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ABSTRACT: Liquid−liquid microchannels have high mass transfer rates but low throughput. To increase productivity, they can be
scaled up by increasing the diameter. Therefore, predicting flow patterns and mass transfer rates while accounting for solvent effects
as the diameter varies is crucial; however, this topic is currently lacking in the literature. We develop random forest and symbolic
genetic regression machine learning (ML) models to predict flow patterns and the mass transfer rate, respectively, using a
combination of our experimental and computational fluid dynamics (CFD) data and literature-mined data, while accounting for the
effects of solvent properties and channel diameter. This enables rapid prediction for efficient scale-up of microchannels to
millichannels. To minimize the number of CFD simulations and maximize the model accuracy, we employ active learning
techniques. Furthermore, we quantify the uncertainty of the ML models built on the hybrid data.

■ INTRODUCTION
Recent developments in microfluidic technology have enabled
process intensification and miniaturization of chemical
processes. Microstructured devices usually consist of channels
with diameters of less than 1 mm.1−3 Their small characteristic
length scale enables large surface-to-volume ratios. As a result,
the heat and mass transfer rates surpass those of traditional
large-scale batch or continuous flow reactors.4−11 Fast mass
transfer and laminar flow allow for precise control over
residence time.4,12−15 These characteristics lead to significant
advantages in nitration, polymerization, and rearrangement
reactions.5,16−22

Liquid−liquid biphasic microchannels exhibit various flow
patterns that impact transport rates.23−25 These can be
engineered by changing solvents (density, viscosity, and
surface tension), the fraction of each phase, the micromixer
where the streams intersect (T-junction, Y-junction, etc.), the
wall hydrophilicity, and the channel diameter, length, and
geometry.26−31 This tunability can significantly improve the
reactor throughput. The most common patterns are segmented

(slugs and droplets) and parallel flow. In the former, the two
liquids form alternating segments where the wall-wetting fluid
(continuous phase) usually forms a thin film around the
nonwetting fluid (dispersed phase).32,33 In the latter, one fluid
flows alongside the other.4,34 Parallel flow has found
application in liquid−liquid extraction and characterization of
various products, such as metals, metal complexes, and
DNA,35−37 achieving high extraction efficiency within reduced
contact times.38 Segmented flow, on the other hand, keeps the
dispersed phase away from the wall, and the strong inner
recirculation enhances mass transfer, producing well-controlled
nanoparticles.4,13,39,40 Segmented flows have also been used in
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the conversion of lignocellulosic biomass, such as the
conversion of glucose and fructose to 5-hydroxymethylfurfural
(HMF).4,7,41,42

While microchannels offer advantages, they possess a low
throughput and a relatively higher-pressure drop. Scaling out
to a suitable throughput requires many channels, resulting in
more wall material for construction. In recent work, we
proposed scaling-up the basic unit, until performance starts
decreasing, followed by numbering up (several channels placed
in parallel).7,43 Determining the “critical size” above which the
microscale advantages diminish is important.44

Traditionally, dimensionless numbers, such as the Ca
(Capillary number), Re (Reynolds number), We (Weber
number), and Oh (Ohnesorge number), of both phases are
used to predict flow patterns.19,26,28,45 However, these flow
maps do not hold as solvents, and the diameter change. Desir
et al.4 used a decision tree model to predict flow patterns for
multiple solvents using six features and achieved ≥95%
accuracy. Wang et al.19 investigated liquid−liquid mass transfer
for multiple diameters and lengths and proposed a correlation
for the mass transfer rate in the mm scale. Chen et al.6 studied
the HMF liquid−liquid extraction for multiple solvents
experimentally and computationally. Other studies have also
tried to predict the impact of diameter or length, but solvent
effects and uncertainty quantification associated with the data
have been lacking.9,12,27,45−50

We aim to predict the impact of the diameter and solvent on
flow patterns and mass transfer rates. To achieve this, we
conducted experiments and computational fluid dynamics
(CFD) simulations to account for the effects of solvent and
diameter. To reduce the number of CFD simulations, we
employ an active learning algorithm.51 We complement our
data with mined literature experimental data and integrate
these data sets, considering their uncertainties and fidelity.52

We propose a ML model to predict the flow patterns and
introduce a new functional form of mass transfer involving
dimensionless numbers utilizing symbolic genetic regression.
Our work provides a prediction tool for selecting parameters,
such as velocity, diameter, and length, to achieve a certain flow
pattern and mass transfer coefficient. Additionally, the results
provide insights into scale-up and solvent selection for the
enhanced mass transfer rate.
The structure of this article is as follows. We introduce the

experimental and computational methodology to investigate
liquid−liquid flow patterns and mass transfer rates, followed by
the need to use a hybrid data set and account for uncertainties.
The Results and Discussion section details the simulation and
experimental data for flow patterns followed by the mass
transfer rate topic. Finally, the Conclusions summarize our
main findings and suggest directions for future research.

■ SYSTEMS AND METHODS
T-Junction Microchannel. In this study, we utilize

horizontally placed T-junction microchannel12,26 where an
organic phase and an aqueous phase mix, as shown in Figure 1.
A T-junction was selected for this study, as it enhances mass
transfer due to increased interfacial area created at the junction
when the liquids come in contact. T-junctions can be easily
scaled-up in industrial processes. The interplay of viscous,
interfacial, inertial, and gravitational forces creates multiple
flow patterns4,6,19 identified based on standard definitions; see
SI.4,28,34,46,53 For the mass transfer rate study, an aqueous
phase consisting of HMF and an organic phase free of HMF

are sent to the T junction, and HMF is transferred from the
aqueous phase to the organic phase.

Experimental Methods. Two syringe pumps (ReaXus LS
Class High Performance Isocratic pumps) were used to pump
the aqueous and organic solvent feed into a square cross-
section T-junction (Valco Instruments) made of poly(ether
ketone) (PEEK), as seen in Figure S1. The biphasic mixture
then enters a capillary made of perfluoroalkoxy alkane (PFA)
tubing (Index Health) with alternating coiled and straight
segments of ID = 1.6 and 4.8 mm for flow pattern studies, and
ID = 0.5, 1, and 1.6 mm and L = 17, 8.5, and 5 cm,
respectively, for mass transfer rate studies. Deionized water
(Milli-Q) was the aqueous solvent. MIBK 99% (Sigma-
Aldrich) or 2-pentanol 99% (Sigma-Aldrich) was used as the
organic solvent. Sodium fluorescein 99% (Sigma-Aldrich) and
9,10-diphenylanthracene 99% (Sigma-Aldrich) were used as
the aqueous fluorescent dye and organic fluorescent,
respectively, to contrast the two liquid phases during flow
visualization.
The flow patterns were characterized using laser-induced

fluorescence (LIF) of 250 μM solution of sodium fluorescence
in water and a 10 mM 9,10-diphenylanthracene solution in one
of the selected organic solvents using a high-speed confocal
microscope (Highspeed LSM 5 Live Duo) mounted with an
inverter. Two laser sources with a wavelength of 488 and 405
nm were used for the fluorescence excitation of the aqueous
and organic solvents, respectively. Images were captured using
a Zeiss 1.25× and a 2.5× Plan-Neofluar objective lens at frame
rates ranging from 30 to 108.1 fps. Further image analysis and
processing of the flow patterns were conducted in ImageJ.
For mass transfer, an aqueous feed of 0.1 wt % HMF in

water encounters a neat organic feed at the T-junction. As the
biphasic mixture flows, the exit stream is collected in a 10 mL
graduated cylinder placed directly below the outlet of the
microchannel. As the two phases settle, immediate phase
separation is observed for the solvent pairs. Using a 2 mL
plastic pipet, the top organic phase is quickly removed from
the graduated cylinder. Then small aliquots of the aqueous
phase are pipetted into 300 μL vials for postextraction analysis.
The rate of mass transfer in the sampling zone is evaluated
using the procedure reported in Zhao et al.12

Computational Methods. CFD simulations of two-phase
flow are conducted using the COMSOL Multiphysics 5.4
software.54 The laminar flow module is used to compute the
velocity and pressure fields by solving the Navier−Stokes
equation, eq 1.

Figure 1. T-junction microchannel geometry built in COMSOL with
an aqueous and an organic phase inlet each.
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We use a two-phase flow, phase-field model, to define the
parameters controlling the interface thickness and mobility. We
specified the contact angle of the fluid to be 90°. The
continuous species transfer (CST) model55,56 (eq 2) accounts
for mass transfer between phases, for a given species j.
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C D C( ) ( )

j
j j j j+ · · = · +

(2)

This approach introduces a single-field representation and
considers the concentration difference in the two phases at the
interface with the discontinuity factor Φ, eq 3, where C is the
single field concentration; Dj is the harmonic mean of the
diffusivity of species j in the two phases weighed but the
volume fractions, as in eq 4; α represents the aqueous volume
fraction calculated using the phase field module; and K
represents the partition coefficient, as in eq 5.
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The flow patterns and rate of mass transfer were
independent of the cell number and size of discretization.
Zero gradient for the pressure and no-slip boundary condition
for the velocity are implemented at the wall. A fully developed
flow is assumed at the inlet. At the outlet, the velocity is set to
be zero-gradient and the pressure to be atmospheric. A
simulation of a total of 1,000,000 to 2,000,000 nodes takes
between 18 and 24 h computing time using 36 CPUs (Intel
E5-2695 V4) on a high-performance computing cluster to
obtain one flow pattern and 48−72 h for mass transfer data.
For this work, we used water and ethyl acetate (EtAc), MIBK,
or pentanol.
The volumetric mass transfer coefficient (kLa) is calculated

using the outlet concentration of HMF in the organic phase
using eq 6, derived from a simple biphasic plug flow mass
transfer model. eq 6 is applied to CFD and experimental
data.21,28
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Here kL is the mass transfer coefficient, and a is the specific
interfacial area. τ represents the residence time, εaq and εorg the
volume fractions of the aqueous and organic phases,
respectively, and Corg

eq , Corg
in , and Corg

out the HMF concentration
in the organic phase at equilibrium, inlet, and outlet of the
microchannel, respectively.6

Feature Importance. Principal component analysis
(PCA) identifies the number of features required to capture
the system’s behavior.57 By considering material properties and
dimensionless groups of both phases, we find a total of 26
features (Table 1; definitions in SI). The material properties in
the CFD model are listed in Table 1. The dimensionless
groups are based on previous work.6,13,26,34 Apart from PCA,
Feature importance can rank features for classifying flow
patterns.58 A clustered covariance matrix can also be employed
to group dependent variables.58 We implemented these
algorithms using the sklearn library in Python.58,59

Random Forest. We used a random forest model to
predict flow patterns. This is an ensemble method based on the
decision tree algorithm.58 Random forest is a commonly used
supervised ML technique in data mining for predicting either
the value (regression) or the class (classification) of target
variables from input observations. The approach involves
employing multiple decision trees, each splitting the data set
into subsets by selecting variables that separate the
observations at each tree node of the tree. Gini impurity (for
variable selection) is combined with a randomized search
method to set the hyperparameters (such as number of trees,
max depth, min features, and bootstrapping) of the decision
tree. The random forest algorithm is carried out using scikit-
learn.
The response space encompasses various flow patterns,

while the predictors consist of the features. The experimental
and CFD data are randomly split into a training set (80%) and
a testing set (20%). A 3-fold cross-validation combined with a
randomized search is employed to prevent overfitting. Because
of the small data set generated in this work (∼220 data
obtained using CFD simulations and experiments), satisfactory
accuracy was not achieved. Consequently, the random forest
model was enhanced by leveraging a heterogeneous data set
and active learning techniques, all while quantifying
uncertainty (details provided below).

Active Learning. Creating a reliable surrogate model
requires a sufficient data. Hence it is important to minimize the
number of simulations and maximize the accuracy. We
introduce the pool-based sampling method, which is a
frequently used active learning algorithm, to select conditions
for additional CFD simulations.51,60

A collection of data (unlabeled data set) was created by
varying the diameter from 2 to 5 mm and the flow rate ratio
from 1 to 4 while keeping Re < 2000. Multiple iterations were
done to select points to maximize the accuracy of the random
forest model. In each iteration, we used the random forest

Table 1. Features Define the Flow Patterns and Mass Transfer Rate in Liquid−Liquid Microchannels

features

aqueous
phase (Aq)

kinematic viscosity (μ), density (ρ), velocity (u), Capillary number (Ca), Reynolds number (Re), Weber number (We), Ohnesorge number (Oh),
and diffusivity (D)

organic
phase
(Org)

kinematic viscosity (μ), density (ρ), velocity (u), Capillary number (Ca), Reynolds number (Re), Weber number (We), Ohnesorge number (Oh),
and diffusivity (D)

system-wide interfacial tension (σ), total flow rate (Q), flow rate ratio (org/aq), total velocity of the system (U), Bond number (Bo), partition coefficient (K),
density ratio (ρratio), mixture diffusivity (DM), diameter (d), and length of the microchannel (L)
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model to predict flow patterns, and a data point was selected
whose addition to the training data set (with the predicted
label) would maximize accuracy (No. of correct predictions/
Size of the test data set). The selected data point was then
simulated using CFD, and the corrected label was added to the
training set (labeled data set). This process was repeated until
the model accuracy did not improve. Using the pool-based
method, 7 points were selected from the unlabeled pool,
increasing the accuracy from 67 to 84%. Most points selected
belong to the parallel, slug-drop, and irregular flow patterns,
i.e., these were lacking types of data.
Hybrid (Heterogeneous) Data. We have enhanced our

experimental and CFD data with mined flow pattern literature
data that use T-junction liquid−liquid microchannels, laminar
flow, and a consistent definition of flow patterns. This
diversifies the solvents and diameters (from 0.2 to 5 mm),
resulting in 730 total data points, as shown in Figure
2.4,13,19,26,28

The experimental and CFD data are characterized by
different degrees of uncertainty. Uncertainty in CFD stems
from the solvers and meshing, resulting in 0.5% deviation
(standard deviation of the outlet velocity simulated using d =
0.5 mm, q = 10 mL/min and a flow rate ratio = 1) in the
predicted velocity, and the boundary condition regarding the
wetting of the wall surface. Uncertainty in experiments is due
to the high precision pumps. These pumps exhibit a 2%

deviation (value taken from the brochure of ReaXus LS Class
High Performance Isocratic pumps).61 We use these
uncertainties to quantify their impact on flow patterns
(Scheme 1).52,62

First, we divided the data into computational and
experimental sets, splitting each into test and training sets
(20:80 ratio). The test data of both are combined. We assume
that uncertainties are normally distributed (N(μ, σ)), where σ
is 2 and 0.5% std. dev. for experimental and computational
data, respectively. We sample Ncomp and Nexp points for every
computational and experimental data point, respectively, from
the normal distribution with a velocity as the mean. In this
work we assume Ncomp = 400 and Nexp = 100. This approach

weighs the data based on uncertainty i
k
jjj y

{
zzz

N

N
comp

exp

exp

comp
. The

convergence of the number of samples was also studied (refer
to SI, Figure S2). As the velocity varies, we define the
probability of observing a flow pattern.
We determine our random forest hyper-parameters using a

modified 3-fold cross validation method combined with a
randomized-grid search approach,46 where we train on 2 parts
out of the 3 of the experimental and computational training
data and minimize the error with respect to the remaining
experimental training data.

Symbolic Genetic Regression. Conventionally, the mass
transfer rate is represented with a power law model (kLa =
aαbβcδ; a, b, and c being features selected, such as Re, Ca, etc.
and α, β, and δ being the respective exponents), and the
parameters are estimated using logarithmic regression. Our
analysis revealed that the power or the leading coefficient of
the logarithmic model changes with solvent properties (refer to
SI, Figure S3); i.e., the traditional model does not transfer from
one solvent to another. Symbolic genetic regression63 is a ML
technique that “discovers” a mathematical expression to
describe the data best. It first builds a population of naiv̈e
random formulas to relate independent and dependent
variables. Each successive generation is then evolved by
selecting individuals from the population to undergo specified
genetic operations based on the probabilities of the genetic
operations as the input.

Figure 2. Distribution of flow pattern hybrid data set (E =
experimental data, C = computational data, Pent. = Pentanol).

Scheme 1. Flowchart of the Methodology Combining Computational and Experimental Dataa

aNcomp, Nexp are the number of points sampled from the normal distribution of computational and experimental datasets; respectively.
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We perform symbolic regression using the gplearn library of
python, with an initial population size of 200,000 and a
functional set including (‘add (+)’,’sub (−)’,’div (/)’, ‘mul (*)’,
‘neg (−1*)’, ‘inv (1/)’, “sqrt”, “log”, “exp”). The algorithm is
run until the stopping criterion (mean square error <0.01) is
reached or until 300 generations are created. The probabilities
of various genetic operations were selected to maximize
crossover and minimize point mutation.
The response space includes Da′ (the ratio of Damkohler

(I) to Damkohler (II); refer to SI for definitions). Da′ includes
τ multiplied by the mass transfer coefficient (kLa). The
predictors are Ca, Sc

K
, and L

d
selected using feature algorithms.

The data collected using experiments are randomly split into
training (80%) and testing (20%) sets.

■ RESULTS AND DISCUSSION
Liquid−Liquid Flow Patterns. Figure 3 shows the two-

phase flow patterns (slug, drop, slug/droplet, and annular)

observed experimentally by using MIBK or 2-pentanol. We
assessed the CFD model against new experiments for MIBK
and 2-pentanol for d = 1.6 mm and for EtAc using the
experiments by Desir et al.4 for d = 0.5 mm (at a flow rate ratio
of 1). The flow patterns are in general agreement, as indicated
by the confusion matrix in Figure S4. Figure 4 shows six
computational flow patterns (slug, parallel, drop, slug/drop,
annular, and irregular) using EtAc (EtAc was chosen as it
shows all flow patterns within our range of velocity and
diameter, and is another important solvent for HMF
extraction).4,64,65 The organic phase is continuous (green in
experiments and blue in computation), and the aqueous phase
is the dispersed phase (red in experiments and computation).
Figure 5a,b,d, and 5c map the conditions for our

experimental and computational flow patterns, respectively.

As the diameter increases, different flow conditions (total
volumetric flow rate, org/aq (v/v) ratio, various organic
solvents) lead to varying patterns. Interestingly, slug flow still
occurs using MIBK and 4.8 mm diameter because the velocity
is lower for larger diameters and the same flow rate. For larger
diameters, the parallel flow becomes prominent (Figure 5c).
Solvents affect the flow patterns due to different interfacial
tensions and viscosities, despite comparable densities (Table
2). At lower experimental flow rates (0.1−10 mL/min), no
irregular flow is observed.4,6

Feature Selection. Previous work for a constant diameter
using PCA revealed that at least 6 features are needed to
represent flow patterns.4 Figure 6 shows the mean decrease in
impurity (average reduction in impurity when the feature is
used as splitting criterion throughout the decision tree
construction process) for various features. The Random Forest
model was the best among models and was built using the top
6 features (further increase in number of features resulted in
decreased accuracy and an increase in deviation for 3-fold cross
validation). The selected features include the total velocity of
the flow (U) and those of the organic (uorg) and the aqueous
phase (uaq), the Capillary number of the aqueous phase (Caaq),
and the product of the Weber and the Ohnesorge numbers of
the organic and aqueous phases (WeOhaq, WeOhorg). We find
that We related dimensionless numbers are more important as
we scaled up the microchannels.

Flow Pattern Prediction. Figure 7a shows the confusion
matrix between the predicted and experimental flow patterns
for the random forest model without uncertainty. The model
with uncertainty is more predictive (Figure 7b) for annular,
slug-drop, and irregular flow. The prediction probability
(Figure S5) for the slug, slug-drop, and irregular flow is high.
In contrast, parallel and annular flows are predicted less
accurately due to multiple forces acting simultaneously without
a single force being dominant in the transition from one force-
dominated regime to another. Overall, both models are more
than 85% accurate.

■ IMPACT OF DIAMETER ON THE SLUG FLOW
Slug flow is important due to the high degree of internal
convection and large specific interfacial area that promote mass
and heat transfer.6,34,65 This pattern results from the interplay
of interfacial, viscous, and inertial forces. The junction also
breaks up the dispersed phase into slugs due to the pressure
difference between phases. We have analyzed this flow pattern
in more detail here.27,66−68

Figure 3. Experimental flow patterns: (a) Annular flow with q = 10
mL/min, d = 1.6 mm, org/aq = 3:1, 2-pentanol. (b) Slug/drop flow
with q = 8 mL/min, d = 1.6 mm, org/aq = 3:1, 2-pentanol. (c) Drop
flow with q = 4 mL/min, d = 1.6 mm, org/aq = 1:1, MIBK. (d) Slug
flow with q = 5 mL/min, d = 1.6 mm, org/aq = 3:1, MIBK.

Figure 4. CFD flow patterns with EtAc: (a) slug flow for q = 0.2 mL/
min, org/aq = 1:1, (b) droplet flow for q = 2 mL/min, org/aq = 1:1,
(c) parallel flow for q = 5 mL/min, org/aq = 1:1, (d) annular flow for
q = 7 mL/min, org/aq = 1:1, (e) irregular flow for q = 10 mL/min, d
= 0.5 mm, org/aq = 1:1, and (f) slug-drop for q = 3 mL/min, org/aq
= 4:1 (colors reversed). In all cases, d = 0.5 mm except for panel d
where d = 2 mm.
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To capture the impact of diameter on the slug flow, we
curate a data set derived from our experiments. We conducted
simulations for 5 diameters and flow ratios from one to four.
For a fixed diameter and a flow ratio, we increment the
superficial velocity, keeping Re < 2100, to generate 400 points
(a parametric continuation). The set of diameters, flow ratios,
and velocities are then fed to the pretrained Random Forest
model to predict the flow pattern. We define the maximum
velocity for a given diameter and flow rate, for which we
observe slug flow, as the critical point. These critical velocities
are plotted in Figure 8 (marked points). The x-axis in Figure 8
shows the superficial velocity in the model, and the y-axis
shows the flow rate ratio for this velocity. These results were
verified using CFD calculations; slugs were seen at the
maximum velocity graphed but not for a velocity 5% higher.

Figure 8 indicates slug flow even above 3 mm despite
conventional belief.46 As the diameter or the flow rate ratio
increases, the maximum velocity leading to slug flow decreases.
The maximum velocity for slug flow above 4 mm is very low.
CFD indicates that the slug flow at larger diameters (≥4 mm)
happens because of the aqueous flow blocking the junction and
then breaking into slugs. As the diameter increases, a trade-off
between a higher throughput and slug flow benefits (higher
mass and heat transfer rates) occurs. An interesting feature is
symmetry breaking in the transition to no slugs. As the
diameter increases, the Bo number increases, and hence, the
impact of gravity on the slug over the interfacial force
increases. The slug slowly starts deforming and gets attracted
to the wall, breaking the symmetry. Results for different
diameters for EtAc and water are listed in Figure 9. Figure 9c

Figure 5. Maps of flow patterns: (a) Experiments, MIBK, d = 1.6 mm; (b) Experiments, 2-pentanol, d = 1.6 mm; (c) CFD, EtAc; (d) Experiments,
MIBK, d = 4.8 mm.

Table 2. Organic Solvent Properties

organic solvent dynamic viscosity (Pa.s) density (kg m−3) interfacial tension (N m−1) diffusivity6 (m2 s−1) partition coefficient6 (−)

EtAc 4.41 × 10−4 900 0.0074 2.87 × 10−9 1.4 ± 0.05
2-pentanol 3.47 × 10−3 812 0.0034 3.81 × 10−10 1.3 ± 0.07
MIBK 5.85 × 10−4 684 0.0157 2.43 × 10−9 1.1 ± 0.03
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shows visible deformation in a 5 mm diameter microchannel,
and Figure 9a depicts a symmetric slug for 0.5 mm diameter.
No significant symmetry changes were observed for drop

and annular patterns with increasing diameters, but the parallel
flow becomes prominent. A new flow pattern occurs in the
transition from parallel flow to annular flow, which fluctuates
between the parallel and annular flow with the organic phase
touching the wall but after some time flowing in between the
aqueous flow. This new flow pattern (Figure 9d) could be
rationalized using gravitational and surface forces. The flow
converts from parallel to annular flow due to surface forces
making the aqueous phase leave the wall and flow in between
the organic phase, but the aqueous flow gets attracted toward
the other wall due to significant gravity and is converted into
the parallel flow again as it flows along the wall. The irregular
flow pattern vanishes above 2.4 mm.

■ MASS TRANSFER
Figure 10 shows the rate of mass transfer estimated
experimentally for the three organic solvents at a fixed flow
ratio of 1:1 as the total flow rate increases from 0.1 to 6 mL/
min. The rate of mass transfer decreases with increasing
diameter and increases with increasing velocity. We postulate
that the mass transfer highly depends on the organic solvent
properties, such as interfacial tension, viscosity, and density.

Figure 6. Feature importance for flow patterns (mean decrease in
impurity: capacity of a feature to distinguish unique flow patterns for
various features).

Figure 7. (a) Confusion matrix for the combined flow pattern test data set (20% hybrid flow pattern data set, ∼146 data points). (b) Confusion
matrix for the random forest model with uncertainty.

Figure 8. Critical total velocity leading to slug flow for different
solvent ratios and diameters. The shaded region indicates the slug
flow for each diameter; to the right of each line, no slug flow exists.

Figure 9. (a) Symmetric slugs with no deformation (d = 0.5 mm, and
q = 0.7 mL/min). (b) Partially symmetric slugs with some
deformation (d = 2 mm and q = 3 mL/min). (c) Deformed slugs
with no symmetry (d = 5 mm and q = 40 mL/min). (d) New flow
pattern.
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Experiments for EtAc, d = 0.5 mm, L = 17 cm, and Q ranging
from 0.2 to 5 mL/min were simulated. Figure S6 shows the
parity plot between the CFD-predicted and experimentally
estimated rates of mass transfer. The maximum error is 5%.
CFD was also used to study the concentration profile along the
length (more information is provided in SI).
PCA suggests 4 features to represent the mass transfer rate

(Figure S7). Figure 11 shows the clustered covariance matrix
for the mass transfer rate features; 4 groups of interdependent
features formed, and 1 feature from each group was chosen.58

The selected features include the residence time (τ), Capillary
number (Ca), Schmidt number over the partition coefficient (
Sc
K
, refer to SI for derivation), and the length over the diameter

( )L
d
. Ca and τ belong to the same covariance group but were

chosen because Sc and K were combined into one feature.
Using symbolic genetic regression and the above groups, eq

7 was discovered to predict the rate of mass transfer. eq 7
relates the logarithm of Da′ to the logarithm of Ca, L

d
, and Sc

K

with α, β, γ, and δ as regression constants. Sc
K
, L

d
, and Ca

capture the solvent properties, geometry of the system, and
flow properties, respectively. eq 7 supports our hypothesis that
the exponents in the power law model depend on solvent
properties.

( )( )
Da

Ca
log( )

log log

log( )

Sc
K

L
d=

+ (7)

Figure 10. Experimentally estimated rate of mass transfer for (a) EtAc, (b) MIBK, and (c) pentanol.

Figure 11. Clustered covariance matrix for features governing the mass transfer rate.
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The constants were calculated using the dual annealing
minimization technique.58,63,69 The normalized error between
the actual and predicted rates of mass transfer was used as the
cost function. The final form is eq 8. The parity plot between
the predicted and experimental data is shown in Figure 12. The
maximum deviation was 20%, and the average error was 13%.

( )( )
Da

Ca
log( )

1.38 log 0.972 0.84 log

log( ) 0.525

Sc
K

L
d=

+ (8)

When Ca ≪ 1, the denominator is negative. As the velocity
increases, τ decreases, and Ca increases. However, τ affects kLa
more, and the rate of mass transfer increases. Similarly, as the
length of the microchannel increases, the rate of mass transfer
decreases due to significant increase in τ. With increasing
diameter, the leading coefficient becomes negative, leading to
decreasing mass transfer. The solvent properties (Table 2) are
important: as the diffusivity, density, or partition coefficient
increase, the rate of mass transport increases. The opposite
happens with the viscosity.
The proposed model can be used to predict the rate of mass

transfer and the concentration of the solute in the organic
solvent, as shown in Figure S9. The predicted and CFD
concentrations differ near the T junction, which enhances
mixing. Upon formation of a stable flow pattern, the difference
gradually decreases. Hence, the proposed model accurately
predicts the concentration away from the junction.
Based on our previous work,7 scaling up from micro to milli

scale is advantageous, as it decreases the capital cost and can
increase the throughput. Figure S10 shows that organic
solvents with lower Sc/K values (such as EtAc) exhibit higher
mass transfer rates (predicted using eq 8) that can counter-
balance the effect of increasing diameter, resulting in a slight
reduction of mass transfer rate. Notably, as the diameter
increases, the percentage decrease in the mass transfer rate due
to the flow pattern change from slug to parallel diminishes. For
example, Figure S11 indicates a ∼50, 26.4, and 10% decrease
when changing from slug to parallel flow for 0.5 1, and 1.6 mm,
respectively, using an EtAc to aqueous ratio of 1:1 based on
our CFD simulations. This decrease can be compensated by
increasing the velocity and using alternative flow patterns, such

as the irregular flow pattern which shows higher mass transfer
rate than the slug flow pattern. The predictive flow pattern and
mass transfer models could guide design.
Uncertainty propagation52,62 was used to estimate the

accuracy of the proposed correlation. The HMF concentration
in the organic phase shows an 4.8% standard deviation (s.d.),
leading to a partition coefficient s.d. of 4%.70 Uncertainty in
the velocity results in uncertainty in the flow rate ratio (4% s.d,
u N N( , 0.04) ( , 0.04)u

u

u ratio
aq

org
). As these are key

variables in eq 6, propagation of uncertainty was done. Figure
S12 shows the workflow to calculate the uncertainty in the rate
of mass transfer. After introducing uncertainty in the velocity
and partition coefficient, 2000 points were sampled from a
normal distribution. This was repeated for the entire data set,
and the parameters of the correlation were calculated in each
iteration using the dual annealing method. These constants
were inputted in a Gaussian inference algorithm and fitted with
a normal distribution.52 The uncertainty in the rate of mass
transfer was calculated to be ≥50%.
As the data used to create the correlation were in the slug

flow, we checked its applicability to other flow patterns. Mass
transfer experiments in drop and parallel flow match well the
model, as shown in Figure S13. Higher underprediction occurs
for the drop flow probably due to the high specific area
compared to the slug flow. The correlation could be further
improved by increasing the size of the data set, including other
flow patterns.

■ CONCLUSIONS
In this study, we examined flow patterns in liquid−liquid
microchannels across various diameters and organic solvents
by using both experimental methods and CFD simulations
within a T-junction system. The flow pattern data were
augmented using mined experimental data from the literature.
The heterogeneous data were employed to create a random
forest model of predicting flow patterns. Six (6) flow patterns
were seen, namely, slug, parallel, drop, slug/drop, annular, and
irregular.
The random forest model demonstrates accurate prediction

capabilities for all flow patterns, except for regions near
transition points. With an increase in diameter, gravitational
forces influence the dispersed phase, leading to deformations
along the slug flow interface. Parallel and droplet flows
experience minimal gravity-induced impact, while new annular
flow patterns emerge. Irregular flow patterns cease to occur
above a 2.4 mm diameter at Re < 2000.
A mass transfer correlation was established by using

experimental data and symbolic genetic regression. The rapid
mixing at the junction promotes substantial transfer of HMF
from the aqueous phase to the organic phase. This correlation
effectively predicts mass transfer rates using dimensionless
numbers such as Ca, Sc/K, and L/d. The correlation aligns
with anticipated trends concerning the impact of velocity and
diameter and also reveals, for the first time, the influence of
solvent properties. The primary source of uncertainty in the
mass transfer correlation lies in the correlation constants. The
enhancement of the correlation could be achieved through the
inclusion of additional data spanning other flow patterns.

Figure 12. Parity of experimental and predicted Da′.
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