periodic
Graphs with Learned Descriptors for Accurate Polymer Property Predictions. Journal of
Chemical Information and Modeling 2022, 62 (22), 5435-5445.

(26) Aldeghi, M.; Coley, C. W. A graph representation of molecular ensembles for polymer
property prediction. Chemical Science 2022, 13 (35), 10486-10498.

(27) The BigSMILES Line Notation. 2022.
https://olsenlabmit.github.i0/BigSMILES/docs/line_notation.html#the-bigsmiles-line-notation
(accessed.

(28) Lin, T.-S.; Rebello, N. J.; Lee, G.-H.; Morris, M. A.; Olsen, B. D. Canonicalizing
BigSMILES for Polymers with Defined Backbones. ACS Polymers Au 2022.

(29) Bicerano, J. Prediction of polymer properties; cRc Press, 2002.

(30) Walsh, D. J.; Zou, W.; Schneider, L.; Mello, R.; Deagen, M. E.; Mysona, J.; Lin, T.-S.; de
Pablo, J. J.; Jensen, K. F.; Audus, D. J. Community Resource for Innovation in Polymer
Technology (CRIPT): A Scalable Polymer Material Data Structure. ACS Publications: 2023.
(31) Lin, T.-S. BigSMILES Builder.

(32) O’Boyle, N. M. Towards a Universal SMILES representation-A standard method to
generate canonical SMILES based on the InChl. Journal of cheminformatics 2012, 4 (1), 22.
(33) Bajusz, D.; Racz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for
fingerprint-based similarity calculations? Journal of cheminformatics 2015, 7 (1), 1-13.

38

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://olsenlabmit.github.io/BigSMILES/docs/line_notation.html#the-bigsmiles-line-notation

iy = L0

gmm) esessoese
p &) R

