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A B S T R A C T   

The statistical characterization of precipitation (P) at short durations (≤ 24 h) is crucial for practical and sci
entific applications. Here, we advance the knowledge of and ability to model the space-time correlation structure 
(STCS) and marginal distribution of short-duration P using a network of rain gages in central Arizona with one of 
the largest densities and spatial coverages in the world. We separately analyze summer and winter P sampled at 
multiple durations, Δt, from 0.5 to 24 h. We first identify an analytical model and a three-parameter distribution 
that robustly capture the empirical STCS and marginal distribution of P, respectively, across Δt’s. We then 
conduct Monte Carlo experiments consisting of multisite stochastic simulations of P time series to explore the 
spatial and seasonal variability of these properties. Significant seasonal differences emerge, especially at low Δt. 
Summer (winter) P exhibits weak (strong) correlation structure and heavy- (light-)tailed distributions resulting 
from short-lived, isolated thunderstorms (widespread, long-lasting frontal systems). The STCS of P is most likely 
homogeneous and isotropic except for winter at Δt ≥ 3 h, where anisotropy could be introduced via the motion of 
frontal storms. The spatial variability of the marginal distribution is reproduced by a regional parameterization 
dependent on elevation in all cases except, again, for winter at Δt ≥ 3 h where additional factors are needed to 
explain the variability of the mean P intensity. This work provides insights to improve stochastic P models and 
validate convection-permitting models used to investigate the mechanisms driving changes in short-duration P.   

1. Introduction 

Quantifying the spatiotemporal variability of precipitation (P) at 
short durations (here, ≤24 h) is crucial for several practical and scien
tific goals. It is key to generate more realistic design storms for urban 
stormwater infrastructure (Gires et al. 2014; Ichiba et al. 2018; Peleg 
et al. 2013), improve estimates of areal reduction factors used to convert 
extreme point P into areal averaged P (Wright et al. 2013; Veneziano 
and Langousis 2005), and increase the accuracy and resolution of indi
rect P estimates from weather radars (Krajewski et al. 2010) and satellite 
sensors (Tang et al. 2016). The knowledge of short-duration P variability 
is also needed to develop and test stochastic models of temporal, spatial, 
and spatiotemporal P fields (Venugopal et al. 1999; Schertzer and 
Lovejoy 1987; Deidda 2000; Bárdossy and Pegram 2009; Burton et al. 
2008; Papalexiou and Serinaldi 2020; Papalexiou 2018; Papalexiou 
et al. 2021; Paschalis et al. 2013; Peleg et al. 2017; Kim and Onof 2020; 

Rebora et al. 2006; among others). The high-resolution P time series or 
grids generated by these models have been useful to increase the value of 
physics-based distributed hydrologic models in studies on 
flood-generating mechanisms (Paschalis et al. 2014; Mascaro et al. 
2013b), flood frequency (Wright et al. 2014), and climate change im
pacts (Piras et al. 2014), among other goals. Moreover, outputs of 
space-time P models have the potential to enhance the accuracy of P 
forecast (Harris et al. 2001) and, in turn, the skill of flood and flash flood 
forecasting systems (Seo et al. 2013; Alfieri and Thielen 2015), partic
ularly in urban regions where watersheds have short response times 
(Hjelmstad et al. 2021). 

Many studies have provided insights into the spatiotemporal vari
ability of short-duration P by investigating the presence of scaling re
gimes (i.e., time and/or space intervals where the P statistical properties 
are linked via power law relations) across a wide range of temporal and 
spatial scales through spectral, multifractal, and wavelet-based 
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frameworks. In most cases, a single regime was found from a few days to 
0.5-1 h and, in some sites where sub-hourly measurements were avail
able, an additional regime was detected from 0.5-1 h to a few minutes (e. 
g., Fraedrich and Larnder 1993; Deidda et al. 1999; Mandapaka et al. 
2015; Verrier et al. 2011; Mascaro et al. 2013a). Seasonal differences in 
temporal scaling regimes have also been identified and attributed to 
different dominant weather systems (Molnar and Burlando 2008; Mas
caro et al. 2014; Mascaro 2017). The evidence of P scaling has been also 
shown in space from 100-200 km to about 1 km and in space-time 
frameworks (Schertzer and Lovejoy 1987; Venugopal et al. 1999; Dei
dda 2000; Deidda et al. 2004; Mascaro et al. 2013b). 

This body of knowledge has significantly advanced our under
standing of short-duration P and allowed the development of sophisti
cated stochastic space-time P models. However, the datasets used in 
previous studies have been largely restricted to P observations collected 
during short-term field experiments or available at a few sites with 
limited spatial coverage and density. This is because rain gage P records 
at sub-daily resolution are still limited and sparse (Lewis et al. 2019; 
Morbidelli et al. 2020), while radar- and satellite-derived P estimates are 
heavily affected by several sources of errors, especially at high temporal 
resolutions (Michaelides et al. 2009; Krajewski et al. 2010). As a result, 
further analyses of high-quality, long-term P observations at high tem
poral and spatial resolutions are needed to confirm the validity of pre
vious findings, examine aspects of short-duration P variability that have 

received less attention, and support the operational use of space-time 
stochastic P models. These needs have become particularly important 
given recent evidence that short-duration P extremes have been inten
sifying due to global warming (Fowler et al. 2021; Prein et al. 2017b) 
and urbanization (Huang et al. 2022). Moreover, new knowledge on the 
statistics of short-duration P would be useful to validate 
convection-permitting atmospheric models that are being increasingly 
applied to study the mechanisms driving changes in short-duration P 
(Chen et al. 2021; Prein et al. 2017a). 

Two important statistical properties of short-duration P that have 
received relatively less attention are the spatiotemporal correlation 
structure (STCS) and the distribution of the intermittent process of zero 
and nonzero P values. Previous work has focused on either the spatial 
correlation of P within short distances (~25 km) or the temporal (serial) 
correlation at single sites (Ciach and Krajewski 2006; Habib et al. 2001; 
Mascaro 2017; Zawadzki 1973; Marani 2005; Jameson 2021; Schleiss 
et al. 2011; among others). Changes in correlation structure of P for 
different combinations of space and time lags over large regions have 
not yet been explored. Recently, new flexible analytical models have 
been proposed by Papalexiou and Serinaldi (2020) and Papalexiou et al. 
(2021) to characterize the STCS of P, but these have not been tested yet 
against observations at fine temporal scales. Other recent studies have 
suggested single and two-component parametric distributions that could 
properly capture the body and tails of the distribution of short-duration 

Fig. 1. (a) Study area in central Arizona (AZ) within the county boundaries. (b) Digital elevation model (derived from the U.S. Geological Survey National Elevation 
Dataset) of the study region in the Maricopa, La Paz, Yavapai, and Pinal Counties along with the location of the rain gages of the FCDMC network, color-coded based 
on the corresponding record length. Urbanized areas are also shown. (c) Frequency distribution of the inter-gage distance. (d) Köppen-Geiger climatic regions (Beck 
et al. 2018) in southwestern U.S. B = arid, C = temperate, D = cold, W = desert, S = steppe, h = hot, k = cold, s = dry summer, f = no dry season, a = hot summer; b 
= dry, warm summer. 
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nonzero P (Papalexiou and Koutsoyiannis 2016; Emmanouil et al. 2021; 
Naveau et al. 2016). While promising, the recent methodological ad
vancements on both the STCS and the marginal distribution of 
short-duration P require empirical corroboration and their value should 
be systematically investigated across different time scales, seasons, and 
sites. 

These research needs are addressed in the study which has the main 
goal of advancing the ability to characterize and model the STCS and 
marginal distributions of short-duration P. To robustly investigate these 
statistical properties, we analyze long-term (>20 years), high-resolution 
(30-min) P records from a network of rain gages in central Arizona, 
which, to our knowledge, has one of the largest densities and spatial 
coverages in the world. This study region is compelling due to the strong 
seasonality of the P regime and the effect of orography which lead to 
marked variability in the statistical properties of P (Mascaro 2017, 2018, 
2020). 

We address the following research questions that have both scientific 
and practical implications and that provide arguably the first systematic 
characterization of STCS and marginal distribution of P across multiple 
temporal scales with an extensive and high-quality 30-min dataset. (1) 
How does the STCS of P at durations ≤ 24 h vary seasonally? (2) Can the 
STCS be considered homogenous and isotropic? (Homogeneous means 
that the function is spatially stationary across the region, while isotropic 
means that the correlation is only affected by the distance between two 
sites and does not depend on the direction along which the distance is 
computed). (3) Is there a parametric distribution that adequately de
scribes the body and tails of the nonzero P marginal distribution across 
multiple P durations? (4) Does the presence of serial correlation in short- 
duration P series significantly affect the estimation of the distribution 
parameters? And (5) how do the distribution parameters vary seasonally 
and spatially, and can they be regionalized? To answer these research 
questions, we perform a set of Monte Carlo experiments with the Com
plete Stochastic Modeling Solution (CoSMoS; Papalexiou 2018; Papal
exiou and Serinaldi 2020; Papalexiou et al. 2021; Papalexiou 2022), 
which allows for the stochastic simulation of P time series at multiple 
sites that preserve prescribed marginal distributions and STCS. While 
these research questions are investigated in central Arizona, our meth
odological framework provides new insights into the space-time P 
variability at any location and provides key information to increase the 
reliability of space-time simulations of short-duration P. 

2. Study Area and Dataset 

Our study region is in central Arizona and includes the Phoenix 
Metropolitan area (Fig. 1a), where the Flood Control District of Mar
icopa County (FCDMC) has deployed a network of rain gages to monitor 
intense storms. The gages were progressively installed since 1980, 
eventually reaching the current number of 365. In this study, we use 
records of 223 gages with more than 20 years of observations (Fig. 1b). 
The gages cover a region of ~29,600 km2 that mainly encompasses the 
Sonoran Desert at low elevations from 200 to 700 m above the sea level 
(ASL) and extends up to the southwestern portion of the Mogollon Rim 
at 2325 m ASL. Most gages are in urban areas (~2000 km2) with a 
density of 4.3 gauges per 100 km2; when considering the entire region, 
the density decreases to ~1 gauge per 100 km2. The distribution of the 
inter-gage distance is presented in Fig. 1c, demonstrating that this 
network allows characterizing with unprecedented detail the spatial 
variability of P statistical properties, including correlation structure and 
marginal distribution. 

The climate in this region of the desert southwestern U.S. is hot and 
arid. According to the Köppen-Geiger classification, the climate is 
categorized as BWh in most of the region, with smaller portions classi
fied as BSh, BSk, and Dsb as the elevation increases (Fig. 1d; acronyms 
defined in its caption). The rainfall regime is strongly seasonal. Summers 
are dominated by the North American Monsoon (NAM) from July to 
September (Adams and Comrie 1997), during which short-lived (<1 h), 

spatially localized thunderstorms occur with moderate-to-high rainfall 
intensities according to a diurnally modulated cycle. Winters, defined 
here from November to March, are characterized by westerly flow and 
extended dry periods that are occasionally interrupted by cold fronts 
that may cause large-scale storm systems controlled by dynamical lifting 
resulting in low-to-moderate rainfall intensities. These storms tend to be 
widespread and often cover the entire region and last for a few days. 
Previous studies (Mascaro 2017, 2018, 2020) have investigated several 
statistical properties of the rainfall regime in the region; their findings 
inform the new research directions pursued in this work. 

3. Methods 

3.1. Data processing 

The FCDMC provides P data in a raw format containing the tipping 
instants in seconds, with a resolution of 1 mm for each tip. We obtain the 
rainfall time series at different temporal resolutions, Δt = 0.5, 1, 2, 3, 6, 
12, and 24 h, using the method described by Mascaro et al. (2013), 
which limits the discretization of the signal caused by the commonly 
used box counting. Unfortunately, we find that the resolution of the gage 
bucket of 1 mm is quite coarse and limits the effectiveness of the 
smoothing procedure. Therefore, the P time series exhibit a considerable 
fraction of repeated values that are multiples of 1/Δt mm/h, which 
affect the comparison of the observed P statistics with those of the 
non-discretized synthetic samples generated with CoSMoS. We partially 
address this issue (see results) by rounding off the synthetic samples 
through a procedure based on Deidda (2007) that involves (1) esti
mating the percentage of observed measurements rounded off at mul
tiples of 1/ Δt mm/h, and (2) adopting these percentages to round off the 
corresponding synthetic samples. Given the different storm-generating 
mechanisms described in Section 2, analyses are conducted separately 
for summer (July-September) and winter (November-March). 

3.2. Spatiotemporal correlation structure 

The spatiotemporal correlation structure (STCS) describes the cor
relation (here, linear) between two random variables lagged by time τ 
(in hours) and placed at a distance δ (in km) (Papalexiou and Serinaldi, 
2020). In symbols: ρX(τ,δ) = cor[x(t, si),x(t + τ, sj)], with t being any time 
instant, and δ the Euclidian distance between locations si and sj. Here, 
we model the STCS of P using a parametric form emerging from the 
Clayton Copula and the Weibull survival function (Papalexiou and 
Serinaldi, 2020). The Clayton-Weibull STCS is stationary and isotropic, 
and given by: 

ρX(τ, δ; θ) =

{

exp
[

θ
(

δ
bS

)cS
]

+ exp
[

θ
(

τ
bT

)cT ]

− 1
}−1/θ

, (1)  

where θ = [bS, cS,bT,cT,θ] is the parameter vector (note that the indices 
S and T stand for space and time, respectively). To estimate θ, we 
compute: (1) the empirical correlation matrixes of the gage records at 
different time lags, [R(Δt,k)], whose generic element r(Δt,k)

ij is the Pearson 
correlation coefficient between the P signal at resolution Δt at gage i and 
the P signal at the same resolution lagged by τ = (k ⋅ Δt) at gage j (where 
k is the lag index ranging from 0 to the number of investigated lags, p); 
and (2) the distance matrix, [D], whose generic element, dij, is the 
Euclidian distance between gages i and j. We then use these matrixes to 
solve the least-square-regression equation: 

θ̂ = argminθ f :
∑n−1

i=1

∑n

j=i+1

∑p

k=0

[
r(Δt,k)

ij − ρX

(
kΔt, dij; θ

)]2
, (2)  

where the sum over i and j is used to include the terms in the upper 
triangle of the symmetric matrixes. The calculations are performed in 
MATLAB® using the function fit. 
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3.3. Candidate marginal distributions and parameter estimation 

When considered at small aggregation times, P is an intermittent 
process that includes zero and nonzero values. Its distribution is then 
characterized by a probability mass concentrated at zero, p0, and a 
continuous part that characterizes nonzero values. In symbols, if X is the 
random P variable at a given resolution Δt, its cumulative distribution 
function (CDF), FI(x) (with the subscript I referring to the “intermittent” 
process) is given by: 

X ∼ FI(x) = p0 + (1 − p0)⋅F(x), (3)  

with F(x) being the CDF of nonzero P (i.e., valid for x > 0). In this study, 
we estimate p0 as n0/n, with n0 being the number of time steps where P is 
zero and n is the total number of time steps. For F(x), we explore the 
suitability of three-parameter distributions that have been shown flex
ible to capture left and right tails, as well as the body of the empirical 
distribution of positive hydrologic variables (Papalexiou and Kout
soyiannis 2012; Papalexiou 2022). These include the Generalized 
Gamma (G G ), Burr Type XII (B r XII), and Generalized Exponential 
Type 4 (G E 4) distributions. Their CDFs are: 

Fig. 2. Clayton-Weibull STCS fitted to the empirical Pearson correlation coefficients between (a) summer and (b) winter time series of P at resolution Δt = 30 min 
observed at pairs of gages for different temporal lags, τ, and spatial distances, δ. Each panel displays (1) the theoretical surface with colors based on the value of ρX 
along with the median empirical correlation coefficients, and (2) two cross sections of the theoretical surface for fixed values of τ = 30 min and δ = 10 km, along with 
the median and 90% uncertainty band (UB) of the empirical correlation coefficients across the gages. 
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FG G (x) = 1 − Γ
(

γ1

γ2
,

(
x
β

)γ2
)/

Γ
(

γ1

γ2

)

, (4)  

FB r XII(x) = 1 −

[

1 + γ2

(
x
β

)γ1
]− 1

γ1 γ2

, (5)  

FG E 4(x) = 1 −

{[

exp
((

x
β

)γ1
)

− 1
]γ2

+ 1
}− 1

γ2

. (6) 

These distributions are defined for x ≥ 0; γ1 > 0 and γ2 > 0 are pa
rameters controlling the shape of the distribution, and β > 0 is the scale 
parameter; Γ( ⋅, ⋅)and Γ( ⋅ ) denotes the incomplete gamma and gamma 
functions, respectively. Parameters are estimated using the numerical 
approach recently proposed by Zaghloul et al. (2020) based on the 
method of L-moments (Hosking and Wallis 1997). Details are provided 
in Appendix A. The suitability of the distributions is evaluated graphi
cally with the L-moment ratio diagram and further assessed quantita
tively via two goodness-of-fit (GOF) metrics reported in Appendix B. 

3.4. Monte Carlo experiments with CoSMoS 

We design Monte Carlo experiments based on the version of the 
Complete Stochastic Modeling Solution (CoSMoS) for multisite sto
chastic simulations of P time series that preserve prescribed space-time 
correlation structure and marginal distribution of P Papalexiou and 
Serinaldi 2020). This version of CoSMoS is briefly described in 
Appendix C. The experiments are used to investigate (1) the homoge
neity and isotropy of the STCS in each season, and (2) the spatial vari
ability of the distribution of the intermittent P process. For each Δt, an 
ensemble of synthetic time series is generated at the 223 gage locations 
with the same observed record lengths under prescribed STCS and 
marginal P distributions. The statistical properties of the synthetic time 
series are then compared to the observations. An additional Monte Carlo 
experiment is carried out to test the effect of serial correlation on 
parameter estimation for the distribution of nonzero P. This involves the 
generation of long-term times series at a single site with prescribed serial 
correlation (i.e., the STCS with δ = 0) and marginal P distribution. 
Further details are provided in the next section. 

4. Results 

4.1. Spatiotemporal correlation structure: seasonal differences and effect 
of time aggregation 

The Clayton-Weibull STCS is fitted to the empirical Pearson corre
lation coefficients for summer and winter P. As an example, results for 
Δt = 0.5 h are reported in Fig. 2. Visual inspection of the STCS surface 
and the cross sections for fixed values of τ and δ (chosen as examples) 
suggests that the Clayton-Weibull analytical model captures very well 
the median empirical correlation structure of P in the two seasons. This 
is true for all Δt’s (as an example, results for Δt = 6 h are shown in Fig. S1 
in the Supplementary Material), with the root-mean-square error be
tween empirical and theoretical STCSs ranging from 0.02 to 0.04 across 
all cases. The estimated parameters of the Clayton-Weibull STCS for all 
Δt’s are reported in Fig. S2. Given its effect on both the spatial and 
temporal correlation functions, we investigated the role of the θ 
parameter and found it to depend on the values of the other four pa
rameters and to be, overall, relatively minor and more significant for the 
spatial correlation at τ ≥ 1 ⋅ Δt; additional considerations are provided in 
Figs. S3 and S4. 

Given its ability to represent the empirical STCS across all cases, we 
use the Clayton-Weibull model to explore seasonal differences of the P 
correlation structure as a function of Δt. To this end, we plot in Fig. 3 the 
Clayton-Weibull STCS for fixed values of τ and δ for Δt = 0.5 h, which is 
the characteristic timescale of single convective storms, and for Δt = 3, 
6, and 24 h, which capture the behavior of larger single and multiple 
storms. We first note that, for any given Δt, ρX of all spatial (fixed τ) and 
temporal (fixed δ) correlation functions are higher in winter than in 
summer. This occurs because winter events are longer and more wide
spread, whereas summer monsoonal storms are more localized in time 
and space and intermittent (higher probability of zero P). The spatial 
correlation of P with no temporal lag (τ = 0 ⋅ Δt) shows that ρX increases 
with Δt in both seasons (Fig. 3a; top panels). This is expected since, as 
the P signal is aggregated over larger time steps, multiple storm “cells” 
may occur over a bigger spatial domain and there is a higher chance that 
nonzero P is simultaneously observed at sites located at large distances. 
If we instead consider the spatial correlation of temporally lagged (τ = 1 
⋅ Δt) P series (Fig. 3a; bottom panels), the role of Δt changes dramatically 
with similar impacts in the two seasons. For the largest Δt = 24 h, ρX 
drops to a very low value that is constant with δ, suggesting that in our 
study region storms rarely last for more than 24 h. For Δt = 0.5 h, ρX 

Fig. 3. Clayton-Weibull STCS of summer (red) and winter (blue) P for fixed values of (a) τ and (b) δ. In each panel, the STCSs are shown for four Δt’s using different 
line styles. To compare multiple Δt’s in panels (b), the lag k has been used in the x-axis instead of τ = k⋅ Δt. 
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declines but its values are nonnegligible for δ ≤ 50 km, especially in 
winter. The behavior of the spatial correlation for Δt = 3 h and 6 h is 
intermediate between the largest and smallest Δt’s discussed above. 

As expected, the temporal correlation for δ = 0 km (i.e., the serial 
correlation functions; Fig. 3b, top panels) for a given dimensionless lag k 
increases in both seasons as Δt is reduced. In other words, as we consider 
shorter time steps, there is a higher chance that P observations at the 
same location are similar within a few time steps. The temporal corre
lation evaluated at sites at a distance δ = 20 km (Fig. 3b, bottom panels) 
is substantially similar to that for δ = 0 km, except for k = 0 where ρX is 
significantly lower than 1 for all Δt’s, with a more significant drop 
observed for Δt = 30 min because of the smaller spatial coverage of 
single storms. 

In summary, the spatial correlation of P for τ = 0 ⋅ Δt (Fig. 3a, upper 
panels) declines faster as the resolution increases (i.e., lower Δt), 

whereas the opposite is true for the temporal correlation of P for δ =
0 (Fig. 3b upper panels). This behavior is reversed for lagged spatial 
correlations (Fig. 3a, lower panels) and fixed-distance lagged correla
tions (Fig. 3b, lower panels). 

4.2. Marginal distribution of short-duration precipitation 

4.2.1. Selection of parametric distribution of nonzero precipitation 
We first focus on the distribution of nonzero P, F(x), and evaluate the 

suitability of the G G , B r XII, and G E 4 theoretical models. Fig. 4 
presents the L-moment ratio diagrams (L-skewness vs. L-variation) for 
three representative Δt’s; each panel displays the sample L-moments 
along with surfaces obtained for different combinations of the shape 
parameters γ1 and γ2 for each of the three considered distributions (note 
that distributions with a single shape parameter would instead be 

Fig. 4. L-moment ratio diagrams (i.e., the relation between L-variation and L-skewness) for observed P records at resolution Δt = 0.5 h, 6 h, and 24 h in summer and 
winter, along with the theoretical values of the (a)-(c) G G , (d)-(f) B rXII, and (g)-(i) G E 4 distributions, plotted through contour lines for different combinations of 
the shape parameters γ1 and γ2. The larger markers are the sample means of the L-moments. 
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represented by a curve in the L-skewness/L-variation space). The L- 
moments of P records exhibit seasonal differences, with winter P char
acterized by lower values of both L-ratios than summer P. The differ
ences are marked at lower Δt and tend to be smaller as Δt increases. The 
G G is the least flexible distribution and its surface does not fully include 
the sampling variability of the L-ratios. On the other hand, the B r XII is 
the most flexible. However, its shape parameters for low Δt in summer 
(γ2 > 0.5) lead to distributions with infinite variance, which is an un
desirable condition for modeling time series stochastically since unre
alistically large events could be frequently generated. The G E 4 has 
intermediate flexibility and captures all possible combinations of the 
sample L-moments while having always finite moments. 

The GOF of the distributions is further evaluated by plotting in Fig. 5 
the empirical CDFs of nonzero P at different Δt’s in the two seasons at 
four representative gages along with the fitted theoretical distributions. 
We first note that, despite the presence of several repeated values that 
are multiples of 1/Δt mm/h, the fitting of the distributions through the 
method of L-moments is quite effective. All parametric models capture 
very well the body of the empirical CDF (F(x) ≤ 0.9; shown in insets). 
Differences emerge in some cases at the right tail, with B r XII exhibiting 
heavier tails and the largest deviations from the empirical distribution. 
This is quantified by the values of the GOF metrics of Appendix B, W2 

and RelMSE, reported in Table 1 for the examples of Fig. 5. Boxplots 
summarizing the GOF metric across all gages are displayed in Fig. S7, 

Fig. 5. Empirical and fitted theoretical (G G , B rXII, and G E 4) CDFs of nonzero P observed at gages with ID (a)-(b) 4700 (Δt = 0.5 h), (c)-(d) 4000 (Δt = 1 h), (e)-(f) 
1600 (Δt = 6 h), and (g)-(h) 87800 (Δt = 24 h) for (left) summer and (right) winter. The CDF is shown as survival function in the semi-logarithmic plane to highlight 
the fitting on the right tail. The zoom on the body of the CDF (F(x) ≤ 0.9) is shown in the insets. The empirical CDF is plotted with the Hazen plotting position. 
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which further indicate that the discrepancies of the B rXII in the right 
tail, measured by RelMSE, are higher for lower Δt. Interestingly, even if 
the region of theoretical L-moments for the G G does not capture the 
sample points for Δt = 0.5 h (see Fig. 4a), the closest pairs of γ1 and γ2 to 
the corresponding sample point returned by the parameter estimation 
method leads to a fairly good fit to the observed CDF. Given the overall 
higher performance, in the following analyses, the G E 4 is used as the 
marginal distribution for nonzero P. 

4.2.2. Effect of serial correlation on parameter estimation 
For low Δt, the serial correlation of the P time series can be high, and 

the assumption of independent events may not hold. From the practical 
standpoint, this implies that the effective sample size is reduced, thus 
increasing uncertainty when estimating the marginal distribution pa
rameters. To evaluate this, we perform Monte Carlo experiments where 
CoSMoS is used to generate two ensembles of Nens = 100 long-term 

serially correlated and uncorrelated time series, respectively, of inter
mittent P at Δt = 0.5 h. The highest resolution is chosen since it has the 
strongest serial correlation (see Fig. 3b). For these ensembles, we use (1) 
the mean p0 across the gages; (2) the G E 4 distribution for F(x) with 
mean values of γ1, γ2, and β; and (3) the serial correlation provided by 
the Clayton-Weibull STCS, ρX(τ, δ = 0). This is done separately for 
summer and winter, generating in each case 200 consecutive seasons (i. 
e., a dataset of 200 years of observations). Fig. 6a shows the theoretical 
serial correlations and marginal distributions of the intermittent P pro
cess, FI(x), used to apply CoSMoS in the two seasons, along with the 
corresponding empirical functions from one of the synthetic time series. 
The correspondence is remarkable, indicating that the CoSMoS frame
work reproduces very well these statistical properties of the P signal. 

Parameters γ1, γ2, and β are then re-estimated by fitting the G E 4 to 
the nonzero P of each synthetic time series for the number of seasons, m, 
ranging from 10 to 200. Results are presented in Fig. 6b, which shows 

Table 1 
GOF metrics for the cases shown in Fig. 5.  

Gage ID (Δt) Season GOF Metric G G B r XII G E 4       

4700 
(0.5 h) 

Summer W2 

RelMSE 
1.81 
0.97 10−2 

1.21 
2.04 10−2 

0.95 
0.73 10−2  

Winter W2 

RelMSE 
4.50 
1.84 10−2 

4.11 
2.19 10−2 

4.19 
1.79 10−2 

4000 
(1 h) 

Summer W2 

RelMSE 
2.70 
1.58 10−2 

2.11 
3.21 10−2 

1.73 
1.44 10−2  

Winter W2 

RelMSE 
7.12 
1.83 10−2 

6.61 
3.89 10−2 

6.33 
1.72 10−2 

1600 
(6 h) 

Summer W2 

RelMSE 
1.41 
1.12 10−2 

1.63 
2.21 10−2 

1.46 
0.93 10−2  

Winter W2 

RelMSE 
3.02 
4.56 10−2 

3.39 
8.27 10−2 

3.20 
4.17 10−2 

87800 
(24 h) 

Summer W2 

RelMSE 
0.46 
1.09 10−2 

0.51 
1.48 10−2 

0.46 
1.34 10−2  

Winter W2 

RelMSE 
0.38 
4.73 10−2 

0.44 
6.41 10−2 

0.41 
4.97 10−2        

Fig. 6. (a) Theoretical Clayton-Weibull serial correlation, ρХ(τ) (left), and marginal distribution of the intermittent process, FI(x), used to apply the CoSMoS 
framework for generating time series in summer (middle) and winter (right), along with empirical values computed from a synthetic time series. (b) Comparison of 
median and 90% confidence intervals of G E 4 parameters estimated from 100 synthetic serially correlated (Corr) and uncorrelated (Uncorr) time series generated 
with CoSMoS for Δt = 30 min in summer (top panels) and winter (bottom panels) for the number of seasons, m, ranging from 10 to 200. See main text for details. 
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the 90% confidence intervals of the estimated parameters. In all cases 
and for all m’s, the estimates are unbiased, and the uncertainty of 
correlated and uncorrelated series is the same, even for low m. The only 
exception is the case of γ1 in winter, where the uncertainty of the 
correlated series is slightly larger likely because of the stronger serial 
correlation. Overall, these experiments suggest that the considered 
samples are long enough that the presence of serial correlation does not 
significantly affect parameter estimation. Therefore, there is no practical 
need to apply techniques to identify statistically independent events, as 
in principle required by the assumption of independent and identically 
distributed (i.i.d.) variables. This result was verified for all Δt’s (not 
shown). If, in future applications, this turns out not be the case due to 
stronger serial correlations, smaller samples, or the use of a different 
probability distribution, the proposed Monte Carlo framework could be 
used to identify strategies to extract an independent sample from the 
original time series or bias correct the parameter estimates. 

4.2.3. Seasonal variability of the marginal distribution as a function of time 
aggregation 

Fig. 7a presents the boxplots of p0 and the G E 4 parameter estimates 
at the 223 gages for all Δt’s. Seasonal differences emerge for all pa
rameters. The probability of zero P, p0, is slightly higher in summer than 
winter when the signal is aggregated up to Δt = 6 h; the opposite is true 
for longer-time aggregations. Moreover, the relation between p0 and Δt 
is linear (R2 > 0.95; not detectable in the semilogarithmic plot of Fig. 7a) 
with a mean slope of -4.3×10−3 (-3.3×10−3) h−1 in summer (winter). 
The scale parameter β is (1) relatively larger for summer P at smaller 
Δt’s, (2) similar in the two seasons at intermediate Δt = 6 h, and (3) 
higher for winter P at larger aggregation times. In addition, β exhibits a 
scaling relationship with Δt (highlighted through the log-log plot) with a 
slope of -0.68 (-0.57) in summer (winter). Focusing on the shape pa
rameters, γ1 is larger for winter than summer P, while the opposite is 
true for γ2 but with less notable differences. As expected by the location 
of the L-moments estimates (see Fig. 4), neither parameter exhibits 

significant variations with Δt when considering summer P, except for 
slightly higher values of γ2 for Δt = 1 h. Larger variations of the shape 
parameters with Δt are instead observed for winter P, particularly for γ1 
that decreases between Δt = 0.5 h to Δt = 6 h. 

We further investigate the relationship between the shape parame
ters as a function of the time aggregation in each season by plotting in 
Fig. 7b the scatterplots between γ1 and γ2 for all Δt’s. The two G E 4 
parameters are inversely related in a nonlinear fashion. In summer, a 
single relation encapsulates the estimates for all Δt’s, with slightly 
higher (lower) values of γ1 (γ2) found for Δt ≥ 6 h. In contrast, distinct 
relationships between the two parameters emerge in winter for each Δt. 
To visualize how these outcomes affect the shape of F(x), Fig. 7c-e 
display the G E 4 CDFs with the median parameter values for Δt = 0.5, 6, 
and 24 h in the two seasons, which are also depicted with arrows in 
Fig. 7b. The distribution of summer P is always heavy tailed, with very 
limited changes of its shape across Δt’s. Winter P is instead characterized 
by a distribution with much lighter tails than summer and whose 
heaviness gradually increases with Δt. Our sensitivity tests and the vi
sual inspection of Fig. 7b indicate that (1) γ1 exerts the largest control on 
the right tail, and (2) differences in β mainly affect the body of the 
distribution (F(x) ≤ 0.9). 

4.2.4. Spatial variability of the marginal distribution 
As a next step, we investigate whether the inter-gage variability of p0 

and G E 4 parameters results from sampling variability or is related to 
local physical factors. We find that p0 has a rather constant value for 
elevation, z, lower than 400 m ASL and decreases linearly with z with a 
slope that is larger in absolute value (i.e., stronger orographic control) as 
Δt increases. This is shown in Fig. 8a-b for three Δt’s, while maps are 
reported in Fig. S8. The Pearson correlation coefficient (CC) with z is 
>0.81 across seasons and Δt’s. The scale parameter β is moderately 
related to z in a nonlinear fashion, as presented in the examples of 
Fig. 8c-d for three Δt’s and quantified by Spearman CC between 0.21 and 
0.51 across all cases. For the shape parameters γ1 and γ2, no significant 

Fig. 7. (a) Boxplots summarizing the empirical distribution of p0 and the G E 4 parameters, γ1, γ2 and β, fitted to winter (blue) and summer (red) nonzero P observed 
at the 223 gages as a function of the resolution, Δt. (b) Scatterplot between γ1 and γ2 for all Δt’s in summer (left) and winter (right). (c)-(e) G E 4 distribution for the 
median parameter values (reported in insets and shown in panel b with arrows) for Δt = 0.5, 6, and 24 h, respectively, represented as exceedance (left) and 
nonexceedance (right) probabilities. 
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relations are found with z or gage coordinates. Examples of maps of the 
three G E 4 parameters are reported in Figs. S5-S6. 

4.3. Insights into the correlation structure and physical controls on short- 
duration precipitation through stochastic simulations with CoSMoS 

The insights gained in the previous sections allow designing Monte 

Carlo experiments with CoSMoS to investigate the following two hy
potheses: (1) the STCS of short-duration P in the region could be 
considered spatially homogeneous and isotropic in each season; and (2) 
the spatial variability of the parameters of the marginal distribution, 
FI(x), is explained by a few regional relations. The latter ones are 
identified based on the empirical evidence presented in Section 4.2.4, 
which suggests that, for a given Δt and season, the shape of the nonzero 
P distribution, controlled γ1 and γ2, can be considered constant, while 
the scale parameter β and p0 are related to the elevation. This translates 
into the following relations for each Δt: 

p0 =

{
p0,max z ≤ z*

p0,max + m⋅(z − z*) z > z* , (9a)  

γ1 = γ̄1 (9b)  

γ2 = γ̄2 (9c)  

β = β∞ − (β∞ − β0)⋅e−q⋅z (9d)  

where p0,max and m are intercept and slopes of the linear relation, 
respectively, and z* = 400 m ASL; γ̄1 and γ̄2 are the G E 4 shape pa
rameters corresponding to the sample mean L-variation and L-skewness 
across all gages (see Fig. 4g-i); and β∞, β0, and q are coefficients of a 
decreasing exponential relationship linking the G E 4 scale parameter 
with z (see Fig. 8c-d). The latter one is the same analytical relation that 
was found by Mascaro (2018) to well capture the relation between z and 
the scale parameter of the generalized Pareto distribution used as a 
theoretical model of daily extreme P in this region. The values of the 
estimated coefficients and parameters of equations (9) in each season 
and Δt are reported in Table 2. 

To evaluate these hypotheses, for each Δt, we perform two sets of 
simulations with CoSMoS, each consisting of the generation of 100 
spatially and temporally correlated synthetic time series at the 223 
gages with the same duration of the observed records. In the first set, 
parameters of FI(x) are specified using the at-site estimates (labeled At- 
site), while, in the second set, parameters are obtained through the 
regional equations (9a-d) (labeled Regional). In both cases, the Clayton- 
Weibull model of Eq. (1) with parameters reported in Fig. S2 is used to 
estimate the STCS. The At-site simulations are expected to provide the 
best possible performance of this version of CoSMoS with a homoge
neous and isotropic STCS. Our first hypothesis is then addressed by 
quantifying the discrepancies between the observed inter-gage correla
tions and those computed from the At-site synthetic time series. The 
second hypothesis is assessed by measuring the degree to which the 
performance of Regional in simulating the observed L-moments and 
empirical marginal P distributions degrades compared to At-site. 

Fig. 9 shows, for three Δt’s and both seasons, the correlation co
efficients between the observed P signals at all gage pairs for two 

Fig. 8. (a)-(b) Relation between p0 and gage elevation, z, in summer and 
winter, respectively, for Δt = 0.5, 6, and 24 h. (c)-(d) Same as (a)-(b) but for β 
with the lines being the fitted nonlinear Eq. (9d). 

Table 2 
Values of estimated coefficients and parameters of equations (9).    

Δt (h)   

0.5 1 2 3 6 12 24 

p0,max S 0.995 0.992 0.988 0.983 0.972 0.950 0.907 
W 0.991 0.987 0.982 0.977 0.966 0.949 0.919 

m S -0.005 -0.010 -0.016 -0.018 -0.030 -0.047 -0.079 
(1/km) W -0.008 -0.013 -0.015 -0.018 -0.025 -0.039 -0.048 
γ̄1 S 0.54 0.53 0.53 0.54 0.55 0.57 0.58 

W 0.86 0.78 0.73 0.71 0.69 0.68 0.69 
γ̄2 S 2.73 3.25 3.00 2.69 2.35 2.20 2.03 

W 2.08 2.83 2.78 2.46 2.08 1.79 1.54 
β∞ S 2.32 1.48 0.96 0.76 0.49 0.31 0.19 

W 1.98 1.27 0.87 0.72 0.50 0.34 0.25 
β0 S 1.61 1.03 0.66 0.54 0.34 0.20 0.12 

W 1.59 1.00 0.66 0.51 0.33 0.22 0.14 
q S 5.04 5.72 4.97 4.91 3.56 2.21 1.47 

W 3.05 3.03 2.35 2.21 2.09 2.17 1.74  
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temporal lags, τ, as a function of the inter-gage distance, δ, along with 
the 90% confidence interval (CI) derived from the 100 At-site simula
tions with CoSMoS (note that results are the same for Regional since the 
same analytical STCS is used in both experiments). In summer, a single 
analytical model for the STCS captures remarkably well the empirical 
values for all δ, τ, and Δt. Performances slightly degrade in winter (i.e., 
more cases have >10% of the observed correlations outside the CIs), 
especially for Δt ≥ 3 h, but they are still satisfactory in most cases. These 
findings suggest that, in summer, the STCS of subdaily and daily P could 
be considered with high confidence homogeneous and isotropic, while a 
certain degree of nonhomogeneity and/or anisotropy exists in winter. 

To investigate the second hypothesis, we first compare the L-mo
ments ratio diagrams of the observed samples (same as Fig. 4) and one 
ensemble member of the Regional experiment. As shown in Fig. 10, the 
L-moments of the synthetic P signals exhibit a slightly larger spread than 

the observed estimates and similar averages, indicating that the 
observed variability of these two statistics is within the sampling vari
ability of the G E 4 distribution with a single set of regional shape pa
rameters. The larger spread of the synthetic L-moments might result 
from the observed P records having slightly smaller L-kurtosis than the 
synthetic ones (note that the L-kurtosis is not used in the estimation of 
the G E 4 parameters); however, this issue should be further investi
gated through, e.g., ad-hoc Monte Carlo simulations. We then compare 
the observed CDFs of nonzero P with the 90% CIs of the synthetic 
samples. Results for the same gages of Fig. 5, chosen as examples, are 
displayed in Fig. 11 which shows that (1) the 90% CIs of At-site (gray 
lines) capture very well the observed CDFs across Δt’s and seasons, 
confirming the suitability of the G E 4 distribution; and (2) the Regional 
simulations (black lines) exhibit somewhat degraded performance that 
is worse in some cases in winter (e.g., Fig. 11b,d,f). Moreover, there are a 

Fig. 9. (a) Pearson correlation coefficients between the observed summer P time series at temporal lags τ = 0 ⋅ Δt (top) and 1 ⋅ Δt (bottom), for Δt = 0.5 h (left), 6 h 
(middle), and 24 h (right) plotted as a function of inter-gage distance, δ, along with the 90% confidence interval (CI) derived from 100 At-site synthetic simulations 
with CoSMoS. (b) Same as (a), but for winter P. Given the large number of gage pairs, the observed values are plotted with colors based on the frequency of points. 
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few cases where the visual assessment suggests that the simulation 
performance is good but the percent of observations outside the 90% CIs 
(labeled as ‘% out’) is >10%. This occurs because the discretized mea
surements at low P values affect the shape of the CDF in a way that leads 
to several observed values being very close to but outside the 90% CIs of 
the simulations (see insets in Fig. 11), even after the latter ones have 
been rounded off at multiples of 1/Δt mm/h as described in the 
Methods. 

These outcomes are confirmed and summarized in Fig. 12, where the 
mean across all gages of ‘% out’ is reported for the entire CDF and for 
F(x) > 0.5 to eliminate the effect of the discretized measurements on this 
performance metric. The At-site simulations capture very well the 
observed CDFs in summer, as shown by the mean of ‘% out’ always being 
≤10%; for certain Δt’s in winter, the averaged ‘% out’ is >10% for the 
entire CDF but is dramatically reduced well below the 10% threshold for 
F(x) > 0.5. As expected, the performance of Regional lowers compared 
to At-site but is still accurate for F(x) > 0.5, except for Δt ≥ 3 h in winter. 
Importantly, the extreme rain rates (F(x) > 0.95) are practically always 
included within the 90% CIs (not shown). Overall, these findings suggest 
that the elevation-dependent regional model of equations (9) allows 
capturing the variability of short-duration P across all Δt’s in summer 
and for most Δt’s in winter. Results also indicate that additional factors 
might be needed to fully explain the variability of winter P for Δt ≥ 3 h. 

5. Discussion 

5.1. Summary of results in central Arizona 

Our characterization of STCSs and marginal distributions reveal that 
important differences exist in the study region between the statistical 
properties of short-duration P in the two seasons. The distinct physical 
mechanisms driving summer and winter P lead to significant differences 
for the smallest Δt = 0.5 h, which progressively decrease as P is aggre
gated over larger Δt’s. Summer P is dominated by convective monsoonal 
thunderstorms, whose typical time scale is close to Δt = 0.5 h. These 

storms are isolated in space and time, as revealed by the sharp drop of 
the spatial correlation at Δt = 0.5 h for δ ≤ 50 km (Fig. 3a, top) and the 
lag-1 serial correlation for Δt > 0.5 h (Fig. 3b, top). Summer P sampled 
at Δt = 0.5 h is characterized by high rain rates with intense extremes, as 
shown by the high scale parameter β and the heavy tail of the distri
bution (low γ1; Fig. 7). The aggregation of short-lived thunderstorms at 
larger Δt’s impacts the statistical properties of the P signal in three 
different ways. First, it leads to increasingly higher spatial correlation 
because there are more chances that nonzero P is simultaneously 
observed at separate locations resulting from storm “cells” occurring at 
different times (Fig. 3a, top). Second, it causes a further drop in the serial 
correlation suggesting that multiple cells occur only within 1-2 h 
(Fig. 3b, top). Third, it leads to distributions that have gradually lower 
magnitudes of the more frequent events compared to winter P at the 
same Δt, but still intense extremes (heavy tail) which are likely 
controlled by a single storm with very high intensity occurring within 
Δt. This is shown by the fact that β decays faster with Δt for summer than 
winter (Fig. 7a), while γ1 does not change significantly (Fig. 7b). 

Winter P is dominated by frontal systems that occupy larger areas 
and last longer than monsoonal thunderstorms. This is quantified by (1) 
the spatial correlation being non-negligible at δ = 200 km even for the 
smallest Δt Fig. 3a, top), and (2) the lag-1 serial correlation being similar 
for Δt ≤ 6 h Fig. 3b, top). Frontal systems lead to relatively low rain rates 
with little variance when P is sampled at Δt ≤ ~2 h, as shown by smaller 
β than summer and the light tail of the distributions (i.e., high γ1; Fig. 7). 
As P is accumulated over larger Δt’s, the magnitude of both more and 
less frequent events increases, as quantified by (1) β decaying slower 
with Δt compared to summer and becoming comparatively higher for Δt 
> 6 h, and (2) the tail of the distributions becoming heavier (i.e., γ1 
slightly decreasing). 

The Monte Carlo simulations with CoSMoS under prescribed STCS 
and parameterizations of the marginal distribution provide further in
sights into the spatial variability of short-duration P. The hypothesis that 
the STCS of summer P is homogeneous and isotropic (Fig. 9a) cannot be 
rejected, likely because monsoonal thunderstorms are localized and 

Fig. 10. L-moment ratio diagrams for (a)-(c) the observed records of P at resolution Δt = 0.5 h, 6 h, and 24 h in summer and winter, and (d)-(f) a synthetic simulation 
of the Regional experiment. 
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rather stationary, and do not exhibit dominant directions. The shape of 
the marginal distribution of P (controlled by γ1 and γ2) could be 
considered constant across the region (Fig. 10), similar to the growth 
curve used in regional frequency analysis of extreme P (Hosking and 
Wallis 1997). P occurrence (related to p0) and magnitude (linked to β) 
are instead highly and moderately affected by elevation, respectively 
(Figs. 8, 11-12). These features of STCS and controls on the marginal 
distribution are also found for winter P when Δt ≤ 3 h. For larger time 
aggregations, the hypothesis of homogeneous and isotropic STCS is 
instead less sustained (Fig. 9b), confirming the preliminary analyses of 
Mascaro (2017; their Fig. 12) who found that directional correlograms 
of winter P exhibit anisotropic behavior with higher correlations along 
the northeast–southwest axis. This could be explained by the combined 

effect of storm anisotropy, the preferential motion of large-scale frontal 
storms (as also suggested by Sungmin and Foelsche, 2019), and the 
orographic barrier of the Mogollon Rim (Fig. 1). The shape of the mar
ginal distribution of P sampled at Δt > 3 h could still be considered 
constant (Fig. 9), while elevation is not sufficient to fully explain the 
spatial variability of P magnitude (Figs. 11-12). 

5.2. Generalization of the results and transferability of the approach 

The results of this work are consistent with and expand the findings 
of previous studies. Several efforts (Krajewski et al. 2003; Ciach and 
Krajewski 2006; Villarini et al. 2008; Sungmin and Foelsche 2019; Peleg 
et al. 2013) showed that the spatial correlation of high-resolution P 

Fig. 11. Empirical CDFs of nonzero P 
observed at gages with ID (a)-(b) 4700 (Δt =
0.5 h), (c)-(d) 4000 (Δt = 1 h), (e)-(f) 1600 
(Δt = 6 h), and (g)-(h) 87800 (Δt = 24 h) for 
(left) summer and (right) winter, along with 
90% CI computed from At-site and Regional 
simulations (see main text for details). The 
zoom on the body of the CDF (F(x) ≤ 0.9) is 
shown in the insets. The percent of observed 
values outside the 90% CI (‘% out’) is reported 
in each panel with gray (black) text for At-site 
(Regional) simulations.   
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could decrease significantly within short distances δ < ~25 km as P is 
aggregated at smaller Δt’s, and that the rate of these changes varies with 
the climatic regimes and seasons. Our findings confirm these outcomes 
and further expand them by considering larger Δt’s and δ’s thanks to the 
large spatial coverage and high density of the rain gage network. Our 
results are also in line with Molnar and Burlando (2008), who showed 
that winter P in Switzerland, dominated by frontal systems, is more 
structured (i.e., has higher serial correlation) than summer P resulting 
from convective storms. This indicates that, qualitatively, the consid
erations reported in the previous section have general validity at sites 
with a precipitation regime dominated by convective and frontal 
systems. 

This work provides an effective methodological framework to gain 
new insights into the space-time P variability at any location, provided 
that P observations are available with sufficient density and spatial 
coverage. As known, the most accurate P products are ground obser
vations of dense rain gage networks, which are becoming increasingly 
available as part of flood warning systems. For example, in the U.S., the 
counties of Harris, Clark, and Los Angeles, as well as the Santa Clara 
Valley Water District operate dense rain gage networks to monitor 
flooding in the metropolitan areas of Houston, Las Vegas, Los Angeles, 
and San Jose, respectively; dense rain gage networks are also available 
in Europe (De Vos et al. 2017; O and Foelsche 2019). When rain gages 
are not available, spatially seamless quantitative precipitation estimates 
from weather radars (Lin 2011; Zhang et al. 2016), satellite sensors (e.g., 
Hou et al. 2014), and gridded interpolated products (e.g., NOAA 2021; 
Kim and Villarini 2022) could be very valuable after their ability to 
capture marginal distributions and STCS and their overall biases are 
assessed in regions where dense gage networks are available; this is one 
of the subjects of our future work. As shown in Fig. 4, the 
three-parameter distributions cover several combinations of L-moments 
and, thus, they should be able to capture a large variety of P distribution 
shapes across climatic regimes; other parametric forms have been pro
posed by Naveau et al. (2016) and Papalexiou (2022). The 
Clayton-Copula STCS was found to be a flexible homogeneous and 
isotropic model that well captures the empirical STCS in our study re
gion. Specifically, the Clayton-Copula STCS has the minimum number of 
parameters that allow adequate control of the scale and shape of the 
spatial and temporal correlations (bS, cS, bT, cT) as well as of their 

interactions (θ). If the Clayton-Copula is not considered adequate at 
other sites, Papalexiou and Serinaldi (2020) and Papalexiou et al. (2021) 
proposed alternative analytical forms of STCS and provided suggestions 
to design new analytical models that might be needed to account for 
anisotropy and/or spatial heterogeneity. Once marginal distribution and 
STCS have been parameterized, the CoSMoS framework could then be 
used to validate hypotheses on their variability as done here. 

6. Conclusions 

This study advances the knowledge of and ability to model the STCS 
and marginal distribution of short-duration (≤24 h) P, two properties 
that have received relatively little attention in the literature due to the 
lack of adequate reliable observations. A systematic analysis of the 
seasonal and spatial variability of these properties is conducted in a 
large region in central Arizona using a high-density network of gages 
with long-term, high-resolution P records. The empirical STCSs are 
captured well by the Clayton-Weibull parametric STCS, while three 
parametric distributions, namely, the G G , B r XII, and G E 4, describe 
well the empirical distribution of nonzero P for all Δt’s, with the G E 4 
providing the best results. These parametric models show that summer 
P, dominated by short-lived convective thunderstorms, exhibits weaker 
correlation structure and heavier tails of the distribution than winter P, 
which is instead controlled by longer and widespread frontal systems. 
Monte Carlo experiments relying on stochastic simulations with the 
CoSMoS space-time P model show that, in most cases, the STCS of P 
could be considered homogeneous and isotropic, the marginal distri
bution has constant shape across the region, and the spatial variability of 
P occurrence and mean intensity is controlled by elevation. The only 
exception is winter P at Δt ≥ 3 h that shows possible non-homogeneity 
and anisotropy in the STCS and requires additional factors to explain the 
spatial variability of the mean P intensity. 

The methodological framework of this work could be applied at 
other sites and is then useful for parameterizing, testing, and improving 
P models and weather generators (Sørup et al. 2016; Paschalis et al. 
2013; Peleg et al. 2017; Grimaldi et al. 2022; Kim and Onof 2020), as 
well as for validating in a statistical sense numerical P simulations from 
convection-permitting atmospheric models (i.e., verifying the degree to 
which the probability distributions and space-time correlation 

Fig. 12. Mean across the gages of the percent of observed values outside the 90% CI of At-site and Regional simulations considering the entire CDF (left panels) and 
the portion F(x) > 0.5 (right panels) for (a) summer and (b) winter P. 
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structures of their simulated P time series are consistent with the para
metric forms presented here). We identify several future research ave
nues to further support these goals. The description of the STCS should 
be improved by accounting for storm advection and anisotropy 
(Jameson 2021). The potential existence of nonlinear dependencies 
between the P signals at different time lags should be better quantified 
and modeled using, e.g., copulas, as recently suggested by Papalexiou 
(2022). Analyses should also target the characterization of the STCS of 
the binary signal of rain/no rain, as well as the assessment of the ability 
of the proposed marginal distributions to capture P extremes and 
develop strategies to regionalize their parameters. Finally, while the 
findings of this study did not indicate the existence of significant dif
ferences between the STCS and marginal distributions of all nonzero P in 
urban and non-urban regions of the study area (not shown), additional 
efforts should be devoted to further investigating the presence of dif
ferences by focusing on the extremes, as suggested by the recent study of 
Huang et al. (2022). 
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Appendix A. Estimation of distribution parameters using L-moments 

Parameters of the G G , B r XII, and G E 4 were estimated using the numerical procedure proposed by Zaghloul et al. (2020), which is based on the 
method of L-moments. For distributions with one scale parameter and two shape parameters, the L-variation, τ2, and L-skewness, τ3, depend only on 
the shape parameters, γ1 and γ2. Following Hosking (1990), the integral forms of τ2 and τ3 are: 

τ2(γ1, γ2) :=
λ2

λ1
=

∫ 1
0 Q(u; 1, γ1, γ2)⋅(2u − 1)du

∫ 1
0 Q(u; 1, γ1, γ2)du

(A1)  

τ3(γ1, γ2) :=
λ3

λ2
=

∫ 1
0 Q(u; 1, γ1, γ2)⋅(6u2 − 6u + 1)du

∫ 1
0 Q(u; 1, γ1, γ2)⋅(2u − 1)du

, (A2)  

where λq (q = 1, 2, 3) is the q-order L-moment and Q(u; 1, γ1,γ2) is the quantile function of any of the three distributions with scale parameter β = 1. For 
each record, the sample values of the L-moments, τ̂2 and τ̂3, are calculated and parameters γ1 and γ2 are estimated by minimizing the squared dif
ference between the sample and theoretical L-moments. In symbols: 

(γ̂1, γ̂2) = argmin(γ1 ,γ2)

∑3

q=2

[
τq(γ1, γ2) − τ̂q

]2
. (A3) 

Eq. (A3) is solved numerically by substituting Eqs. (A1) and (A2). After estimating γ1 and γ2, the scale parameter β is calculated by minimizing the 
function: 

β̂ = argminβ[λ1(β) − λ̂1]
2
, (A4)  

where λ1(β) =

∫1

0

Q(u; β, γ1, γ2)du and λ̂1 is the sample estimate of the first order L-moment. 

Appendix B. Metrics quantifying goodness-of-fit of the parametric distributions 

The goodness-of-fit (GOF) of the parametric distributions is quantitatively assessed through the Cramer-von Mises statistic, W2 (Deidda and Puliga 
2006; Laio 2004), and the mean relative mean square error, RelMSE (Papalexiou et al. 2013), defined as: 

W2 =
1

12n
+

∑n

i=1

[
Ftheor(xi) − Femp(xi)

]2 (A5)  
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RelMSE =
∑n

i=1

[
Ftheor(xi) − Femp(xi)

1 − Femp(xi)

]2

, (A6) 

where xi is the i-th ascending order statistic, n is the sample size, Ftheor(xi) is the theoretical CDFs (one of the three parametric distributions mentioned 
above), and Femp(xi) = i−0.5

n is the empirical CDF estimated through the Hazen plotting position formula. Both metrics provide a measure of the cor
respondence between theoretical and parametric CDFs, with W2 giving the same weight to all order statistics and RelMSE assigning larger weights to 
the differences in the right tail of the distribution. 

Appendix C. Overview of the Complete Stochastic Modeling Solution (CoSMoS) 

We provide here a brief description of the version of CoSMoS used here, referring the reader to Papalexiou (2018) and Papalexiou and Serinaldi 
(2020) for additional details and to Papalexiou et al. (2021) and Papalexiou (2022) for further developments of this modeling framework. Let X(si, t) 
be a stationary stochastic process describing the time series of P at temporal aggregation Δt at S locations (si with i = 1, …, S). CoSMoS assumes that the 
process X(si, t) can be simulated by transforming a parent standard Gaussian process Z(si, t) with an appropriate STCS, ρZ(τ, δ), related to the STCS of X. 
The method is applied through the following steps:  

• A STCS for X, ρX(τ, δ), is identified preferably through an analytical model as done in Section 3.2.  
• A suitable marginal distribution of P, FI(x), for X is specified at each gage location.  
• The STCS for the parent Gaussian process Z, ρZ(τ, δ), is obtained by inflating ρX(τ, δ) through the correlation transformation function: 

ρX(τ, δ) = R (ρZ(τ, δ)) :=
C (ρZ(τ, δ)) − μ2

X

σX
, (A7)  

where μX and σX are the mean and standard deviation of X, computed from the parametric form of FI(x), and C (ρZ(τ, δ)) := E(XiXj) is the 
expectation of the product between X at two locations i and j. The latter term involves an integral that is solved numerically for a given value of ρZ. 
Therefore, one applies Eq. (A7) to calculate ρX for a set of fixed values of ρZ (e.g., 0, 0.05, 0.10, …, 0.95, 1) and then fits an analytical relation to the 
computed (ρZ, ρX) pairs to map ρZ → ρX. Here, the following empirical equation suggested by Papalexiou and Serinaldi (2020) is found to capture 
well this relation: 

ρZ =
(1 + bρX)

1−c
− 1

(1 + b)
1−c

− 1
, (A8)  

where b and c are coefficients. It is worth noting that, while μX and σX may vary in space, for this step they could assumed to be constant to simplify 
the numerical application of CoSMoS with minimal impact of its performance.  

• To simulate time series of T time steps at S sites, a multivariate autoregressive model MAR(p) of order p with STCS ρZ(τ, δ) is used to generate S × T 
standard Gaussian variates z(si, t). These are transformed into X variates, x(si, t), through the marginal back transformation: x(si, t) = F−1

I [Φ(z(si,

t))], where Φ( ⋅ ) is the standard Gaussian CDF. Here, the order p was chosen as the time lag where the serial correlation decays to a negligible value 
(i.e., 0.05). 

References 

Adams, D.K., Comrie, A.C., 1997. The North American monsoon. Bull. Am. Meteorol. 
Soc. 78, 2197–2213. https://doi.org/10.1175/1520-0477(1997)078<2197: 
TNAM>2.0.CO;2. 

Alfieri, L., Thielen, J., 2015. A European precipitation index for extreme rain-storm and 
flash flood early warning. Meteorol. Appl. 22, 3–13. https://doi.org/10.1002/ 
MET.1328. 
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