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Abstract: Adoption of green stormwater infrastructure (GSI) as a sustainable stormwater measure to manage urban flooding has gained
momentum globally. Modeling and analysis tools are available to guide its design and planning. However, the impact of uncertainty in design
precipitation estimates, and change in land use on the optimal configuration of GSI has not yet been assessed. The uncertainty in design
precipitation estimates influences the amount and cost of GSI; and urban forms, space availability and existing drainage infrastructure in-
fluence the placement and ideal types of GSI. Further, climate change and conversion of pervious to impervious surfaces create varied impacts
across cities. In this paper we investigate how such catchment scale optimal configurations of GSI, defined as ideal selection of type, amount
and spatial distribution of GSI, vary (1) across uncertainty within design precipitation estimates from NOAA Atlas 14; and (2) with increasing
urban imperviousness. We analyze this across two different cases of urban forms: (1) a catchment with mixed use buildings where bio-
retention (i.e., ground based) and green roofs (i.e., over ground based) are feasible, and (2) a catchment with only residential buildings
where only bioretention is feasible. For this aim we utilize the USEPA’s stormwater management model (SWMM) to construct one-
dimensional hydrologic-hydraulic models using stormwater networks of two separate locations in Phoenix, Arizona. We couple the SWMM
model with nondominated sorting genetic algorithm (NSGA-II) to develop a multiobjective optimal GSI planning framework to determine
amount, type and location for GSI implementation. We found that varying the design precipitation from the lower to upper bound of the
confidence interval for NOAA Atlas 14, resulted in a larger difference in the amount of GSI required than the effect of land use change from
2001 to 2019. This highlights the important of accurate design storm estimates and the value of modular GSI in adapting stormwater systems
under uncertainty. DOI: 10.1061/JSWBAY.SWENG-471. © 2023 American Society of Civil Engineers.

Introduction

Urban expansion results in increasing impervious cover and modi-
fies hydrological processes by reducing runoff response time and
increasing peak runoff. In addition, in some regions, increasingly
frequent extreme events due to climate change (Kunkel et al. 2020)
are overwhelming the stormwater infrastructure capacity causing
functional failure before the end of its design life (Mailhot and
Duchesne 2010; Swain et al. 2020). Consequently, rainfall-induced
urban (or pluvial) flooding has become a common phenomenon in
many cities (University of Maryland and Texas A&M University
2018). Replacing and upgrading existing gray stormwater infra-
structure (e.g., conduits or detention tanks), is financially and
technically challenging due to spatial interdependencies in the
coupled infrastructure systems, i.e., interdependencies between
drainage conveyance, transportation, and other infrastructure sys-
tems (Chester and Allenby 2019; Gilrein et al. 2019). These spatial
interdependencies results in lock-in, as past decisions prevent or
challenge adaptation of the system. Networked infrastructure, par-
ticularly transmission, distribution, or conveyance systems are less

adaptable because they cannot be changed or restructured easily.
Furthermore, upgrading the capacity of underground drainage con-
duits to mitigate localized flooding requires the replacement of sev-
eral sections of conduits both upstream and downstream. Eventual
renewal and replacement of such infrastructure nearing the end of
its design life is one of the present-day key issues facing stormwater
management (Dolowitz et al. 2018). The inflexible properties of
gray stormwater infrastructure motivate the need for alternate design
choices, which are adaptable (Manocha and Babovic 2017), flexible,
and sustainable. Green stormwater infrastructure (GSI) fills this
need while also providing a wide range of co-benefits (Bell et al.
2019; Benedict and McMahon 2002; Choi et al. 2021; Gaffin
et al. 2012; Nieuwenhuijsen 2020; Webber et al. 2020). However,
the key questions that remain are how the GSI can be distributed
across the catchment to achieve the optimum hydrological benefit
at least cost, what design criteria shall be considered, and how robust
design decisions are in a dynamic environment.

Unlike gray infrastructure, GSI adds flexibility through modu-
larity since it is customizable into numerous design forms, inte-
grable with the existing drainage network, and scalable as the
need arises. Different design forms of GSI practices such as biore-
tention, bioswales, and green roofs, most commonly known as low
impact development (LID), are a subset of GSI, engineered to func-
tion as a standalone unit or in concert with existing gray infrastruc-
ture to enhance hydrological functions of infiltration, storage,
and pollutant removal via sedimentation and filtration. Typically,
GSI are categorized into systems that are installed on the ground
surface (e.g., bioretention and bioswale) and others that are installed
above the ground surface (e.g., green roofs). Bioretention is an
engineered small depressional area with soil filter media consisting
of surface layer, soil layer, and storage layer over native soil, planted
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with native vegetation to promote infiltration and reduce peak
runoff (Golden and Hoghooghi 2018). A bioswale is a vegetated
channel with trapezoidal cross section or side slopes to collect
and infiltrate runoff. Green roofs have a surface layer, a soil layer,
and a thin multilayer fabric drainage mat that have limited storage,
which is the key difference from bioretention (Rossman and Huber
2016). The shallow soil media in green roofs with native vegetation
retain the rainwater and the drainage layer conveys percolated rain-
water to a roof drainage system (Mentens et al. 2006). Green roofs
are distinguished into two types: extensive, which have thin soil
media (≤10 cm); and intensive, which have thicker growing media,
allowing for perennial herbs and shrubs, and can be considered as
roof gardens (Gregoire and Clausen 2011; Mentens et al. 2006). In
both these systems, the hydrologic-hydraulic processes are com-
puted using flow continuity equations that describe change in water
content in different layers over time; the details about theoretical
background and equations can be found in Rossman and Huber
(2016). Bioretention treats direct rainfall and surface runoff it re-
ceives from impervious and pervious surface within subcatchments,
but green roofs treat only the direct rainfall they receives. Bioreten-
tion also involves exfiltration of stored water to native soil as well as
an underdrain to a drainage system, whereas a green roof only con-
veys retained and stored water to a drainage system. By utilizing the
impervious roof surface, green roofs provide retention and a limited
storage function, which dampen the peak runoff. Such effects could
be significant if green roofs are implemented on a catchment scale.
Green stormwater infrastructure implemented in several US cities
(e.g., Philadelphia, Boston, Seattle) provides evidence that GSI per-
formance meets or exceeds design expectations (Hopkins et al.
2018; USEPA 2014; WEF 2018). Despite growing evidence sup-
porting success stories and performance efficiency, its adoption
at the catchment scale remains limited due to uncertainties affecting
design and planning (Montalto et al. 2011; O’Donnell et al. 2017;
Thorne et al. 2018; Zuniga-Teran et al. 2020). The flexible and
modular property of GSI allows it to be integrated as gray-green
stormwater infrastructure for capacity enhancement of stormwater
system. Such integration requires tools to assess designs and plans
at the catchment scale. Further integration of GSI is also subject to
availability of space and resources. In the dynamic urban environ-
ment with changing urban forms and competing land uses, the de-
layed action could mean costly GSI implementation or limited
design and configuration options, adding further constraint into
the planning process.

Urban drainage design standards typically define design precipi-
tation according to the site-specific precipitation intensity, duration,
and frequency relationships; produced by federal government agen-
cies, some examples include the National Oceanic and Atmospheric
Administration (NOAA) Atlas 14 released in 2004 or older docu-
ments, the US Weather Bureau Technical Paper 40 (TP40) released
in 1961, and HYDRO 35 released in 1977 (Chow et al. 1998;
Lopez-Cantu and Samaras 2018). Historically TP40, which in-
cluded precipitation estimates for durations from 30 min to 24 h
and return periods from 1 to 100 years, was adopted for infrastruc-
ture design, but was partially superseded by HYDRO 35 for its
events ranging from 5 to 60 min, which was more suitable for urban
drainage design (Chow et al. 1998). Currently NOAA’s Atlas 14 is
the most comprehensive set of precipitation estimates which super-
seded TP40 and HYDRO 35 across most of the US. Atlas 14 quan-
tifies the 90% confidence interval (CI) for precipitation intensity
estimates for durations from 5 min to 60 days and return period
of 1 to 1,000 years. These confidence intervals were derived
separately for each duration and represent the uncertainties arising
from the distribution parameters and record lengths (Perica et al.
2018). Lopez-Cantu and Samaras (2018) studied the variation in

precipitation depth estimates between older (i.e., TP40) and newer
(i.e., Atlas 14) standardized precipitation analysis documents, and
showed that infrastructure failure probabilities changed from 1961
to newer Atlas 14 standard released in 2004. The same study also
identified regions and states across the US that need to prioritize
changing design standards. Markus et al. (2007) studied variation
in 100-year 24-h precipitation estimates from station data, TP-40,
Bulletin 70, and Atlas 14 for northeastern Illinois and estimated
modeled runoff peaks using HEC-HMS using different estimates,
which suggested older design standards could underestimate
precipitation depth. The effects of using different standardized
precipitation sources or considering uncertainty within an estimate
(e.g., Atlas 14 confidence interval), on the design of stormwater
infrastructure such as GSI has not been previously studied. Under-
standing the influence of precipitation uncertainty in stormwater
systems also helps to understand the challenges in adaptation
planning under the increasing uncertainty due to climate change.
As evidence suggests wet extremes have increased in 21st century
compared to 20th century across several geographic regions
(Stevenson et al. 2022). However, the greater challenge is that
the time scale or magnitude of such effects vary geographically
(Carvalho 2020; Kunkel et al. 2020).

The dynamics of urban land use due to continuous land develop-
ment further alters the dynamics of urban flooding, degrades the
performance and function of stormwater infrastructure, and con-
strains the adaptation options to manage flooding. The developed
land within and around cities has expanded significantly over the
last century across the US. This horizontal growth is typified by
two locations and patterns of urban surface change: the city core
where urban imperviousness has already reached almost 100% in
the last few decades (densification), and surrounding city areas that
are expanding outward (sprawl) (Barrington-Leigh and Millard-
Ball 2015; USGS 2003). In order to keep the stormwater infrastruc-
ture functional the existing infrastructure needs to be adapted to
capture increased surface runoff and minimize pluvial flood risk
(Arnbjerg-Nielsen et al. 2013). As identifying the optimal configu-
ration of GSI is an integral part of catchment scale GSI planning,
understanding how it varies under probable dynamics of such
changes helps in GSI decision-making and planning.

The optimal configuration of GSI is defined as the ideal selec-
tion of GSI types, amount and spatial distribution over the catch-
ment. For this study we used a fixed standard design specification
and parameters for bioretention and green roof as suggested by
Rossman and Huber (2016). In this study, we aim to investigate
the overarching research question of how the catchment scale op-
timal configuration of GSI is influenced by uncertainty in design
standards and changes in design conditions. Specifically, we first
break down this problem into three subquestions:
• How does the uncertainty in precipitation (measured by the

confidence interval in Atlas 14) affect the optimal GSI
configuration?

• How the change in urban imperviousness affect the optimal GSI
configuration?

• Does the uncertainty in precipitation or change in urban imper-
viousness impose greater influence in GSI configuration in two
Phoenix (Arizona) watersheds?
To answer these questions, we use the USEPA’s stormwater

management model (SWMM) to build a physically based, semidis-
tributed one-dimensional hydrologic-hydraulic model for two ur-
ban catchments in Phoenix. These two catchments represent two
distinct urban forms, where the urban blocks are already heavily
urbanized consisting of commercial buildings (i.e., the urban core)
and other has developed over the past 20 years and consists of res-
idential buildings (i.e., sprawl).
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 J. Sustainable Water Built Environ., 2023, 9(2): 04023001 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

A
riz

on
a 

St
at

e 
U

ni
v 

on
 1

2/
14

/2
3.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Methodology

Catchments Selection

Urban expansion and densification changes imperviousness over
time. This process is compared in the 20 largest US cities by pop-
ulation (US Census Bureau, n.d.) (Table 1), using urban impervi-
ousness data from National Land Cover Database, Multiresolution
Land Characteristics Consortium available at a spatial resolution of
30 m. The sum of the percent changes in urban imperviousness
between 2001 and 2019 was normalized by the total area within
the city boundary [Eq. (1)]. The change in urban imperviousness
ðΔIÞ is defined as

ΔI ¼
P

n
i¼1

P
m
j¼1ðI2019i;j − I2001i;j Þ × Ap

Ac
ð1Þ

where I = percent imperviousness (for 2001 or 2019); and n and m
= rows and columns of the raster data; Ap = area of a pixel; and Ac =
area of the city. The Ac is defined as the product of Ap and number
of raster pixels within city boundary (Nc). Several of the 20 largest
cities are expanding with new impervious surface being added. In
general, higher values of ΔI implies greater sprawl and low values
implies minimal sprawl over the study period, 2001–2019 (Table 1).
The city of Phoenix, which is one of the largest metropolitan
regions in the US [Fig. 1(a)] with a population over 1.6 million,
represents cities experiencing sprawl where impervious area in city
core peaked prior to 2001 and the peripheral area of the city has
continued increasing impervious cover [Fig. 1(b)]. Fig. 1(b) shows
the change in urban imperviousness in Phoenix at 30 m resolution
between 2001 and 2019.

The current uncertainty in the Atlas 14 estimates, as presented
through 90% confidence interval (Bonnin et al. 2006), informs

infrastructure designers and decision makers about the potential
for over and under design (Table 1). Continued population growth
and city expansion increases the demand for new stormwater infra-
structure or upgrades of existing infrastructure. In Phoenix, storm-
water drainage for streets including catch basin spacing and
conduits is required to convey the 2-year return period rainfall (City
of Phoenix 2013). However, flooding impacts prompt rethinking of
this standard. Extending capacity of infrastructure at frequently
flooded locations to handle the 5-year return period rainfall would
mitigate flood impacts and increase infrastructure service level and
resilience. But once the drainage system is built, replacing its con-
duits is not a viable solution in many cases, therefore GSI was
implemented as the adaptable stormwater management in addition
to existing gray infrastructure. For this study we consider 5-year
return period rainfall as it is a common stormwater design standard
in many regions, and we also purposely stress the existing system to
understand how the GSI maintain their level of service under higher
rainfall extremes, which many cities globally are expected to ex-
perience due to climate change. This pertinent design challenge
makes Phoenix an appropriate choice for this study, and the con-
clusions drawn from this case have implications for other fast-
growing cities. Furthermore, stormwater infrastructure data was
comprehensively available for Phoenix.

Despite the hot desert or arid climate (i.e., BWh Köppen clas-
sification) with extreme hot summers, mild short winters, and only
204 mm of average yearly precipitation, several locations within
Phoenix experience frequent urban flooding. Fig. 1(b) shows that
the city has expanded outward in the last two decades. The
first catchment selected (Cat. 1) is situated in the Central City
neighborhood in downtown Phoenix (DTP), which had a median
imperviousness of 79% in 2001 and 81% in 2019; thus Cat. 1 is a
representative of area that were fully urbanized in the previous dec-
ades [Fig. 1(b)]. The second catchment (Cat. 2), which is situated
south of the Central City in the South Mountain Village Phoenix
(SMP), had median imperviousness of 15% in 2001 and 45% in
2019; thus Cat. 2 is a representative of an area of urban expansion
and densification [Fig. 1(b)]. The details of the stormwater infra-
structure feature for Cat. 1 (DTP) [Fig. 1(c)] and Cat. 2 (SMP)
[Fig. 1(d)] are implemented in the SWMM model, which is de-
scribed in next section. The distribution of change in percent im-
perviousness per pixel value (of 30 m resolution) in Cat. 1 shows
the similar left skewed shape for both 2001 and 2019, indicating
relatively no change in urban imperviousness between 2001 and
2019 [Fig. 2(a)] while in Cat. 2 the distribution shape of impervi-
ousness has changed from right skewed to symmetrical from 2001
to 2019 [Fig. 2(b)]. Both the hydrologically independent catch-
ments are similar in size with areas of 1.6 km2 and face frequent
flooding [Figs. 3(a and b)]. The rainfall event in Cat. 1 on Septem-
ber 23, 2019 was of 2-year return period and rainfall event in Cat. 2
on August 12, 2014 was of 5-year return period.

Hydrologic-Hydraulic Model

USEPA’s SWMM 5 is a hydrologic-hydraulic model that computes
the rainfall-runoff and routing processes, has a low impact develop-
ment module, and uses dynamic wave routing to solve the complete
one-dimensional Saint-Venant flow equations, which account for
channel storage, backwater effects, entrance/exit losses, and pres-
surized flow in stormwater network (James et al. 2010; Rossman
2006, 2017). The stormwater infrastructure data obtained from
Phoenix Public Works Department and Flood Control District of
Maricopa County consists of all the features and attributes data
for stormwater components. The number of stormwater compo-
nents like conduits and junctions are higher in Cat. 1 compared

Table 1. Change in imperviousness from 2001 to 2019, and 90%
confidence interval for NOAA Atlas 14 precipitation estimates in 20
most populated US cities

Location
ΔI
(%)

Latitude,
longitude for

Atlas 14 stations
(degrees)

Atlas 14,
90% CI for
5-year return

period,
60-min storm

(cm)

Austin, Texas 7.56 30.2676, −97.7430 4.72–8.10
San Antonio 7.22 29.4246, −98.4946 4.55–7.80
Phoenix 5.78 33.4483, −112.0758 2.16–3.15
San Jose, California 5.77 37.3387, −121.8854 1.07–1.49
Charlotte, North Carolina 5.77 35.2229, −80.8380 4.65–5.46
Fort Worth, Texas 4.89 32.7510, −97.3309 3.94–6.78
Columbus, Ohio 4.38 39.9620, −83.0027 3.71–4.55
Houston 4.21 29.7608, −95.3695 5.23–8.99
Denver 4.12 39.7400, −104.9920 2.07–3.33
Dallas 3.42 32.7782, −96.7951 4.19–7.24
Jacksonville, Florida 3.06 30.3315, −81.6562 5.41–7.75
Indianapolis 2.98 39.7669, −86.1501 3.99–4.90
San Diego 2.09 32.7157, −117.1617 1.57–2.27
Washington, DC 1.71 38.8904, −77.0320 4.19–5.11
Philadelphia 1.22 39.9522, −75.1622 4.09–4.85
Chicago 1.18 41.8843, −87.6324 3.96–5.03
New York 1.16 40.7146, −74.0071 3.18–5.11
San Francisco 0.92 37.7771, −122.4196 1.60–2.05
Los Angeles 0.81 34.0536, −118.2454 1.74–2.53
Seattle 0.51 47.6036, −122.3294 N/A

Source: Data from US Census Bureau (n.d.)
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to Cat. 2, which has a mix of underground conduits and roadside
drains. The 0.3-m resolution LiDAR point cloud data from Arizona
State University (ASU) geospatial hub database (ASU 2018) was
used to create a digital elevation model (DEM). The DEM was
used to extract correct rim and invert elevations for junctions, delin-
eate and discretize subcatchments, and extract width and slope of
the subcatchments. The soil types data in two catchments were

obtained from the USDA Natural Resources Conservation Service
web soil survey database (USDA-NRCS 2017), and Green-Ampt
infiltration parameters (e.g., suction head, saturated hydraulic con-
ductivity) were obtained from the Arizona DOT (ADOT 2014). The
soil properties data and urban imperviousness data (MRLC 2021),
were extracted into the subcatchment by extracting overlaying pol-
ygons and taking average values of pixels contained within each

Fig. 1. (a) Location of the city of Phoenix; (b) change in urban imperviousness (%) from 2001 to 2019 and locations of two catchments; stormwater
components in (c) Cat. 1, downtown Phoenix (DTP); and in (d) Cat. 2, South Mountain Phoenix (SMP).
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subcatchment, respectively, using the ArcGIS’s zonal statistics and
spatial join tools. We further utilized ArcGIS’s hydrology tools and
PCSWMM’s watershed delineation tools to generate overland flow
paths and understand surface flow directions. Based on this infor-
mation, the runoff generated from both the impervious and pervious
portion of each of the discretized subcatchments was routed directly
to the closest catch-basin if present, otherwise the runoff from up-
stream subcatchment is routed to a downstream subcatchment,
which eventually drains to the closest catch-basin, and in this case
internal runoff routing was also assigned from impervious to
pervious surface. For further details on model construction, see
Shrestha et al. (2022). The rainfall design storm from Atlas 14
(NOAA and NWS 2021) for 5-year return period, 45-min duration
was selected for the GSI configuration experiments. At both the lo-
cations the existing gray stormwater system is not able to accom-
modate runoff from short duration 5-year return period rainfall, and
in both the locations GSI offers a flexible way to augment the capac-
ity of the existing conveyance system. The spatial distribution of
flooded locations and functional condition of existing infrastructure
is measured in terms of (1) the maximum flooding rate at each node
which is defined as the peak flooding rate from an overflowing node
[note that flooding in the system occurs when hydraulic grade line
exceeds rim elevation of the catch basin or manhole for the under-
ground conduits (or street curb height for roadside drains)]; (2) peak
runoff from each subcatchment; and (3) duration of exceedance of

conduits’ capacity, which occurs when a conduit’s upstream end is
full and hydraulic grade line is greater than conduit slope (James
et al. 2010).

GSI Optimization

GSI Configuration
The two types of GSI considered in this study, bioretention and
green roofs, were selected as they represent common ground sur-
face and building based GSI types. The availability of space and
types of buildings in the two study catchments make these two
types of GSIs particularly viable. The size of a single unit of both
the bioretention cell and intensive green roof is specified here as
10 m2. The design specification and parameters for both types
of GSI are shown in the Supplemental Materials (Section S1).
The number of GSI units for each variation of bioretention and
green roof in Cat. 1, and only bioretention in Cat. 2 is optimized
at the subcatchment level. This is because in Cat. 2, the residential
houses, do not have suitable flat roofs and thus green roofs are con-
sidered not a viable option. The subcatchment layer in SWMM is
divided into pervious and impervious segments. The sum of area
occupied by streets, buildings and free space constitute the total
area of each discretized subcatchments, defined as

Area of subcatchment ¼ Free Spaceþ Roof areasþ Streets ð2Þ

Fig. 2. Change in urban imperviousness (%) from 2001 to 2019 using data from the National Land Cover Database (MRLC 2021) in (a) Cat. 1; and
(b) Cat. 2.

Fig. 3. Example of flooding (a) in Cat. 1 on September 23, 2019 (reproduced from ASU/NAU 2019, with permission); and (b) in Cat. 2 on August 12,
2014 (reproduced from FCDMC 2014).
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Fig. 4 shows the spatial distribution of available space and the
built surfaces. The impervious segments are from buildings and
streets. In the current GSI implementation, bioretentions are placed
only in the pervious segments, and green roofs are placed on build-
ings. By placing green roofs in the subcatchment, the impervious
percent of the subcatchment decreases by the equivalent area oc-
cupied by the green roofs as suggested by James et al. (2010). Thus,
for each subcatchment in Cat. 1, the corresponding percentage of
green roof area relative to its subcatchment area is deducted from
the original imperviousness before running each simulation within
the optimization algorithm.

Optimization Framework
The hydrologic-hydraulic models were coupled with a nondomi-
nated sorting genetic algorithm that solves multiple optimization
problems simultaneously (Blank et al. 2019; Jain and Deb 2014).
The nondominated sorting genetic algorithm-II (NSGA-II) is a
Pareto-based multiobjective evolutionary algorithm, and a sub-
sequent version of NSGA that uses a Pareto dominance relation
for searching entire Pareto front in a single run (Deb et al. 2002;
Reed et al. 2013). Several studies have used nondominated sorting
genetic algorithm in water resources planning. Kumar et al.
(2022) applied NSGA-II to minimize urban runoff volume using
optimal size and costs of LIDs. Mwiya et al. (2020) applied
NSGA-III for identifying optimal irrigation scheduling to maxi-
mize water use efficiency and minimize risk. The implementation
of NSGA-II with SWMM 5 model is done in an R environment
using R packages swmmr (Leutnant et al. 2019) and nsga2r (Tsou
2013). The size of the population is determined by the number of
variables, so the population size for Cat. 1 was 1,080 and for Cat.
2 was 720, and for both the simulations 30 generations were se-
lected. The crossover and mutation probabilities for the NSGA-II
algorithm for both the catchments were selected as 0.7 and 0.2,
respectively. Each of the optimization simulation experiment was

run in 64-bit i7 CPD @ 3.6 GHz processor, which took 60–90 h to
complete.

Two objectives were considered in the optimization framework
to minimize both the peak flooding (Qpk) resulting from 5-year
return period storm and the cost of GSI implementation. The first
(f1) and second (f2) optimization objectives were defined as

f1 ¼ min

�XN
i¼1

Qpki

�
ð3Þ

where Qpk = peak flooding at node i; and N = number of nodes in
the model

f2 ¼ min

�XN
S¼1

Costs

�
ð4Þ

where Cost = capital cost for construction of GSIs in subcatchments
(it does not reflect life cycle cost); and N = number of subcatch-
ments in the model. The optimization is constrained by the avail-
ability of space for GSI implementation, which is defined as
0 ≤ AGIS ≤ AGIM where AGIS is the area of assigned GSI, and
AGIM is the maximum allowable area for GSI, which is maximum
roof area for green roof installation and maximum free space for
bioretention installation in each subcatchment.

Each parameter value fp1;p2; : : : ;png represents the number
of GSI to be implemented in each subcatchment. The minimum
and maximum value of these parameters is defined as, Pl ¼
fp1;p2; : : : ;png and Pu ¼ fp1;p2; : : : ;png where Pl is the set
of lower bounds with p1;p2; : : : ;pn ¼ 1, and Pu is the set of upper
bounds with p1;p2; : : : ;pn determined by maximum space avail-
able for parameter value for n ¼ 108 (for Cat. 1) and n ¼ 72 (for
Cat. 2) corresponding to number of discretized subcatchments and
types of GSI implemented. The assignment of a number of GSI units
for every subcatchment within the fitness function is defined as

Fig. 4. Available space for GSI in each discretized subcatchment is estimated by extracting area occupied by buildings and streets for (a) Cat. 1; and
(b) Cat. 2.
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NGIS ¼ round

�
min

�
AGIM
GIU

;pan

��

∀ S ∈ fS1; : : : ; SNg subcatchments ð5Þ

where pl ≤ pan ≤ pu; GIU = unit area of GSI; and the
minf½ðAGIMÞ=ðGIUÞ�;pang function ensures that the space con-
straint is maintained. The total cost of green stormwater infra-
structure is defined as

Cost ¼
XN
S¼1

NGIS × GIU × cp ∀ S ∈ fS1; : : : ; SNg ð6Þ

where cp = standard capital cost per unit square meter of GSI
installation, which is $430=m2 for bioretention and $332=m2

for green roof (Rutgers 2017; Terrascope 2022). The graphical
results from SWMM model outputs and optimization simulation
presented in the following section was developed using ArcGIS
Pro tool and ggplot2 package in R (Wickham 2009).

Results

For Cat. 1 in Central City, Phoenix the best fit rainfall estimate from
Atlas 14 for 5-year (2-year) return period for 1 h duration is 2.59 cm
(1.74 cm), while the 90% confidence interval are 2.15 cm (1.46 cm)
and 3.15 cm (2.12 cm). For Cat. 2 in South Mountain, Phoenix, for
5-year (2-year) the mean is 2.59 cm (1.77 cm) and 90% confidence
interval are 2.16 cm (1.48 cm) and 3.17 cm (2.16 cm). Using 5-year
return period design storm both the catchments experience flood-
ing at multiple locations before GSI is adopted [Figs. 5(a–i)]. The
first row [Figs. 5(a–c)] shows the model simulation result for
Cat. 1 for 2019, which is representative for 2001 as well since the
imperviousness remained unchanged. The second and third rows
[Figs. 5(d–i)] show the model simulation for Cat. 2 for 2001 and
2019 conditions, respectively. The increasing impervious area as
shown in Fig. 2(b) in Cat. 2 generates higher runoff and peak flood
in 2019 as compared to 2001. Generally, the higher runoff from
subcatchments is generated if the urban imperviousness is higher.
But also, if the subcatchment receives runoff from upstream sub-
catchments, such as top-right subcatchments in Cat. 1 [Figs. 5(a–c)]
and bottom right subcatchments in Cat. 2 [Figs. 5(d–i)]. With the

Fig. 5. Pre-green infrastructure condition under best fit and confidence intervals (i.e., lower and upper values) of the Atlas 14 5-year return period
rainfall estimates as simulated by SWMM showing the maximum flood rate from flooded junctions, peak runoff from subcatchments, and the duration
of exceedance of conduits’ capacity at the imperviousness level for (a–c) 2019 for Cat. 1; (d–f) 2001 for Cat. 2; and (g–i) 2019 for Cat. 2.
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absence of stormwater network and catch basin to transport runoff,
instead the flow is routed to the downstream subcatchments, thus
the receiving subcatchment generate peak runoff and receiving
junctions generate the peak flooding. Note that outfalls for Cat. 1
are in the south of the catchment, and for Cat. 2 it is in the north of
the catchment as shown in Figs. 1(c and d).

The maximum flooding rate from nodes and peak runoff from
subcatchments increases as the rainfall estimates change from
lower, best fit to upper bound of the Atlas 14 confidence intervals
for both the catchments across time [Figs. 5(a–i)]. GSI, sited within
a subcatchment, reduces the peak runoff from that subcatchment,
subsequently reducing pressure on downstream conduits. The op-
timization algorithm seeks a quantity and spatial distribution of GSI
across subcatchments that minimizes the objectives.

Effects of Uncertainty in Design Precipitation
Estimates

Figs. 6(a–i) illustrate the results of the multiobjective optimization
and show the Pareto optimal solutions. The black points are the
nondominated Pareto optimal solution with the first Pareto front
rank and gray points are the remaining dominated solutions. For
Cat. 1, there is slight difference between imperviousness of 2001
and 2019, but for Cat. 2 there are significant differences [Figs. 2(a
and b)]. Thus, results for Cat. 1 include that of the 2019 conditions
[Figs. 6(a–c)] (which also represents 2001 condition) and for
Cat. 2, which includes both years [Fig. 6(d–i]. The first column

[Figs. 6(a, d, and g)] shows the results for the lower bound of
the confidence interval of the design storm (i.e., lower estimate),
the second column [Figs. 6(b, e, and h)] shows the result for best
fit value (i.e., best fit estimate) and third column [Figs. 6(c, f, and i)]
shows the result for upper bound of the confidence interval
(i.e., upper estimate).

For Cat. 1 [Figs. 6(a–c)], the Pareto front shifts upward as we
move from lower to upper bound of the Atlas 14 design rainfall
estimates, indicating that achieving a given level of flood control
comes at a higher cost. The solutions are selected first by selecting
solutions that can totally mitigate flooding and second the least cost
solution among them as shown by the intersection of solid lines in
Figs. 6(a–c). The cost of mitigating flooding using GSI increases by
49%–77% from the lower to best fit and best fit to upper estimates
[Figs. 6(a–c)]. Fig. 7 further illustrates this selected solution by
showing the number of GSI units required to mitigate flooding
resulting from 5-year return period 45-min storm. The number
of required bioretentions (with unit area of 10 m2) increased from
11,046 to 28,649, which is 0.11 km2 to 0.28 km2, while depending
on the design standards from lower to upper bound of the Atlas 14
design rainfall estimates [Figs. 7(a–c)]. Similarly, the number of
required green roofs (with unit area of 10 m2) increased from
6,257 to 16,696 (in area: 0.06 km2 to 0.16 km2) [Figs. 7(d–f)].
Also note that the algorithm was able to prioritize the subcatch-
ments, which are the likely source of flooding in Cat. 1, by adopting
bioretention or green roofs on those areas [Figs. 5(a–c) and 7(a–f)].
Prioritizing these locations reduces the total cost and amount of

Fig. 6. Pareto optimal solution for GSI installations to reduce the peak system flooding using best fit and confidence intervals (i.e., lower and upper
values) of the Atlas 14 estimates at the imperviousness level for (a–c) 2019 for Cat. 1; (d–f) 2001 for Cat. 2; and (g–i) 2019 for Cat. 2. Intersection of
solid lines are the selected solution for further analysis (see Figs. 7 and 8).
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GSI required. We also observed some stochasticity wherein GSI are
spatially distributed while searching for a solution between maxi-
mum flood reduction and minimum cost. As such, the number of
GSI in some sub-catchments [e.g., upper right in Fig. 7(a)] de-
creased while using best fit estimate compared to while using lower
estimate but increased again in using upper estimate [Figs. 7(b and
c)]. To further understand the effect of the rainfall estimates on the
amount of GSI required, we examined how the increase in precipi-
tation depths by 5% to 50% compared to the best fit estimate
will influence the GSI configuration, as shown in the Supplemental
Materials (Section S2). The flooding conditions under a 5-year re-
turn period as shown in Figs. 5(a–i), will only be exacerbated if
climate change results in an increasing frequency and magnitude
of extreme events. The incremental change of rainfall intensities
from 5%–50% shows the increase in residual flooding and the
higher investment required to meet flood reduction plans, which
reflects the challenges due to climate change (Fig. S1). Such effects
presented here only for Cat. 1 will hold true for Cat. 2 and in gen-
eral most urban catchments.

For Cat. 2, minimizing the peak flood is constrained by the
availability of space, as only bioretention was adopted due to
the absence of flat roofed buildings. Cat. 2 is a dense residential
neighborhood with single to multifamily residential homes with

pitched roofs not feasible for green roofs. This restriction resulted
in higher residual flooding when best fit and upper estimates were
implemented [Figs. 6(e and f)]. When the lower estimate is used,
the flooding is almost eliminated [Fig. 6(d)]. Here we see that
within the confidence interval, different precipitation estimates
could result in drastically different levels of flood risk and cost
of flood mitigation. The Pareto optimal solution showed drastically
higher residual flooding for a given GSI investment using lower to
upper bound of the Atlas 14 design rainfall estimates [for both 2001
and 2019 conditions; Figs. 6(d–f) and (g–i)]. From the Pareto front
for 2001, while using lower Atlas 14 estimate the least GSI invest-
ment resulted in flood reduction (residual flooding) to 2.4 m3=s
[Fig. 6(d)]. Residual flooding is referred to as flooding that GSI
could not completely mitigate. However, using best fit and upper
estimates for precipitation intensity resulted in flood reduction
potential to 2.5 m3=s [Fig. 6(e)] and 7 m3=s, which is higher
residual flooding compared to lower precipitation intensity estimate
[Fig. 6(f)]. Since there are residual flooding still existing after
higher investment for GSI implementation specially while using
best fit and upper estimate, the maximum flood reduction goal
the system can meet is reducing peak flooding to 2 m3=s. A sol-
ution representing this flood reduction goal at least cost investment
is selected from all six Pareto fronts [Fig. 6(d–i)], which is further

Fig. 7. Optimal configuration of GSI (bioretentions and green roofs) at least possible cost in Cat. 1 for mitigating peak flooding. Panels show the
(a–c) number of bioretentions; and (d–f) green roofs required. NGIT , NGIM, and AGIT refer to the total number, maximum number in any of the
subcatchments, and total area of GSI required. Scale 1–1,300 or 1,700 is the number of GSI per subcatchment.
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analyzed in Fig. 8. From these selected solutions, the cost of
flood reduction using GSI increases while using lower to best fit
estimate and best fit to upper estimate by 85%–835% for 2001 con-
ditions [Figs. 6(d–f) and 8(a–c)] and 115%–348% for 2019 condi-
tions [Figs. 6(g–i) and 8(d–f)]. Using the lower, best fit, and upper
estimates would require 6,377, 10,433, and 97,930 numbers (in
area: 0.06 km2, 0.1 km2 and 0.90 km2) of bioretentions in the 2001
condition. In the 2019 condition it would require 50%–100% more.

Similar, to Cat. 1, the optimization algorithm was able to target
the subcatchments that have the highest runoff or one which is at
the proximity to the capacity constrained conduits and flooded no-
des [Figs. 5(d–i) and 8(a–f)]. The optimization algorithm allows
bioretention to be placed only in open space. Thus, in absence
of available space within the subcatchment where there is higher
runoff and peak flooding, the nearby subcatchments are instead
chosen for GSI implementation.

Also note that the cost of flood reduction in Cat. 2 is higher than
in Cat. 1, primarily due to the lower amount of existing under-
ground gray-infrastructure in Cat. 2 to convey stormwater and be-
cause the cost of bioretention is 1.3 times that of green roofs. The
implementation of green roofs further reduces the peak runoff by
retaining the precipitation and conveying the excess water back into
the drainage system slowly, which is an additional advantage in
Cat. 1. Most of the extended urban areas since 2001 or earlier
around Cat. 2 in Phoenix do not have an extensive network of gray
stormwater infrastructure, which presents another challenge in

flood management. The analysis on optimal configuration due to
change in imperviousness is presented next.

Effects of Changes in Urban Imperviousness

The increase in urban imperviousness results in two different pat-
terns of catchment response in Cat. 2: (1) an increase in the amount
of flooding in previously flooded locations, and (2) flooding in new
locations as shown by the changes in the maximum flood rate and
change in peak runoff in Figs. 5(d–i). The optimal GSI configura-
tion under these conditions as computed for two periods, shows
that amount of investment required to mitigate the same amount
of flooding in 2019 could be significantly higher than in 2001
[Figs. 6(d–i)]. For example, using the best fit estimate for the design
storm, the investment of $50 million could achieve the maximum
flood reduction to 2 m3=s [Fig. 6(e)]. However, under the 2019
condition, the residual flooding increased as the same investment
could only achieve peak flood reduction to 4 m3=s [Fig. 6(h)].
Fig. 8 shows the number of GSI installations (assuming a 10 m2

area) required to reduce the flooding resulting from 5-year return
period 45-min storm to 2 m3=s, based on a selected solution for
this analysis as discussed previously, which is also shown in
Figs. 6(d–i). Note that under the given space constraint the full
mitigation of flooding is not possible here and results in residual
flooding. The number of GSI installations required to achieve the
same level of flood reduction increases from 6,377 to 10,567

Fig. 8. Optimal configuration of GSI (bioretentions) at least possible cost in Cat. 2 for reducing peak flooding to 2 m3=s. Panels show the number of
GSI required in imperviousness level for (a–c) 2001; and (d–f) 2019. The maximum flood reduction possible is Qpk ¼ 2 m3=s given the constraints,
and NGIT , NGIM, and AGIT refer to total number, maximum number in any of the subcatchments, and total area of GSI required. Scale 1–4,500 is the
number of GSI per subcatchment.
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(using the lower estimate), 10,433 to 22,679 (using the best fit es-
timate), and 97,930 to 100,934 (using the upper estimate) from the
2001 to the 2019 land use (Fig. 8). As the system receives more
intense rainfall by moving from the lower to upper bound of rainfall
estimates, the allowable capacity for GSI reaches its limit and
reducing flooding becomes more difficult even with higher GSI in-
vestment. The effect of uncertainty from the confidence interval in
5-year return period rainfall estimate in optimal GSI requirement is
much larger compared to the effect of land use change that hap-
pened between 2001 and 2019.

Discussion

GSI Design for Pluvial Flood Management

The optimal catchment scale benefits from GSI are sought by iden-
tifying GSI configurations with optimal amount, type, and spatial
distribution within the catchment. The multiobjective optimization
algorithm in combination with a physically based hydrologic-
hydraulic model (e.g., SWMM) is useful in identifying global op-
timal solutions while evaluating the tradeoff between objectives.
Pareto fronts showing tradeoffs between objective of flood mitiga-
tion or reduction and investment required showed the diminishing
return for same amount of GSI investment [Figs. 6(a–i)]. This is
because in search of optimal placement of GSI, the most effective
discretized subcatchments that return maximum flood reduction are
filled with GSI first followed by less effective subcatchments. Con-
sistent with recent work in arid catchments (Li and Burian 2022),
the results show that both increasing precipitation intensity and
land change can worsen pluvial flooding. However, here we find
that variation in design storm precipitation within the confidence
interval for the 5-year, 45-min Atlas 14 storm has a greater impact
than land use in a Phoenix catchment that experienced a median
30% increase in imperviousness. Note that Cat. 2 is located in
one of the neighborhoods with the highest 2001–2019 increase
in imperviousness (Fig. 1) and that Phoenix is one of the large cities
with the greatest increase in imperviousness in the US over the
same period (Table 1).

The approach presented in this paper can be extended to larger
catchments or to different spatial discretization such as the parcel or
block. The objective used here is to minimize overall flooding in
the system while controlling cost. Alternate objectives of enhanc-
ing infiltration or storage, removing runoff pollutants, prioritizing
critical locations or other planning goals might warrant different
configurations or new designs. By simultaneously optimizing
bioretention and green roofs across the constraint of space and
searching for cost-effective solutions, the algorithm determined the
optimum or Pareto optimal solutions with exact number of biore-
tention and/or green roofs. This method can be adapted to prioritize
one over the other by adding additional constraints, e.g., assigning
priorities for land use to limit expansion of bioretention. It should
further be noted that with current objective, the algorithm is able to
prioritize the GSI where it is required the most, i.e., subcatchments
where there is higher runoff and flooding. The assumption in this
study is that land is feasibly available based on free space, and we
have not considered land value or land use priorities, but this
approach and tool can be adapted to accommodate different con-
straints and priorities relevant to planning process. For example, the
optimization framework can be modified to prioritize areas where
consequences of flooding are high such as medical or school zones
or densely populated areas. The multiobjective framework can
also be a useful planning tool to study the tradeoff across priori-
tizing particular area for flood protection, resources, and cost of

implementation and maintenance. The long-term performance
variation of GSI, life-cycle cost, benefit-cost ratio, and net present
value are some of the on-going research efforts in implementing
GSI; future research should focus of the cost of delayed decision
of implementing GSI (Bernagros et al. 2021; DelGrosso et al. 2019)
if a flexible planning approach is to be adopted (Eckart et al. 2012).

GSI Adaptation under Uncertainty

The current uncertainty in Atlas 14 estimates could result in a risk
of over or under building stormwater capacity. If the best fit esti-
mate is chosen it could result in over building the system if the true
5-year event is indeed closer to the lower bound of the confidence
interval and vice versa. In terms of GSI, this could result in 8,036
numbers of GSI installations (or 0.08 km2 of GSI with unit area of
10 m2) being unnecessary if it is over built or facing functional
failure if under built as shown for Cat. 1 in Fig. 7. The risk of over
and under building is comparatively higher for Cat. 2 as there is
currently inadequate gray infrastructure [Figs. 1(b) and 8]. This risk
is amplified when there is uncertain land use change [Figs. 8(d–f)].

However, the flexibility and modularity of GSI reduces the risk
of over or under design (Gilrein et al. 2019). Following the prin-
ciples of flexible design, after initial GSI is installed, additional
modules may be added over time as warranted by changes in land
use or by either changes in or misestimation of the design storm (De
Neufville and Scholtes 2011). As such these uncertainties are not
barriers to GSI adoption but an opportunity to identify the risk in
design and construction and implement appropriate adaptation
strategies under uncertainty. Further, learning over time will reduce
uncertainties with respect to design storm estimates and the impacts
of climate change. For example, applying Bayesian learning to cli-
mate uncertainty over time can be used to inform planning strate-
gies (Fletcher et al. 2019). A similar framework could be used to
inform implementation of GSI over time as part of a flexible plan-
ning approach.

The results (Figs. 6–9) also illustrate that GSI is not a panacea,
particularly if high precipitation estimates are accurate or if short
duration precipitation intensifies with climate change. The GSI re-
quired to mitigate flooding for the high estimate of precipitation
covers 0.44 km2 or 27.5% of Cat. 1, and 0.9 km2 or 56.3% of
Cat. 2 with 2001 land use and 1.0 km2 or 62.5% of Cat. 2 with
2019 land use. While technically feasible given the definition of
free space used in the optimization routine (all land that is not street
or building), this level of GSI implementation is unrealistic from a

Fig. 9. Dynamics of change occurring across cities that will potentially
influence GSI planning.
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practical standpoint due to other competing land uses. GSI can be
part of the solution; however, when the drainage system is signifi-
cantly underbuilt, GSI alone will often be insufficient. As presented
in Figs. 6(d–i), the high cost of GSI implementation in Cat. 2 means
GSI is not a replacement for sufficient gray-infrastructure. Instead,
the integration of gray-green stormwater infrastructure is needed,
where GSI can incrementally add capacity as needed.

Reflections on Other US Cities

The confidence interval for Atlas 14 precipitation estimates,
particularly for shorter storm durations relevant for stormwater in-
frastructure design, varies across cities. Similarly, the change in
imperviousness varies across and within cities. Understanding
the historic city expansion and future probable direction for urban
expansion, and uncertainty in design rainfall estimates helps the
decision-makers to understand risk of over- or underbuilding
stormwater capacity. Furthermore, future uncertainty due to climate
change not incorporated in Atlas 14 estimates, will layer on the
uncertainty in current design rainfall estimates, further complicat-
ing the GSI planning process and such changes will not be uniform
across cities. We can conceptualize these dynamics created by the
combination of climate change and land use change into four ty-
pologies (Fig. 9). The risk of drainage system functional failure is
low in Typology 1 and highest in Typology 4. The two catchments
presented in this study for Phoenix represent low and high change
in urban imperviousness. Most of the other cities with higher ΔI
that are continuously expanding outward experience both the low
(in the city core) and high (at satellite cities or suburbs) change in
imperviousness. Comparison between the variation in impervious-
ness (i.e., Typologies 1 versus 3, or Typologies 2 versus 4) in the
areas that experience a high increase in imperviousness (Typology
3 or 4) present a more complex challenge of optimal GSI planning.
This is particularly true for catchments that have highly permeable
soils, which result in greater loss of infiltration function. The ma-
jority of soils in Cat. 2 are Estrella loam and Antho sandy loam with
moderate hydraulic conductivity in of 0.07–0.3 cm=h (ADOT
2014; USDA-NRCS 2017). This study also showed that higher
variation in the design storm precipitation, which could be exacer-
bated by climate change, combined with relatively lower change in
imperviousness (i.e., Typology 2) can have greater uncertainty
compared to the catchment that experiences a higher change in im-
perviousness but a lower change in precipitation (i.e., Typology 3).

A limitation of this study is the focus on a single city, Phoenix,
with flat topography, a gridded stormwater conveyance system,
and deep groundwater. In catchments with different topography
or network design, or with shallow groundwater, the responses
to precipitation and land use change may vary. This study is also
limited by the range of soil types found in these study catchments.
As discussed previously, the rainfall-runoff response is more sen-
sitive when soils with high infiltration rates are replaced by im-
pervious surfaces. Lastly, the standard GSI specification used in
practice was used for this study. However, this should be com-
pared against performance of GSI practices in the field. Although
these limitations suggest case specific analysis for GSI planning,
understanding where the catchment and cities are within the four
typologies helps planners and designers to assess risk based on
two key characteristics.

Conclusions

This study investigated the impacts of precipitation uncertainty and
land use change on the optimal configuration of GSI by applying a
coupled hydrologic-hydraulic model (SWMM) and an optimization

algorithm (NSGA-II) in two study catchments in Phoenix. The GSI
configuration defined for this study as the type, amount and spatial
distribution of GSI, where considered types include bioretention
and green roofs. Based on the results of this analysis, we present
the following conclusions:
• While both increasing precipitation intensity and land change

can worsen pluvial flooding, variation in precipitation estimates
within the confidence interval for the 5-year, 45-min storm Atlas
14 storm has a greater impact than land use in a Phoenix catch-
ment that experienced a median 30% increase in imperviousness.
This effect is sensitive to soil type, with catchments with higher
soil hydraulic conductivity expected to display a stronger re-
sponse to land use change. However, the results highlight the
importance of considering precipitation uncertainty in storm-
water design.

• The uncertainty in design storm precipitation and the potential
degree of near-term land use change (∼20 years) collectively
result in a wide range of optimal GSI configurations. If design-
ing a traditional gray-infrastructure system (i.e., stormwater
conduits) this would present a significant risk of over or under-
building. This risk highlights the benefit of the modular nature
of GSI, which can be incrementally deployed over time as land
use conditions change or the best estimate of design storm pre-
cipitation is updated.

• The results also show that GSI is not a panacea and cannot mit-
igate all flooding impacts even within the Atlas 14 design storm
confidence interval. This indicates that relying on GSI to adapt
to climate change–driven increases in precipitation intensity
may be beneficial but inadequate on their own.
Limitations of this study point to the need for future research

efforts. While this study placed the case of two Phoenix catchments
in the context of land use trends and precipitation uncertainty in
large US cities broadly, further research should investigate the im-
pact of local catchments characteristics on the effects found in
this paper.
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