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Spatially seamless quantitative precipitation estimates (QPEs) from weather radars have the potential to address
key limitations of intensity—duration-frequency (IDF) relations derived from sparse rain gage measurements.
However, this potential has not been yet fully explored. Here, a methodological framework is designed for the
spatial frequency analysis of extreme precipitation (P) with radar QPEs that leads to realistic quantile patterns
while reducing the sampling uncertainty. The framework was applied with 19 years of QPEs from 1-h, 4-km
Stage IV reanalysis from the Next Generation Weather Radar (NEXRAD) network and robustly tested against (1) a
network of 204 high-resolution rain gages in central Arizona with one of the largest densities and spatial cov-
erages in the world, and (2) extreme P quantiles from NOAA Atlas 14. It was first showed that (1) the generalized
extreme value (GEV) is a suitable distribution to model the series of annual P maxima of gage records and radar
QPEs across multiple durations from 1 h to 24 h, and (2) correcting the bias of the GEV shape parameter esti-
mates due to the short sample size is a critical step. Spatial estimates of extreme P quantiles were then obtained
through a hierarchical approach based on the index-flood method and the spatial smoothening (interpolation) of
the GEV parameters estimated from radar QPEs (gage records). For each parameter, the most effective inter-
polation method was identified that limits the uncertainty caused by the short sample size and captures the local
variability of extreme P. The extreme P quantiles generated from radar QPEs exhibited similar or, in some cases,
higher accuracy than those generated by interpolating sparse gage information and exhibit more realistic pat-
terns. While derived in central Arizona, the insights of this work are useful to incorporate radar QPEs into
operational IDF curves in any region of the world monitored by weather radars.
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1. Introduction

Extreme precipitation (P) is a natural hazard responsible for signif-
icant property damage and loss of lives. In the U.S., the National Centers
for Environmental Information (NCEI) reported an average occurrence
of 1.15 storm events/year between 1980 and 2000 that caused economic
losses of $2.4 billion/year, and that these numbers significantly
increased to 6.61 events/year and $15.87 billion/year between 2001
and 2022 (NOAA, 2023). Extreme P is the primary input of flooding,
which NCEI reports to have led to damages quantified in $4.26 billion/
year from 1980 to 2022. Moreover, in cities, the combined effect of
extreme P and high runoff coefficients of impervious urban basins could
result in pluvial flooding that, in addition to harming properties, may
impact importantly traffic and the operation of other urban infrastruc-
ture (Hjelmstad et al., 2021; Rosenzweig et al., 2018).

A key piece of information used to mitigate the negative impacts of

extreme P is provided by intensity-duration-frequency (IDF) curves.
These synthesize the relationships between P intensity over a given
duration, d, and the associated frequency of occurrence quantified
through the return period, T (in years) (Burlando and Rosso, 1996;
Koutsoyiannis et al., 1998; Madsen et al., 2002; Requena et al., 2019;
Tyralis and Langousis, 2019; among many others). IDF curves are
routinely used by civil engineers to design and retrofit stormwater
infrastructure, culverts, and bridges, among other goals. The most
common approach to generate IDF curves over a region requires the (1)
frequency analysis of P records observed at several rain gages, and (2)
the application of techniques to spatially interpolate the point infor-
mation derived at the gages to unmonitored sites (Blanchet et al., 2016;
Fitzgerald, 1989; Guttman et al., 1993; Madsen et al., 1997; Mascaro,
2020; Modarres and Sarhadi, 2011; Schaefer, 1990).

The first task has been usually conducted with the block maxima
method, which involves fitting an appropriate probability distribution to
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Fig. 1. Location of the study area in (a) southwestern U.S. with the background map showing PFEs for d = 1 h and Ty = 2 years in the states of Volume 1 of NOAA
Atlas 14. (b) Digital elevation model from the U.S. Geological Survey National Elevation Dataset for the 216 x 232 km? study domain in central Arizona centered
around the Phoenix Metropolitan area, along with the rain gage network of the FCDMC (z is elevation and N is the number of years with full records). (c)-(d) Average
maximum precipitation intensity, i, in the study domain for (¢) d = 1 h and (d) d = 24 h computed from 19 years of Stage IV QPEs.

the series of annual precipitation maxima (APM). According to the
extreme value theory (Smith, 2002), the asymptotic distribution of block
maxima is the generalized extreme value (GEV), which empirical evi-
dence has shown to capture well the frequency of APM at different du-
rations (Blanchet et al., 2016; Coles et al., 2003; Coles and Dixon, 1999;
Deidda et al.,, 2021; Gubareva and Gartsman, 2010; Koutsoyiannis,
2004a, 2004b; Koutsoyiannis and Langousis, 2011; Mascaro, 2020;
Papalexiou and Koutsoyiannis, 2013). The most popular method adop-
ted to extrapolate information on extreme P frequency at ungaged lo-
cations is based on the index-flood technique, commonly referred to as
regional frequency analysis (Dalrymple, 1960; Hosking and Wallis,
1997). This method involves grouping the gages into homogenous re-
gions within which the probability distribution of the standardized
samples of APM (e.g., divided by the sample mean) is assumed to be the
same. In this way, it is possible to pool together records of multiple gages
and reduce the parameter estimation uncertainty, which is usually large
for records of extreme events. Precipitation frequency estimates (PFEs)
at ungaged sites are then obtained by multiplying the quantiles of the
single distribution of the homogenous region by the local index statistic
(e.g., the local mean APM). As an example, the National Oceanic and
Atmospheric Administration Atlas 14 (NOAA 14) provides IDF relations

for most of the U.S. states by applying the index-flood method with the
GEV as the theoretical distribution model in most regions (Bonnin et al.,
2019).

The reliability of IDF curves is critically dependent on the rain gage
network density: fewer gages in a region can lead to inaccurate PFEs
and, in turn, to possibly over- or under-sizing of infrastructure. More-
over, Deidda et al. (2021) recently showed that regionalization tech-
niques based on homogeneous regions have the drawback of causing
abrupt shifts in PFEs along the boundaries of contiguous regions, which
are not physically plausible. To address this limitation, these authors
proposed a boundaryless approach where at-site estimates of the GEV
distribution parameters are interpolated in space through geostatistical
methods. The proposed method was found to be effective in the case
study of the island of Sardinia, Italy, based on 256 daily P gages; how-
ever, its accuracy should be further tested since it still relies on the
resolution of the gage network, like the regional analyses based on ho-
mogeneous regions.

The limitations caused by sparse rain gage networks on the reliability
of regional IDF curves can be addressed by using quantitative precipi-
tation estimates (QPEs) derived from weather radars, which charac-
terize the spatial variability of P at resolutions of up to a few km and <1
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h. Research efforts have started to explore the utility of radar QPEs.
Overeem et al. (2009) derived IDF curves for the Netherlands for d from
15 min to 24 h through the spatial frequency analysis of 11 years of
radar QPEs. The authors applied the GEV distribution with regional
shape and scale parameters estimated with the index-flood method, and
spatially variable location parameter, and found the latter one to be
negatively biased (mean of —14%) compared to estimates from gages at
d =1 h, likely due to the areal reduction effect, i.e., the scale mismatch
between radar pixel of 6 km? and gage. Marra and Morin (2015)
compared IDF relations derived from both 23 years of radar QPEs and
gage records in 14 regions of Israel with different climatic features,
finding that the radar overestimates the gage quantiles especially for
higher return periods and in arid climates; on the positive side, the radar
IDF curves are within the statistical uncertainty of the gage IDF relations
in 70% of the cases.

Studies have been also recently carried out in the U.S., where the
National Centers for Environmental Prediction (NCEP) Stage IV analyses
provide gage-corrected QPEs at 4-km, 1-h resolution for the contermi-
nous U.S. (CONUS) since 2002. Ghebreyesus and Sharif (2021) used 19
years of Stage IV QPEs to derive IDF curves for the state of Texas and
validated them against NOAA 14 PFEs; they found that radar-derived
PFEs have a bias within + 27% that is larger at d = 1 h, decreases
with d, and becomes negligible for d > 24 h. In another effort, McGraw
et al. (2019) compared at-site IDF relations derived from 50 years of
hourly records at 539 gages covering the U.S. and 16 years of Stage IV
QPEs at the co-located pixels. These analyses revealed that the radar
tends to overestimate (underestimate) quantiles at d < 3 h and low T (d
= 24 h and high Ty), and that performance exhibits geographic patterns
explained by climate.

The findings of past studies have demonstrated the potential of radar
QPEs to enhance the spatial frequency analysis of extreme P. However,
radar products have not been yet incorporated into operational IDF re-
lations, highlighting the need to further investigate their utility (Claps
et al., 2022). This study contributes to addressing such a need by (1)
developing a methodological framework to generate realistic patterns of
extreme P quantiles from radar QPEs while reducing the statistical un-
certainty due to the short sample size, and (2) robustly assessing radar-
derived regional IDF relations against multiple gages, thus limiting the
uncertainty of at-site comparisons. These objectives were pursued using
Stage IV radar QPEs in central Arizona, which is monitored by a network
of rain gages with one of the largest densities and spatial coverages in
the world. An approach for the spatial frequency analysis of extreme P
was designed based in part on Deidda et al. (2021) which relies on the
index-flood method and the interpolation (for the gages) and smooth-
ening (for the radar) of the GEV parameters. To address the uncertainty
due to the limited sample size of radar QPEs (19 years), the GEV shape
parameter was bias corrected through the empirical relations of Carney
(2016). The patterns of extreme P quantiles derived from radar QPEs,
gage records, and NOAA 14 were then compared in terms of accuracy
and physical reliability. This work provides methodological and prac-
tical insights that are useful to improve IDF relations in the U.S. and
other regions of the world by incorporating the seamless spatial infor-
mation of radar P products.

2. Study area

The comparison of radar QPEs with gage records was performed in a
216 x 232 km? area in central Arizona centered around the Phoenix
Metropolitan region. Fig. 1a outlines the study area in the southwestern
U.S. within the map of the 2-year, 1-hr PFEs from NOAA 14. As shown in
Fig. 1b, the study domain includes a large area at a low elevation in the
Sonoran Desert (92-200 m above the seal level or ASL), where Phoenix
is located, and the Mogollon Rim mountainous region in the northwest,
where elevation reaches 2420 m ASL. Due to its arid/semi-arid climate,
this desert area is categorized as the hottest and driest in North America
(Garfin etal., 2013; MacDonald, 2010). For example, the average annual
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P, and minimum and maximum temperature at the Phoenix Sky Harbor
airport are 190 mm, 15.2 °C, and 30.0 °C, respectively. The P regime is
characterized by two seasons with markedly different storm-generating
mechanisms. From late fall to early summer, prolonged dry conditions
are interrupted by storms due to cold fronts with moisture transported
by westerly flows from the Pacific. These winter storms tend to last for a
few days (Barry and Chorley, 1998) and be widespread with relatively
low P intensity. In early July, the northward advection of water vapor
from the Gulf of California and, to a lower extent, the Gulf of Mexico
(Favors and Abatzoglou, 2013; Sheppard et al., 2002) leads to the onset
of the North American monsoon (NAM; Adams and Comrie, 1997),
which lasts until the end of September. During the NAM, convective
thunderstorms with high intensity, short durations (<1h), and small
spatial extent (a few km?) occur according to a diurnally modulated
cycle (Balling and Brazel, 1986). The different rainfall-generating
mechanisms of the seasons affect the occurrence of APM at different
durations with extreme events mainly happening in winter ford > 12 h
and almost only in summer for d < 2 h (Mascaro, 2020). Elevation was
found to be moderately correlated with extreme P by Mascaro (2017,
2018) with an increasing magnitude as d increases.

3. Dataset
3.1. Radar quantitative precipitation estimates

We used radar 1-h, 4-km QPEs from the NCEP Stage IV analyses for
the period 2002 to 2020. Stage IV QPEs are generated for the CONUS by
mosaicking reflectivity data from the Next Generation Weather Radar
(NEXRAD) network, adjusting rainfall rates with gage and satellite ob-
servations, and performing manual quality control (Nelson et al., 2016).
Data were acquired from the Earth Observing Laboratory (EOL) data
archive (Du, 2011) in polar-stereographic coordinates for the CONUS,
clipped to the 216 x 232 km? domain shown in Fig. 1b, and projected
into the Universal Transverse Mercator (UTM) Zone 12 N reference
leading to 58 x 54 pixels. From the radar QPEs, we derived the records
of APM for durationsd =1, 2, 3, 6, 12, and 24 h in each pixel of the study
domain. For each year, we extracted the largest P intensity, i (in mm/h),
over d-long moving windows independently of the presence of missing
data. In years with missing values, we used the method of Papalexiou
and Koutsoyiannis (2013) and Blanchet et al. (2016) to decide whether
there are enough observations to retain the annual maxima. If N is the
number of years with no missing data, we first sorted the associated N
APM. For a year with a fraction f of missing data, we (1) computed the
rank of its i in the series extracted for the N complete years, and (2)
retained (rejected) i in case its rank is above (below) f-N. As an example,
Fig. 1c,d show the mean APM for d = 1 and 24 h in the study region
derived from Stage IV. For the analyses based on at-site estimates, we
excluded 15 radar pixels with a few extremely high values of APM,
which are likely due to errors in the reflectivity-rain rate conversion
algorithm. Extreme P statistics were subsequently estimated at these
locations when the spatial interpolation techniques were applied.

3.2. Rain gages

The ALERT network of rain gages managed by the Flood Control
District of Maricopa County (FCDMC) was used as a reference to assess
the ability of radar QPEs to characterize extreme P statistics and support
the generation of IDF curves. The network started operating in the early
1980s and currently includes 365 gages that monitor P in real time over
aregion of about 29,600 km? centered around the Phoenix Metropolitan
area (Fig. 1b). The gage elevation ranges from 220 to 2325 m ASL,
although most (195) gages are installed below 800 m (Mascaro, 2020);
the inter-gage distance varies between 0.5 km and 227 km with a me-
dian of 70 km. For our analyses, we used 204 gages without missing data
across all d’s during the same 19 years when Stage IV data are available.
We also utilized a subset of 87 gages with long-term (>30 years)
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observations to investigate the effect of sample size on the results and
generate robust at-site PFEs used as reference when testing the accuracy
of different gage- and radar-derived regional IDF relations. Fig. 1b shows
the location of the gages with the two record lengths. All gages are of the
tipping bucket type with a tipping depth of 1 mm. Records were ob-
tained from the FCDMC in the original form of tipping instants in sec-
onds; these were then converted into signals at a given duration
d according to the procedure described in Mascaro et al. (2013). The
same method illustrated for the radar QPEs was applied to derive the
series of APM while accounting for missing data.

3.3. Precipitation frequency estimates from NOAA Atlas 14

To further validate the reliability of the radar-derived extreme P
statistics, we also used gridded PFEs from NOAA 14 (Bonnin et al.,
2019). These are released in different Volumes for most U.S. states, with
Volume 1 covering the southwestern region (Fig. 1a). As previously
mentioned, the methodology used in NOAA 14 to generate PFEs is based
on the regional frequency analysis of gage records of APM with the
index-flood method (Hosking and Wallis, 1997), which is briefly
described in section 4.2. A key step of the procedure needed to generate
PFEs at ungaged locations involves the computation of the local mean
APM at a generic site j, indicated as m%. In NOAA 14, grids of m? at ~
800-m resolution were produced for the different d’s through cell-
specific regressions based on multiple predictors, including the mean
annual precipitation from the Parameter-elevation Regressions on In-
dependent Slopes Model (PRISM; Daly et al., 1997), distance from the
coast, terrain, and geographic features, as well as on user knowledge
(Bonnin et al., 2019). It is worth noting that the number of hourly gages
used in Volume 1 of NOAA 14 is significantly lower than that of the daily
gages, implying that the grids of m¥) and PFEs for d < 24 h have higher
uncertainty compared to those for d > 24 h. For our analyses, we
downloaded the PFE grids for all durations and return periods from the
NOAA website. Since the m% grids were not available on the website, we
contacted the NOAA staff that sent us the digital maps for d = 1, 6, and
24 h.

4. Methods
4.1. The generalized extreme value (GEV) distribution

The frequency of extreme P was modeled by fitting the GEV distri-
bution to the APM series for the different durations, d. This distribution
was found by Mascaro (2020) to be appropriate in the region using gage
observations through L-moments ratio diagrams and goodness-of-fit
(GOF) tests, including Lilliefors, Anderson-Darling, and Cramér-von
Mises; the GEV is also used to obtain PFEs in NOAA 14 (Bonnin et al.,
2019). Here, we tested its applicability to the APM series derived from
the radar QPEs. The cumulative distribution function (CDF) of the GEV
distribution for the random variable I = “annual maximum P intensity
for a given d” is defined as:

F(x) = F(x|k,p,0) = Pr{l < x}

ewo{ - (144724) 1}

= @
exp{fexp(f%)} k=0

where k € (—o0,+o0) is the shape parameter, u € (—oo,+o0) is the
location parameter, and o € (0,+o0) is the scale parameter. The GEV
distribution is categorized as Type I or Gumbel if k = 0 with support
—00 < X < + oo, Type II or Fréchet if k > 0 (heavy tail) with support
u—% < x < o0, and Type III or Weibull if k < 0 with an upper bounded
support —co < x < u—¢ (Smith, 2002). The quantiles associated with
the annual return period Tz = 1/[1 - F(x)] are computed by inverting
equation (1).
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Table 1
Coefficients used to bias correct k with Eq. (2) for Volume 1 of NOAA Atlas
14 from Carney (2016).

d (h) ax B

1 —0.149 0.8726
2 -0.117 0.7172
3 —0.087 0.5945
6 —0.035 0.4231
12 -0.013 0.3662
24 —0.053 0.4774

The suitability of the GEV distribution was verified through the L-
moment ratios diagram (Hosking, 1990). The distribution was then
fitted to the APM series using the method of probability weighted mo-
ments (PWM; Hosking et al., 1985), which was chosen since it is more
robust to outliers than other techniques when the sample size is small
(Hosking et al., 1985; Vogel and Fennessey, 1993, among others). Since
estimates of the shape parameter from short records are highly uncertain
(Hosking and Wallis, 1997; Mascaro, 2020; Overeem et al., 2009;
Papalexiou and Koutsoyiannis, 2013), k was bias corrected to account
for the sample size using the empirical relations suggested by Carney
(2016). Based on the global study of Papalexiou and Koutsoyiannis
(2013) with daily rain gages, Carney (2016) obtained the following
relation, available for d from 1 h to 60 days in different U.S. regions,
using hourly and daily gages of NOAA 14:

0.045

k=
0.045 + 1.27N-070

{k(N) = [+ B/N]} + o 2

In Eq. (2), k is the bias corrected value, i(N) is the PWM sample
estimate of k for the sample size N, ay is the unbiased average of k, and
is a coefficient. The values of ax and g for the durations analyzed here are
reported in Table 1.

4.2. Spatial frequency analysis

The spatial frequency analysis of extreme P at a given d was carried
out for both radar and gages through a stepwise technique based in part
on the boundaryless approach of Deidda et al. (2021). This, in turn,
relies on the index-flood method, whose main steps and equations are
summarized next. Let x! be the APM series at a given d in the j-th radar
pixel or gage. The sample x" is first standardized as:

y = x(i)/m(f) 3)

where m? is the sample mean (i.e., the index-flood, here denoted as
index-rainfall). In the index-flood method, statistical tests are applied to
investigate the hypothesis that the distribution of y" is the same at all
sites. If confirmed, the standardized records at all sites are pooled
together and their distribution is characterized by a proper parametric
model (e.g., the GEV). Its quantile function, i,(Tz), is known as growth
curve and is used to obtain the quantiles at any location j of the ho-

mogeneous region, i(TR)O), as:
i(Tp)V = mY-iy(Tz) 4

If the GEV distribution is used to model the dimensionless variable y
whose mean is 1, its dimensionless parameters [k, u*, 0*] are related to
each other via the relationship:

k#0

k=0

. 1+£{17F(17k)}
u = k

1—yo

)

where I'(-) represents the gamma function and g is the Euler’s constant.

The boundaryless approach of Deidda et al. (2021) is based on a
hierarchical parameter estimation that relies on the dimensionless var-
iables and GEV parameters, as in the index-flood method. However,
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Table 2

Techniques used to interpolate (smoothen) the index-rainfall, m%, the bias
corrected k, and the dimensionless parameters o* and y* for the gages (radar) P
products in the hierarchal approach described in section 4.2. KUD = kriging
under uncertainty, KED = kriging with external drift, and MA = moving average
(see Eppendix for details).

Precipitation product m® k o* u*
Gages KUD and KED KUD KUD Eq. (5)
Radar KUD MA MA Eq. (5)

instead of using homogenous zones where all y¥ samples are pooled
together to estimate a single growth curve, it involves the spatial
interpolation of the at-site dimensionless GEV parameters. This method
was adopted here for both gages and radar with some modifications, as
summarized in the next steps:

e Step 1: The at-site GEV parameters [k, u*, 6*] were estimated from
each dimensionless sample y at the individual gages and radar
pixels. The shape parameter k was then bias corrected through the
empirical relation (2) to account for the short sample size; negative
estimates were set to zero for the reasons explained in section 5.2.
Step 2: For the gages, the bias corrected k was spatially interpolated
into the 58 x 54 radar grid at 4-km resolution with kriging for un-
certain data (KUD; Mazzetti and Todini, 2008), as in Deidda et al.
(2021). For the radar, the already gridded bias corrected k was
smoothened with a simpler moving average (MA).

Step 3: The at-site scale parameter ¢* was re-estimated conditioned
on the gridded and bias corrected k from step 2. KUD (MA) was then
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used to spatially interpolate (smoothen) the re-estimated o* for the
gages (radar).

Step 4: The at-site scale parameter ;* was computed using equation
(5) with the gridded k and ¢* from steps 2 and 3. At the end of this
step, gridded estimates of the dimensionless GEV parameters k, ¢*,
and u* were obtained.

Step 5: Maps of the index-rainfall m?” were obtained for the 58 x 54
radar grid with both P products. For the gages, two methods were
tested to interpolate the APM, including KUD and kriging with
external drift (KED; Goovaerts, 2000a) to account for the effect of
elevation (see section 5.3). For the radar, the mean APM was
smoothened using KUD to reduce the small-scale variability of this
metric that could be large given the short sample size.

Step 6: For each P product, gridded estimates of the dimensional GEV
parameters k, y, and o were then obtained and, from these, of the P
quantiles, i(TR)(j). Note that (1) k does not change from the dimen-
sionless value, and (2) ¢ and ¢ were obtained by multiplying the
dimensionless parameters by m%.

A brief description of the KUD, MA, and KED interpolation/
smoothening techniques and how they were implemented here is pro-
vided in the Appendix A, while Table 2 summarizes the individual
techniques used to interpolate or smoothen the index-rainfall and the
GEV parameters for the two P products.

4.3. Error metrics

The performance of the spatial frequency analysis based on Stage IV
QPEs, gage records, and NOAA 14 was assessed through error metrics
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Fig. 2. L-moment ratios diagram for records of AMP at 87 gages and co-located radar pixels for (a)-(b) d = 1 h and N = 30 and 19 years records for the gages,
respectively. (c) and (d) are as (a) and (b), but for d = 24 h. The lines show the theoretical L-moment combinations for the generalized Pareto (GP), generalized
logistic (GL), generalized extreme value (GEV), lognormal (LN), and Pearson Type III (PT3). The means of the observed samples are also reported.
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Fig. 3. Comparison between the GEV parameters estimated at the 204 gages and co-located radar pixels under At-site (red) and At-site BC (blue) for (a) d = 1 h and
(b) d = 24 h, shown through scatterplots (left) and boxplots (right). Results for k, ¢ and u are reported in the top, middle, and bottom rows, respectively. Units of &
and u are mm/h. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

between the quantiles of each product against those derived from the at-
site application of the GEV distribution at the 87 gages with long-term
(>30 years) observations. For the j-th gage and/or co-located radar
pixel, the relative bias (RB) for a given d was computed as:

iES'l' (TR) & - iREF (TR ) v

RBY = =
irer (Tr)"

x 100 (6)

where iEST(TR)O) and iREF(TR)O) are the Tg-quantiles calculated for the
estimation (EST) and reference (REF) methods, respectively. The relative
biases were then averaged across all J sites as:

1< )
RB=-Y RBY 7
; ; @
We also computed the relative root-mean-square error (RRMSE) as:

; 1/2
Z(RBW] ®

j=

RRMSE = [

~| =

5. Results and discussion
5.1. Evaluation of the GEV hypothesis

The suitability of the GEV distribution to model APM series observed
at gages and radar pixels was evaluated using the L-moment ratios di-
agram (Hosking, 1990, 1992; Hosking and Wallis, 1993; Peel et al.,
2009). This is shown in Fig. 2 for the APM series at d = 1 and 24 h at the

gages and co-located radar pixels. To investigate the effect of sample
size, the panels on the left show results for the 87 gages with longer
records of N > 30 years, while those on the right report results at the
same 87 gages for the N = 19 years where radar QPEs are available. For
all durations and products, the sample estimates are scattered around
the theoretical GEV curve, and the mean L-skewness and L-kurtosis are
very close to or lie on the GEV line, indicating that this distribution
captures well the APM series of both gages (as also found by Mascaro,
2020) and radar. As expected, the scatter of the gage sample estimates is
larger for N = 19 years; however, the mean L-skewness and L-kurtosis
for the gages do not change significantly with N (i.e., the position of the
filled blue triangle is practically the same in the left and right panels for
the same d). The scatter of the radar samples is very similar to that of the
gages with N = 19 years, while the averaged L-moments for the radar are
slightly higher than those of the gages for d = 1 h and practically the
same for d = 24 h. These findings suggest that (1) the use of 19-year-long
records allows capturing the average statistical properties in the region
obtained from longer records; and (2) the L-moments of APM series from
gages and radar are slightly different at lower d, but these differences do
not depend on N. The at-site comparisons and the generation of regional
IDF relations for the gages presented next were based on the 204 gages
with the same N = 19 years of the radar records, while the 87 long-term
gages were used as the reference for the error metrics.

5.2. Comparison of at-site GEV parameters from gages and radar

As a first-level assessment of radar QPEs’ ability to characterize
extreme P, we compared at-site estimates of the GEV parameters at the
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Fig. 4. Maps of m?” (mm/h) for d = 1 h (top row) and d = 24 h (bottom row) derived by interpolating the gage records with KUD and KED, smoothening the radar
QPEs with KUD, and from NOAA 14. The limits of the colormap for the radar-derived map for d = 1 h are different from the other products due to a negative bias. The

white color in the gage maps indicates missing values (see Eppendix).

204 gages and co-located radar pixels, as in Marra and Morin (2015),
McGraw et al. (2019), and Overeem et al. (2009). Results are presented
in Fig. 3 via scatterplots and boxplots for d = 1 and 24 h (the other
durations are reported in Fig. S1 of the Supplementary Material), while
error metrics measuring linear correlation (coefficient of determination,
Rz), scatter (RRMSE or RMSE), and bias are reported in Table S1. The
scatterplots show that the relation between the local unconditioned
estimates (labeled At-site) of k for the two datasets exhibits a large
scatter and low correlation for all d’s because the estimation of this
parameter is highly uncertain with such a short sample size. The cor-
respondence is instead stronger for At-site estimates of ¢ and, even more,
of u, with R? (RRMSE) increasing (decreasing) with d. Moreover, as
better visualized through the boxplots, the radar estimates of both ¢ and
u are negatively biased compared to the gage values for d = 1 h, and the
negative bias is reduced as d increases (Fig. S1) becoming slightly pos-
itive for d = 24 h.

The bias correction of the at-site estimates of k (labeled At-site BC)
significantly reduces the scatter (although R? is still low) and results in
positive values (i.e., heavy tailed distributions) at almost all sites. The
cases with negative k (none for d < 3 h and as high as 4% for d = 24 h)
were found to be placed at random locations (not shown) and attributed
to sampling variability. At these sites, the k values were replaced with
0 to avoid the existence of an upper limit for P, which was not consid-
ered physically possible. The bias corrected k decreases with d from a
median of 0.15 at d = 1 h to 0.05 for d > 12 h (see Figs. 3 and S2).
Despite the dramatic reduction of the variability of k, the estimates of ¢
and u conditioned on the bias corrected k are very similar to the At-site
values, indicating that the body of the distribution is robustly charac-
terized despite the short record. The bias of ¢ and u at lower durations is
also still present. As shown in the next section, a negative bias at short
durations was also found for the index-rainfall. This bias is most likely
due to the discrepancy between the radar pixel area (16 km?) and the
point information at the gages, which, in turn, is relevant at short du-
rations that are dominated by spatially isolated monsoonal thunder-
storms and becomes negligible at larger durations that are mainly
affected by more widespread frontal systems (Mascaro, 2020). A similar
result was also found by Overeem et al. (2009) and Ghebreyesus and
Sharif (2021).

Table 3

R? of the linear regression between elevation and m% at the 204 gage locations
derived from gage measurements (Gages At-site), estimated by interpolating the
gage records with KED (Gages KED), computed by smoothening the radar QPEs
with KUD (Radar KUD), and extracted from NOAA 14.

Duration (h) 1 2 3 6 12 24

Gages At-site 0.36 0.37 0.38 0.42 0.55 0.61
Gages KED 0.65 0.63 0.64 0.68 0.71 0.69
Radar KUD 0.32 0.37 0.41 0.50 0.64 0.68
NOAA 14 0.70 - - 0.76 - 0.81

5.3. Comparison of index-rainfall maps from gages, radar, and NOAA 14

Regional IDF relations were then derived through the proposed
framework. The generation of m% grids is presented first since it is an
independent step that allows discussing some details useful to better
interpret the other steps. Fig. 4 shows the grids of the index-rainfall, m*,
for d =1 h and 24 h generated from gage and radar P records, and NOAA
14. To facilitate the comparison against the radar products, the m% grids
for the gages (NOAA 14) were derived (aggregated) at the same reso-
lution as the radar. The interpolation of gage observations with KUD
leads to fields that capture the overall south-to-north increase of the
mean APV, but that are rather smooth with artificial “islands” of high or
low values dependent on local observations. To address these limita-
tions, following Mascaro (2017, 2018, 2020), we considered elevation as
an ancillary predictor to better capture the spatial variability of m®.
Table 3 reports the R? between at-site estimates of m? at the gages and
the corresponding elevation (top row: Gages At-site), which suggests
that the effect of elevation is moderate at lower d (e.g., R?>=0.36ford =
1 h) and becomes stronger as d increases (e.g., RZ = 0.61 for d = 24 h).
Previous studies in other regions have also found that the elevation
control on extreme P statistics varies in terms of strength and sign
depending on the P duration (Avanzi et al., 2015; Formetta et al., 2022;
Mazzoglio et al., 2022; Rossi et al., 2020). We then interpolated m® for
the gage records with KED using elevation as an ancillary predictor for
all d’s. The resulting maps in Fig. 4 show that small-scale terrain features
of m%¥ are now represented with a similar level of detail as NOAA 14.
However, the patterns of both Gages KED and NOAA 14 are quite similar
across durations and highly linked to elevation (R? > 0.63 across all d’s;
see Table 3), even at smaller d where local gage observations indicate a
lower orographic control. The discrepancies between local gage
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Table 4

Mean across 204 gage sites of the bias between m%
(i.e., mean APM) of the radar QPEs at the co-located

pixel and the gage records.

d (h)

Mean bias (mm/h)

N = OWN =

AN

—4.0
-1.0
-0.5
-0.07
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0.07

(a) At-site

(b) At-site BC
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estimates and NOAA 14 can be ascribed to (1) the different approach
adopted in NOAA 14 to compute the index-rainfall as a function of mean
annual precipitation, and (2) the lower number of gages used in NOAA
14 (33 hourly and 75 daily) compared to our network (204 for all
durations).

The m% grids for the radar were obtained by applying KUD to the
mean APM at the pixels to smoothen the sampling variability of this P
statistic. Atd = 1 h, the m?? estimates are negatively biased compared to
the gages (note the different legend used in Fig. 4; mean bias values
reported in Table 4). The bias is reduced at larger durations and becomes
negligible for d > 12 h, a result directly related to the bias in ¢ and u
displayed in Fig. 3. The radar maps exhibit a small-scale variability with
a similar level of detail of Gages KED and NOAA 14. However, differ-
ently from these two products that are highly related to elevation across

(c) MA

-04 -02 0 02 04

[T

0.14 0.5 0.16 0.17

Fig. 5. Maps of the GEV shape parameter, k, for d = 1 h obtained from the radar QPEs with At-site, At-site BC, and MA methods. The same colormap with a large
range of negative and positive values is used for At-site and At-site BC to highlight the clustering of k and the effect of bias correction. A colormap with a smaller
range of positive values is instead used for MA to better visualize the spatial variability.
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Fig. 6. Maps of (a) At-site k from radar QPEs for d = 1 h and (b) day of observation (1 = 1/1/2002; 6940 = 12/31/2020) of the highest APM at d = 1 h, with zooms
on two clusters with high positive and negative values of k. (c)-(d) Empirical CDF and fitted GEV distributions of APM records in three representative pixels in each of

the two clusters.
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Fig. 7. Maps of k and the dimensionless parameters ¢* and u* for d = 1 h obtained from the gages with KUD (top row) and the radar with MA (bottom row).

all d’s, the patterns of Radar KUD change with d and have a very similar
R? with elevation to the at-site gage observations (compare values for
Gages At-Site and Radar KUD in Table 3). This indicates that the radar-
derived maps can capture not only elevation-dependent trends but also a
portion of the spatial variability of m% that is not controlled by orog-
raphy (Mazzoglio et al., 2022). This is well visualized by comparing the
maps for d = 1 h of all products. To conclude, these analyses suggest that
the spatial smoothing of the radar mean APM with KUD reveals key
features of the index-rainfall m% that the spatial interpolation of gage
information (here, Gages KED and NOAA 14) is not able to capture.

5.4. Generation of maps for the GEV shape parameter with radar QPEs

The first step of the hierarchical approach adopted for the spatial
frequency analysis of extreme P is the generation of maps for the GEV
shape parameter, k. The maps derived from radar QPEs using different
estimation methods are presented in Fig. 5. Results are shown only for d
= 1 h because they are qualitatively similar for other durations (see
Fig. S2). Since the radar provides seamless spatial QPEs, the easiest
approach to generate spatial maps is via the grid of At-site estimates
(Fig. 5a). However, as already illustrated in Fig. 3, the range of these
local estimates is quite large with both high positive and negative values
due to the short sample size of the APM records. The map further reveals
that At-site k estimates could (1) vary significantly within relatively
small distances, and (2) exhibit clusters of ~ 10-20 pixels with very
similar high or low values. The presence of an organized spatial struc-
ture for k does not appear to be the result of the physical processes
affecting P in the region, since it is very unlikely that the right tail of the
extreme P distribution (1) is bounded (negative k) only in limited spatial
areas, and (2) changes so abruptly within short distances (8-40 km),
especially in the rather flat Phoenix Metropolitan region (Fig. 1b).

A plausible explanation of these unrealistic spatial features is the
large uncertainty in the estimation of the shape parameter combined
with the typical size of storms leading to extreme P. To better illustrate
this, we compared in Fig. 6a,b the maps of At-Site k and the day of
occurrence of the largest APM. The rationale of this analysis is as fol-
lows. When the sample size is short, the largest APM might significantly
affect the shape of the distribution tail, i.e., the estimate of k. Thus, if the
dates are randomly distributed in space, then the largest APM values at

neighboring pixels are originated from different storms and the corre-
sponding k’s are likely different. If the same date instead occurs in
connected pixels, then the largest APM in this region is caused by the
same storm and the chance of observing a cluster of similar k’s is high.
As shown in Fig. 6a,b, the maps of k and dates exhibit clusters with
similar sizes and locations, indicating that the spatial correlation of k is
closely related to the size of the storms causing the largest APM. This is
further illustrated by reporting in Fig. 6¢,d the GEV distribution for some
pixels belonging to two spatial clusters with high and low k values,
respectively, placed ~ 28 km apart (zoomed areas in separate panels).
For the pixels of each cluster, the shape of the distribution is severely
affected by the largest APM values which occurred on the same day (4/
4/2003 for pixels 1, 2, and 3; and 7/24/2007 for pixels 4, 5, and 6).

Turning our attention back to Fig. 5, we can notice that the large
variability of the At-site map of k was greatly reduced through the bias
correction of k in At-site BC (Fig. 5b), which led to non-negative esti-
mates. However, the use of equation (2) to correct the bias still pre-
served the spatial correlation of k caused by the clusters of the most
intense storms. To eliminate this physically unrealistic feature from the
map, the At-site BC grid was smoothened through MA (Fig. 5¢). This
resulted in a pattern where k varies gradually without abrupt changes or
clusters, exhibiting relatively higher (smaller) values in the south-
western and central portion (northeastern) of the domain. Note that we
also tested the accuracy of KUD finding that this technique did not
eliminate the unrealistic clusters of k (not shown). In conclusion, these
findings indicate that the use of MA on the bias corrected k estimates
from radar QPEs leads to the most realistic patterns and avoids the
spatial discontinuities of precipitation frequency estimates that could
arise if a single regional value is assumed as done in the traditional
regional frequency analysis (Deidda et al., 2021). The MA maps were
then used for the subsequent analyses.

5.5. Comparison of maps for the dimensionless GEV parameters from
radar and gages

The next steps of the hierarchical approach involved the computa-
tion of maps for the GEV dimensionless parameters ¢* and u* condi-
tioned on k. This was done for both radar QPEs using MA and gage
records using KUD (Table 2). Results are shown in Fig. 7 ford = 1 h and
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Table 5
R? of the linear regression between elevation and GEV dimensionless parameters
estimated from the gages with KUD and from the radar with MA.

d (h) Gages KUD Radar MA
k c* n* k c* n*

1 0.48 0.65 0.67 0.57 0.54 0.56
2 0.47 0.44 0.50 0.32 0.46 0.48
3 0.39 0.37 0.42 0.07 0.46 0.44
6 0.13 0.41 0.39 0.003 0.45 0.39
12 0.27 0.37 0.38 0.04 0.37 0.34
24 0.14 0.32 0.33 0.007 0.27 0.24

Fig. S3 for the other durations. For both products, each parameter is
included within similar ranges and exhibits large-scale variations with
larger (smaller) values of k and ¢* (1 *) in the southwestern and central
parts of the domain at lower elevations, and smaller (larger) values in
the northeastern part at higher altitude. This is quantified by similar
values of R? between parameters and elevation for the two products
reported in Table 5. Interestingly, contrary to what was found for m9,
the link between the dimensionless GEV parameters and elevation is
stronger for d = 1 h and weakens at larger durations. Despite such
similarities between the two products, the patterns obtained for the
gages using KUD exhibit artifacts caused by the variable spatial density
of the point observations. The patterns derived from the seamless radar
QPEs are instead smoother and appear more physically plausible.

5.6. Performance of extreme precipitation quantiles from radar, gages,
and NOAA 14

The dimensionless scale and location GEV parameters were multi-
plied by the index rainfall, m(j), to obtain the dimensional values that,
along with the shape parameter, were used to compute extreme P
quantiles for all d’s and T = 2, 5, 10, 25 and 50 years, thus charac-
terizing a wide range of IDF relations. The error metrics, RB and RRMSE,
for the different products against at-site GEV quantile estimates at 87
gages with long-term P records are summarized via the heatmaps in
Fig. 8. The spatial frequency analysis of 19 years of P data at 204 gages
(Gages KUD) produced IDF relations with slightly positive RB between
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2.4% and 5.4% that have no evident link with d and Tg, and RRMSE
between 7.5% and 13.7% which is slightly larger for lower d and higher
Tg. The IDF relations obtained with the radar QPEs (Radar MA) are
negatively biased for small d (e.g., RB is ~ -20% and RRMSE is ~ 24%
for d = 1 h) and have only slightly worse performance than Gages KUD
for d > 6 h. The negative bias is caused by the bias in m? that, as pre-
viously noted, is most likely due to the scale discrepancy between radar
pixel and gage. The extreme P quantiles for the radar were then recal-
culated for d < 6 h by removing the bias in m?’ via the simple subtraction
of the mean bias reported in Table 4. As shown in Fig. 8 (Radar MA with
bias-corrected (BC) m"), this adjustment dramatically improved the
error metrics that became very close to and, in some cases, better than
those for Gages KUD. Finally, the performances of NOAA 14 PFEs were
the worst in terms of RRMSE for all d’s and Tg’s as well as of RB for Tg <
10 years, while they were comparable to the other products when
considering RB for Tg > 10 years. The possible reasons of the lower
performance are described in section 5.3.

Examples of maps of extreme P quantiles for the different products
are presented in Fig. 9. For d = 1 h, while all products show a general
south-to-north increasing trend, the small-scale variability is quite
different, especially for larger Tg. The spatial variability of the quantiles
for the bias-corrected Radar MA appears the most realistic, while Gages
KUD and NOAA 14 exhibit the typical artifacts caused by the interpo-
lation of point information, including the presence of “islands” with
larger or higher values. At the largest d = 24 h, the patterns are quite
similar across the products, especially when comparing Gages KUD and
Radar MA; this latter product and NOAA 14 also represent in a
remarkably similar way the variability in the northeastern portion of the
domain. Moreover, when considering a given product, the relative
spatial variability is quite similar across Tg.

6. Conclusions

This study proposed and tested a framework to perform the spatial
frequency analysis of extreme precipitation (P) with radar QPEs that
generates realistic quantile patterns while reducing the sampling un-
certainty. The framework was applied using 19 years of Stage IV radar
QPEs in central Arizona and thoroughly tested against a network of
high-resolution rain gages with one of the largest densities and spatial

Gages KUD Radar MA Radar MA with BC m? NOAA 14
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Fig. 8. Heatmaps of error metrics (RB, top; RRMSE, bottom) between extreme P quantiles computed with different estimation methods (see text for details) and at-
site estimates with the GEV distribution at 87 gages with > 30 years of observations. The error metrics are reported as a function of P duration, d, and return

period, Tg.
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Fig. 9. Maps of extreme P quantiles for T = 2, 10, and 50 years at d = 1 h and 24 h obtained from gage records (Gage KUD), radar QPEs (Radar MA with BC m®),
and NOAA14.

coverages in the world, as well as PFEs from NOAA 14. The conclusions 2. Due to the short sample size of 19 years, at-site estimates of the GEV
of the study are as follows: shape parameter, k, from both gage and radar records exhibited large
variations that are physically nonrealistic. This uncertainty was

1. The GEV was found to be a suitable distribution to model APM series greatly reduced by bias correcting k as a function of the sample size
from gage records and radar QPEs across multiple durations, d, from through the empirical relations proposed for the U.S. by Carney
1hto24h. (2016). For all durations, the bias corrected k was found to be

11
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nonnegative in the great majority of the cases, i.e., the distribution of
APM is heavy tailed. Since the locations with negative k were
randomly placed, k was set equal to O to avoid the existence of an
unrealistic upper limit for P.

3. An approach for the spatial frequency analysis of extreme P was
designed that combines the index-flood (or index-rainfall) method
and techniques for spatially interpolating (for the gages) and
smoothening (for the radar) the GEV parameters. This approach
allowed further reducing the statistical uncertainty and obtaining P
quantile estimates that vary seamlessly in space.

4. The use of the moving average (MA) permitted smoothening of the
spatial variability and possible artificial clusters found for k esti-
mated from the radar. For consistency, this method was also used to
smoothen the radar-derived scale and location GEV parameters;
however, for these two parameters, the choice of the interpolation
technique had fewer impacts on the outcome. Kriging for uncertain
data (KUD) was instead used for the interpolation of all GEV pa-
rameters from the gages to better account for their high sampling
uncertainty; MA was also applied to interpolate the gage-derived
parameters, but the resulting patterns were found to be unrealistic
(not shown).

5. In this study region, the index-rainfall, m"”, is moderately to strongly
linked to elevation as d increases. Kriging with external drift (KED)
and KUD were the best interpolation/smoothening techniques for
capturing this effect when generating maps from gages and radar,
respectively; the stronger smoothing effect of MA for the radar
resulted instead in fields that did not exhibit significant small-scale
variability and the signature of orography (not shown). The values
of mY from the radar were negatively biased compared to the gages
at low d’s, which are dominated by localized storms that have
smaller rain rates when averaged over the 16-km? radar pixels.
However, the patterns of m?” generated from the radar appeared the
most realistic, addressing the limitations of those obtained from
sparse gage information, including NOAA 14 which relies on a much
lower number of gages at sub-daily durations.

6. After removing the bias in m" for low d’s, the spatial frequency
analysis of radar QPEs reproduced at-site extreme P quantiles from
long-term gage records with comparable or, in some cases, better
performance than the spatial analysis of gage records with the
sample size of 19 years. The performance was also better than that of
PFEs from NOAA 14 which are routinely used for infrastructure
design. Moreover, the patterns of extreme P quantiles generated from
radar QPEs were more realistic than those generated by interpolating
sparse gage information.

While focused on central Arizona, the analyses presented in this work
provide useful methodological and practical insights to incorporate
radar QPEs into the generation of improved IDF relations in the U.S. and
other places of the world where radar products are available. To bias

Appendix A
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correct the GEV shape parameter, the global empirical relation of
Papalexiou and Koutsoyiannis (2013) could be used for the daily dura-
tion, while analyses of rain gage records at subdaily resolutions will be
needed to refine the parameterization of the relations proposed by
Carney (2016) and valid for d < 24 h. Future work will be devoted to
designing a methodology of spatial frequency analysis that merges in-
formation from radar QPEs and gage records, building upon recent
relevant studies (e.g., Benoit, 2021; Cuccoli et al., 2020; Ochoa-Rodri-
guez et al., 2019). Moreover, it will be interesting from both the scien-
tific and practical perspectives to compare the performance of this
approach based on the extreme value theory with novel alternative
methods that use non-asymptotic extreme value models (see, e.g., Marra
et al. (2022).).
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The spatial interpolation techniques used in this study are based on the well-known method of ordinary Kriging (OK), which is briefly illustrated
next. Let 6 be the variable to be interpolated. OK provides a best linear unbiased estimation (BLUE) of 0 at a given point based on observations at close
locations. The method quantifies the spatial dependence of 0 through the semivariogram, y(h), defined as:

1
r(h) = Vij = EE[QI' - 0]}2

(A1)

where 6; and 6; are the observations at two locations i and j at a distance h. To apply OK, the empirical semivariogram is fitted to an analytical model,
such as the exponential, spherical, Gaussian, logarithmic, and power models, among others (Goovaerts, 2000b). The estimation at an unmonitored

location, 9, is a linear combination of the observations at M neighboring sites:

0= ZkM:I/Ik'ek

(A2)
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where A is a site-specific weight. The weights Ax are obtained by solving the system of (M + 1) equations:

M .
E j,]'lj'}’i.j_ﬂo:}’i.n i=12M
(A3)

Z;V:I/lf =1

where yg is the Lagrange parameter accounting for the constraint on the weights, y;; is the semivariogram value between sites i and j, and y; is the
semivariogram value between site i and the location where the estimate is made.

By solving the system of equations (A3), the empirical estimates of OK at the locations with available observations are exactly equal to the
measured values. This implies assuming zero variance for the target variable, which is an undesirable property when the variable exhibits large
uncertainty, as in the case of the index-rainfall and the GEV parameters (particularly, the shape parameter). We addressed this limitation of OK by
adopting Kriging with uncertain data (KUD), a technique that introduces nonzero variance at the measuring sites. KUD was first developed by de
Marsily (1986) for homoscedastic fields and later expanded by Mazzetti and Todini (2008) to account for heteroscedasticity. This method was recently
used by Deidda et al. (2021) to interpolate the GEV parameters from gage observations; for simplicity, the same notation of these authors is adopted
here. As for OK, equation (A2) is used to estimate 6 at a given site; however, the weights J; are obtained by solving the system of equations (A3) where
the semivariogram values are modified to account for the uncertainty as follows:

: gt o

vy =ryt 5 i,j=1,2,-- M and i#j

Viy ="Vij i=j a8
2

* O .

7:‘.0:}’1.0"‘7' i=1,2,-M

In Eq. (A4), y* is the modified semivariogram under KUD, o; is the measuring variance of 6 at location i, while the other symbols have been
previously defined. In our study, the target variable 0 is either the shape (k) or scale (¢) GEV parameters or the index-rainfall (m(i)) (see Table 2). To
estimate aiz for each of these parameters, we performed Monte Carlo simulations where (1) 1000 GEV variates were randomly generated at the
measuring sites using at-site parameter estimates and the same sample size of the APM observations (N = 19), (2) the GEV parameters were re-
estimated on each synthetic sample using the method of L-moments, and (3) the variance of the re-estimated parameters (k, o, or m(i)) was used to
estimate oiz.

As shown in the main text, the observations of m? from the rain gage records have moderate-to-strong linear correlations with elevation. To
incorporate this information into the spatial interpolation of m’ from the gages, we used Kriging with external drift (KED; Goovaerts, 2000b). In this
case, equation (A2) is used again to estimate the target variable at a given point, but the weights A are estimated by solving the system of (M + 2)
linear equations:

M .
ijllll'yi\/’ Mo 12 = Tip i=1,2-M
PIMES (A5)

j=1

Zjﬂi]ifzj =1

where pp and p; are Lagrange parameters accounting for weight constraints, z; is the elevation at site i, and the other symbols have been previously
defined.

The logarithmic, Gaussian, and power analytical models were found to best fit the empirical semivariograms for k, ¢, and m%, respectively. The
number of neighboring sites used for the interpolation was determined through leave-one-out cross validation. For each of the 204 gages, we applied
the interpolation method using the other 203 gages and estimated the parameter by selecting: (1) the gages within a radius R from 5 to 60 km, and (2)
the closest M gages with M ranging from 1 to 20. We then computed the RRMSE between observed and estimated parameter values across all gages.
Results for d = 1 and 24 h are reported in Fig. S4 of the Supporting Material, which shows that the mean RRMSE becomes constant for R > 40 km and
M > 12 gages. Therefore, we performed the interpolation using all gages within R = 40 km if their number was > 12. If this number was instead lower
than 12, we used the closest 12 gages. If no gage was found within the 40-km radius, the interpolation was not performed; this occurred at the corners
of the domain (see Figs. 4 and 7).

The spatial smoothening of the GEV parameters estimated from the radar QPEs was conducted by computing the moving average (MA), which is
based on equation (A2) where the weights are the same for all sites, i.e., 4x = 1/M. In this case, we included all pixels within a radius of 40 km.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2023.129902.
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