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Efficient and accurate computational methods for dealing with interacting electron problems on a lattice are
of broad interest to the condensed matter community. For interacting Hubbard models, we introduce a cluster
slave-particle approach that provides significant computational savings with high accuracy for total energies,
site occupancies, and interaction energies. Compared to exact benchmarks using density matrix renormalization
group for d-p Hubbard models, our approach delivers accurate results using two to three orders of magnitude
lower computational cost. Our method is based on a slave-particle decomposition with an improved description
of particle hoppings, and a density matrix expansion method where the interacting lattice slave-particle problem
is turned into a set of overlapping real-space clusters which are solved self-consistently with appropriate physical
matching constraints at shared lattice sites between clusters.
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I. INTRODUCTION

One of the outstanding challenges in condensed matter
physics is to find computationally efficient and simultaneously
accurate methods to describe interacting electron systems for
large lattices (e.g., crystalline materials). For the case where
localized electronic interactions dominate, the Hubbard model
provides a specific theoretical model that can describe key
aspects of many important materials such as superconductors,
magnets, or metal-insulator systems. Hence, a large amount of
research effort has been expended in creating and improving
methods for Hubbard systems.

Exact methods for Hubbard systems are limited to low
dimensions or finite sizes. The ground state of the one-
dimensional (1D) half-filled single-orbital Hubbard model can
be solved analytically using the Bethe ansatz [1,2]. In addi-
tion, extremely high accurate results can be obtained using
numerical methods including the density matrix renormaliza-
tion group (DMRG) [3,4] and quantum Monte Carlos (QMC)
[5]. However, for higher-dimensional models, only small lat-
tices (or small fragments of lattices) can be solved by these
numerical methods. Hence, an outstanding challenge is to find
methods that work well in low and high dimensions, and (at
present) this requires making approximations.

One approximate approach for the Hubbard model is the
slave-particle method, also known as the slave or auxiliary
or subsidiary boson method (e.g., our previously published
boson subsidiary-solver (BoSS) software [6]). It was first
proposed [7,8] for analytical calculations in the infinite inter-
action limit and as an alternative to the Gutzwiller variational
approach [9,10]. It was then generalized to finite interactions
by a functional integral approach based on the slave-particle
representation [11–13]. Since this approach requires one aux-
iliary slave particle for each possible electronic configuration,
whose number grows exponentially with the number of de-
grees of freedom on each site, the required computations can

become expensive for complex materials. Hence, more eco-
nomical slave-particle methods have been developed. These
representations describe the slave particles via electron oc-
cupation numbers. Different methods have been developed
based on the degrees of freedom treated by the slave particles,
such as the slave-rotor method [14,15] which can serve as
an impurity solver [16], the slave-spin method [17] which
is orbital and spin selective, and a generalized approach that
includes the above two (and other variant) methods [18]. An
auxiliary symmetry-breaking field approach [19] was then
introduced to overcome difficulties in achieving spontaneous
symmetry breaking in these approaches.

In slave-particle methods, the interacting electron problem
is decomposed into a noninteracting spinon problem on a lat-
tice (easily solved using Bloch’s theorem and diagonalization)
and an interacting slave-particle problem on a lattice. The
most common approach for solving the latter has been to use
a single-site approximation. This is very similar in spirit to the
local single-site approximation in dynamical mean-field the-
ory (DMFT) [20], a state-of-the-art method for (approximate)
solutions to Hubbard models. Single-site slave-particle ap-
proaches predict Mott transitions in high-dimensional systems
very well [21–26]. However, as a result of stronger fluctua-
tions in low-dimensional systems, the single-site treatments
can cause significant errors. For example, the exact solution
of the half-filled 1D Hubbard model [2] has no Mott transition
for any finite interaction strengthU , but a false Mott transition
is predicted in the single-site slave-particle theory and DMFT
[19,27–29].

For higher accuracy, one must go beyond the single-site
approximation and consider a local cluster of interacting lat-
tice sites. Several cluster extension methods [30,31] were
proposed for slave-particle problems based on a cluster
mean-field approximation. If one sets certain quasiparticle
renormalization factors to unity, the cluster slave-particle

2469-9950/2023/107(11)/115153(19) 115153-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7532-4531
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.115153&domain=pdf&date_stamp=2023-03-27
https://doi.org/10.1103/PhysRevB.107.115153


ZHETING JIN AND SOHRAB ISMAIL-BEIGI PHYSICAL REVIEW B 107, 115153 (2023)

theory can be simplified [27,32] to the density matrix
embedding theory (DMET) [33,34]. However, setting the
renormalization factors to unity leads to the appearance of
the bare intersite hopping in the embedding spinon Hamil-
tonian, and this cannot reproduce interaction-induced band
narrowing, e.g., as predicted by GW or DMFT calculations
[35–38]. In addition, all existing cluster slave-particle, cluster
DMFT, and cluster DMET methods describe the cluster as a
multisite impurity connected to an averaged external bath. In-
evitably, some chemical bonds with large associated hoppings
are approximated as intercluster hoppings between different
fragments of the systems, and the cutting and modification
of these bonds to form the clusters can cause large errors
[39–41]. Consequently, the finite cluster size effects lead to
a tradeoff between cluster size and errors in these cluster
methods [27,39,40,42,43]. The finite-size errors are even more
difficult to control in higher-dimensional systems since the
cluster surface grows with cluster radius r as rd−1 in d di-
mensions.

In this work, we introduce a slave-particle method that
addresses many prior shortcomings. We present a bond-
dependent slave-particle theory along with a cluster decom-
position based on a density matrix expansion. It has the
following key features:

(i) The degrees of freedom involved in each slave bond
are orbital+spin+bond, and the free parameters in the slave
operators are designed so that all unphysical, particle noncon-
serving intersite hoppings are forbidden (this was impossible
in prior slave-particle approaches).

(ii) Instead of coupling the interacting problem (site or
cluster) to a mean-field bath, a density matrix expansion ap-
proach is used to reduce the interacting slave-particle lattice
problem to a set of separate cluster problems solved under ap-
propriate constraints. The clusters overlap with each other to
span the whole lattice, so that they connect via the interacting
density matrices on the shared sites instead of via a mean-field
bath.

(iii) The resulting numerical method is highly efficient
and parallelizable: All the benchmark tests on d-p Hubbard
models described below take on the order of one CPU minute
of serial computation to complete on a modern commodity
laptop computer. In addition, for a general d-dimensional
lattice and for a fixed cluster size, the computational cost only
grows quadratically with the number of clusters in the whole
system. The separate clusters can be solved in parallel, so
that generalizations to large systems, higher dimensions, and
multiple orbitals per lattice site will have reasonable compu-
tational costs.

In the following, we describe the theory and then present
numerical results based on its implementation. As we will see,
our theory reproduces remarkably accurate results with low
computational cost compared to our benchmark results either
from exact diagonalization or DMRG.

II. SLAVE-BOND REPRESENTATION

In this section, we introduce our slave-bond representation
and explain how it generalizes standard site-based slave-
particle methods in a manner that allows one to avoid all

unphysical particle-number-violating hopping processes in
the slave-particle problem. We compare our method to more
familiar existing methods at each step to allow for a clear
comparison in the reader’s mind.

We consider Hubbard Hamiltonians of the form

Ĥ = −
∑
αβ

tαβ ĉ
†
α ĉβ +

∑
α

εα n̂α + Ĥ int, (1)

where greek-letter indices α, β combine the site indices i, j,
orbital indices m,m′, and spin indices σ, σ ′ together, ranging
over all sites, orbitals, and spins in the system, i.e., α ≡ imσ .
The ĉα is a fermion annihilation operator removing an electron
from localized state α, and n̂α = ĉ†α ĉα is the fermion number
counting operator for state α. The tαβ and εα denote hopping
and onsite energies, respectively. The electron-electron inter-
action term Ĥ int is the sum of local operators at each site Ĥ int

i ,
which in the simplest case are given by the classic Hubbard
“U” form

Ĥ int =
∑
i

Ĥ int
i =

∑
i,m

Uimn̂im↑n̂im↓, (2)

where each site and spatial orbital can, in principle, have its
unique interaction strength Uim. Additional local interactions
that depend on the electron counts n̂α are completely straight-
forward to include requiring no change of formalism [18,19].

The standard approaches for slave particles
[14–19,30,31,44] replace the physical electron operators
on each site by a combination of a noninteracting fermion
(called a spinon) and an interacting auxiliary or slave particle
in a completely local manner:

ĉα → f̂αÔα,

where f̂α is the noninteracting fermion annihilation operator,
and Ôα is the lowering ladder operator for the slave particles.
Accordingly, the original physical electron Hilbert space is
mapped onto a larger Hilbert space H → H f ⊗ Hs where
H f and Hs are the Hilbert spaces of the spinons and slave
particles, respectively. The spinon Hilbert space H f , being a
fermionic one, contains the same degrees of freedom as the
original electron problem, but the physical modes for the slave
particles vary based on the type of slave model chosen. For
example, if all degrees of freedom α are explicitly described
in slave-particle Hilbert space, it is known as the “slave-spin”
or “spin+orbital” method [17,18].

The eventual goal of any slave-particle method is to have
the spinons carry the fermionic spin of the original electron,
while the slave particles carry the charge of the electron, and
by decoupling them one has two easier problems to solve (see
the next section). However, at this stage, one is still consider-
ing an exact reformulation, so the spinons and slave particles
always move together during a hopping process in a correlated
manner. Mathematically, it means that in the enlarged Hilbert
space H f ⊗ Hs, there is a subset of physical states where
the number of spinons and slave particles are equal for each
state α which form a faithful one-to-one representation of the
original states of the physical electrons |nα〉:

|nα〉 → |n f
α = nα;Nα = nα〉, (3)

where nα, n f
α,Nα are the occupation numbers of the physical

electron, spinon, and slaves, respectively, and can take the
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values of 0 or 1. We will call these states the “physical” or
“number-matching” states in what follows.

With this short review concluded, we now define our slave-
bond formalism. Our formalism lives in the same Hilbert
space as before H f ⊗ Hs, and the difference is in how we
choose to define the slave-particle operators. Our approach
is based on using the full microscopic set of local quantum
numbers α ≡ imσ for the slave-particle description. We take
a pair of localized states α, β to define the bond αβ with
associated hopping operators ĉ†α ĉβ which moves an electron
from β to α. We define our slave-bond representation by
using the spinon fermionic operators f̂α as before but defining
slaves-particle operators that have a bond index 〈αβ〉, so the
operator replacement is now given by

ĉ†α ĉβ → f̂ †α f̂βÔ
†
α〈αβ〉Ôβ〈αβ〉. (4)

To make the action of f̂ †α f̂βÔ
†
α〈αβ〉Ôβ〈αβ〉 on the physical states

|n f
α = nα;Nα = nα〉 identical to that of ĉ†α ĉβ on the original

electron states |nα〉, Appendix A shows that the lowering
operator Ôα〈αβ〉 must take the form

Ôα〈αβ〉 =
(

0 1
cα〈αβ〉 0

)
, (5)

with the basis ordered as {|Nα = 0〉, |Nα = 1〉}. The number
cα〈αβ〉 is often called the “gauge” and its value is arbitrary at
present since we are dealing with the exact problem with no
approximations within the physical subspace. The constraints
determining its value will be described in Sec. III. Appendix A
also shows that the form of Eq. (5) also guarantees that an-
ticommutation relations are obeyed for the collective bond
spinon+slave operator:

{ f̂βÔβ〈αβ〉, f̂ †α Ô
†
α〈αβ〉} = δαβ. (6)

It is important to clarify that the individual site-based slave-
particle lowering operators Ôα〈αβ〉 resemble but are not
bosonic field operators. They are defined in such a way to obey
Eq. (6). Hence, our theory is a slave-particle theory and not a
slave-boson theory.

In contrast to prior slave-particle theories, the slave-bond
operators in our theory are nonlocal. Figure 1 shows exam-
ples of bonds (double-arrow lines) on a checkerboard lattice,
where the bonds can correspond to hopping processes in
the Hamiltonian, e.g., nearest-neighbor hopping (orange) and
next-nearest-neighbor hopping (green). However, one can also
consider longer-ranged slave bonds (purple). Therefore, in
principle, there are a huge number of bonds in a crystalline
system. But, in practice, only a small subset contributes to
observables like the Hamiltonian. For example, only bonds
with nonzero hoppings tαβ 
= 0 contribute to the total en-
ergy, and these are typically only the nearest and next-nearest
neighbors. From a pragmatic viewpoint, in our work below
we only need to define slave-bond operators on the bonds that
appear with tαβ 
= 0 in Eq. (1).

To compare to previous slave-particle methods, for a given
bond 〈αβ〉, our slave-bond approach can be viewed as a recipe
similar to the prior site-based slave-particle approaches where
one does the replacement

ĉα → f̂αÔα〈αβ〉. (7)

FIG. 1. An illustration of a checkerboard lattice structure rep-
resenting a metal oxide 2D layer. Red circles represent correlated
d sites (transition metals), and blue circles are noninteracting p
sites (oxygens). The double-arrow lines illustrate examples of bonds
used to define the slave-particle operators. The dashed black ellipses
indicate the d-p-d clusters in the layer which overlap with each other
on the correlated d sites.

Even though the mapping of Eq. (7) is mathematically correct
(as detailed in Appendix A), it shows an index mismatch
from both sides. Physically, it originates from the fact that the
slave bonds are nonlocal; operationally, what it means is that
mapping of Eq. (7) only makes sense in the context of the
hopping part of the Hamiltonian which is the sum over bonds:
For each bond αβ, one can do the mapping in Eq. (7) without
confusion.

III. SLAVE-PARTICLE DECOMPOSITION

With the slave-bond representation, the Hamiltonian of
Eq. (1) in the enlarged Hilbert space turns into

Ĥ = −
∑
αβ

tαβ f̂
†
α f̂βÔ

†
α〈αβ〉Ôβ〈αβ〉 +

∑
α

εα n̂α +
∑
i

Ĥ int
i ,

(8)

where, again, i is a site index and greek-letter indices com-
bine site, orbital, and spin together. The local interaction
term in the original electron Hamiltonian can be described
by the slave particles alone through Ĥ int

i = ∑
mUimN̂im↑N̂im↓.

The difficulty is that in addition to the physical or number-
matching states, the enlarged Hilbert space H f ⊗ Hs also
contains numerous unphysical states, e.g., a state such as
|n f

α = 0;Nα = 1〉 where the number of spinons and slaves do
not match for localized state α. In an exact treatment of the
interacting problem, these states are excluded. However, to
make practical progress, one must make approximations.

The first approximation common to all slave-particle ap-
proaches, including ours, is to decouple the spinon and slave
problems. The simplest way forward is to approximate the
density matrix for the joint spinon+slave system ρtot by a
product of a spinon density matrix ρ f and a slave density ma-
trix ρs, i.e., ρtot = ρ f ⊗ ρs. This decouples the two problems
at the cost of losing the concerted or correlated description
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of the spinon and slave particles during the hopping process
along each bond. The best one can do is to ensure agreement
on average. Hence, one enforces a matching of the expectation
values of the number operators for each state α,

〈n̂α〉 f = 〈N̂α〉s. (9)

Here, expectations are defined in the standard way: For
any operator Â acting in the spinon space, we have 〈Â〉 f =
Tr(Âρ̂ f ); similarly, for any operator B̂ acting in the slave
space, we have 〈B̂〉 f = Tr(B̂ρ̂s). Here n̂α and N̂α are number
operators in spinon and slave Hilbert space, and we will drop
the f superscript on the spinon number operator going for-
ward.

Given this approximate density matrix, the average of a
hopping process along a bond in Eq. (4) factorizes as

〈 f̂ †α f̂βÔ
†
α〈αβ〉Ôβ〈αβ〉〉 = 〈 f̂ †α f̂β〉 f 〈Ô†

α〈αβ〉Ôβ〈αβ〉〉s. (10)

Most generally, the expectation of the product operator ÂB̂ of
a spinon operator Â and slave operator B̂ factorizes as

〈ÂB̂〉 = Tr(ÂB̂ρ̂ f ⊗ ρ̂s)

= Tr(Âρ̂ f )Tr(B̂ρ̂s) = 〈Â〉 f 〈B̂〉s. (11)

The decoupling in Eq. (10) results in two simpler prob-
lems to be solved instead of the original electron problem.
The easiest way to achieve this is to consider the variational
problem of minimizing the total energy E = 〈H〉 under the
occupation number constraints of Eq. (9) as well as more
obvious constraints of the normalization of the density ma-
trices Tr(ρ̂ f ) = Tr(ρ̂s) = 1. Using the Lagrange multiplier
approach, we consider the unconstrained minimization of the
function F :

F = 〈Ĥ〉 −
∑

α

hα (να − 〈N̂α〉s) −
∑

α

h′
α (να − 〈n̂α〉 f )

− ε f
[
Tr(ρ̂ f ) − 1

] − εs[Tr(ρ̂s) − 1]. (12)

Here hα, h′
α are Lagrange multipliers for the mean occupa-

tion numbers of the slaves and spinons, while ε f , εs are the
Lagrange multipliers for the normalization constraints. For
convenience, we have enforced occupation number matching
via separate matching to target spinon occupancies να , whose
values are determined variationally [19].

The differential of F versus the two independent variables
ρ̂ f and ρ̂s takes the form

dF = Tr([Ĥf − ε f Î]d ρ̂ f ) + Tr([Ĥs − εsÎ]d ρ̂s),

where the effective Hamiltonians for spinons (Ĥf ) and slaves
(Ĥs) are

Ĥf = −
∑
αβ

tαβ〈Ô†
α〈αβ〉Ôβ〈αβ〉〉s f̂ †α f̂β +

∑
α

(εα + h′
α )n̂α,

Ĥs = −
∑
αβ

tαβ〈 f̂ †α f̂β〉 f Ô†
α〈αβ〉Ôβ〈αβ〉 +

∑
α

hαN̂α +
∑
i

Ĥ int
i .

(13)

Therefore, the original interacting electron problem is turned
into a noninteracting spinon problem with symmetry-breaking
field (onsite energies) h′

α and an interacting slave problem
with onsite energies hα . Both Hamiltonian problems contain

hopping terms that are renormalized by averages of the other
problem, and the renormalization factors are to be determined
self-consistently at the minimum energy configuration. The
expectation values of observables are then described by the
minimizing spinon and slave density matrices.

Since we have created an approximation to the problem,
the choice of gauge numbers cα〈αβ〉 will now matter. In previ-
ous slave-particle methods [14,17,18], the gauge is chosen to
ensure that in the noninteracting limit, the spinon system alone
will faithfully describe the original electron problem. In these
prior approaches, the purely local replacement ĉα → f̂αÔα

goes hand in hand with a single-site slave-particle approxi-
mation where ρ̂s is approximated as a product over single-site
density matrices ρ̂ i

s as ρ̂s ≈ ⊗
i ρ̂

i
s. Then the slave expectation

over each bond factorizes as well 〈Ô†
αÔβ〉s ≈ 〈Ô†

α〉s〈Ôβ〉s. The
gauge numbers cα are then chosen to ensure 〈Ôα〉s = 1 when
Ĥ int
i = 0, and thus in the noninteracting limit, the spinon

Hamiltonian Ĥf of Eq. (13) will become identical to the
original electron Hamiltonian since the slave hopping renor-
malization factor 〈Ô†

αÔβ〉s is replaced by unity. As we explain
below, this methodology permits unphysical particle-number-
violating hopping process which creates significant errors in
the total energy.

One of the virtues of our bond-based approach is that it
eliminates such unphysical processes. Consider the original
electron Hamiltonian: The hopping on a given bond 〈αβ〉 is
described by the term−tαβ ĉ†α ĉβ + H.c. This term is Hermitian
and particle conserving. In the Fock space, its only nonzero
matrix elements are between the two states |nα = 0; nβ =
1〉 and |nα = 1; nβ = 0〉. Within the exact slave-particle de-
scription in the physical subspace, the same is true of
the corresponding hopping operator −tαβ f̂ †α f̂βÔ

†
α〈αβ〉Ôβ〈αβ〉 +

H.c. because the fermionic spinon part f̂ †α f̂β alone can ensure
that all other matrix elements are zero. However, once we
approximately separate the spinon and slave problems, the
slave-particle Hamiltonian Ĥs of Eq. (13) does not necessarily
conserve particle number. The hopping along bond 〈αβ〉 in Ĥs

is proportional to

Ô†
α〈αβ〉Ôβ〈αβ〉 + H.c. =

⎛
⎜⎜⎝
0 0 0 v∗
0 0 u∗ 0
0 u 0 0
v 0 0 0

⎞
⎟⎟⎠, (14)

where the basis is ordered as {|Nα = 0;Nβ = 0〉, |Nα =
0;Nβ = 1〉, |Nα = 1;Nβ = 0〉, |Nα = 1;Nβ = 1〉}, and v =
cα〈αβ〉 + cβ〈αβ〉 and u = 1 + cα〈αβ〉c∗

β〈αβ〉. The physical pro-
cesses are proportional to u while the unphysical ones are
proportional to v. In contrast to prior slave-particle meth-
ods where the gauge cα is a fixed number for each local
slave mode α, our approach provides the additional bond
index which allows us to require the additional constraint
v = cα〈αβ〉 + cβ〈αβ〉 = 0 or cα〈αβ〉 = −cβ〈αβ〉. And the remain-
ing gauge freedom for bond 〈αβ〉 (i.e., the value of cα〈αβ〉)
is chosen to ensure the correct noninteracting limit for Ĥf ,
namely, that 〈Ô†

α〈αβ〉Ôβ〈αβ〉〉s = 1 at zero interaction strengths.
We take the gauge numbers cα〈αβ〉 to be real so that the number
of constraints (two) matches the number of gauge variables
on each bond. Detailed analytical formulas are summarized in
Appendix C.

115153-4



BOND-DEPENDENT SLAVE-PARTICLE CLUSTER THEORY … PHYSICAL REVIEW B 107, 115153 (2023)

For a noninteracting problem, the slave renormalization
factors are unity, so that the spinon Hamiltonian alone is
sufficient to compute the total energy 〈Ĥ〉 and match the
original electron problem. In addition, slave-particle methods
are analytically exact at the large interaction limit [7,8], so one
can view them as interpolation methods for finite interaction
strengths.

From a practical viewpoint, the spinon problem on the
lattice is trivial to solve by diagonalizing the associated
one-particle Hamiltonian matrix Ĥ0 given by Ĥ0

αβ = −tαβ +
δαβ (εα + h′

α ) using Bloch’s theorem. However, the slave
Hamiltonian is still an interacting many-body problem on a
lattice and is impossible to solve exactly for a large lattice.
Some approximations are required as per the next section.

IV. CLUSTER APPROXIMATION

We now describe a cluster approximation based on a
density matrix expansion that maps the infinite lattice slave
problem onto a set of coupled finite-sized interacting clusters.
We use overlapping clusters so that each chemical bond, e.g.,
transition-metal–oxygen bond, is included in some clusters
and will be described explicitly. A choice of overlapping
clusters for a two-dimensional corner-sharing (checkerboard)
metal oxide layer is illustrated by the dashed black ellipses in
Fig. 1 where each cluster consists of three sites: Two interact-
ing d sites and the p site between them.

Each cluster C is small enough that one can, in principle,
solve the many-body interacting slave problem for that cluster
directly. For describing ground states, this would provide us
with the cluster density matrix ρ̂C . The question we address is
how to take the set of {ρ̂C} over all the overlapping clusters and
create a global quantum state (density matrix) for the entire
lattice which we can then use to compute observables like the
total energy.

The density matrix ρ̂ of the entire interacting slave problem
will be approximated via the following real-space, site-based
cluster expansion:

ρ̂ =
⊗
i

ρ̂i +
∑
C

(
ρ̂C −

⊗
i∈C

ρ̂i

)⊗
k /∈C

ρ̂k . (15)

The indices i and k refer to sites (atoms) in the system, and
ρ̂i is the single-site density matrix for site i obtained by tracing
out the degrees of freedom at all other sites

ρ̂i ≡ Tr j 
=i(ρ̂). (16)

The first term in ρ̂ of Eq. (15) approximates the density matrix
of the entire system as the tensor product over the single-site
density matrices, and this represents the complexity of almost
all current slave-particle approaches: Each site i is solved sep-
arately from the rest (albeit self-consistently via some type of
bath linking the sites). The second term in Eq. (15) improves
by incorporating the additional correlations described by the
cluster compared to the single-site approximation. Figure 2 il-
lustrates the density matrix expansion of Eq. (15). One begins
with the collection of single-site density matrices ρ̂i creat-
ing an approximation which is then improved by adding the
cluster-wide density matrix contributions beyond the single-
site approximation. This expansion is trivially exact for an

FIG. 2. An illustration of density matrix expansion for a one-
dimensional system with red and blue atoms, where black dashed
clusters overlap at red atom sites. The interacting density matrix
and its reduced density matrices on sites are shown as dark blue
rectangles. The direct product of density matrices is represented by
black solid lines connecting rectangles.

infinitely large cluster, while for finite-sized clusters, spatial
correlations up to the cluster size are explicitly included.
These clusters connect or handshake with each other via the
single-site density matrices ρ̂i on the shared sites as explained
below.

Since the ρ̂C are the basic variables describing the full
system ρ̂, the single site ρ̂i of Eq. (16) must also be derivable
from the ρ̂C . Inserting Eq. (15) into (16) yields the consistency
condition

ρ̂i = 1

Mi

∑
C|i∈C

TrC−i(ρ̂C ), (17)

where TrC−i(ρ̂C ) is shorthand for

TrC−i(ρ̂C ) ≡ Trk∈C|k 
=i(ρ̂C ) (18)

which is the trace over all sites in cluster C excluding site i.
The number Mi is the number of clusters that include site i:
e.g., a d site in Fig. 1 hasMi = 4 whereas a p site belongs to a
single cluster so it hasMi = 1. We will also use the shorthand

ρ̂
(C)
i = TrC−i(ρ̂C ) (19)

for the single-site density matrix at site i coming from the
cluster density matrix of cluster C.

Equation (17) states the sensible condition that ρ̂i is the
average over all single-site density matrices coming from the
cluster that overlap at site i. However, to describe a consistent
quantum state specified by ρ̂ for all sites, we require a stronger
consistency condition where the density matrix at each site is
well defined and unique. Namely, we insist on the additional
constraints that

ρ̂i = ρ̂
(C)
i ∀ C|i ∈ C (20)

separately for all clusters C containing i: i.e., all the Mi con-
tributions in Eq. (17) are the same. Mathematically, for site i
in cluster C we employ a matrix of Lagrange multipliers 	̂

(C)
i

with associated Lagrange multiplier term Tr(	̂(C)
i [ρ̂i − ρ̂

(C)
i ])

to enforce the constraint.
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Two additional properties of this constrained density ma-
trix expansion are (i) it has a consistent description of
short-ranged density matrices from the total density matrix ρ̂,
so Trk /∈C (ρ̂) = ρ̂C and Trk 
=i(ρ̂) = ρ̂i; and (ii) it approximates
the long-range behavior of the true density by single-site prod-
ucts: When sites i and j are far enough apart that they are not
both in a single cluster, then Trk 
=i, j (ρ̂) = ρ̂i ⊗ ρ̂ j .

Using the density matrix of Eq. (15), the total energy E =
Tr(Ĥ [ρ̂ f ⊗ ρ̂s]) turns into

E =
∑

α

εα〈n̂α〉ρ f +
∑
i

〈
Ĥ int
i

〉
ρi

−
∑

αβ|〈αβ〉∈∃C
tαβ〈 f̂ †α f̂β〉ρ f 〈Ô†

α〈αβ〉Ôβ〈αβ〉〉ρC

−
∑

αβ|〈αβ〉/∈ ∀ C
tαβ〈 f̂ †α f̂β〉ρ f 〈Ô†

α〈αβ〉〉ρi|α∈i〈Ôβ〈αβ〉〉ρ j|β∈ j .

(21)

In this formula, the hopping energy has two parts. The first
is an intracluster hopping term describing hopping between
two states α, β that are both inside of a cluster C (notation
〈αβ〉 ∈ ∃C): We can compute the associated slave-hopping ex-
pectation directly using the cluster density matrix without any
factorization approximation. The second intercluster hopping
term is for long-ranged hoppings between α, β when both are
not in a single cluster: Here the slave-hopping expectation

factorizes into the product of two single-site averages, and
the consistency condition (20) ensures that the single-site
averages of the hopping operators are well defined.

To minimize E with the required constraints, we use the
Lagrange multiplier approach and consider the minimization
of the function F :

F = E −
∑
i

∑
C|i∈C

Tri

(
	̂

(C)
i

{[
1

Mi

∑
C′|i∈C′

ρ̂
(C′ )
i

]
− ρ̂

(C)
i

})

−
∑

α

∑
C|α∈C

h(C)α (να − 〈N̂α〉ρC ) −
∑

α

h′
α (να − 〈n̂α〉ρ f )

− ε f (〈Î〉ρ f − 1 −
∑
C

εC (〈Î〉ρC − 1). (22)

Each cluster has its own Lagrange multipliers h(C)α to enforce
mean occupancy matching with the spinons 〈n̂α〉 f = 〈N̂α〉ρC ,
and εC enforce that the trace of the cluster density matrices are
unity. Interestingly, as proved in Appendix D, the additional
constraints introduced by 	̂

(C)
i turn out to be redundant for

the Hamiltonians of interest here given that the mean particle
numbers are already matched to the spinon occupancies 〈n̂α〉 f
for a slave mode α at site i. So we can set all the 	̂

(C)
i = 0

which is a significant simplification.
Redoing the logic of the minimization problem for this

function F yields the spinon Hamiltonian Ĥf and slave Hamil-
tonian ĤC governing each cluster C:

Ĥf = −
∑
αβ

tαβ〈Ô†
α〈αβ〉Ôβ〈αβ〉〉ρ f̂ †α f̂β +

∑
α

(εα + h′
α )n̂α,

ĤC =
∑
i|i∈C

1

Mi
Ĥ int
i +

∑
α|α∈C

h(C)α N̂α−
∑

αβ|〈αβ〉∈C
tαβ〈 f̂ †α f̂β〉ρ f Ô

†
α〈αβ〉Ôβ〈αβ〉−

∑
β|β∈Cα|〈αβ〉/∈ ∀ C′

tαβ

Mβ

〈 f̂ †α f̂β〉ρ f [〈Ô†
α〈αβ〉〉ρi|α∈i Ôβ〈αβ〉 + H.c.].

(23)

Here Mα is a shorthand that equals the number of clusters to
which the state α belongs and is equivalent toMi for any α ∈ i.
The scaling factors of 1/Mi and 1/Mα in ĤC originate from
the relations (16) and (17) for the single-site density matrix
ρ̂i. The cluster Hamiltonian ĤC contains intracluster hoppings
(first hopping term) as well as long-range intercluster hop-
pings (〈αβ〉 is not in any single cluster) going outside the
cluster C whose renormalization factors depend on the spinons
and also the other slave clusters.

Using the cluster approximation, the lattice slave-bond
Hamiltonian Ĥs of Eq. (13) is mapped into a set of clusters,
each with its own Hamiltonian ĤC . The density matrix of
the interacting slave-bond lattice problem is then described
by the density matrices of the clusters from Eq. (15). The
cluster Hamiltonians ĤC in Eq. (23) are, in general, not par-
ticle conserving due to the intercluster hopping terms that
involve single raising and lowering Ô operators. In addition,
the mean number of particles on any site or over any clus-
ter is, in general, not an integer for a pd type model due
to d-p hybridization. Hence, the cluster density matrix ρ̂C
will describe a mixed state, automatically involving nearly
degenerate low-energy states. In practice, we describe these

mixed states using a Boltzmann distribution for each cluster
using a very small temperature. In this work, we use exact
diagonalization to solve each interacting cluster problem and
then use the eigenstates to compute the Boltzmann distribu-
tion: This is not prohibitively difficult for the small three-site
clusters we consider here. For larger clusters or more complex
systems, more efficient methods of finding the Boltzmann
distributed density matrix not involving naive diagonalization
can be explored in the future.

V. TESTS ON THE HUBBARD DIMER

We begin with a simple system where the analytical so-
lution of the electron problem as well as the single- and
cluster-slave problems is possible. We consider the half-filled
two-site Hubbard model (Hubbard dimer), whose Hamilto-
nian is

Ĥ = −t
∑

σ

(ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ ) +U
2∑

i=1

N̂i↑N̂i↓. (24)
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(a)

(b)

FIG. 3. (a) Total energy and (b) (mean) double occupancy of
each site for the half-filled Hubbard dimer as a function of the in-
teraction strength U/t , where the nearest-neighbor hopping strength
t is the energy unit. Cluster slave-particle (SP) results are identical to
the exact diagonalization (ED) results marked by blue circles, while
single-site SP results are represented by red squares.

For such a small system, a single two-site slave cluster en-
compasses the whole system, so it is not surprising that the
cluster-based method will provide excellent results. In fact, as
detailed in Appendix B, exact diagonalization of the original
electron Hamiltonian and solution of our cluster slave-particle
method result in the same ground-state energy E = (U −√
U 2 + 16t2)/2 as well as the same double occupancy

Di ≡ 〈N̂i↑N̂i↓〉 =
(
1 − U√

U 2 + 16t2

)/
4. (25)

This double occupancy is always positive for any real-valued
U and t , direct evidence of the absence of a Mott transition in
this system (also true of the one-dimensional half-filled one-
band Hubbard model [2]). Figure 3 shows the exact E and Di

in blue.
However, analytical solution (see Appendix B) of the

associated single-site slave-particle problem results in E =
−(U − 8t )2/32t for U/t < 8 and E = 0 when U/t � 8 and
double occupancy Di = (8t −U )/32t when U/t < 8 and
Di = 0 when U/t � 8. Both energy and double occupancy
indicate a Mott transition at U/t = 8 within this (erroneous)
single-site approximation. Figure 3 shows the single sites E
andDi in red. This (false) Mott transition atU/t = 8 disagrees
with the exact solution but is also inevitable within a single-
site approach: A single site connected to a bath described by
a single expectation 〈O〉s cannot know if the bath is meant to
describe a zero or high-dimensional material problem; since a
Mott transition can happen in higher-dimensional systems and
is achievable in the single-site theoretical description when
〈O〉s = 0, it occurs for some sufficiently large U/t in the
single-site picture.

VI. TESTS ON d-pMODELS

Moving beyond the analytically solvable Hubbard dimer,
we numerically test our theory on larger and more realistic
models. In terms of modeling transition metal oxides, basic
chemical considerations show that a minimal model should
include both the d orbitals of the transition-metal atoms and
the p orbitals of the oxygen atoms (a “d-p” model). For
example, the single-orbital-per-site d-pmodel, also known as
the Emery model [45–47], is intensively studied as a potential
framework of the high-Tc copper-based superconductors. Due
to the complexity caused by the explicit inclusion of the p
states, the d-pmodel is numerically more challenging to solve
but is also more realistic [48–50] than further simplified mod-
els such as the one-band Hubbard model [51] or the t-J model
[52]. Hence, our numerical tests in this section will focus
on the d-p model, while complementary one-band Hubbard
model tests can be found in Appendix E.

For the systems studied below, the hopping renormaliza-
tion factors and occupancies are determined self-consistently
in a numerical fashion. In Appendix G, we describe the
workflow of the self-consistent calculations involved in our
numerical studies. As we will see below, our slave-bond
method produces very accurate results compared to high-
quality benchmark results in both 1D and 2D d-p systems.

We begin our tests with 1D d-p systems which have the
lattice illustrated in Fig. 4(a). In all the following results,
the nearest-neighbor d-p hopping strength is set to be −t as
illustrated in Fig. 4(a), where t is real positive and treated as
the energy unit; all other hoppings are set to zero. The onsite
energy of d sites is set to be εd = +2t , while the onsite energy
of p sites is εp = 0. There is only one orbital for each site.
In addition, a small temperature of kBT = 5 × 10−3t is intro-
duced to allow the Boltzmann distribution to create a mixed
state from multiple eigenfunctions of the Hamiltonian which
is necessary as discussed in Sec. IV. The finite temperature
does create errors in the calculation of ground-state properties,
but as shown in Appendix F, these errors are controllable by
reducing the temperature. Other convergence thresholds are
set low enough to give accurate results: e.g., mean d-site oc-
cupancies are converged so that they differ between physically
identical d sites by less than 10−7.

We employ two types of benchmarks. For small systems,
we use exact diagonalization (ED) of the starting electron
Hamiltonian with a Boltzmann distribution at the same kBT
listed above. For larger problems, ED is infeasible, so we
turn to DMRG. All DMRG calculations in this work use the
ITENSOR software package (Julia version) [53,54], where the
energy cutoff is set to be 10−8t ; the maximum bond dimension
increases by system size up to 1600 for a 96-site system,
and the maximum number of sweeps is 1600. For the single-
site slave-particle results, we use the boson subsidiary-solver
(BoSS) software [6] with orbital- and spin-resolved slave par-
ticles using the same finite temperature.

A. Four-site 1D model

We begin with a small four-site model (i.e., a d-p-d-p
chain) with periodic boundary conditions (PBC). The upper
panel of Fig. 4(b) shows the total energy versus interaction
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FIG. 4. (a) Illustrates the one-dimensional d-p chain with peri-
odic boundary conditions, where red atoms represent d sites while
blue atoms represent p sites. The black dashed ellipses are the
clusters used in the slave-bond calculation. Upper panel of (b), and
(c) and (d) show the total energy per unit cell in units of t , d-
site occupancy, and d-site double occupancy versus the interaction
strength U , respectively, for a four-site unit-cell linear chain with
periodic boundary conditions. The results of exact diagonalization
(ED), single-site slave-particle (SP), and cluster SP are marked by
blue circles, black diamonds, and red squares, respectively. The
lower panel of (b) shows the total energy error of the cluster SP
method in units of t .

strengthU . Both slave-particle (SP) methods reproduce exact
total energy at U = 0 and U → ∞ by construction. How-
ever, while the single-site method shows qualitatively correct
behavior versus U , the cluster method shows quantitative
accuracy. The same is true for the mean d-site occupancy
nd = 〈N̂d↑ + N̂d↓〉 in Fig. 4(c). The double occupancy D =
〈N̂d↑N̂d↓〉 in Fig. 4(d) is computed in the slave-particle sector

of the problem which has no reason to match the exact answer
at U = 0, and the two SP calculations will match the exact
answer only at U → ∞. However, the cluster SP method
remains very accurate for all values ofU .

We note that for both energy and d-site occupancy, both
cluster SP results agree with ED for both small and large
U which is as expected. In the noninteracting limit, the c
gauges enforce the spinon Hamiltonian alone to reproduce the
noninteracting electron Hamiltonian: With 〈Ô†

α〈αβ〉Ôβ〈αβ〉〉 =
1 and no interaction terms, the total energy of Eq. (21) is the
noninteracting energy. In the large U or atomic limit, the p
sites are filled while the d sites are half-filled in both SP or
ED calculations. Thus, the cluster SP reproduces the exact
energy and occupation numbers in both limits. The single-site
SP method has the same properties in both limits but has larger
errors at finiteU .

The lower panel of Fig. 4(b) shows the error of the total
energy of the cluster SP as a function of interaction strength
(U/t) calculated by subtracting the ED energy from the cluster
SP energy. To further reduce the finite-temperature effect, the
temperature is decreased to kBT = 1 × 10−4t in this particular
calculation. Among all the 81 different interaction strengths
U/t sampled from 0 to 8, the maximum energy error in cluster
SP is 3.5 × 10−3t at U/t = 1.2, while such error is about
50 times larger in the single-site SP method. The maximum
errors for occupancy and double occupancy in cluster SP are
1.1 × 10−3 and 1.6 × 10−3, respectively.

B. System-size dependence in 1D

Beyond the four-site d-p system where exact diagonaliza-
tion is possible, we have tested longer 1D chains with 8, 16,
32, 64, 96, and 128 sites at U/t = 0 and 8. Here we assume
translational symmetry with the four-site unit cell which is
then replicated: The objective is to gauge convergence versus
system size. Benchmark results on the different-sized systems
are generated by either exact diagonalization at U = 0 or
DMRG [3] with open boundary condition (OBC) at finite U .
We note that PBC is replaced by OBC in the DMRG calcula-
tions because PBC is computationally much more expensive
than OBC according to the area law [55]. Correspondingly,
we calculate and report the total energy per four-site unit
cell in Fig. 5(a) for OBC DMRG calculations to compare it
with cluster SP and exact diagonalization results. The d-site
occupancy and double occupancy in Figs. 5(b) and 5(c) are
computed around the middle point of the chain for DMRG
so as to be the farthest away from the open boundaries. For
the cluster SP calculations with PBC, we can use the transla-
tional symmetry to work with the four-site unit cell together
with k-point sampling of the spinon problem: Larger systems
correspond to denser k sampling of the noninteracting spinon
problem. This makes for a very cheap computational scaling
versus system size.

The system-size dependencies are shown in Fig. 5, where
the total energy is quoted per four-site unit cell. Unsur-
prisingly, the cluster SP method is equivalent to exact
diagonalization at U = 0 as discussed at the end of Sec. III.
We also notice that both cluster SP and DMRG converge faster
versus system size at U/t = 8 case than at U/t = 0. This
comes from the intensively studied “band narrowing” effect
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FIG. 5. Convergence of observables versus system size for the
1D half-filled d-p Hubbard chain: System sizes used are 8, 16, 32,
64, 96, and 128 sites. (a)–(c) Show the total energy of each four-site
unit cell in units of t , the d-site occupancy, and the d-site double
occupancy versus the number of sites, respectively. For each panel,
the interaction strength used is U = 0 for the upper subpanel and
U = 8t for the lower one. The results of DMRG with OBC, cluster
SP with PBC, and ED with PBC are marked by blue circles, red
squares, and green diamonds, respectively.

[18,35,56] due to finite U/t which makes the quasiparticle
bands less dispersive and allows sparser k sampling for the
same accuracy. In addition, cluster SP is well converged for
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FIG. 6. (a)–(c) Show the total energy of each four-site unit cell in
units of t , d-site occupancy, and d-site double occupancy versus the
interaction strengthU , respectively. All results come from 64-site 1D
d-p system, blue circles represent DMRG results with OBC; black
diamonds represent single-site SP results assuming a translational
period of four sites; red squares and green crosses almost completely
overlap with each other and represent cluster SP assuming a transla-
tional period of four sites and eight sites.

most of the observables when the system size is larger than
16 sites, while DMRG needs more than 100 sites for the same
level of convergence. The slower convergence of DMRG is
due to edge effects induced by the open boundary condition
needed to reduce bond dimension [53,54].

From a computational vantage point, to converge the total
energy to 10−7t , each data point takes less than 1 CPU minute
on a laptop for the slave SP calculations regardless of system
size. On the other hand, for the OBCDMRG, we require about
6 CPU hours for a 64-site calculation and takes longer than
one day for a 128-site calculation on a standard, contemporary
Linux cluster.

We further examine the 64-site system as a function of
U/t in Fig. 6. The cluster SP results marked by red squares
assume a translational period of four sites and match well with
the DMRG results marked by blue circles. As a comparison,
the single-site SP method assuming the same translational
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period is marked by black diamonds, which shows much
larger errors in all three observables. Moreover, an additional
cluster SP calculation assuming a translation period of eight
sites is performed, whose results are marked by green crosses.
This calculation with a double-sized unit cell behaves almost
exactly the same as the four-site unit-cell calculation, which
indicates the convergence of unit-cell size in our cluster SP
results.

C. Doped 1D chains

We perform further tests on the 64-site 1D d-p system by
hole doping, where the average doping density ranges from 0
up to 0.5 holes for each d-p pair. The local interaction strength
on d site is fixed to beU = 2t , while other parameters such as
the onsite energies, hopping strengths, and the temperature are
unchanged from the no-doping calculations of the previous
sections. We chooseU/t = 2 because the errors caused by the
cluster SP method are relatively large around this choice, as
shown in the lower panel of Fig. 4(b), providing a stringent
test of the cluster SP.

Our results of the doped systems are summarized in Fig. 7,
where the two curves are results from cluster SP and DMRG.
In Figs. 7(a) and 7(b), the two curves are almost overlapping
with each other, indicating that the cluster SP method repro-
duces the energy per unit cell and the d-site occupancy of the
ground state extremely precisely. In Fig. 7(c), the cluster SP
reproduces good d-site double occupancy D with some small
variations. While both DMRG and cluster SP methods show a
nice linear relation between the total energy and doping level
in Fig. 7(a), they both show small discrepancies away from
linear relations in Figs. 7(b) and 7(c). This is because both
DMRG and the cluster SP methods are variational approaches
for the ground-state total energy, so a high level of energy
convergence is guaranteed, but the convergence of other non-
variational observables such as the site occupancy or double
occupancy is much poorer. Note that the double-occupancy
deviations are below 0.01, which is adequately small and
about the same order of magnitude as other errors caused by
the cluster approximation and finite-temperature effect and
is almost invisible in Fig. 6(c). It is one order of magnitude
smaller than the error caused by single-site SP approximation.

In short, based on all these tests, our cluster SP method
reproduces overall very accurate results hundreds of times
faster than DMRG for the one-dimensional d-p model. It
also represents a significant quantitative improvement over the
single-site SP method.

D. 2D d-p systems

The generalization to two-dimensional systems is straight-
forward in our cluster slave-particle theory. We choose a
checkerboard lattice where the lattice structure and the clus-
ters used in the calculations are illustrated in Fig. 1. The
red and blue circles represent d and p sites, where each site
contains only one orbital. This is a frequently studied model
for cuprates known as the “three-band model” [48,49].

Figure 8(a) illustrates a primitive cell used in the calcula-
tion which is a parallelogram and contains two d sites and four

(a)

(b)

(c)

d-
ycnapucco

elbuod
etis

d-
(

ycnapucco
etis

nd
)

En
er

gy

FIG. 7. (a)–(c) Show the total energy of each four-site unit cell
(units of t), d-site occupancy, and d-site double occupancy, respec-
tively. They are plotted as functions of the average hole doping
level on each d-p pair. Blue circles represent the DMRG results as
benchmarks, while the red squares stand for the cluster SP results
assuming a translational period of four sites.

p sites. This is because we are permitting for Néel checker-
board antiferromagnetic (AFM) correlation (if we assumed
a stripe pattern, the unit cells would be chosen differently).
Similar to the 1D calculations discussed above, the nearest-
neighbor hopping strength t is treated as the energy unit. All
the onsite energies of d sites are set to be εd = +2t , while the
onsite energies of p sites are εp = 0, and the small tempera-
ture applied is kBT = 5 × 10−3t . Only nearest-neighbor d-p
hopping is included.

Figures 8(b)–8(d) show our results for a small system with
only one primitive cell, where ED is feasible. As before,
the cluster SP results match well with the ED ones for all
three observables studied in this work, while the single-site
SP method causes much larger errors. We note that while a
larger system is very straightforward to treat with cluster SP
simply by using translational symmetry and k-point sampling,
it is much more difficult to find a good exact benchmark for a
large 2D system, especially for the three-band model. Such a
comparison will be a topic of future work.
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FIG. 8. (a) Illustrates the purposed spin structure in a checker-
board lattice, where the nearly half-filled d sites marked by red
circles are spin polarized, while the nearly full-filled p sites marked
by blue circles are not spin polarized. The orange dashed parallelo-
gram represents the primitive cell under the Néel AFM correlation.
(b)–(d) Show the total energy for each primitive cell, d-site occu-
pancy, and d-site double occupancy versus the interaction strengthU ,
respectively. The results of ED, single-site SP, and cluster SP meth-
ods are marked by blue circles, black diamonds, and red squares,
respectively.

VII. CONCLUSION

We have introduced a nonlocal slave-particle represen-
tation defined on bonds, which improves the slave-particle
decomposition by enforcing particle-conserving hoppings on
each bond, in addition to the site-centered spinon-slave
number matching constraints from previous slave-particle

methods. We have further developed a cluster approximation
for the interacting slave-particle problem based on the ex-
pansion and matching of density matrices which maps the
slave-particle problem to a set of small overlapping clusters
that can be solved self-consistently.

As a significant improvement to the previous single-site
slave-particle theory, our theory correctly predicts the absence
of Mott transition in the 1D half-filled Hubbard model (single-
site slave-particle methods predict a false Mott transition).
The method also shows remarkably high accuracy for a wide
range of interaction strengths, unit-cell sizes, doping levels,
and in both one and two dimensions when compared to exact
or high-accuracy benchmark methods. Computationally, the
method is very efficient and requires only a few minutes of
CPU time on a serial laptop to find the ground state of the
coupled spinon and slave problems. Future work will bench-
mark this method more extensively in 2D as well as on more
complex multiorbital realistic material systems.
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APPENDIX A: MAPPING AND COMMUTATION
RELATIONS

Electrons obey the anticommutation relations

{ĉα, ĉ†α′ } = δαα′ . (A1)

The spinons ( f̂α) obey the same commutation relations as
well, as they are fermions. The slave-particle lowering oper-
ator Ô is then defined to obey the mapping from the original
electron Hilbert space to the number-matching states in the en-
larged spinon+slave Hilbert space. The mappings in Eqs. (4)
and (7) and (4) are made to match all matrix elements. That
is, for each bond 〈αβ〉, we require

〈n′|ĉα|n〉 = 〈n f ′ = n′;N ′ = n′| f̂αÔα〈αβ〉|n f = n;N = n〉.
(A2)

Also, the operator f̂αÔα〈αβ〉 should still obey anticommutation
relations like Eq. (A1):

〈n f ′ = n′;N ′ = n′|{ f̂αÔα〈αβ〉, f̂ †α′Ô
†
α′〈α′β ′〉}

× |n f = n;N = n〉 = δαα′ . (A3)

In the following, we are going to prove that the most general
form of Ôα〈αβ〉 shown in Eq. (5) always obeys the two require-
ments in Eqs. (A2) and (A3).

For the right side of Eq. (A2), the matrix element can be
rewritten as the product of two matrix elements from spinon
and slave, separately.

〈n f ′ = n′;N ′ = n′| f̂αÔα〈αβ〉|n f = n;N = n〉
= 〈n f ′ = n′| f̂α|n f = n〉〈N ′ = n′|Ôα〈αβ〉|N = n〉. (A4)

Now we consider all the cases. When nα = 0, both f̂α and ĉα

kill (zero) the matrix element on both sides of Eq. (A2). When
nα = 1, since Ôα〈αβ〉|Nα = 1〉 = |Nα = 0〉, the only nonzero
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spinon and slave matrix elements come from n′
α = 0 and

n′
γ = nγ for other modes γ 
= α. We end up with 〈n f ′ =
n′| f̂α|n f = n〉 for the right side of Eq. (A2). Realizing that f̂α
and ĉα act identically as same fermionic annihilation operator
on identical Hilbert spaces, their matrix elements are the same,
so Eq. (A2) always holds.

For Eq. (A3), using the anticommutation relations of the
spinons, we get

{ f̂αÔα〈αβ〉, f̂ †α′Ô
†
α′〈α′β ′〉} = Ô†

α′〈α′β ′〉Ôα〈αβ〉δαα′

+ f̂α f̂
†
α′[Ôα〈αβ〉, Ô†

α′〈α′β ′〉]. (A5)

The two terms on the right side of Eq. (A5) are discussed case
by case.

When α = α′, using Eq. (5) we have

Ô†
α〈αβ ′〉Ôα〈αβ〉 =

(
c∗
α〈αβ ′〉cα〈αβ〉 0

0 1

)
(A6)

and

[Ôα〈αβ〉, Ô†
α〈αβ ′〉] = (1 − c∗

α〈αβ ′〉cα〈αβ〉)
(
1 0
0 −1

)
. (A7)

We substitute this into the matrix element on the left side
of Eq. (A3), and we discuss how the anticommutator acts
on the physical ket state |n f = n;N = n〉. If nα = 0 in the
physical state, then the action f̂α f̂ †α is the identity operation
on this state. The two terms in Eq. (A5) add to Ôα〈αβ〉Ô†

α〈αβ ′〉
which acts as identity on for this ket state. If nα = 1 in the
physical state, the second term of Eq. (A5) is zero due to the
zeroing action of f̂α f̂ †α , and the remaining Ô†

α〈αβ ′〉Ôα〈αβ〉 acts
as identity on this state. Thus, Eq. (A3) holds for α = α′.

When α 
= α′, the first term in Eq. (A5) is zero. For the
second term, with basis ordered as {|Nα = 0;Nα′ = 0〉, |Nα =
0;Nα′ = 1〉, |Nα = 1;Nα′ = 0〉, |Nα = 1;Nα′ = 1〉}, we have

Ô†
α′〈α′β ′〉Ôα〈αβ〉 =

⎛
⎜⎜⎝

0 0 0 c∗
α′〈α′β ′〉

0 0 c∗
α′〈α′β ′〉cα〈αβ〉 0

0 1 0 0
cα〈αβ〉 0 0 0

⎞
⎟⎟⎠

= Ôα〈αβ〉Ô†
α′〈α′β ′〉.

(A8)

Thus, the commutator vanishes, Eq. (A5) is zero in this case,
and Eq. (A3) holds for α 
= α′ too.

Based on the above, the commutation relations of the slave-
bond operators are

[Ôα〈αβ〉, Ô†
α′〈α′β ′〉] = δαα′ (1 − cα〈αβ ′〉cα〈αβ〉)

(
1 0
0 −1

)
. (A9)

This commutation relation means that the “lowering” op-
erators Ô are similar to but are not the same as bosonic
field lowering operators. They are simply defined to obey the
mappings of Eq. (A2) and the anticommutation relations of
Eq. (A3). Hence, we call them slave-particle (as opposed to
slave-boson) operators.

APPENDIX B: TWO-SITE HUBBARD MODEL

In this Appendix, we derive analytical results for the two-
site half-filled Hubbard model using three different methods:

Exact diagonalization of the original fermion Hamiltonian, the
single-site slave-particle method, and our cluster slave-bond
method.

1. Exact diagonalization

The ground state of the half-filled two-site Hubbard
model will be a linear combination of the doubly occupied
states and the singlet state, so the basis of the subspace
is |↑↓, 0〉, |0,↑↓〉, (|↑,↓〉 − |↓,↑〉)/√2, where the Hamilto-
nian is represented in this basis as

Ĥ =

⎛
⎜⎝ U 0 −√

2t
0 U −√

2t
−√

2t −√
2t 0

⎞
⎟⎠. (B1)

The ground state of this Hamiltonian is

|G〉 =A[4t (| ↑↓, 0〉 + |0,↑↓〉)
+ (U +

√
U 2 + 16t2)(| ↑,↓〉 − | ↓,↑〉)], (B2)

where A is the normalization factor. The corresponding
ground-state energy is E = (U − √

U 2 + 16t2)/2 and the
double occupancy on each site is

Di ≡ 〈n̂i↑n̂i↓〉 =
(
1 − U√

U 2 + 16t2

)/
4. (B3)

Hence, the energy is −2t in the noninteracting limit, and
becomes −4t2/U in the large interaction limit. The double
occupancy is 0.25 and −2t2/U 2 in the same two limits. So
there is not a Mott transition for any finite U based on these
exact results. The analytical results of ground-state energy and
double occupancy derived above match with the numerical
results in Fig. 3.

2. Single-site slave particle

In the single-site slave-particle method, the total energy is
defined as

E = −t
∑

σ

(〈 f̂ †1σ f̂2σ 〉〈Ô†
1σ 〉〈Ô2σ 〉 + c.c.) +U

∑
i

〈N̂i↑N̂i↓〉.
(B4)

To minimize the total energy, the corresponding spinon and
the first-site slave-particle Hamiltonian is

Ĥf = − t
∑

σ

(〈Ô†
1σ 〉〈Ô2σ 〉 f̂ †1σ f̂2σ + H.c.) +

∑
iσ

h′
iσ N̂iσ ,

Ĥs1 = − t
∑

σ

(〈 f̂ †1σ f̂2σ 〉〈Ô2σ 〉Ô†
1σ + H.c.)

+UN̂1↑N̂1↓ +
∑

σ

h1σ N̂1σ , (B5)

where h are Lagrange multipliers, while h′ combine the La-
grange multipliers and the symmetry-breaking fields to be
determined variationally. (The second slave-site Hamiltonian
Ĥs2 is identical to the first-site one other than relabeling.)
According to the spin symmetry and inversion symmetry in
this system, we conclude that h′

iσ should be the same for all
sites and spins, and the same statement also holds for hiσ .
Based on this symmetry analysis, the spinon Hamiltonian is
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solved easily by diagonalizing 2 × 2 matrices for each spin
channel. As a result, the occupancy is 〈niσ 〉 = 1

2 for every site
and spin, and the spinon density matrix element of interest is
〈 f̂ †1σ f̂2σ 〉 = 1

2 .
Next, in the basis |0〉, |↑〉, |↓〉, |↑↓〉, we have

Ĥs1 =

⎛
⎜⎜⎝

0 −y −y 0
−y h 0 −y
−y 0 h −y
0 −y −y 2h +U

⎞
⎟⎟⎠, (B6)

where we set hiσ = h based on the symmetry discussed above,
and y ≡ 0.5t (1 + c)〈O2σ 〉, in which c is the real c-gauge num-
ber determined to make 〈Oiσ 〉 = 1 in the noninteracting limit.

When U = 0, h = 0 and the ground state of the slave-
particle Hamiltonian is

|G0〉 = (|0〉 + |↑〉 + |↓〉 + |↑↓〉)/2.
In order to have the spinon hopping renormalization factor
〈Oiσ 〉 = 1 with this state, the c-gauge number is c = 1, and
thus y = t〈O2σ 〉.

For a finite interaction U/t > 0, to obey the particle-
number-matching constraint in Eq. (9), we find that h =
−U/2. So the ground state with finite interaction is

|G〉 = (|0〉 + a|↑〉 + a|↓〉 + |↑↓〉)/
√
2(1 + a2),

where a ≡ √
(8t +U )/(8t −U ) when U < 8t , while a →

∞ when U � 8t . Finally, using the single-site slave-particle
method, whenU < 8t , the ground-state energy is E = −(U −
8t )2/32t , and the double occupancy is Di = (8t −U )/32t ,
while when U � 8t , both ground-state energy and double
occupancy are zero, which match with the numerical results
in Fig. 3. This result clearly indicates a false Mott transition
atU = 8t in contrast to the exact diagonalization method.

3. Cluster slave-particle method

In the cluster slave-particle method, the total energy is
defined as

E = −t
∑

σ

(〈 f̂ †1σ f̂2σ 〉〈Ô†
1σ Ô2σ 〉 + c.c.) +U

∑
i

〈N̂i↑N̂i↓〉,
(B7)

where we hide the bond index for Ô operators because there is
only one bond, and the c gauge for spin up and spin down are
the same by symmetry in this system. To minimize the total
energy, using a two-site cluster, the corresponding spinon and
the cluster slave-particle Hamiltonian are

Ĥf = − t
∑

σ

(〈Ô†
1σ Ô2σ 〉 f̂ †1σ f̂2σ + H.c.

) +
∑
iσ

h′
iσ N̂iσ ,

ĤC = − t
∑

σ

(〈 f̂ †1σ f̂2σ 〉Ô†
1σ Ô2σ + H.c.

)

+
∑
i

(
UN̂i↑N̂i↓ +

∑
σ

hiσ N̂iσ

)
. (B8)

Similarly, h are Lagrange multipliers, while h′ combine the
Lagrange multipliers and the symmetry-breaking fields to be
determined variationally. The spin symmetry and inversion
symmetry also hold here, and the spinon Hamiltonian can be
solved easily as before: We find 〈niσ 〉 = 1

2 and 〈 f̂ †1σ f̂2σ 〉 = 1
2 .

FIG. 9. An illustration of the one-dimensional d-p chain, where
red atoms represent d sites while blue atoms represent p sites, and
each atom is labeled by white letters. The black dashed ellipses are
the clusters used in the cluster slave-bond calculation.

The noninteracting slave Hamiltonian can be separated by
spin channels, where the spin σ Hamiltonian is represented in
the basis ordered as |0, 0〉, |σ, 0〉, |0, σ 〉, |σ, σ 〉:

ĤCσ =

⎛
⎜⎜⎝
0 0 0 0
0 h −y 0
0 −y h 0
0 0 0 2h

⎞
⎟⎟⎠, (B9)

where y = 0.5t (1 −C2), and C stands for the gauge to be
determined and is assumed to be real. We find that, in order to
have the noninteracting spinon hopping renormalization factor
〈Ô†

1σ Ô2σ 〉 = 1 and the particle number match with the spinon
result, the c-gauge number must beC = √

3.
With a finite interactionU , matching particle numbers give

the final slave-particle ground state

|G〉 = A[−4t (|↑↓, 0〉 + |0,↑↓〉)
+ (U +

√
U 2 + 16t2)(|↑,↓〉 + |↓,↑〉)], (B10)

where A is the normalization factor. The corresponding renor-
malization factor is 〈Ô†

1σ Ô2σ 〉 = 4t/
√
U 2 + 16t2. In other

words, the intersite hopping (and thus renormalization factors)
of the slave bond is always nonzero in this system which
indicates an absence of a Mott transition. Finally, observ-
ables can be calculated using the slave-particle ground-state
expression (B10). The ground-state energy given by Eq. (B7)
is E = (U − √

U 2 + 16t2)/2. The double occupancy on each
site is

Di ≡ 〈N̂i↑N̂i↓〉 =
(
1 − U√

U 2 + 16t2

)/
4, (B11)

where the double occupancy is always nonzero for arbitrary
U/t . Finally, note that the expressions of ground-state energy
and double occupancy are exactly the same as the exact diag-
onalization results derived above in Appendix B 1.

APPENDIX C: FORMALISM FOR c GAUGE

In this Appendix, we derive the analytical formulas of
Eqs. (C1) and (C2) for the c-gauge numbers. As we introduced
in Sec. III, the c gauges are chosen (i) to forbid all unphysical
intracluster hoppings in slave problem that change particle
numbers, and (ii) to ensure that the spinon problem recovers
the original fermion problem in the noninteracting limit.

1. Intracluster hoppings

By definition, both sites of an intracluster hopping can
be found in one same cluster. Note that even though the
nearest-neighbor hopping such as the d2-p2 hopping in Fig. 9
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can appear as an outward hopping with respect to the clus-
ter [d1p1d2], it is still treated as a short-ranged intracluster
hopping, whose c gauge is computed in cluster [d2p2d3]. For
intracluster hoppings, the first constraint (i) requires cα〈αβ〉 +
cβ〈αβ〉 = 0, and the second (ii) requires 〈Ô†

α〈αβ〉Ôβ〈αβ〉〉 = 1 in
the noninteracting calculation. For each bond 〈αβ〉, there are
two c-gauge variables to be determined, obeying the above
two equations. By solving the two equations, we find

cα〈αβ〉 =
√
1 − 1

〈0, 1|ρ̂0
αβ |1, 0〉 , (C1)

and ρ̂0
αβ is a noninteracting bond density matrix, where the

0 and 1 in the bras and kets are the occupation numbers
on the slave modes α and β, respectively. The superscript 0
represents the operators in noninteracting slave-particle cal-
culations. The bond density matrix is defined by tracing out
other degrees of freedom in the cluster density matrix ρ̂0

αβ ≡
Trγ∈C|γ 
=α,β (ρ̂0

C ).

2. Intercluster hoppings

Aside from the intracluster hoppings, the other hop-
pings are long-ranged intercluster hoppings, such as the
p1-p2 hopping in Fig. 9. Based on the density matrix ex-
pansion in Eq. (15), an intercluster hopping 〈αβ〉 in our
slave-particle approach is decoupled as 〈Ô†

α〈αβ〉Ôβ〈αβ〉〉 =
〈Ô†

α〈αβ〉〉〈Ôβ〈αβ〉〉. The constraints on the bond 〈αβ〉 are

〈Ôα〈αβ〉〉ρ0 = 〈Ôβ〈αβ〉〉ρ0 = 1 in order to recover the nonin-
teracting Hamiltonian with the spinons alone (ρ0 is the
noninteracting slave density matrix). Each of these constraints
is easily solved to get

cα〈αβ〉 = 1

〈0|ρ̂0
α|1〉 − 1, (C2)

where 0 and 1 are the occupation numbers of the slave mode
α. The single-orbital density matrix is determined as

ρ̂0
α ≡ 1

Mα

∑
C|α∈C

Trγ∈C|γ 
=α (ρ̂C ), (C3)

where Mα is the number of clusters overlapping on the slave
mode α.

APPENDIX D: REDUNDANCY OF SINGLE-SITE DENSITY
MATRIX CONSTRAINTS

In this Appendix, we describe in detail the constraints
ensuring that the single-site density matrix ρ̂i at a shared site
i among multiple clusters is described consistently among
them. As explained in the main text, these constraints are im-
posed by the Lagrange multipliers 	̂

(C)
i and associated energy

terms in the function F defined in Eq. (22) that are minimized.
The key result of this Appendix is that all these Lagrange
multipliers 	̂

(C)
i can be set to zero.

First, there are some redundant Lagrange multipliers in the
above set of constraints. For a site i, there are Mi Lagrange
multiplier matrices 	̂

(C)
i since there are Mi distinct clusters

overlapping on the site i. The task of the 	̂
(C)
i is to make all

the site density matrices equal to each other (and equal to ρ̂i),

ρ̂
(C)
i = ρ̂i. This means that we only require Mi − 1 distinct

Lagrange multiplier matrices at site i, and we can pick one
of the clusters to be a reference cluster C∗

i whose single-site
density matrix the other clusters must match. For example, if
a site i is not shared by multiple clusters (so Mi = 1), then no
Lagrange multipliers should be added to match the single-site
density matrix to itself; if Mi = 2, then we need only match
the density matrix of the second cluster with the first. We
can safely set the Lagrange multiplier matrix for our reference
cluster to zero, 	̂(C∗

i )
i = 0.

Second, the density matrix matching constraints are obeyed
throughout the entire minimization process. This means that
not only ρ̂

(C)
i = ρ̂i at the beginning of the minimization, but

also that δρ̂
(C)
i = δρ̂i when minimizing the function F along

the gradient. The gradient of F along ρ̂C is

∂F

∂ρ̂C
= −

∑
αβ|〈αβ〉∈C

tαβ〈 f̂ †α f̂β〉ρ f Ô
†
α〈αβ〉Ôβ〈αβ〉

−
∑

β|β∈C
α|〈αβ〉/∈ ∀ C′

tαβ

Mβ

〈 f̂ †α f̂β〉ρ f [〈Ô†
α〈αβ〉〉ρi|α∈i Ôβ〈αβ〉 + H.c.]

+
∑
i|i∈C

1

Mi
Ĥ int
i +

∑
α|α∈C

h(C)α N̂α − εC ÎC

+
∑
i|i∈C

(1 − 1/Mi )	̂
(C)
i . (D1)

We collect the derivatives versus all N clusters into the gradi-
ent∇F = (∂F/∂ρ̂C1 , ∂F/∂ρ̂C2 , . . . , ∂F/∂ρ̂CN ). As is standard
in the Lagrange multiplier method, we will project out the part
of ∇F that breaks the constraints to determine the value of the
Lagrange multipliers. This is most easily done by considering
a step of size η along the gradient (δρ̂C1 , δρ̂C2 , ..., δρ̂CN ) =
η∇F , so the change δρ̂

(C)
i is given by

δρ̂
(C)
i = TrC−i(δρ̂C ) = ηTrC−i

(
∂F

∂ρ̂C

)
, (D2)

where, again, TrC−i denotes a trace over the cluster C but
excluding the degrees of freedom on site i. The key enabling
observation allowing us to move forward is that the hopping
operators Ô, Ô† are traceless. Hence, the intracluster hopping
terms in Eq. (D1) involve hoppings between different sites so
they have zero traces, the intercluster hopping terms are zero
unless the state β is on the site i, and the remaining terms are
local single-site operators. At this stage, we have

δρ̂
(C)
i = η

⎛
⎜⎜⎝−

∑
β|β∈i

α|〈αβ〉/∈ ∀ C′

tαβ

Mβ

〈 f̂ †α f̂β〉ρ f [〈Ô†
α〈αβ〉〉ρk|α∈k Ôβ〈αβ〉

+H.c.] + Ĥ int
i

Mi
+

∑
α|α∈i

h(C)α N̂α − εC Îi

+ (1 − 1/Mi )	̂
(C)
i + q(C)i Îi

⎞
⎟⎟⎠ ∏

j∈C| j 
=i

S j, (D3)
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where q(C)i is a potentially cluster-dependent number com-
ing from traces of local operators not on site i, and Sj is
the dimension of the single-site density matrix Sj ≡ Tr j (Î j )
(i.e., dimension of the Hilbert space on site j). A moment’s
reflection shows that the first two terms in Eq. (D3) are in-
dependent of the cluster C, and we combine them into an
operator X̂i. Upon creating constants r (C)i = εC + q(C)i and
ζ = η

∏
j∈C| j 
=i S j , we have

δρ̂
(C)
i = ζ

⎛
⎝X̂i +

∑
α|α∈i

h(C)α N̂α + (1 − 1/Mi )	̂
(C)
i + r (C)i Îi

⎞
⎠.

(D4)
As per Eq. (17), we sum this δρ̂

(C)
i over all clusters C contain-

ing site i and divide byMi to find an analogous expression for
δρ̂i:

δρ̂i = ζ

⎛
⎝X̂i +

∑
α|α∈i

h̄αN̂α + (1 − 1/Mi )	̂i + r̄i Îi

⎞
⎠, (D5)

where overbars mean averaging over the clusters. Equating
Eqs. (D4) and (D5) yields

	̂
(C)
i = 	̂i + (1 − 1/Mi )

−1
∑
α|α∈i

(
h̄α − h(C)α

)
N̂α

+ (1 − 1/Mi )
−1
(
r̄i − r (C)i

)
Îi. (D6)

The second and third terms above are either redundant or
irrelevant: The second term involves shifts of onsite state
energies on site iwhich can be absorbed into the h(C)α Lagrange
multipliers that enforce spinon and slave-particle number
matching, while the third term represents a shift of the cluster
Hamiltonian ĤC by a constant which does not change its
eigenfunctions, shifts all eigenenergies by the same amount,
and thus does not change the thermal density matrix ρ̂C
computed from the Boltzmann distribution. Thus, the only

remaining meaningful term is 	̂
(C)
i = 	̂i which is cluster

independent: Since we have a reference cluster for which
	

C∗
i

i = 0, all the 	̂
(C)
i = 0.

Hence, we conclude that the mean particle-number-
matching constraints between spinon and slave particles
are sufficient for describing overlapping clusters. Additional
constraints, beyond the automatic mean particle-number
matching, are redundant.

APPENDIX E: TESTS ON SINGLE-BAND
HUBBARD MODELS

In this Appendix, we show our benchmarking results for
1D and 2D half-filled single-band Hubbard models, i.e., when
there is one correlated orbital at each site. This type of model
is a “d”-only model when describing a transition-metal oxide
since the oxygen orbitals are removed from the model. A
prioriwe expect this type of model to be less accurate than the
d-p models studied in the main text for at least two reasons:
(i) the removal of degrees of freedom can be accommodated
by renormalizing the remaining parameters of the model (e.g.,
nearest-neighbor hopping element t), but this type of process
is always approximate, and (ii) removal of the oxygen p
orbitals gives rise to effective orbitals (e.g., Wannier states)

on the d sites that are much less localized than the starting
orbitals of the d-p model, so that using an onsite only form
of the interaction is much less justified for the d-only case
than for the d-p case (i.e., the form of the Hamiltonian is
less accurate in the d only case with only onsite interactions).
However, the d-only model is a standard benchmark in the
field so comparisons to it are still helpful for connecting to
prior literature.

As is standard for one-band Hubbard models [57], the
nearest-neighbor hopping strength is set to be −t , while all
other hoppings are set to zero. The onsite energy of each d
site is set to zero, and the local onsite interaction strength is
set toU . In addition, a small temperature of kBT = 5 × 10−3t
is introduced in the cluster slave-particle calculations in an
identical manner to that for the d-p models in Sec. VI. (From
a practical viewpoint, to simulate the d-only systems with-
out having to modify our d-p software implementation, we
choose a d-p model where there are no hoppings involving
the p orbitals which have a very low energy and are filled
with electrons and thus are completely inert, while direct d-d
hoppings −t are introduced for the remaining electrons in the
d manifold.)

The first set of tests is on a 1D 64-site single-band Hubbard
model with periodic boundary conditions, whose lattice is
illustrated in Fig. 10(a). The clusters used in the cluster SP
calculation are marked by black dashed ellipses and consist of
two neighboring d sites and neighboring clusters overlap with
each other. For cluster SP calculations with PBC, we assume
a translational period of two sites (i.e., a two-site unit cell),
while for DMRG benchmarks, we use OBC as discussed in
Sec.VI B. Each data point requires only about 10 CPU seconds
for the cluster slave-particle calculations but needs about 7
hours for the DMRG calculations.

Although the two-site SP clusters in these tests are smaller
than the three-site SP clusters used in d-p model testing in
Sec. VI, the two-site clusters are capable of reproducing high-
quality results as shown in Fig. 10. Noticing that the double
occupancy of both DMRG and cluster SP are finite regardless
of interaction strength, we correctly predict the absence of
a Mott transition in this 1D model in contrast to the false
Mott transition predicted in single-site slave-particle theory
and DMFT [19,27–29].

Next, we examine a two-dimensional (64 × 64)-site one-
band Hubbard model at half-filling with PBC whose lattice is
illustrated in Fig. 11(a). The two-site clusters marked by black
dashed ellipses and the two-site Néel-ordered unit cell marked
by the orange dashed parallelogram are chosen in the same
manner as for the 2D d-p model of Sec. VID. Figures 11(b)
and 11(c) show the total-energy and double-occupancy results
of the cluster SP method. As a comparison, we also show ther-
modynamic limit results from auxiliary-field quantum Monte
Carlo (AFQMC) calculations [58]. Using SP clusters contain-
ing only two sites, the cluster SP method shows remarkable
quantitative accuracy with a modest computational cost of
only about two serial CPU minutes for each data point.

APPENDIX F: FINITE-TEMPERATURE ERROR

Generally, the partial trace of a pure state will be a mixed
state. Thus, even if our current cluster SP method only aims
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FIG. 10. (a) Illustrates the one-dimensional single-band Hubbard
model with periodic boundary conditions. The black dashed ellipses
are the clusters used in the cluster slave-particle calculation. (b),
(c) Show the total energy per two-site unit cell in units of t , and
the double occupancy versus the interaction strengthU , respectively.
All results are for a 64-site 1D single-band Hubbard system at half-
filling: Blue circles represent DMRG results with OBC, while red
squares represent cluster SP results assuming a translational period
of two sites (PBC).

to predict the ground-state (pure-state) properties of the en-
tire (lattice) system, in practice we use a finite temperature
in all the slave-particle cluster calculations. This is because
the mixed state introduced by the Boltzmann distribution can
better capture the cluster’s statistical properties.

The use of a small but finite-temperature Boltzmann dis-
tribution is a straightforward way to generate a mixed state
made from a number of low-energy eigenstates of the cluster
Hamiltonian, but the finite temperature itself introduces errors
due to the inclusion of higher-energy excited states. Here we
show that the errors are quite small in magnitude and easily
controllable.

Numerically, the error in the total energy per unit cell has
the same order of magnitude as the temperature itself as shown
in Fig. 12(a). For example, compared to the benchmark T = 0
DMRG results in Fig. 6, the largest error caused by kBT =
0.32t is 0.28t , while the largest error caused by kBT = 0.16t
is 0.10t . For this system, the finite-temperature error in energy
gets almost negligible when kBT is below 0.04t . Similarly, the
d-site occupancy and double occupancy are quite accurate at
kBT = 0.04t , as shown in Figs. 12(b) and 12(c). All results
in the main text are based on an even lower temperature of
kBT = 0.005t , so it is safe to ignore the finite-temperature
effect in our results.
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FIG. 11. (a) Illustrates the two-dimensional Hubbard model with
periodic boundary conditions. The black dashed ellipses are the
clusters used in the cluster slave-particle calculation, and the orange
dashed parallelogram represents the two-site primitive cell under the
Néel AFM correlation. (b), (c) Show the total energy per two-site
unit cell in units of t , and the double occupancy versus the interaction
strengthU , respectively. The red squares represent cluster SP results
generated by a (64 × 64)-site system at half-filling with PBC, while
the blue circles are auxiliary-field quantum Monte Carlo (AFQMC)
benchmarks [58] in the thermodynamic limit.

From a practical viewpoint, starting from an arbitrary ini-
tial setup, a high-temperature calculation typically converges
much faster than a low-temperature calculation. Hence, for
any given system and set of parameters, we begin with a high-
temperature calculation and use its self-consistent converged
solution as the starting point for a lower-temperature calcu-
lation (and repeat the process for ever lower temperatures), a
process that leads to significant computational efficiency.

APPENDIX G: WORKFLOW

In this section, we describe the workflow of a typical slave-
particle calculation in Fig. 13. It contains the following steps:

(1) Initialize all parameters, including all the Lagrange
multipliers h, c-gauge numbers, hopping renormalization fac-
tors 〈Ô†

α〈αβ〉Ôβ〈αβ〉〉 and 〈Ôα〈αβ〉〉. When starting from scratch,
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FIG. 12. (a) Total energy per unit cell (units of t), (b) d-site
occupancy, and (c) d-site double occupancy versus the interaction
strengthU , respectively, for a 64-site 1D d-p system with cluster SP
method and assuming translational unit cell of four sites. Different
curves show results with different temperatures marked by the leg-
end, where the temperatures kBT are in units of t .

reasonable a priori choices are zero for h, and unity for c and
the renormalization factors.

(2) For the first iteration, guess some symmetry-breaking
field, typically small random numbers much smaller in mag-
nitude than t or U . For the following iterations, choose the
symmetry-breaking field variationally by gradient descent of
the total energy. The updating of the symmetry-breaking fields
is the major outer loop of energy minimization.

(3) Solve the spinon Hamiltonian in Eq. (23), then com-
pute the hopping renormalization factors 〈 f̂ †α f̂β〉 for use in
the slave problem in the next step and the spinon occupation
numbers 〈n̂α〉.

(4) Solve the noninteracting slave Hamiltonian in Eq. (23),
and search for c-gauge number to obey the corresponding
constraints. This is most easily done via Newton’s method.

(5) Solve the interacting slave Hamiltonian and search
for the Lagrange multipliers h under the corresponding con-
straints. Note that these h will be generally different from the
noninteracting h in the previous step, although the noninter-

Ini�aliza�on of parameters

Quasipar�cle weight 
converged?

Yes

No

Spinon problem

Non-interac�ng slave 
problems: find c-gauge 

under constarints

Interac�ng slave problems: 
find h under constraints

Results

Yes

Choose symmetry 
breaking field

Total energy 
converged?

No

FIG. 13. The workflow of a typical calculation based on the
slave-particle approach.

acting ones provide a good initial guess when starting from
scratch.

(6) If the renormalization factors 〈Ô†
α〈αβ〉Ôβ〈αβ〉〉 and

〈Ôα〈αβ〉〉 differ from the prior step by more than a small
convergence tolerance (labeled as Quasiparticle weight in the
Figure), go back to step 3 while using the updated renormal-
ization factors, and repeat the calculation until tolerance is
achieved.

(7) If the total energy is not converged with respect to the
symmetry-breaking field (i.e., the successive change of energy
is too large between updates of symmetry-breaking fields),
then return to step 2 and update the symmetry-breaking field
to minimize the total energy.

We note that methods such as Newton’s method or gradient
descent require derivatives, and since they are computed nu-
merically by finite differences (absent analytical expressions
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for derivatives at present time), in practice we encapsulate in-
ner loops (e.g., the noninteracting slave solver) as routines that
are called repeatedly to compute numerical finite-difference
derivatives.

Based on the workflow chart above, we can estimate the
computational cost needed to complete the full calculation.
First, the single-particle spinon Hamiltonian is practically
very simple and a variety of methods can be unleashed to
find its ground state (direct diagonalization is simplest but
cubic in system size while linear-scaling methods are avail-
able if needed in the very large system limit [59]). For the
more complex cluster slave-particle problem, the computa-
tional cost is ∝SCNCNL, where SC is the computational cost of

the exact diagonalization of one cluster, NC is the number of
clusters in one unit cell, and NL is the total number of cluster
solutions needed (a loop count). NL is the product of the num-
ber of Lagrange multipliers h, the number of self-consistent
steps needed to converge the renormalization factors, and
the number of gradient descent steps needed to converge the
symmetry-breaking fields. Both NC and the number of La-
grange multipliers h are linear in the volume of the unit cell
while the other two loops count represent intensive quantities
(e.g., energy per atom) and are expected to be (relatively)
constant with unit-cell size. Hence, the overall slave part of
the calculation will scale quadratically with unit-cell volume
for the current approach.

[1] H. Bethe, Z. Phys. 71, 205 (1931).
[2] E. H. Lieb and F.-Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[3] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[4] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[5] M. Motta, C. Genovese, F. Ma, Z.-H. Cui, R. Sawaya, G. K.-L.

Chan, N. Chepiga, P. Helms, C. Jiménez-Hoyos, A. J. Millis,
U. Ray, E. Ronca, H. Shi, S. Sorella, E. M. Stoudenmire, S. R.
White, and S. Zhang, Phys. Rev. X 10, 031058 (2020).

[6] A. B. Georgescu, M. Kim, and S. Ismail-Beigi, Comput. Phys.
Commun. 265, 107991 (2021).

[7] S. Barnes, J. Phys. F: Met. Phys. 6, 1375 (1976).
[8] S. Barnes, J. Phys. F: Met Phys. 7, 2637 (1977).
[9] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

[10] M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).
[11] G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362

(1986).
[12] M. Raczkowski, R. Frésard, and A. Oleś, Europhys. Lett. 76,
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