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A B S T R A C T   

Spatially seamless quantitative precipitation estimates (QPEs) from weather radars have the potential to address 
key limitations of intensity–duration–frequency (IDF) relations derived from sparse rain gage measurements. 
However, this potential has not been yet fully explored. Here, a methodological framework is designed for the 
spatial frequency analysis of extreme precipitation (P) with radar QPEs that leads to realistic quantile patterns 
while reducing the sampling uncertainty. The framework was applied with 19 years of QPEs from 1-h, 4-km 
Stage IV reanalysis from the Next Generation Weather Radar (NEXRAD) network and robustly tested against (1) a 
network of 204 high-resolution rain gages in central Arizona with one of the largest densities and spatial cov
erages in the world, and (2) extreme P quantiles from NOAA Atlas 14. It was first showed that (1) the generalized 
extreme value (GEV) is a suitable distribution to model the series of annual P maxima of gage records and radar 
QPEs across multiple durations from 1 h to 24 h, and (2) correcting the bias of the GEV shape parameter esti
mates due to the short sample size is a critical step. Spatial estimates of extreme P quantiles were then obtained 
through a hierarchical approach based on the index-flood method and the spatial smoothening (interpolation) of 
the GEV parameters estimated from radar QPEs (gage records). For each parameter, the most effective inter
polation method was identified that limits the uncertainty caused by the short sample size and captures the local 
variability of extreme P. The extreme P quantiles generated from radar QPEs exhibited similar or, in some cases, 
higher accuracy than those generated by interpolating sparse gage information and exhibit more realistic pat
terns. While derived in central Arizona, the insights of this work are useful to incorporate radar QPEs into 
operational IDF curves in any region of the world monitored by weather radars.   

1. Introduction 

Extreme precipitation (P) is a natural hazard responsible for signif
icant property damage and loss of lives. In the U.S., the National Centers 
for Environmental Information (NCEI) reported an average occurrence 
of 1.15 storm events/year between 1980 and 2000 that caused economic 
losses of $2.4 billion/year, and that these numbers significantly 
increased to 6.61 events/year and $15.87 billion/year between 2001 
and 2022 (NOAA, 2023). Extreme P is the primary input of flooding, 
which NCEI reports to have led to damages quantified in $4.26 billion/ 
year from 1980 to 2022. Moreover, in cities, the combined effect of 
extreme P and high runoff coefficients of impervious urban basins could 
result in pluvial flooding that, in addition to harming properties, may 
impact importantly traffic and the operation of other urban infrastruc
ture (Hjelmstad et al., 2021; Rosenzweig et al., 2018). 

A key piece of information used to mitigate the negative impacts of 

extreme P is provided by intensity–duration–frequency (IDF) curves. 
These synthesize the relationships between P intensity over a given 
duration, d, and the associated frequency of occurrence quantified 
through the return period, TR (in years) (Burlando and Rosso, 1996; 
Koutsoyiannis et al., 1998; Madsen et al., 2002; Requena et al., 2019; 
Tyralis and Langousis, 2019; among many others). IDF curves are 
routinely used by civil engineers to design and retrofit stormwater 
infrastructure, culverts, and bridges, among other goals. The most 
common approach to generate IDF curves over a region requires the (1) 
frequency analysis of P records observed at several rain gages, and (2) 
the application of techniques to spatially interpolate the point infor
mation derived at the gages to unmonitored sites (Blanchet et al., 2016; 
Fitzgerald, 1989; Guttman et al., 1993; Madsen et al., 1997; Mascaro, 
2020; Modarres and Sarhadi, 2011; Schaefer, 1990). 

The first task has been usually conducted with the block maxima 
method, which involves fitting an appropriate probability distribution to 
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the series of annual precipitation maxima (APM). According to the 
extreme value theory (Smith, 2002), the asymptotic distribution of block 
maxima is the generalized extreme value (GEV), which empirical evi
dence has shown to capture well the frequency of APM at different du
rations (Blanchet et al., 2016; Coles et al., 2003; Coles and Dixon, 1999; 
Deidda et al., 2021; Gubareva and Gartsman, 2010; Koutsoyiannis, 
2004a, 2004b; Koutsoyiannis and Langousis, 2011; Mascaro, 2020; 
Papalexiou and Koutsoyiannis, 2013). The most popular method adop
ted to extrapolate information on extreme P frequency at ungaged lo
cations is based on the index-flood technique, commonly referred to as 
regional frequency analysis (Dalrymple, 1960; Hosking and Wallis, 
1997). This method involves grouping the gages into homogenous re
gions within which the probability distribution of the standardized 
samples of APM (e.g., divided by the sample mean) is assumed to be the 
same. In this way, it is possible to pool together records of multiple gages 
and reduce the parameter estimation uncertainty, which is usually large 
for records of extreme events. Precipitation frequency estimates (PFEs) 
at ungaged sites are then obtained by multiplying the quantiles of the 
single distribution of the homogenous region by the local index statistic 
(e.g., the local mean APM). As an example, the National Oceanic and 
Atmospheric Administration Atlas 14 (NOAA 14) provides IDF relations 

for most of the U.S. states by applying the index-flood method with the 
GEV as the theoretical distribution model in most regions (Bonnin et al., 
2019). 

The reliability of IDF curves is critically dependent on the rain gage 
network density: fewer gages in a region can lead to inaccurate PFEs 
and, in turn, to possibly over- or under-sizing of infrastructure. More
over, Deidda et al. (2021) recently showed that regionalization tech
niques based on homogeneous regions have the drawback of causing 
abrupt shifts in PFEs along the boundaries of contiguous regions, which 
are not physically plausible. To address this limitation, these authors 
proposed a boundaryless approach where at-site estimates of the GEV 
distribution parameters are interpolated in space through geostatistical 
methods. The proposed method was found to be effective in the case 
study of the island of Sardinia, Italy, based on 256 daily P gages; how
ever, its accuracy should be further tested since it still relies on the 
resolution of the gage network, like the regional analyses based on ho
mogeneous regions. 

The limitations caused by sparse rain gage networks on the reliability 
of regional IDF curves can be addressed by using quantitative precipi
tation estimates (QPEs) derived from weather radars, which charac
terize the spatial variability of P at resolutions of up to a few km and ≤ 1 

Fig. 1. Location of the study area in (a) southwestern U.S. with the background map showing PFEs for d = 1 h and TR = 2 years in the states of Volume 1 of NOAA 
Atlas 14. (b) Digital elevation model from the U.S. Geological Survey National Elevation Dataset for the 216 × 232 km2 study domain in central Arizona centered 
around the Phoenix Metropolitan area, along with the rain gage network of the FCDMC (z is elevation and N is the number of years with full records). (c)-(d) Average 
maximum precipitation intensity, i, in the study domain for (c) d = 1 h and (d) d = 24 h computed from 19 years of Stage IV QPEs. 
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h. Research efforts have started to explore the utility of radar QPEs. 
Overeem et al. (2009) derived IDF curves for the Netherlands for d from 
15 min to 24 h through the spatial frequency analysis of 11 years of 
radar QPEs. The authors applied the GEV distribution with regional 
shape and scale parameters estimated with the index-flood method, and 
spatially variable location parameter, and found the latter one to be 
negatively biased (mean of −14%) compared to estimates from gages at 
d = 1 h, likely due to the areal reduction effect, i.e., the scale mismatch 
between radar pixel of 6 km2 and gage. Marra and Morin (2015) 
compared IDF relations derived from both 23 years of radar QPEs and 
gage records in 14 regions of Israel with different climatic features, 
finding that the radar overestimates the gage quantiles especially for 
higher return periods and in arid climates; on the positive side, the radar 
IDF curves are within the statistical uncertainty of the gage IDF relations 
in 70% of the cases. 

Studies have been also recently carried out in the U.S., where the 
National Centers for Environmental Prediction (NCEP) Stage IV analyses 
provide gage-corrected QPEs at 4-km, 1-h resolution for the contermi
nous U.S. (CONUS) since 2002. Ghebreyesus and Sharif (2021) used 19 
years of Stage IV QPEs to derive IDF curves for the state of Texas and 
validated them against NOAA 14 PFEs; they found that radar-derived 
PFEs have a bias within ± 27% that is larger at d = 1 h, decreases 
with d, and becomes negligible for d ≥ 24 h. In another effort, McGraw 
et al. (2019) compared at-site IDF relations derived from 50 years of 
hourly records at 539 gages covering the U.S. and 16 years of Stage IV 
QPEs at the co-located pixels. These analyses revealed that the radar 
tends to overestimate (underestimate) quantiles at d ≤ 3 h and low TR (d 
= 24 h and high TR), and that performance exhibits geographic patterns 
explained by climate. 

The findings of past studies have demonstrated the potential of radar 
QPEs to enhance the spatial frequency analysis of extreme P. However, 
radar products have not been yet incorporated into operational IDF re
lations, highlighting the need to further investigate their utility (Claps 
et al., 2022). This study contributes to addressing such a need by (1) 
developing a methodological framework to generate realistic patterns of 
extreme P quantiles from radar QPEs while reducing the statistical un
certainty due to the short sample size, and (2) robustly assessing radar- 
derived regional IDF relations against multiple gages, thus limiting the 
uncertainty of at-site comparisons. These objectives were pursued using 
Stage IV radar QPEs in central Arizona, which is monitored by a network 
of rain gages with one of the largest densities and spatial coverages in 
the world. An approach for the spatial frequency analysis of extreme P 
was designed based in part on Deidda et al. (2021) which relies on the 
index-flood method and the interpolation (for the gages) and smooth
ening (for the radar) of the GEV parameters. To address the uncertainty 
due to the limited sample size of radar QPEs (19 years), the GEV shape 
parameter was bias corrected through the empirical relations of Carney 
(2016). The patterns of extreme P quantiles derived from radar QPEs, 
gage records, and NOAA 14 were then compared in terms of accuracy 
and physical reliability. This work provides methodological and prac
tical insights that are useful to improve IDF relations in the U.S. and 
other regions of the world by incorporating the seamless spatial infor
mation of radar P products. 

2. Study area 

The comparison of radar QPEs with gage records was performed in a 
216 × 232 km2 area in central Arizona centered around the Phoenix 
Metropolitan region. Fig. 1a outlines the study area in the southwestern 
U.S. within the map of the 2-year, 1-hr PFEs from NOAA 14. As shown in 
Fig. 1b, the study domain includes a large area at a low elevation in the 
Sonoran Desert (92–200 m above the seal level or ASL), where Phoenix 
is located, and the Mogollon Rim mountainous region in the northwest, 
where elevation reaches 2420 m ASL. Due to its arid/semi-arid climate, 
this desert area is categorized as the hottest and driest in North America 
(Garfin et al., 2013; MacDonald, 2010). For example, the average annual 

P, and minimum and maximum temperature at the Phoenix Sky Harbor 
airport are 190 mm, 15.2 ⁰C, and 30.0 ⁰C, respectively. The P regime is 
characterized by two seasons with markedly different storm-generating 
mechanisms. From late fall to early summer, prolonged dry conditions 
are interrupted by storms due to cold fronts with moisture transported 
by westerly flows from the Pacific. These winter storms tend to last for a 
few days (Barry and Chorley, 1998) and be widespread with relatively 
low P intensity. In early July, the northward advection of water vapor 
from the Gulf of California and, to a lower extent, the Gulf of Mexico 
(Favors and Abatzoglou, 2013; Sheppard et al., 2002) leads to the onset 
of the North American monsoon (NAM; Adams and Comrie, 1997), 
which lasts until the end of September. During the NAM, convective 
thunderstorms with high intensity, short durations (<1h), and small 
spatial extent (a few km2) occur according to a diurnally modulated 
cycle (Balling and Brazel, 1986). The different rainfall-generating 
mechanisms of the seasons affect the occurrence of APM at different 
durations with extreme events mainly happening in winter for d ≥ 12 h 
and almost only in summer for d ≤ 2 h (Mascaro, 2020). Elevation was 
found to be moderately correlated with extreme P by Mascaro (2017, 
2018) with an increasing magnitude as d increases. 

3. Dataset 

3.1. Radar quantitative precipitation estimates 

We used radar 1-h, 4-km QPEs from the NCEP Stage IV analyses for 
the period 2002 to 2020. Stage IV QPEs are generated for the CONUS by 
mosaicking reflectivity data from the Next Generation Weather Radar 
(NEXRAD) network, adjusting rainfall rates with gage and satellite ob
servations, and performing manual quality control (Nelson et al., 2016). 
Data were acquired from the Earth Observing Laboratory (EOL) data 
archive (Du, 2011) in polar-stereographic coordinates for the CONUS, 
clipped to the 216 × 232 km2 domain shown in Fig. 1b, and projected 
into the Universal Transverse Mercator (UTM) Zone 12 N reference 
leading to 58 × 54 pixels. From the radar QPEs, we derived the records 
of APM for durations d = 1, 2, 3, 6, 12, and 24 h in each pixel of the study 
domain. For each year, we extracted the largest P intensity, i (in mm/h), 
over d-long moving windows independently of the presence of missing 
data. In years with missing values, we used the method of Papalexiou 
and Koutsoyiannis (2013) and Blanchet et al. (2016) to decide whether 
there are enough observations to retain the annual maxima. If N is the 
number of years with no missing data, we first sorted the associated N 
APM. For a year with a fraction f of missing data, we (1) computed the 
rank of its i in the series extracted for the N complete years, and (2) 
retained (rejected) i in case its rank is above (below) f⋅N. As an example, 
Fig. 1c,d show the mean APM for d = 1 and 24 h in the study region 
derived from Stage IV. For the analyses based on at-site estimates, we 
excluded 15 radar pixels with a few extremely high values of APM, 
which are likely due to errors in the reflectivity-rain rate conversion 
algorithm. Extreme P statistics were subsequently estimated at these 
locations when the spatial interpolation techniques were applied. 

3.2. Rain gages 

The ALERT network of rain gages managed by the Flood Control 
District of Maricopa County (FCDMC) was used as a reference to assess 
the ability of radar QPEs to characterize extreme P statistics and support 
the generation of IDF curves. The network started operating in the early 
1980s and currently includes 365 gages that monitor P in real time over 
a region of about 29,600 km2 centered around the Phoenix Metropolitan 
area (Fig. 1b). The gage elevation ranges from 220 to 2325 m ASL, 
although most (195) gages are installed below 800 m (Mascaro, 2020); 
the inter-gage distance varies between 0.5 km and 227 km with a me
dian of 70 km. For our analyses, we used 204 gages without missing data 
across all d’s during the same 19 years when Stage IV data are available. 
We also utilized a subset of 87 gages with long-term (≥30 years) 
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observations to investigate the effect of sample size on the results and 
generate robust at-site PFEs used as reference when testing the accuracy 
of different gage- and radar-derived regional IDF relations. Fig. 1b shows 
the location of the gages with the two record lengths. All gages are of the 
tipping bucket type with a tipping depth of 1 mm. Records were ob
tained from the FCDMC in the original form of tipping instants in sec
onds; these were then converted into signals at a given duration 
d according to the procedure described in Mascaro et al. (2013). The 
same method illustrated for the radar QPEs was applied to derive the 
series of APM while accounting for missing data. 

3.3. Precipitation frequency estimates from NOAA Atlas 14 

To further validate the reliability of the radar-derived extreme P 
statistics, we also used gridded PFEs from NOAA 14 (Bonnin et al., 
2019). These are released in different Volumes for most U.S. states, with 
Volume 1 covering the southwestern region (Fig. 1a). As previously 
mentioned, the methodology used in NOAA 14 to generate PFEs is based 
on the regional frequency analysis of gage records of APM with the 
index-flood method (Hosking and Wallis, 1997), which is briefly 
described in section 4.2. A key step of the procedure needed to generate 
PFEs at ungaged locations involves the computation of the local mean 
APM at a generic site j, indicated as m(j). In NOAA 14, grids of m(j) at ~ 
800-m resolution were produced for the different d’s through cell- 
specific regressions based on multiple predictors, including the mean 
annual precipitation from the Parameter-elevation Regressions on In
dependent Slopes Model (PRISM; Daly et al., 1997), distance from the 
coast, terrain, and geographic features, as well as on user knowledge 
(Bonnin et al., 2019). It is worth noting that the number of hourly gages 
used in Volume 1 of NOAA 14 is significantly lower than that of the daily 
gages, implying that the grids of m(j) and PFEs for d < 24 h have higher 
uncertainty compared to those for d ≥ 24 h. For our analyses, we 
downloaded the PFE grids for all durations and return periods from the 
NOAA website. Since the m(j) grids were not available on the website, we 
contacted the NOAA staff that sent us the digital maps for d = 1, 6, and 
24 h. 

4. Methods 

4.1. The generalized extreme value (GEV) distribution 

The frequency of extreme P was modeled by fitting the GEV distri
bution to the APM series for the different durations, d. This distribution 
was found by Mascaro (2020) to be appropriate in the region using gage 
observations through L-moments ratio diagrams and goodness-of-fit 
(GOF) tests, including Lilliefors, Anderson–Darling, and Cramér–von 
Mises; the GEV is also used to obtain PFEs in NOAA 14 (Bonnin et al., 
2019). Here, we tested its applicability to the APM series derived from 
the radar QPEs. The cumulative distribution function (CDF) of the GEV 
distribution for the random variable I ≡ “annual maximum P intensity 
for a given d” is defined as: 

F(x) = F(x|k, μ, σ) = Pr{I ≤ x}

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
{

−
(

1 + k
x − μ

σ

)−1
k
}

k ∕= 0

exp
{

− exp
(

−
x − μ

σ

) }
k = 0

(1)  

where k ∈ ( −∞, +∞) is the shape parameter, μ ∈ ( −∞, +∞) is the 
location parameter, and σ ∈ (0, +∞) is the scale parameter. The GEV 
distribution is categorized as Type I or Gumbel if k = 0 with support 
−∞ < x < + ∞, Type II or Fréchet if k > 0 (heavy tail) with support 
μ −σ

k ≤ x ≤ ∞, and Type III or Weibull if k < 0 with an upper bounded 
support −∞ < x ≤ μ −σ

k (Smith, 2002). The quantiles associated with 
the annual return period TR = 1/[1 – F(x)] are computed by inverting 
equation (1). 

The suitability of the GEV distribution was verified through the L- 
moment ratios diagram (Hosking, 1990). The distribution was then 
fitted to the APM series using the method of probability weighted mo
ments (PWM; Hosking et al., 1985), which was chosen since it is more 
robust to outliers than other techniques when the sample size is small 
(Hosking et al., 1985; Vogel and Fennessey, 1993, among others). Since 
estimates of the shape parameter from short records are highly uncertain 
(Hosking and Wallis, 1997; Mascaro, 2020; Overeem et al., 2009; 
Papalexiou and Koutsoyiannis, 2013), k was bias corrected to account 
for the sample size using the empirical relations suggested by Carney 
(2016). Based on the global study of Papalexiou and Koutsoyiannis 
(2013) with daily rain gages, Carney (2016) obtained the following 
relation, available for d from 1 h to 60 days in different U.S. regions, 
using hourly and daily gages of NOAA 14: 

k̂ =
0.045

0.045 + 1.27N−0.70 {k̂(N) − [αk + β/N]} + αk (2) 

In Eq. (2), k̂ is the bias corrected value, k̂(N) is the PWM sample 
estimate of k for the sample size N, αk is the unbiased average of k, and β 
is a coefficient. The values of αk and β for the durations analyzed here are 
reported in Table 1. 

4.2. Spatial frequency analysis 

The spatial frequency analysis of extreme P at a given d was carried 
out for both radar and gages through a stepwise technique based in part 
on the boundaryless approach of Deidda et al. (2021). This, in turn, 
relies on the index-flood method, whose main steps and equations are 
summarized next. Let x(j) be the APM series at a given d in the j-th radar 
pixel or gage. The sample x(j) is first standardized as: 

y(j) = x(j)/m(j) (3)  

where m(j) is the sample mean (i.e., the index-flood, here denoted as 
index-rainfall). In the index-flood method, statistical tests are applied to 
investigate the hypothesis that the distribution of y(j) is the same at all 
sites. If confirmed, the standardized records at all sites are pooled 
together and their distribution is characterized by a proper parametric 
model (e.g., the GEV). Its quantile function, iy(TR), is known as growth 
curve and is used to obtain the quantiles at any location j of the ho
mogeneous region, i(TR)

(j), as: 

i(TR)
(j)

= m(j)⋅iy(TR) (4) 

If the GEV distribution is used to model the dimensionless variable y 
whose mean is 1, its dimensionless parameters [k, μ*, σ*] are related to 
each other via the relationship: 

μ* =

⎧
⎨

⎩

1 +
σ*

k
{1 − Γ(1 − k) } k ∕= 0

1 − γσ* k = 0
(5)  

where Γ(⋅) represents the gamma function and g is the Euler’s constant. 
The boundaryless approach of Deidda et al. (2021) is based on a 

hierarchical parameter estimation that relies on the dimensionless var
iables and GEV parameters, as in the index-flood method. However, 

Table 1 
Coefficients used to bias correct k with Eq. (2) for Volume 1 of NOAA Atlas 
14 from Carney (2016).  

d (h) αk β 

1  −0.149  0.8726 
2  −0.117  0.7172 
3  −0.087  0.5945 
6  −0.035  0.4231 
12  −0.013  0.3662 
24  −0.053  0.4774  
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instead of using homogenous zones where all y(j) samples are pooled 
together to estimate a single growth curve, it involves the spatial 
interpolation of the at-site dimensionless GEV parameters. This method 
was adopted here for both gages and radar with some modifications, as 
summarized in the next steps:  

• Step 1: The at-site GEV parameters [k, μ*, σ*] were estimated from 
each dimensionless sample y(j) at the individual gages and radar 
pixels. The shape parameter k was then bias corrected through the 
empirical relation (2) to account for the short sample size; negative 
estimates were set to zero for the reasons explained in section 5.2.  

• Step 2: For the gages, the bias corrected k was spatially interpolated 
into the 58 × 54 radar grid at 4-km resolution with kriging for un
certain data (KUD; Mazzetti and Todini, 2008), as in Deidda et al. 
(2021). For the radar, the already gridded bias corrected k was 
smoothened with a simpler moving average (MA).  

• Step 3: The at-site scale parameter σ* was re-estimated conditioned 
on the gridded and bias corrected k from step 2. KUD (MA) was then 

used to spatially interpolate (smoothen) the re-estimated σ* for the 
gages (radar).  

• Step 4: The at-site scale parameter μ* was computed using equation 
(5) with the gridded k and σ* from steps 2 and 3. At the end of this 
step, gridded estimates of the dimensionless GEV parameters k, σ*, 
and μ* were obtained.  

• Step 5: Maps of the index-rainfall m(j) were obtained for the 58 × 54 
radar grid with both P products. For the gages, two methods were 
tested to interpolate the APM, including KUD and kriging with 
external drift (KED; Goovaerts, 2000a) to account for the effect of 
elevation (see section 5.3). For the radar, the mean APM was 
smoothened using KUD to reduce the small-scale variability of this 
metric that could be large given the short sample size.  

• Step 6: For each P product, gridded estimates of the dimensional GEV 
parameters k, μ, and σ were then obtained and, from these, of the P 
quantiles, i(TR)

(j). Note that (1) k does not change from the dimen
sionless value, and (2) μ and σ were obtained by multiplying the 
dimensionless parameters by m(j). 

A brief description of the KUD, MA, and KED interpolation/ 
smoothening techniques and how they were implemented here is pro
vided in the Appendix A, while Table 2 summarizes the individual 
techniques used to interpolate or smoothen the index-rainfall and the 
GEV parameters for the two P products. 

4.3. Error metrics 

The performance of the spatial frequency analysis based on Stage IV 
QPEs, gage records, and NOAA 14 was assessed through error metrics 

Table 2 
Techniques used to interpolate (smoothen) the index-rainfall, m(j), the bias 
corrected k, and the dimensionless parameters σ* and μ* for the gages (radar) P 
products in the hierarchal approach described in section 4.2. KUD = kriging 
under uncertainty, KED = kriging with external drift, and MA = moving average 
(see Eppendix for details).  

Precipitation product m(j) k σ* μ* 

Gages KUD and KED KUD KUD Eq. (5) 
Radar KUD MA MA Eq. (5)  

Fig. 2. L-moment ratios diagram for records of AMP at 87 gages and co-located radar pixels for (a)-(b) d = 1 h and N = 30 and 19 years records for the gages, 
respectively. (c) and (d) are as (a) and (b), but for d = 24 h. The lines show the theoretical L-moment combinations for the generalized Pareto (GP), generalized 
logistic (GL), generalized extreme value (GEV), lognormal (LN), and Pearson Type III (PT3). The means of the observed samples are also reported. 
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between the quantiles of each product against those derived from the at- 
site application of the GEV distribution at the 87 gages with long-term 
(≥30 years) observations. For the j-th gage and/or co-located radar 
pixel, the relative bias (RB) for a given d was computed as: 

RB(j) =
iEST (TR)

(j)
− iREF(TR)

(j)

iREF(TR)
(j) × 100 (6)  

where iEST(TR)
(j) and iREF(TR)

(j) are the TR-quantiles calculated for the 
estimation (EST) and reference (REF) methods, respectively. The relative 
biases were then averaged across all J sites as: 

RB =
1
J

∑J

j=1
RB(j) (7)  

We also computed the relative root-mean-square error (RRMSE) as: 

RRMSE =

[
1
J
∑J

j=1

(
RB(j) )2

]1/2

(8)  

5. Results and discussion 

5.1. Evaluation of the GEV hypothesis 

The suitability of the GEV distribution to model APM series observed 
at gages and radar pixels was evaluated using the L-moment ratios di
agram (Hosking, 1990, 1992; Hosking and Wallis, 1993; Peel et al., 
2009). This is shown in Fig. 2 for the APM series at d = 1 and 24 h at the 

gages and co-located radar pixels. To investigate the effect of sample 
size, the panels on the left show results for the 87 gages with longer 
records of N ≥ 30 years, while those on the right report results at the 
same 87 gages for the N = 19 years where radar QPEs are available. For 
all durations and products, the sample estimates are scattered around 
the theoretical GEV curve, and the mean L-skewness and L-kurtosis are 
very close to or lie on the GEV line, indicating that this distribution 
captures well the APM series of both gages (as also found by Mascaro, 
2020) and radar. As expected, the scatter of the gage sample estimates is 
larger for N = 19 years; however, the mean L-skewness and L-kurtosis 
for the gages do not change significantly with N (i.e., the position of the 
filled blue triangle is practically the same in the left and right panels for 
the same d). The scatter of the radar samples is very similar to that of the 
gages with N = 19 years, while the averaged L-moments for the radar are 
slightly higher than those of the gages for d = 1 h and practically the 
same for d = 24 h. These findings suggest that (1) the use of 19-year-long 
records allows capturing the average statistical properties in the region 
obtained from longer records; and (2) the L-moments of APM series from 
gages and radar are slightly different at lower d, but these differences do 
not depend on N. The at-site comparisons and the generation of regional 
IDF relations for the gages presented next were based on the 204 gages 
with the same N = 19 years of the radar records, while the 87 long-term 
gages were used as the reference for the error metrics. 

5.2. Comparison of at-site GEV parameters from gages and radar 

As a first-level assessment of radar QPEs’ ability to characterize 
extreme P, we compared at-site estimates of the GEV parameters at the 

Fig. 3. Comparison between the GEV parameters estimated at the 204 gages and co-located radar pixels under At-site (red) and At-site BC (blue) for (a) d = 1 h and 
(b) d = 24 h, shown through scatterplots (left) and boxplots (right). Results for k, σ and μ are reported in the top, middle, and bottom rows, respectively. Units of σ 
and μ are mm/h. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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204 gages and co-located radar pixels, as in Marra and Morin (2015), 
McGraw et al. (2019), and Overeem et al. (2009). Results are presented 
in Fig. 3 via scatterplots and boxplots for d = 1 and 24 h (the other 
durations are reported in Fig. S1 of the Supplementary Material), while 
error metrics measuring linear correlation (coefficient of determination, 
R2), scatter (RRMSE or RMSE), and bias are reported in Table S1. The 
scatterplots show that the relation between the local unconditioned 
estimates (labeled At-site) of k for the two datasets exhibits a large 
scatter and low correlation for all d’s because the estimation of this 
parameter is highly uncertain with such a short sample size. The cor
respondence is instead stronger for At-site estimates of σ and, even more, 
of μ, with R2 (RRMSE) increasing (decreasing) with d. Moreover, as 
better visualized through the boxplots, the radar estimates of both σ and 
μ are negatively biased compared to the gage values for d = 1 h, and the 
negative bias is reduced as d increases (Fig. S1) becoming slightly pos
itive for d = 24 h. 

The bias correction of the at-site estimates of k (labeled At-site BC) 
significantly reduces the scatter (although R2 is still low) and results in 
positive values (i.e., heavy tailed distributions) at almost all sites. The 
cases with negative k (none for d ≤ 3 h and as high as 4% for d = 24 h) 
were found to be placed at random locations (not shown) and attributed 
to sampling variability. At these sites, the k values were replaced with 
0 to avoid the existence of an upper limit for P, which was not consid
ered physically possible. The bias corrected k decreases with d from a 
median of 0.15 at d = 1 h to 0.05 for d ≥ 12 h (see Figs. 3 and S2). 
Despite the dramatic reduction of the variability of k, the estimates of σ 
and μ conditioned on the bias corrected k are very similar to the At-site 
values, indicating that the body of the distribution is robustly charac
terized despite the short record. The bias of σ and μ at lower durations is 
also still present. As shown in the next section, a negative bias at short 
durations was also found for the index-rainfall. This bias is most likely 
due to the discrepancy between the radar pixel area (16 km2) and the 
point information at the gages, which, in turn, is relevant at short du
rations that are dominated by spatially isolated monsoonal thunder
storms and becomes negligible at larger durations that are mainly 
affected by more widespread frontal systems (Mascaro, 2020). A similar 
result was also found by Overeem et al. (2009) and Ghebreyesus and 
Sharif (2021). 

5.3. Comparison of index-rainfall maps from gages, radar, and NOAA 14 

Regional IDF relations were then derived through the proposed 
framework. The generation of m(j) grids is presented first since it is an 
independent step that allows discussing some details useful to better 
interpret the other steps. Fig. 4 shows the grids of the index-rainfall, m(j), 
for d = 1 h and 24 h generated from gage and radar P records, and NOAA 
14. To facilitate the comparison against the radar products, the m(j) grids 
for the gages (NOAA 14) were derived (aggregated) at the same reso
lution as the radar. The interpolation of gage observations with KUD 
leads to fields that capture the overall south-to-north increase of the 
mean APM, but that are rather smooth with artificial “islands” of high or 
low values dependent on local observations. To address these limita
tions, following Mascaro (2017, 2018, 2020), we considered elevation as 
an ancillary predictor to better capture the spatial variability of m(j). 
Table 3 reports the R2 between at-site estimates of m(j) at the gages and 
the corresponding elevation (top row: Gages At-site), which suggests 
that the effect of elevation is moderate at lower d (e.g., R2 = 0.36 for d =
1 h) and becomes stronger as d increases (e.g., R2 = 0.61 for d = 24 h). 
Previous studies in other regions have also found that the elevation 
control on extreme P statistics varies in terms of strength and sign 
depending on the P duration (Avanzi et al., 2015; Formetta et al., 2022; 
Mazzoglio et al., 2022; Rossi et al., 2020). We then interpolated m(j) for 
the gage records with KED using elevation as an ancillary predictor for 
all d’s. The resulting maps in Fig. 4 show that small-scale terrain features 
of m(j) are now represented with a similar level of detail as NOAA 14. 
However, the patterns of both Gages KED and NOAA 14 are quite similar 
across durations and highly linked to elevation (R2 ≥ 0.63 across all d’s; 
see Table 3), even at smaller d where local gage observations indicate a 
lower orographic control. The discrepancies between local gage 

Fig. 4. Maps of m(j) (mm/h) for d = 1 h (top row) and d = 24 h (bottom row) derived by interpolating the gage records with KUD and KED, smoothening the radar 
QPEs with KUD, and from NOAA 14. The limits of the colormap for the radar-derived map for d = 1 h are different from the other products due to a negative bias. The 
white color in the gage maps indicates missing values (see Eppendix). 

Table 3 
R2 of the linear regression between elevation and m(j) at the 204 gage locations 
derived from gage measurements (Gages At-site), estimated by interpolating the 
gage records with KED (Gages KED), computed by smoothening the radar QPEs 
with KUD (Radar KUD), and extracted from NOAA 14.  

Duration (h) 1 2 3 6 12 24 

Gages At-site  0.36  0.37  0.38  0.42  0.55  0.61 
Gages KED  0.65  0.63  0.64  0.68  0.71  0.69 
Radar KUD  0.32  0.37  0.41  0.50  0.64  0.68 
NOAA 14  0.70  –  –  0.76  –  0.81  
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estimates and NOAA 14 can be ascribed to (1) the different approach 
adopted in NOAA 14 to compute the index-rainfall as a function of mean 
annual precipitation, and (2) the lower number of gages used in NOAA 
14 (33 hourly and 75 daily) compared to our network (204 for all 
durations). 

The m(j) grids for the radar were obtained by applying KUD to the 
mean APM at the pixels to smoothen the sampling variability of this P 
statistic. At d = 1 h, the m(j) estimates are negatively biased compared to 
the gages (note the different legend used in Fig. 4; mean bias values 
reported in Table 4). The bias is reduced at larger durations and becomes 
negligible for d ≥ 12 h, a result directly related to the bias in σ and μ 
displayed in Fig. 3. The radar maps exhibit a small-scale variability with 
a similar level of detail of Gages KED and NOAA 14. However, differ
ently from these two products that are highly related to elevation across 

Table 4 
Mean across 204 gage sites of the bias between m(j) 

(i.e., mean APM) of the radar QPEs at the co-located 
pixel and the gage records.  

d (h) Mean bias (mm/h) 

1  −4.0 
2  −1.0 
3  −0.5 
6  −0.07 
12  0.02 
24  0.07  

Fig. 5. Maps of the GEV shape parameter, k, for d = 1 h obtained from the radar QPEs with At-site, At-site BC, and MA methods. The same colormap with a large 
range of negative and positive values is used for At-site and At-site BC to highlight the clustering of k and the effect of bias correction. A colormap with a smaller 
range of positive values is instead used for MA to better visualize the spatial variability. 

Fig. 6. Maps of (a) At-site k from radar QPEs for d = 1 h and (b) day of observation (1 = 1/1/2002; 6940 = 12/31/2020) of the highest APM at d = 1 h, with zooms 
on two clusters with high positive and negative values of k. (c)-(d) Empirical CDF and fitted GEV distributions of APM records in three representative pixels in each of 
the two clusters. 
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all d’s, the patterns of Radar KUD change with d and have a very similar 
R2 with elevation to the at-site gage observations (compare values for 
Gages At-Site and Radar KUD in Table 3). This indicates that the radar- 
derived maps can capture not only elevation-dependent trends but also a 
portion of the spatial variability of m(j) that is not controlled by orog
raphy (Mazzoglio et al., 2022). This is well visualized by comparing the 
maps for d = 1 h of all products. To conclude, these analyses suggest that 
the spatial smoothing of the radar mean APM with KUD reveals key 
features of the index-rainfall m(j) that the spatial interpolation of gage 
information (here, Gages KED and NOAA 14) is not able to capture. 

5.4. Generation of maps for the GEV shape parameter with radar QPEs 

The first step of the hierarchical approach adopted for the spatial 
frequency analysis of extreme P is the generation of maps for the GEV 
shape parameter, k. The maps derived from radar QPEs using different 
estimation methods are presented in Fig. 5. Results are shown only for d 
= 1 h because they are qualitatively similar for other durations (see 
Fig. S2). Since the radar provides seamless spatial QPEs, the easiest 
approach to generate spatial maps is via the grid of At-site estimates 
(Fig. 5a). However, as already illustrated in Fig. 3, the range of these 
local estimates is quite large with both high positive and negative values 
due to the short sample size of the APM records. The map further reveals 
that At-site k estimates could (1) vary significantly within relatively 
small distances, and (2) exhibit clusters of ~ 10–20 pixels with very 
similar high or low values. The presence of an organized spatial struc
ture for k does not appear to be the result of the physical processes 
affecting P in the region, since it is very unlikely that the right tail of the 
extreme P distribution (1) is bounded (negative k) only in limited spatial 
areas, and (2) changes so abruptly within short distances (8–40 km), 
especially in the rather flat Phoenix Metropolitan region (Fig. 1b). 

A plausible explanation of these unrealistic spatial features is the 
large uncertainty in the estimation of the shape parameter combined 
with the typical size of storms leading to extreme P. To better illustrate 
this, we compared in Fig. 6a,b the maps of At-Site k and the day of 
occurrence of the largest APM. The rationale of this analysis is as fol
lows. When the sample size is short, the largest APM might significantly 
affect the shape of the distribution tail, i.e., the estimate of k. Thus, if the 
dates are randomly distributed in space, then the largest APM values at 

neighboring pixels are originated from different storms and the corre
sponding k’s are likely different. If the same date instead occurs in 
connected pixels, then the largest APM in this region is caused by the 
same storm and the chance of observing a cluster of similar k’s is high. 
As shown in Fig. 6a,b, the maps of k and dates exhibit clusters with 
similar sizes and locations, indicating that the spatial correlation of k is 
closely related to the size of the storms causing the largest APM. This is 
further illustrated by reporting in Fig. 6c,d the GEV distribution for some 
pixels belonging to two spatial clusters with high and low k values, 
respectively, placed ~ 28 km apart (zoomed areas in separate panels). 
For the pixels of each cluster, the shape of the distribution is severely 
affected by the largest APM values which occurred on the same day (4/ 
4/2003 for pixels 1, 2, and 3; and 7/24/2007 for pixels 4, 5, and 6). 

Turning our attention back to Fig. 5, we can notice that the large 
variability of the At-site map of k was greatly reduced through the bias 
correction of k in At-site BC (Fig. 5b), which led to non-negative esti
mates. However, the use of equation (2) to correct the bias still pre
served the spatial correlation of k caused by the clusters of the most 
intense storms. To eliminate this physically unrealistic feature from the 
map, the At-site BC grid was smoothened through MA (Fig. 5c). This 
resulted in a pattern where k varies gradually without abrupt changes or 
clusters, exhibiting relatively higher (smaller) values in the south
western and central portion (northeastern) of the domain. Note that we 
also tested the accuracy of KUD finding that this technique did not 
eliminate the unrealistic clusters of k (not shown). In conclusion, these 
findings indicate that the use of MA on the bias corrected k estimates 
from radar QPEs leads to the most realistic patterns and avoids the 
spatial discontinuities of precipitation frequency estimates that could 
arise if a single regional value is assumed as done in the traditional 
regional frequency analysis (Deidda et al., 2021). The MA maps were 
then used for the subsequent analyses. 

5.5. Comparison of maps for the dimensionless GEV parameters from 
radar and gages 

The next steps of the hierarchical approach involved the computa
tion of maps for the GEV dimensionless parameters σ* and μ* condi
tioned on k. This was done for both radar QPEs using MA and gage 
records using KUD (Table 2). Results are shown in Fig. 7 for d = 1 h and 

Fig. 7. Maps of k and the dimensionless parameters σ* and μ* for d = 1 h obtained from the gages with KUD (top row) and the radar with MA (bottom row).  
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Fig. S3 for the other durations. For both products, each parameter is 
included within similar ranges and exhibits large-scale variations with 
larger (smaller) values of k and σ* (μ*) in the southwestern and central 
parts of the domain at lower elevations, and smaller (larger) values in 
the northeastern part at higher altitude. This is quantified by similar 
values of R2 between parameters and elevation for the two products 
reported in Table 5. Interestingly, contrary to what was found for m(j), 
the link between the dimensionless GEV parameters and elevation is 
stronger for d = 1 h and weakens at larger durations. Despite such 
similarities between the two products, the patterns obtained for the 
gages using KUD exhibit artifacts caused by the variable spatial density 
of the point observations. The patterns derived from the seamless radar 
QPEs are instead smoother and appear more physically plausible. 

5.6. Performance of extreme precipitation quantiles from radar, gages, 
and NOAA 14 

The dimensionless scale and location GEV parameters were multi
plied by the index rainfall, m(j), to obtain the dimensional values that, 
along with the shape parameter, were used to compute extreme P 
quantiles for all d’s and TR = 2, 5, 10, 25 and 50 years, thus charac
terizing a wide range of IDF relations. The error metrics, RB and RRMSE, 
for the different products against at-site GEV quantile estimates at 87 
gages with long-term P records are summarized via the heatmaps in 
Fig. 8. The spatial frequency analysis of 19 years of P data at 204 gages 
(Gages KUD) produced IDF relations with slightly positive RB between 

2.4% and 5.4% that have no evident link with d and TR, and RRMSE 
between 7.5% and 13.7% which is slightly larger for lower d and higher 
TR. The IDF relations obtained with the radar QPEs (Radar MA) are 
negatively biased for small d (e.g., RB is ~ -20% and RRMSE is ~ 24% 
for d = 1 h) and have only slightly worse performance than Gages KUD 
for d ≥ 6 h. The negative bias is caused by the bias in m(j) that, as pre
viously noted, is most likely due to the scale discrepancy between radar 
pixel and gage. The extreme P quantiles for the radar were then recal
culated for d ≤ 6 h by removing the bias in m(j) via the simple subtraction 
of the mean bias reported in Table 4. As shown in Fig. 8 (Radar MA with 
bias-corrected (BC) m(j)), this adjustment dramatically improved the 
error metrics that became very close to and, in some cases, better than 
those for Gages KUD. Finally, the performances of NOAA 14 PFEs were 
the worst in terms of RRMSE for all d’s and TR’s as well as of RB for TR ≤

10 years, while they were comparable to the other products when 
considering RB for TR > 10 years. The possible reasons of the lower 
performance are described in section 5.3. 

Examples of maps of extreme P quantiles for the different products 
are presented in Fig. 9. For d = 1 h, while all products show a general 
south-to-north increasing trend, the small-scale variability is quite 
different, especially for larger TR. The spatial variability of the quantiles 
for the bias-corrected Radar MA appears the most realistic, while Gages 
KUD and NOAA 14 exhibit the typical artifacts caused by the interpo
lation of point information, including the presence of “islands” with 
larger or higher values. At the largest d = 24 h, the patterns are quite 
similar across the products, especially when comparing Gages KUD and 
Radar MA; this latter product and NOAA 14 also represent in a 
remarkably similar way the variability in the northeastern portion of the 
domain. Moreover, when considering a given product, the relative 
spatial variability is quite similar across TR. 

6. Conclusions 

This study proposed and tested a framework to perform the spatial 
frequency analysis of extreme precipitation (P) with radar QPEs that 
generates realistic quantile patterns while reducing the sampling un
certainty. The framework was applied using 19 years of Stage IV radar 
QPEs in central Arizona and thoroughly tested against a network of 
high-resolution rain gages with one of the largest densities and spatial 

Table 5 
R2 of the linear regression between elevation and GEV dimensionless parameters 
estimated from the gages with KUD and from the radar with MA.  

d (h) Gages KUD Radar MA 

k σ* μ* k σ* μ* 

1  0.48  0.65  0.67  0.57  0.54  0.56 
2  0.47  0.44  0.50  0.32  0.46  0.48 
3  0.39  0.37  0.42  0.07  0.46  0.44 
6  0.13  0.41  0.39  0.003  0.45  0.39 
12  0.27  0.37  0.38  0.04  0.37  0.34 
24  0.14  0.32  0.33  0.007  0.27  0.24  

Fig. 8. Heatmaps of error metrics (RB, top; RRMSE, bottom) between extreme P quantiles computed with different estimation methods (see text for details) and at- 
site estimates with the GEV distribution at 87 gages with ≥ 30 years of observations. The error metrics are reported as a function of P duration, d, and return 
period, TR. 
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coverages in the world, as well as PFEs from NOAA 14. The conclusions 
of the study are as follows:  

1. The GEV was found to be a suitable distribution to model APM series 
from gage records and radar QPEs across multiple durations, d, from 
1 h to 24 h.  

2. Due to the short sample size of 19 years, at-site estimates of the GEV 
shape parameter, k, from both gage and radar records exhibited large 
variations that are physically nonrealistic. This uncertainty was 
greatly reduced by bias correcting k as a function of the sample size 
through the empirical relations proposed for the U.S. by Carney 
(2016). For all durations, the bias corrected k was found to be 

Fig. 9. Maps of extreme P quantiles for TR = 2, 10, and 50 years at d = 1 h and 24 h obtained from gage records (Gage KUD), radar QPEs (Radar MA with BC m(j)), 
and NOAA14. 
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nonnegative in the great majority of the cases, i.e., the distribution of 
APM is heavy tailed. Since the locations with negative k were 
randomly placed, k was set equal to 0 to avoid the existence of an 
unrealistic upper limit for P.  

3. An approach for the spatial frequency analysis of extreme P was 
designed that combines the index-flood (or index-rainfall) method 
and techniques for spatially interpolating (for the gages) and 
smoothening (for the radar) the GEV parameters. This approach 
allowed further reducing the statistical uncertainty and obtaining P 
quantile estimates that vary seamlessly in space.  

4. The use of the moving average (MA) permitted smoothening of the 
spatial variability and possible artificial clusters found for k esti
mated from the radar. For consistency, this method was also used to 
smoothen the radar-derived scale and location GEV parameters; 
however, for these two parameters, the choice of the interpolation 
technique had fewer impacts on the outcome. Kriging for uncertain 
data (KUD) was instead used for the interpolation of all GEV pa
rameters from the gages to better account for their high sampling 
uncertainty; MA was also applied to interpolate the gage-derived 
parameters, but the resulting patterns were found to be unrealistic 
(not shown).  

5. In this study region, the index-rainfall, m(j), is moderately to strongly 
linked to elevation as d increases. Kriging with external drift (KED) 
and KUD were the best interpolation/smoothening techniques for 
capturing this effect when generating maps from gages and radar, 
respectively; the stronger smoothing effect of MA for the radar 
resulted instead in fields that did not exhibit significant small-scale 
variability and the signature of orography (not shown). The values 
of m(j) from the radar were negatively biased compared to the gages 
at low d’s, which are dominated by localized storms that have 
smaller rain rates when averaged over the 16-km2 radar pixels. 
However, the patterns of m(j) generated from the radar appeared the 
most realistic, addressing the limitations of those obtained from 
sparse gage information, including NOAA 14 which relies on a much 
lower number of gages at sub-daily durations.  

6. After removing the bias in m(j) for low d’s, the spatial frequency 
analysis of radar QPEs reproduced at-site extreme P quantiles from 
long-term gage records with comparable or, in some cases, better 
performance than the spatial analysis of gage records with the 
sample size of 19 years. The performance was also better than that of 
PFEs from NOAA 14 which are routinely used for infrastructure 
design. Moreover, the patterns of extreme P quantiles generated from 
radar QPEs were more realistic than those generated by interpolating 
sparse gage information. 

While focused on central Arizona, the analyses presented in this work 
provide useful methodological and practical insights to incorporate 
radar QPEs into the generation of improved IDF relations in the U.S. and 
other places of the world where radar products are available. To bias 

correct the GEV shape parameter, the global empirical relation of 
Papalexiou and Koutsoyiannis (2013) could be used for the daily dura
tion, while analyses of rain gage records at subdaily resolutions will be 
needed to refine the parameterization of the relations proposed by 
Carney (2016) and valid for d < 24 h. Future work will be devoted to 
designing a methodology of spatial frequency analysis that merges in
formation from radar QPEs and gage records, building upon recent 
relevant studies (e.g., Benoit, 2021; Cuccoli et al., 2020; Ochoa-Rodri
guez et al., 2019). Moreover, it will be interesting from both the scien
tific and practical perspectives to compare the performance of this 
approach based on the extreme value theory with novel alternative 
methods that use non-asymptotic extreme value models (see, e.g., Marra 
et al. (2022).). 
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Appendix A 

The spatial interpolation techniques used in this study are based on the well-known method of ordinary Kriging (OK), which is briefly illustrated 
next. Let θ be the variable to be interpolated. OK provides a best linear unbiased estimation (BLUE) of θ at a given point based on observations at close 
locations. The method quantifies the spatial dependence of θ through the semivariogram, γ(h), defined as: 

γ(h) = γi,j =
1
2

E
[
θi − θj

]2 (A1)  

where θi and θj are the observations at two locations i and j at a distance h. To apply OK, the empirical semivariogram is fitted to an analytical model, 
such as the exponential, spherical, Gaussian, logarithmic, and power models, among others (Goovaerts, 2000b). The estimation at an unmonitored 
location, θ̂, is a linear combination of the observations at M neighboring sites: 

θ̂ =
∑M

k=1
λk⋅θk (A2) 
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where λk is a site-specific weight. The weights λk are obtained by solving the system of (M + 1) equations: 
⎧
⎪⎪⎨

⎪⎪⎩

∑M

j=1
λj⋅γi,j − μ0 = γi,0 i = 1, 2, ⋯, M

∑N

j=1
λj = 1

(A3)  

where μ0 is the Lagrange parameter accounting for the constraint on the weights, γi,j is the semivariogram value between sites i and j, and γi,0 is the 
semivariogram value between site i and the location where the estimate is made. 

By solving the system of equations (A3), the empirical estimates of OK at the locations with available observations are exactly equal to the 
measured values. This implies assuming zero variance for the target variable, which is an undesirable property when the variable exhibits large 
uncertainty, as in the case of the index-rainfall and the GEV parameters (particularly, the shape parameter). We addressed this limitation of OK by 
adopting Kriging with uncertain data (KUD), a technique that introduces nonzero variance at the measuring sites. KUD was first developed by de 
Marsily (1986) for homoscedastic fields and later expanded by Mazzetti and Todini (2008) to account for heteroscedasticity. This method was recently 
used by Deidda et al. (2021) to interpolate the GEV parameters from gage observations; for simplicity, the same notation of these authors is adopted 
here. As for OK, equation (A2) is used to estimate θ at a given site; however, the weights λk are obtained by solving the system of equations (A3) where 
the semivariogram values are modified to account for the uncertainty as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ*
i,j = γi,j +

σ2
i + σ2

j

2
i, j = 1, 2, ⋯, M and i ∕= j

γ*
i,j = γi,j i = j

γ*
i,0 = γi,0 +

σ2
i

2
i = 1, 2, ⋯, M

(A4) 

In Eq. (A4), γ* is the modified semivariogram under KUD, σi
2 is the measuring variance of θ at location i, while the other symbols have been 

previously defined. In our study, the target variable θ is either the shape (k) or scale (σ) GEV parameters or the index-rainfall (m(j)) (see Table 2). To 
estimate σi

2 for each of these parameters, we performed Monte Carlo simulations where (1) 1000 GEV variates were randomly generated at the 
measuring sites using at-site parameter estimates and the same sample size of the APM observations (N = 19), (2) the GEV parameters were re- 
estimated on each synthetic sample using the method of L-moments, and (3) the variance of the re-estimated parameters (k, σ, or m(j)) was used to 
estimate σi

2. 
As shown in the main text, the observations of m(j) from the rain gage records have moderate-to-strong linear correlations with elevation. To 

incorporate this information into the spatial interpolation of m(j) from the gages, we used Kriging with external drift (KED; Goovaerts, 2000b). In this 
case, equation (A2) is used again to estimate the target variable at a given point, but the weights λk are estimated by solving the system of (M + 2) 
linear equations: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑M

j=1
λjγi,j + μ0 + μ1⋅zi = γi,0 i = 1, 2, ⋯, M

∑M

j=1
λj = 1

∑M

j=1
λj⋅zj = 1

(A5)  

where μ0 and μ1 are Lagrange parameters accounting for weight constraints, zi is the elevation at site i, and the other symbols have been previously 
defined. 

The logarithmic, Gaussian, and power analytical models were found to best fit the empirical semivariograms for k, σ, and m(j), respectively. The 
number of neighboring sites used for the interpolation was determined through leave-one-out cross validation. For each of the 204 gages, we applied 
the interpolation method using the other 203 gages and estimated the parameter by selecting: (1) the gages within a radius R from 5 to 60 km, and (2) 
the closest M gages with M ranging from 1 to 20. We then computed the RRMSE between observed and estimated parameter values across all gages. 
Results for d = 1 and 24 h are reported in Fig. S4 of the Supporting Material, which shows that the mean RRMSE becomes constant for R ≥ 40 km and 
M ≥ 12 gages. Therefore, we performed the interpolation using all gages within R = 40 km if their number was ≥ 12. If this number was instead lower 
than 12, we used the closest 12 gages. If no gage was found within the 40-km radius, the interpolation was not performed; this occurred at the corners 
of the domain (see Figs. 4 and 7). 

The spatial smoothening of the GEV parameters estimated from the radar QPEs was conducted by computing the moving average (MA), which is 
based on equation (A2) where the weights are the same for all sites, i.e., λk = 1/M. In this case, we included all pixels within a radius of 40 km. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2023.129902. 
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estimation de précipitations extrêmes: II. Recherche empirique sur de longues séries 
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