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The statistical characterization of precipitation (P) at short durations (< 24 h) is crucial for practical and sci-
entific applications. Here, we advance the knowledge of and ability to model the space-time correlation structure
(STCS) and marginal distribution of short-duration P using a network of rain gages in central Arizona with one of
the largest densities and spatial coverages in the world. We separately analyze summer and winter P sampled at
multiple durations, At, from 0.5 to 24 h. We first identify an analytical model and a three-parameter distribution
that robustly capture the empirical STCS and marginal distribution of P, respectively, across At’s. We then
conduct Monte Carlo experiments consisting of multisite stochastic simulations of P time series to explore the
spatial and seasonal variability of these properties. Significant seasonal differences emerge, especially at low At.
Summer (winter) P exhibits weak (strong) correlation structure and heavy- (light-)tailed distributions resulting
from short-lived, isolated thunderstorms (widespread, long-lasting frontal systems). The STCS of P is most likely
homogeneous and isotropic except for winter at At > 3 h, where anisotropy could be introduced via the motion of
frontal storms. The spatial variability of the marginal distribution is reproduced by a regional parameterization
dependent on elevation in all cases except, again, for winter at At > 3 h where additional factors are needed to
explain the variability of the mean P intensity. This work provides insights to improve stochastic P models and
validate convection-permitting models used to investigate the mechanisms driving changes in short-duration P.

1. Introduction

Quantifying the spatiotemporal variability of precipitation (P) at
short durations (here, <24 h) is crucial for several practical and scien-
tific goals. It is key to generate more realistic design storms for urban
stormwater infrastructure (Gires et al. 2014; Ichiba et al. 2018; Peleg
et al. 2013), improve estimates of areal reduction factors used to convert
extreme point P into areal averaged P (Wright et al. 2013; Veneziano
and Langousis 2005), and increase the accuracy and resolution of indi-
rect P estimates from weather radars (Krajewski et al. 2010) and satellite
sensors (Tang et al. 2016). The knowledge of short-duration P variability
is also needed to develop and test stochastic models of temporal, spatial,
and spatiotemporal P fields (Venugopal et al. 1999; Schertzer and
Lovejoy 1987; Deidda 2000; Bardossy and Pegram 2009; Burton et al.
2008; Papalexiou and Serinaldi 2020; Papalexiou 2018; Papalexiou
et al. 2021; Paschalis et al. 2013; Peleg et al. 2017; Kim and Onof 2020;

Rebora et al. 2006; among others). The high-resolution P time series or
grids generated by these models have been useful to increase the value of
physics-based  distributed hydrologic models in studies on
flood-generating mechanisms (Paschalis et al. 2014; Mascaro et al.
2013b), flood frequency (Wright et al. 2014), and climate change im-
pacts (Piras et al. 2014), among other goals. Moreover, outputs of
space-time P models have the potential to enhance the accuracy of P
forecast (Harris et al. 2001) and, in turn, the skill of flood and flash flood
forecasting systems (Seo et al. 2013; Alfieri and Thielen 2015), partic-
ularly in urban regions where watersheds have short response times
(Hjelmstad et al. 2021).

Many studies have provided insights into the spatiotemporal vari-
ability of short-duration P by investigating the presence of scaling re-
gimes (i.e., time and/or space intervals where the P statistical properties
are linked via power law relations) across a wide range of temporal and
spatial scales through spectral, multifractal, and wavelet-based
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Fig. 1. (a) Study area in central Arizona (AZ) within the county boundaries. (b) Digital elevation model (derived from the U.S. Geological Survey National Elevation
Dataset) of the study region in the Maricopa, La Paz, Yavapai, and Pinal Counties along with the location of the rain gages of the FCDMC network, color-coded based
on the corresponding record length. Urbanized areas are also shown. (c) Frequency distribution of the inter-gage distance. (d) Képpen-Geiger climatic regions (Beck
et al. 2018) in southwestern U.S. B = arid, C = temperate, D = cold, W = desert, S = steppe, h = hot, k = cold, s = dry summer, f = no dry season, a = hot summer; b

= dry, warm summer.

frameworks. In most cases, a single regime was found from a few days to
0.5-1 h and, in some sites where sub-hourly measurements were avail-
able, an additional regime was detected from 0.5-1 h to a few minutes (e.
g., Fraedrich and Larnder 1993; Deidda et al. 1999; Mandapaka et al.
2015; Verrier et al. 2011; Mascaro et al. 2013a). Seasonal differences in
temporal scaling regimes have also been identified and attributed to
different dominant weather systems (Molnar and Burlando 2008; Mas-
caro et al. 2014; Mascaro 2017). The evidence of P scaling has been also
shown in space from 100-200 km to about 1 km and in space-time
frameworks (Schertzer and Lovejoy 1987; Venugopal et al. 1999; Dei-
dda 2000; Deidda et al. 2004; Mascaro et al. 2013b).

This body of knowledge has significantly advanced our under-
standing of short-duration P and allowed the development of sophisti-
cated stochastic space-time P models. However, the datasets used in
previous studies have been largely restricted to P observations collected
during short-term field experiments or available at a few sites with
limited spatial coverage and density. This is because rain gage P records
at sub-daily resolution are still limited and sparse (Lewis et al. 2019;
Morbidelli et al. 2020), while radar- and satellite-derived P estimates are
heavily affected by several sources of errors, especially at high temporal
resolutions (Michaelides et al. 2009; Krajewski et al. 2010). As a result,
further analyses of high-quality, long-term P observations at high tem-
poral and spatial resolutions are needed to confirm the validity of pre-
vious findings, examine aspects of short-duration P variability that have

received less attention, and support the operational use of space-time
stochastic P models. These needs have become particularly important
given recent evidence that short-duration P extremes have been inten-
sifying due to global warming (Fowler et al. 2021; Prein et al. 2017b)
and urbanization (Huang et al. 2022). Moreover, new knowledge on the
statistics of short-duration P would be wuseful to validate
convection-permitting atmospheric models that are being increasingly
applied to study the mechanisms driving changes in short-duration P
(Chen et al. 2021; Prein et al. 2017a).

Two important statistical properties of short-duration P that have
received relatively less attention are the spatiotemporal correlation
structure (STCS) and the distribution of the intermittent process of zero
and nonzero P values. Previous work has focused on either the spatial
correlation of P within short distances (~25 km) or the temporal (serial)
correlation at single sites (Ciach and Krajewski 2006; Habib et al. 2001;
Mascaro 2017; Zawadzki 1973; Marani 2005; Jameson 2021; Schleiss
et al. 2011; among others). Changes in correlation structure of P for
different combinations of space and time lags over large regions have
not yet been explored. Recently, new flexible analytical models have
been proposed by Papalexiou and Serinaldi (2020) and Papalexiou et al.
(2021) to characterize the STCS of P, but these have not been tested yet
against observations at fine temporal scales. Other recent studies have
suggested single and two-component parametric distributions that could
properly capture the body and tails of the distribution of short-duration
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nonzero P (Papalexiou and Koutsoyiannis 2016; Emmanouil et al. 2021;
Naveau et al. 2016). While promising, the recent methodological ad-
vancements on both the STCS and the marginal distribution of
short-duration P require empirical corroboration and their value should
be systematically investigated across different time scales, seasons, and
sites.

These research needs are addressed in the study which has the main
goal of advancing the ability to characterize and model the STCS and
marginal distributions of short-duration P. To robustly investigate these
statistical properties, we analyze long-term (>20 years), high-resolution
(30-min) P records from a network of rain gages in central Arizona,
which, to our knowledge, has one of the largest densities and spatial
coverages in the world. This study region is compelling due to the strong
seasonality of the P regime and the effect of orography which lead to
marked variability in the statistical properties of P (Mascaro 2017, 2018,
2020).

We address the following research questions that have both scientific
and practical implications and that provide arguably the first systematic
characterization of STCS and marginal distribution of P across multiple
temporal scales with an extensive and high-quality 30-min dataset. (1)
How does the STCS of P at durations < 24 h vary seasonally? (2) Can the
STCS be considered homogenous and isotropic? (Homogeneous means
that the function is spatially stationary across the region, while isotropic
means that the correlation is only affected by the distance between two
sites and does not depend on the direction along which the distance is
computed). (3) Is there a parametric distribution that adequately de-
scribes the body and tails of the nonzero P marginal distribution across
multiple P durations? (4) Does the presence of serial correlation in short-
duration P series significantly affect the estimation of the distribution
parameters? And (5) how do the distribution parameters vary seasonally
and spatially, and can they be regionalized? To answer these research
questions, we perform a set of Monte Carlo experiments with the Com-
plete Stochastic Modeling Solution (CoSMoS; Papalexiou 2018; Papal-
exiou and Serinaldi 2020; Papalexiou et al. 2021; Papalexiou 2022),
which allows for the stochastic simulation of P time series at multiple
sites that preserve prescribed marginal distributions and STCS. While
these research questions are investigated in central Arizona, our meth-
odological framework provides new insights into the space-time P
variability at any location and provides key information to increase the
reliability of space-time simulations of short-duration P.

2. Study Area and Dataset

Our study region is in central Arizona and includes the Phoenix
Metropolitan area (Fig. 1a), where the Flood Control District of Mar-
icopa County (FCDMC) has deployed a network of rain gages to monitor
intense storms. The gages were progressively installed since 1980,
eventually reaching the current number of 365. In this study, we use
records of 223 gages with more than 20 years of observations (Fig. 1b).
The gages cover a region of ~29,600 km? that mainly encompasses the
Sonoran Desert at low elevations from 200 to 700 m above the sea level
(ASL) and extends up to the southwestern portion of the Mogollon Rim
at 2325 m ASL. Most gages are in urban areas (~2000 km?) with a
density of 4.3 gauges per 100 km?; when considering the entire region,
the density decreases to ~1 gauge per 100 km?. The distribution of the
inter-gage distance is presented in Fig. lc, demonstrating that this
network allows characterizing with unprecedented detail the spatial
variability of P statistical properties, including correlation structure and
marginal distribution.

The climate in this region of the desert southwestern U.S. is hot and
arid. According to the Koppen-Geiger classification, the climate is
categorized as BWh in most of the region, with smaller portions classi-
fied as BSh, BSk, and Dsb as the elevation increases (Fig. 1d; acronyms
defined in its caption). The rainfall regime is strongly seasonal. Summers
are dominated by the North American Monsoon (NAM) from July to
September (Adams and Comrie 1997), during which short-lived (<1 h),
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spatially localized thunderstorms occur with moderate-to-high rainfall
intensities according to a diurnally modulated cycle. Winters, defined
here from November to March, are characterized by westerly flow and
extended dry periods that are occasionally interrupted by cold fronts
that may cause large-scale storm systems controlled by dynamical lifting
resulting in low-to-moderate rainfall intensities. These storms tend to be
widespread and often cover the entire region and last for a few days.
Previous studies (Mascaro 2017, 2018, 2020) have investigated several
statistical properties of the rainfall regime in the region; their findings
inform the new research directions pursued in this work.

3. Methods
3.1. Data processing

The FCDMC provides P data in a raw format containing the tipping
instants in seconds, with a resolution of 1 mm for each tip. We obtain the
rainfall time series at different temporal resolutions, At = 0.5, 1, 2, 3, 6,
12, and 24 h, using the method described by Mascaro et al. (2013),
which limits the discretization of the signal caused by the commonly
used box counting. Unfortunately, we find that the resolution of the gage
bucket of 1 mm is quite coarse and limits the effectiveness of the
smoothing procedure. Therefore, the P time series exhibit a considerable
fraction of repeated values that are multiples of 1/At mm/h, which
affect the comparison of the observed P statistics with those of the
non-discretized synthetic samples generated with CoSMoS. We partially
address this issue (see results) by rounding off the synthetic samples
through a procedure based on Deidda (2007) that involves (1) esti-
mating the percentage of observed measurements rounded off at mul-
tiples of 1/ Atmm/h, and (2) adopting these percentages to round off the
corresponding synthetic samples. Given the different storm-generating
mechanisms described in Section 2, analyses are conducted separately
for summer (July-September) and winter (November-March).

3.2. Spatiotemporal correlation structure

The spatiotemporal correlation structure (STCS) describes the cor-
relation (here, linear) between two random variables lagged by time
(in hours) and placed at a distance 6 (in km) (Papalexiou and Serinaldi,
2020). In symbols: px(z,8) = cor[x(t, s),x(t + 7, 5))], with t being any time
instant, and § the Euclidian distance between locations s; and s;. Here,
we model the STCS of P using a parametric form emerging from the
Clayton Copula and the Weibull survival function (Papalexiou and
Serinaldi, 2020). The Clayton-Weibull STCS is stationary and isotropic,
and given by:

px(7,6;0) = {exp {0(%)13} + exp {0(%)67} — 1}71/9, )

where 6 = [bs, cs,by,cr,0] is the parameter vector (note that the indices
S and T stand for space and time, respectively). To estimate 6, we

compute: (1) the empirical correlation matrixes of the gage records at

different time lags, [R(A"k)], whose generic element ri(jAt‘k) is the Pearson

correlation coefficient between the P signal at resolution At at gage i and
the P signal at the same resolution lagged by 7 = (k - At) at gage j (where
k is the lag index ranging from 0 to the number of investigated lags, p);
and (2) the distance matrix, [D], whose generic element, d;, is the
Euclidian distance between gages i and j. We then use these matrixes to
solve the least-square-regression equation:

n P

9 = argmin, f : nii Z Z {rﬁjm‘k) — py (kAt, dy; )]2, @))

i=1 j=i+l k=0

where the sum over i and j is used to include the terms in the upper
triangle of the symmetric matrixes. The calculations are performed in
MATLAB® using the function fit.
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Fig. 2. Clayton-Weibull STCS fitted to the empirical Pearson correlation coefficients between (a) summer and (b) winter time series of P at resolution At = 30 min
observed at pairs of gages for different temporal lags, 7, and spatial distances, 5. Each panel displays (1) the theoretical surface with colors based on the value of px
along with the median empirical correlation coefficients, and (2) two cross sections of the theoretical surface for fixed values of = 30 min and 5 = 10 km, along with
the median and 90% uncertainty band (UB) of the empirical correlation coefficients across the gages.

3.3. Candidate marginal distributions and parameter estimation

When considered at small aggregation times, P is an intermittent
process that includes zero and nonzero values. Its distribution is then
characterized by a probability mass concentrated at zero, py, and a
continuous part that characterizes nonzero values. In symbols, if X is the
random P variable at a given resolution At, its cumulative distribution
function (CDF), Fi(x) (with the subscript I referring to the “intermittent”
process) is given by:

X ~ Fi(x) = po + (1 = po)-F(x), 3

with F(x) being the CDF of nonzero P (i.e., valid for x > 0). In this study,
we estimate pg as no/n, with ng being the number of time steps where P is
zero and n is the total number of time steps. For F(x), we explore the
suitability of three-parameter distributions that have been shown flex-
ible to capture left and right tails, as well as the body of the empirical
distribution of positive hydrologic variables (Papalexiou and Kout-
soyiannis 2012; Papalexiou 2022). These include the Generalized
Gamma (7' %), Burr Type XII (#,XII), and Generalized Exponential
Type 4 (£ #4) distributions. Their CDFs are:
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line styles. To compare multiple At’s in panels (b), the lag k has been used in the x-axis instead of 7 = k- At.
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These distributions are defined for x > 0; y; > 0 and y3 > 0 are pa-
rameters controlling the shape of the distribution, and # > 0 is the scale
parameter; I'( -, -)and I'( - ) denotes the incomplete gamma and gamma
functions, respectively. Parameters are estimated using the numerical
approach recently proposed by Zaghloul et al. (2020) based on the
method of L-moments (Hosking and Wallis 1997). Details are provided
in Appendix A. The suitability of the distributions is evaluated graphi-
cally with the L-moment ratio diagram and further assessed quantita-
tively via two goodness-of-fit (GOF) metrics reported in Appendix B.

3.4. Monte Carlo experiments with CoSMoS

We design Monte Carlo experiments based on the version of the
Complete Stochastic Modeling Solution (CoSMoS) for multisite sto-
chastic simulations of P time series that preserve prescribed space-time
correlation structure and marginal distribution of P Papalexiou and
Serinaldi 2020). This version of CoSMoS is briefly described in
Appendix C. The experiments are used to investigate (1) the homoge-
neity and isotropy of the STCS in each season, and (2) the spatial vari-
ability of the distribution of the intermittent P process. For each At, an
ensemble of synthetic time series is generated at the 223 gage locations
with the same observed record lengths under prescribed STCS and
marginal P distributions. The statistical properties of the synthetic time
series are then compared to the observations. An additional Monte Carlo
experiment is carried out to test the effect of serial correlation on
parameter estimation for the distribution of nonzero P. This involves the
generation of long-term times series at a single site with prescribed serial
correlation (i.e., the STCS with § = 0) and marginal P distribution.
Further details are provided in the next section.

4. Results

4.1. Spatiotemporal correlation structure: seasonal differences and effect
of time aggregation

The Clayton-Weibull STCS is fitted to the empirical Pearson corre-
lation coefficients for summer and winter P. As an example, results for
At = 0.5 h are reported in Fig. 2. Visual inspection of the STCS surface
and the cross sections for fixed values of 7 and § (chosen as examples)
suggests that the Clayton-Weibull analytical model captures very well
the median empirical correlation structure of P in the two seasons. This
is true for all At’s (as an example, results for At = 6 h are shown in Fig. S1
in the Supplementary Material), with the root-mean-square error be-
tween empirical and theoretical STCSs ranging from 0.02 to 0.04 across
all cases. The estimated parameters of the Clayton-Weibull STCS for all
At’s are reported in Fig. S2. Given its effect on both the spatial and
temporal correlation functions, we investigated the role of the 6
parameter and found it to depend on the values of the other four pa-
rameters and to be, overall, relatively minor and more significant for the
spatial correlation at 7 > 1 - At; additional considerations are provided in
Figs. S3 and S4.

Given its ability to represent the empirical STCS across all cases, we
use the Clayton-Weibull model to explore seasonal differences of the P
correlation structure as a function of At. To this end, we plot in Fig. 3 the
Clayton-Weibull STCS for fixed values of 7 and 6 for At = 0.5 h, which is
the characteristic timescale of single convective storms, and for At = 3,
6, and 24 h, which capture the behavior of larger single and multiple
storms. We first note that, for any given At, px of all spatial (fixed 7) and
temporal (fixed §) correlation functions are higher in winter than in
summer. This occurs because winter events are longer and more wide-
spread, whereas summer monsoonal storms are more localized in time
and space and intermittent (higher probability of zero P). The spatial
correlation of P with no temporal lag (z = 0 - At) shows that px increases
with At in both seasons (Fig. 3a; top panels). This is expected since, as
the P signal is aggregated over larger time steps, multiple storm “cells”
may occur over a bigger spatial domain and there is a higher chance that
nonzero P is simultaneously observed at sites located at large distances.
If we instead consider the spatial correlation of temporally lagged (r =1
- At) P series (Fig. 3a; bottom panels), the role of At changes dramatically
with similar impacts in the two seasons. For the largest At = 24 h, px
drops to a very low value that is constant with §, suggesting that in our
study region storms rarely last for more than 24 h. For At = 0.5 h, px
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Fig. 4. L-moment ratio diagrams (i.e., the relation between L-variation and L-skewness) for observed P records at resolution At = 0.5 h, 6 h, and 24 h in summer and
winter, along with the theoretical values of the (a)-(c) £ 7, (d)-(f) .%.XII, and (g)-(i) % #4 distributions, plotted through contour lines for different combinations of
the shape parameters y; and y». The larger markers are the sample means of the L-moments.

declines but its values are nonnegligible for § < 50 km, especially in
winter. The behavior of the spatial correlation for At = 3 h and 6 h is
intermediate between the largest and smallest At’s discussed above.

As expected, the temporal correlation for § = 0 km (i.e., the serial
correlation functions; Fig. 3b, top panels) for a given dimensionless lag k
increases in both seasons as At is reduced. In other words, as we consider
shorter time steps, there is a higher chance that P observations at the
same location are similar within a few time steps. The temporal corre-
lation evaluated at sites at a distance § = 20 km (Fig. 3b, bottom panels)
is substantially similar to that for 5§ = 0 km, except for k = 0 where py is
significantly lower than 1 for all At’s, with a more significant drop
observed for At = 30 min because of the smaller spatial coverage of
single storms.

In summary, the spatial correlation of P for 7 = 0 - At (Fig. 3a, upper
panels) declines faster as the resolution increases (i.e., lower At),

whereas the opposite is true for the temporal correlation of P for § =
0 (Fig. 3b upper panels). This behavior is reversed for lagged spatial
correlations (Fig. 3a, lower panels) and fixed-distance lagged correla-
tions (Fig. 3b, lower panels).

4.2. Marginal distribution of short-duration precipitation

4.2.1. Selection of parametric distribution of nonzero precipitation

We first focus on the distribution of nonzero P, F(x), and evaluate the
suitability of the %, .%,XIl, and & #4 theoretical models. Fig. 4
presents the L-moment ratio diagrams (L-skewness vs. L-variation) for
three representative At’s; each panel displays the sample L-moments
along with surfaces obtained for different combinations of the shape
parameters y; and y; for each of the three considered distributions (note
that distributions with a single shape parameter would instead be
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the fitting on the right tail. The zoom on the body of the CDF (F(x) < 0.9) is shown in the insets. The empirical CDF is plotted with the Hazen plotting position.

represented by a curve in the L-skewness/L-variation space). The L-
moments of P records exhibit seasonal differences, with winter P char-
acterized by lower values of both L-ratios than summer P. The differ-
ences are marked at lower At and tend to be smaller as At increases. The
% 7 is the least flexible distribution and its surface does not fully include
the sampling variability of the L-ratios. On the other hand, the .%,XII is
the most flexible. However, its shape parameters for low At in summer
(y2 > 0.5) lead to distributions with infinite variance, which is an un-
desirable condition for modeling time series stochastically since unre-
alistically large events could be frequently generated. The ¥ &4 has
intermediate flexibility and captures all possible combinations of the
sample L-moments while having always finite moments.

The GOF of the distributions is further evaluated by plotting in Fig. 5
the empirical CDFs of nonzero P at different At’s in the two seasons at
four representative gages along with the fitted theoretical distributions.
We first note that, despite the presence of several repeated values that
are multiples of 1/At mm/h, the fitting of the distributions through the
method of L-moments is quite effective. All parametric models capture
very well the body of the empirical CDF (F(x) < 0.9; shown in insets).
Differences emerge in some cases at the right tail, with .%-XII exhibiting
heavier tails and the largest deviations from the empirical distribution.
This is quantified by the values of the GOF metrics of Appendix B, W?
and RelMSE, reported in Table 1 for the examples of Fig. 5. Boxplots
summarizing the GOF metric across all gages are displayed in Fig. S7,
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Table 1
GOF metrics for the cases shown in Fig. 5.
Gage ID (At) Season GOF Metric 272 BXIT G4
4700 Summer w2 1.81 1.21 0.95
(0.5 h) RelMSE 0.97 1072 2.04 1072 0.731072
Winter w2 4.50 4.11 4.19
RelMSE 1.84 1072 2.191072 1.79 1072
4000 Summer w2 2.70 2.11 1.73
(1h) RelMSE 1.58 1072 3.2110°2 1.44 1072
Winter w2 7.12 6.61 6.33
RelMSE 1.831072 3.89 1072 1.721072
1600 Summer w? 1.41 1.63 1.46
(6 h) RelMSE 1.12 1072 2.21 1072 0.931072
Winter w2 3.02 3.39 3.20
RelMSE 4.56 1072 8.271072 4171072
87800 Summer w? 0.46 0.51 0.46
(24 h) RelMSE 1.09 1072 1.48 1072 1.34 1072
Winter w2 0.38 0.44 0.41
RelMSE 4731072 6.411072 4971072

which further indicate that the discrepancies of the .%,XII in the right
tail, measured by RelMSE, are higher for lower At. Interestingly, even if
the region of theoretical L-moments for the % does not capture the
sample points for At = 0.5 h (see Fig. 4a), the closest pairs of y; and y5 to
the corresponding sample point returned by the parameter estimation
method leads to a fairly good fit to the observed CDF. Given the overall
higher performance, in the following analyses, the 2 #4 is used as the
marginal distribution for nonzero P.

4.2.2. Effect of serial correlation on parameter estimation

For low At, the serial correlation of the P time series can be high, and
the assumption of independent events may not hold. From the practical
standpoint, this implies that the effective sample size is reduced, thus
increasing uncertainty when estimating the marginal distribution pa-
rameters. To evaluate this, we perform Monte Carlo experiments where
CoSMoS is used to generate two ensembles of Ng,; = 100 long-term

serially correlated and uncorrelated time series, respectively, of inter-
mittent P at At = 0.5 h. The highest resolution is chosen since it has the
strongest serial correlation (see Fig. 3b). For these ensembles, we use (1)
the mean pg across the gages; (2) the & #4 distribution for F(x) with
mean values of yj, y2, and f; and (3) the serial correlation provided by
the Clayton-Weibull STCS, px(z, § = 0). This is done separately for
summer and winter, generating in each case 200 consecutive seasons (i.
e., a dataset of 200 years of observations). Fig. 6a shows the theoretical
serial correlations and marginal distributions of the intermittent P pro-
cess, F(x), used to apply CoSMoS in the two seasons, along with the
corresponding empirical functions from one of the synthetic time series.
The correspondence is remarkable, indicating that the CoSMoS frame-
work reproduces very well these statistical properties of the P signal.
Parameters y1, y2, and  are then re-estimated by fitting the & &4 to
the nonzero P of each synthetic time series for the number of seasons, m,
ranging from 10 to 200. Results are presented in Fig. 6b, which shows

(a) Verification of CoSMoS at a single site with average p  and GE4 parameters

¢ — 100 , 100 e
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Fig. 6. (a) Theoretical Clayton-Weibull serial correlation, px(7) (left), and marginal distribution of the intermittent process, F;(x), used to apply the CoSMoS
framework for generating time series in summer (middle) and winter (right), along with empirical values computed from a synthetic time series. (b) Comparison of
median and 90% confidence intervals of 2 #4 parameters estimated from 100 synthetic serially correlated (Corr) and uncorrelated (Uncorr) time series generated
with CoSMoS for At = 30 min in summer (top panels) and winter (bottom panels) for the number of seasons, m, ranging from 10 to 200. See main text for details.
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Fig. 7. (a) Boxplots summarizing the empirical distribution of py and the ¥ #4 parameters, y1, y2 and f, fitted to winter (blue) and summer (red) nonzero P observed
at the 223 gages as a function of the resolution, At. (b) Scatterplot between y; and y5 for all At’s in summer (left) and winter (right). (c)-(e) & #4 distribution for the
median parameter values (reported in insets and shown in panel b with arrows) for At = 0.5, 6, and 24 h, respectively, represented as exceedance (left) and

nonexceedance (right) probabilities.

the 90% confidence intervals of the estimated parameters. In all cases
and for all m’s, the estimates are unbiased, and the uncertainty of
correlated and uncorrelated series is the same, even for low m. The only
exception is the case of y; in winter, where the uncertainty of the
correlated series is slightly larger likely because of the stronger serial
correlation. Overall, these experiments suggest that the considered
samples are long enough that the presence of serial correlation does not
significantly affect parameter estimation. Therefore, there is no practical
need to apply techniques to identify statistically independent events, as
in principle required by the assumption of independent and identically
distributed (i.i.d.) variables. This result was verified for all At’s (not
shown). If, in future applications, this turns out not be the case due to
stronger serial correlations, smaller samples, or the use of a different
probability distribution, the proposed Monte Carlo framework could be
used to identify strategies to extract an independent sample from the
original time series or bias correct the parameter estimates.

4.2.3. Seasonal variability of the marginal distribution as a function of time
aggregation

Fig. 7a presents the boxplots of pg and the ¥ #4 parameter estimates
at the 223 gages for all At’s. Seasonal differences emerge for all pa-
rameters. The probability of zero P, py, is slightly higher in summer than
winter when the signal is aggregated up to At = 6 h; the opposite is true
for longer-time aggregations. Moreover, the relation between pg and At
is linear (R% > 0.95; not detectable in the semilogarithmic plot of Fig. 7a)
with a mean slope of 4.3x1073 (—3.3x10’3) h~! in summer (winter).
The scale parameter f is (1) relatively larger for summer P at smaller
At’s, (2) similar in the two seasons at intermediate At = 6 h, and (3)
higher for winter P at larger aggregation times. In addition, § exhibits a
scaling relationship with At (highlighted through the log-log plot) with a
slope of -0.68 (-0.57) in summer (winter). Focusing on the shape pa-
rameters, y; is larger for winter than summer P, while the opposite is
true for y, but with less notable differences. As expected by the location
of the L-moments estimates (see Fig. 4), neither parameter exhibits

significant variations with At when considering summer P, except for
slightly higher values of y, for At = 1 h. Larger variations of the shape
parameters with At are instead observed for winter P, particularly for y;
that decreases between At = 0.5 h to At = 6 h.

We further investigate the relationship between the shape parame-
ters as a function of the time aggregation in each season by plotting in
Fig. 7b the scatterplots between y; and y, for all At’s. The two ¥ &4
parameters are inversely related in a nonlinear fashion. In summer, a
single relation encapsulates the estimates for all At’s, with slightly
higher (lower) values of y; (y2) found for At > 6 h. In contrast, distinct
relationships between the two parameters emerge in winter for each At.
To visualize how these outcomes affect the shape of F(x), Fig. 7c-e
display the & #4 CDFs with the median parameter values for At = 0.5, 6,
and 24 h in the two seasons, which are also depicted with arrows in
Fig. 7b. The distribution of summer P is always heavy tailed, with very
limited changes of its shape across At’s. Winter P is instead characterized
by a distribution with much lighter tails than summer and whose
heaviness gradually increases with At. Our sensitivity tests and the vi-
sual inspection of Fig. 7b indicate that (1) y; exerts the largest control on
the right tail, and (2) differences in # mainly affect the body of the
distribution (F(x) < 0.9).

4.2.4. Spatial variability of the marginal distribution

As a next step, we investigate whether the inter-gage variability of py
and 2 4 parameters results from sampling variability or is related to
local physical factors. We find that py has a rather constant value for
elevation, z, lower than 400 m ASL and decreases linearly with z with a
slope that is larger in absolute value (i.e., stronger orographic control) as
At increases. This is shown in Fig. 8a-b for three At’s, while maps are
reported in Fig. S8. The Pearson correlation coefficient (CC) with z is
>0.81 across seasons and At’s. The scale parameter f is moderately
related to z in a nonlinear fashion, as presented in the examples of
Fig. 8c-d for three At’s and quantified by Spearman CC between 0.21 and
0.51 across all cases. For the shape parameters y; and 7y, no significant
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Fig. 8. (a)-(b) Relation between p, and gage elevation, z, in summer and
winter, respectively, for At = 0.5, 6, and 24 h. (c)-(d) Same as (a)-(b) but for g
with the lines being the fitted nonlinear Eq. (9d).

relations are found with z or gage coordinates. Examples of maps of the
three ¥ &4 parameters are reported in Figs. S5-S6.

4.3. Insights into the correlation structure and physical controls on short-
duration precipitation through stochastic simulations with CoSMoS

The insights gained in the previous sections allow designing Monte
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Carlo experiments with CoSMoS to investigate the following two hy-
potheses: (1) the STCS of short-duration P in the region could be
considered spatially homogeneous and isotropic in each season; and (2)
the spatial variability of the parameters of the marginal distribution,
Fi(x), is explained by a few regional relations. The latter ones are
identified based on the empirical evidence presented in Section 4.2.4,
which suggests that, for a given At and season, the shape of the nonzero
P distribution, controlled y; and y3, can be considered constant, while
the scale parameter f and p are related to the elevation. This translates
into the following relations for each At:

o= {5§ﬁiiii+m.<z_5) ii; (9a)
"= ob)
nen 90
B =P~ (B —Po)e"* (9d)

where pomex and m are intercept and slopes of the linear relation,
respectively, and z* = 400 m ASL; 7; and 7, are the % #4 shape pa-
rameters corresponding to the sample mean L-variation and L-skewness
across all gages (see Fig. 4g-i); and f, fo, and q are coefficients of a
decreasing exponential relationship linking the % #4 scale parameter
with z (see Fig. 8c-d). The latter one is the same analytical relation that
was found by Mascaro (2018) to well capture the relation between z and
the scale parameter of the generalized Pareto distribution used as a
theoretical model of daily extreme P in this region. The values of the
estimated coefficients and parameters of equations (9) in each season
and At are reported in Table 2.

To evaluate these hypotheses, for each At, we perform two sets of
simulations with CoSMoS, each consisting of the generation of 100
spatially and temporally correlated synthetic time series at the 223
gages with the same duration of the observed records. In the first set,
parameters of Fj(x) are specified using the at-site estimates (labeled At-
site), while, in the second set, parameters are obtained through the
regional equations (9a-d) (labeled Regional). In both cases, the Clayton-
Weibull model of Eq. (1) with parameters reported in Fig. S2 is used to
estimate the STCS. The At-site simulations are expected to provide the
best possible performance of this version of CoSMoS with a homoge-
neous and isotropic STCS. Our first hypothesis is then addressed by
quantifying the discrepancies between the observed inter-gage correla-
tions and those computed from the At-site synthetic time series. The
second hypothesis is assessed by measuring the degree to which the
performance of Regional in simulating the observed L-moments and
empirical marginal P distributions degrades compared to At-site.

Fig. 9 shows, for three At’s and both seasons, the correlation co-
efficients between the observed P signals at all gage pairs for two

Table 2
Values of estimated coefficients and parameters of equations (9).
At (h)
0.5 1 2 3 6 12 24
Po,max S 0.995 0.992 0.988 0.983 0.972 0.950 0.907
w 0.991 0.987 0.982 0.977 0.966 0.949 0.919
m S -0.005 -0.010 -0.016 -0.018 -0.030 -0.047 -0.079
(1/km) w -0.008 -0.013 -0.015 -0.018 -0.025 -0.039 -0.048
7 S 0.54 0.53 0.53 0.54 0.55 0.57 0.58
w 0.86 0.78 0.73 0.71 0.69 0.68 0.69
72 S 2.73 3.25 3.00 2.69 2.35 2.20 2.03
w 2.08 2.83 2.78 2.46 2.08 1.79 1.54
Poo S 2.32 1.48 0.96 0.76 0.49 0.31 0.19
w 1.98 1.27 0.87 0.72 0.50 0.34 0.25
o S 1.61 1.03 0.66 0.54 0.34 0.20 0.12
w 1.59 1.00 0.66 0.51 0.33 0.22 0.14
q S 5.04 5.72 4.97 4.91 3.56 2.21 1.47
w 3.05 3.03 2.35 2.21 2.09 2.17 1.74

10
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Fig. 9. (a) Pearson correlation coefficients between the observed summer P time series at temporal lags 7 = 0 - At (top) and 1 - At (bottom), for At = 0.5 h (left), 6 h
(middle), and 24 h (right) plotted as a function of inter-gage distance, 5, along with the 90% confidence interval (CI) derived from 100 At-site synthetic simulations
with CoSMoS. (b) Same as (a), but for winter P. Given the large number of gage pairs, the observed values are plotted with colors based on the frequency of points.

temporal lags, 7, as a function of the inter-gage distance, §, along with
the 90% confidence interval (CI) derived from the 100 At-site simula-
tions with CoSMoS (note that results are the same for Regional since the
same analytical STCS is used in both experiments). In summer, a single
analytical model for the STCS captures remarkably well the empirical
values for all §, 7, and At. Performances slightly degrade in winter (i.e.,
more cases have >10% of the observed correlations outside the CIs),
especially for At > 3 h, but they are still satisfactory in most cases. These
findings suggest that, in summer, the STCS of subdaily and daily P could
be considered with high confidence homogeneous and isotropic, while a
certain degree of nonhomogeneity and/or anisotropy exists in winter.
To investigate the second hypothesis, we first compare the L-mo-
ments ratio diagrams of the observed samples (same as Fig. 4) and one
ensemble member of the Regional experiment. As shown in Fig. 10, the
L-moments of the synthetic P signals exhibit a slightly larger spread than
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the observed estimates and similar averages, indicating that the
observed variability of these two statistics is within the sampling vari-
ability of the & #4 distribution with a single set of regional shape pa-
rameters. The larger spread of the synthetic L-moments might result
from the observed P records having slightly smaller L-kurtosis than the
synthetic ones (note that the L-kurtosis is not used in the estimation of
the 2 #4 parameters); however, this issue should be further investi-
gated through, e.g., ad-hoc Monte Carlo simulations. We then compare
the observed CDFs of nonzero P with the 90% CIs of the synthetic
samples. Results for the same gages of Fig. 5, chosen as examples, are
displayed in Fig. 11 which shows that (1) the 90% CIs of At-site (gray
lines) capture very well the observed CDFs across At’s and seasons,
confirming the suitability of the & &4 distribution; and (2) the Regional
simulations (black lines) exhibit somewhat degraded performance that
is worse in some cases in winter (e.g., Fig. 11b,d,f). Moreover, there are a
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Fig. 10. L-moment ratio diagrams for (a)-(c) the observed records of P at resolution At = 0.5 h, 6 h, and 24 h in summer and winter, and (d)-(f) a synthetic simulation

of the Regional experiment.

few cases where the visual assessment suggests that the simulation
performance is good but the percent of observations outside the 90% CIs
(labeled as ‘% out’) is >10%. This occurs because the discretized mea-
surements at low P values affect the shape of the CDF in a way that leads
to several observed values being very close to but outside the 90% CIs of
the simulations (see insets in Fig. 11), even after the latter ones have
been rounded off at multiples of 1/At mm/h as described in the
Methods.

These outcomes are confirmed and summarized in Fig. 12, where the
mean across all gages of ‘% out’ is reported for the entire CDF and for
F(x) > 0.5 to eliminate the effect of the discretized measurements on this
performance metric. The At-site simulations capture very well the
observed CDFs in summer, as shown by the mean of ‘% out’ always being
<10%; for certain At’s in winter, the averaged ‘% out’ is >10% for the
entire CDF but is dramatically reduced well below the 10% threshold for
F(x) > 0.5. As expected, the performance of Regional lowers compared
to At-site but is still accurate for F(x) > 0.5, except for At > 3 h in winter.
Importantly, the extreme rain rates (F(x) > 0.95) are practically always
included within the 90% CIs (not shown). Overall, these findings suggest
that the elevation-dependent regional model of equations (9) allows
capturing the variability of short-duration P across all At’s in summer
and for most At’s in winter. Results also indicate that additional factors
might be needed to fully explain the variability of winter P for At > 3 h.

5. Discussion
5.1. Summary of results in central Arizona

Our characterization of STCSs and marginal distributions reveal that
important differences exist in the study region between the statistical
properties of short-duration P in the two seasons. The distinct physical
mechanisms driving summer and winter P lead to significant differences
for the smallest At = 0.5 h, which progressively decrease as P is aggre-
gated over larger At’s. Summer P is dominated by convective monsoonal
thunderstorms, whose typical time scale is close to At = 0.5 h. These
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storms are isolated in space and time, as revealed by the sharp drop of
the spatial correlation at At = 0.5 h for 6§ < 50 km (Fig. 3a, top) and the
lag-1 serial correlation for At > 0.5 h (Fig. 3b, top). Summer P sampled
at At = 0.5 h is characterized by high rain rates with intense extremes, as
shown by the high scale parameter  and the heavy tail of the distri-
bution (low y;; Fig. 7). The aggregation of short-lived thunderstorms at
larger At's impacts the statistical properties of the P signal in three
different ways. First, it leads to increasingly higher spatial correlation
because there are more chances that nonzero P is simultaneously
observed at separate locations resulting from storm “cells” occurring at
different times (Fig. 3a, top). Second, it causes a further drop in the serial
correlation suggesting that multiple cells occur only within 1-2 h
(Fig. 3b, top). Third, it leads to distributions that have gradually lower
magnitudes of the more frequent events compared to winter P at the
same At, but still intense extremes (heavy tail) which are likely
controlled by a single storm with very high intensity occurring within
At. This is shown by the fact that # decays faster with At for summer than
winter (Fig. 7a), while y; does not change significantly (Fig. 7b).

Winter P is dominated by frontal systems that occupy larger areas
and last longer than monsoonal thunderstorms. This is quantified by (1)
the spatial correlation being non-negligible at 5§ = 200 km even for the
smallest At Fig. 3a, top), and (2) the lag-1 serial correlation being similar
for At <6 h Fig. 3b, top). Frontal systems lead to relatively low rain rates
with little variance when P is sampled at At < ~2h, as shown by smaller
S than summer and the light tail of the distributions (i.e., high y;; Fig. 7).
As P is accumulated over larger At’s, the magnitude of both more and
less frequent events increases, as quantified by (1) g decaying slower
with At compared to summer and becoming comparatively higher for At
> 6 h, and (2) the tail of the distributions becoming heavier (i.e., y1
slightly decreasing).

The Monte Carlo simulations with CoSMoS under prescribed STCS
and parameterizations of the marginal distribution provide further in-
sights into the spatial variability of short-duration P. The hypothesis that
the STCS of summer P is homogeneous and isotropic (Fig. 9a) cannot be
rejected, likely because monsoonal thunderstorms are localized and
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rather stationary, and do not exhibit dominant directions. The shape of
the marginal distribution of P (controlled by y; and y3) could be
considered constant across the region (Fig. 10), similar to the growth
curve used in regional frequency analysis of extreme P (Hosking and
Wallis 1997). P occurrence (related to po) and magnitude (linked to f)
are instead highly and moderately affected by elevation, respectively
(Figs. 8, 11-12). These features of STCS and controls on the marginal
distribution are also found for winter P when At < 3 h. For larger time
aggregations, the hypothesis of homogeneous and isotropic STCS is
instead less sustained (Fig. 9b), confirming the preliminary analyses of
Mascaro (2017; their Fig. 12) who found that directional correlograms
of winter P exhibit anisotropic behavior with higher correlations along
the northeast-southwest axis. This could be explained by the combined
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effect of storm anisotropy, the preferential motion of large-scale frontal
storms (as also suggested by Sungmin and Foelsche, 2019), and the
orographic barrier of the Mogollon Rim (Fig. 1). The shape of the mar-
ginal distribution of P sampled at At > 3 h could still be considered
constant (Fig. 9), while elevation is not sufficient to fully explain the
spatial variability of P magnitude (Figs. 11-12).

5.2. Generalization of the results and transferability of the approach

The results of this work are consistent with and expand the findings
of previous studies. Several efforts (Krajewski et al. 2003; Ciach and
Krajewski 2006; Villarini et al. 2008; Sungmin and Foelsche 2019; Peleg
et al. 2013) showed that the spatial correlation of high-resolution P
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Fig. 12. Mean across the gages of the percent of observed values outside the 90% CI of At-site and Regional simulations considering the entire CDF (left panels) and

the portion F(x) > 0.5 (right panels) for (a) summer and (b) winter P.

could decrease significantly within short distances § < ~25 km as P is
aggregated at smaller At’s, and that the rate of these changes varies with
the climatic regimes and seasons. Our findings confirm these outcomes
and further expand them by considering larger At’s and §’s thanks to the
large spatial coverage and high density of the rain gage network. Our
results are also in line with Molnar and Burlando (2008), who showed
that winter P in Switzerland, dominated by frontal systems, is more
structured (i.e., has higher serial correlation) than summer P resulting
from convective storms. This indicates that, qualitatively, the consid-
erations reported in the previous section have general validity at sites
with a precipitation regime dominated by convective and frontal
systems.

This work provides an effective methodological framework to gain
new insights into the space-time P variability at any location, provided
that P observations are available with sufficient density and spatial
coverage. As known, the most accurate P products are ground obser-
vations of dense rain gage networks, which are becoming increasingly
available as part of flood warning systems. For example, in the U.S., the
counties of Harris, Clark, and Los Angeles, as well as the Santa Clara
Valley Water District operate dense rain gage networks to monitor
flooding in the metropolitan areas of Houston, Las Vegas, Los Angeles,
and San Jose, respectively; dense rain gage networks are also available
in Europe (De Vos et al. 2017; O and Foelsche 2019). When rain gages
are not available, spatially seamless quantitative precipitation estimates
from weather radars (Lin 2011; Zhang et al. 2016), satellite sensors (e.g.,
Hou et al. 2014), and gridded interpolated products (e.g., NOAA 2021;
Kim and Villarini 2022) could be very valuable after their ability to
capture marginal distributions and STCS and their overall biases are
assessed in regions where dense gage networks are available; this is one
of the subjects of our future work. As shown in Fig. 4, the
three-parameter distributions cover several combinations of L-moments
and, thus, they should be able to capture a large variety of P distribution
shapes across climatic regimes; other parametric forms have been pro-
posed by Naveau et al. (2016) and Papalexiou (2022). The
Clayton-Copula STCS was found to be a flexible homogeneous and
isotropic model that well captures the empirical STCS in our study re-
gion. Specifically, the Clayton-Copula STCS has the minimum number of
parameters that allow adequate control of the scale and shape of the
spatial and temporal correlations (bs, cs, by, cr) as well as of their
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interactions (). If the Clayton-Copula is not considered adequate at
other sites, Papalexiou and Serinaldi (2020) and Papalexiou et al. (2021)
proposed alternative analytical forms of STCS and provided suggestions
to design new analytical models that might be needed to account for
anisotropy and/or spatial heterogeneity. Once marginal distribution and
STCS have been parameterized, the CoSMoS framework could then be
used to validate hypotheses on their variability as done here.

6. Conclusions

This study advances the knowledge of and ability to model the STCS
and marginal distribution of short-duration (<24 h) P, two properties
that have received relatively little attention in the literature due to the
lack of adequate reliable observations. A systematic analysis of the
seasonal and spatial variability of these properties is conducted in a
large region in central Arizona using a high-density network of gages
with long-term, high-resolution P records. The empirical STCSs are
captured well by the Clayton-Weibull parametric STCS, while three
parametric distributions, namely, the £ 2, %,XIl, and ¥ #4, describe
well the empirical distribution of nonzero P for all At’s, with the & #4
providing the best results. These parametric models show that summer
P, dominated by short-lived convective thunderstorms, exhibits weaker
correlation structure and heavier tails of the distribution than winter P,
which is instead controlled by longer and widespread frontal systems.
Monte Carlo experiments relying on stochastic simulations with the
CoSMoS space-time P model show that, in most cases, the STCS of P
could be considered homogeneous and isotropic, the marginal distri-
bution has constant shape across the region, and the spatial variability of
P occurrence and mean intensity is controlled by elevation. The only
exception is winter P at At > 3 h that shows possible non-homogeneity
and anisotropy in the STCS and requires additional factors to explain the
spatial variability of the mean P intensity.

The methodological framework of this work could be applied at
other sites and is then useful for parameterizing, testing, and improving
P models and weather generators (S¢grup et al. 2016; Paschalis et al.
2013; Peleg et al. 2017; Grimaldi et al. 2022; Kim and Onof 2020), as
well as for validating in a statistical sense numerical P simulations from
convection-permitting atmospheric models (i.e., verifying the degree to
which the probability distributions and space-time correlation
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Appendix A. Estimation of distribution parameters using L-moments

Parameters of the 2%, %,XIl, and ¥ #4 were estimated using the numerical procedure proposed by Zaghloul et al. (2020), which is based on the
method of L-moments. For distributions with one scale parameter and two shape parameters, the L-variation, 75, and L-skewness, 73, depend only on
the shape parameters, y; and y». Following Hosking (1990), the integral forms of 75 and 73 are:

1
Aa _ fo O(u; 1,y,,7,)-(2u — 1)du

(r1,7,) == — (A1)
2{rr) A Jy O(us 1,7y, 7)du

_ A Jy Qw171 7y)-(6u® — 6u+ 1)du 49
R Ly TP NPT 2

where 14 (q = 1, 2, 3) is the g-order L-moment and Q(u; 1, y1,y2) is the quantile function of any of the three distributions with scale parameter = 1. For
each record, the sample values of the L-moments, 75 and 73, are calculated and parameters y; and y, are estimated by minimizing the squared dif-
ference between the sample and theoretical L-moments. In symbols:

3
o - . ~ 12
(71,7,) = argming,, [T‘?(}/H}/z) - Tq] . (A3)
q=2

Eq. (A3) is solved numerically by substituting Eqs. (A1) and (A2). After estimating y; and y2, the scale parameter /3 is calculated by minimizing the
function:

B = argming[1, (8) — A1), (A4)

1
where 44 (f) = / Q(u; B, 71,72)du and 71 is the sample estimate of the first order L-moment.
0

Appendix B. Metrics quantifying goodness-of-fit of the parametric distributions

The goodness-of-fit (GOF) of the parametric distributions is quantitatively assessed through the Cramer-von Mises statistic, W? (Deidda and Puliga
2006; Laio 2004), and the mean relative mean square error, ReIMSE (Papalexiou et al. 2013), defined as:

1 n
W2 - @ + Z [Flheor(xi) - Femp(xi)]
i=1

2

(A5)
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RelMSE = ,
; 1 - Femp xi)

where x; is the i-th ascending order statistic, n is the sample size, Fyneor(x;) is the theoretical CDFs (one of the three parametric distributions mentioned
above), and Foy,(x;) = =22 is the empirical CDF estimated through the Hazen plotting position formula. Both metrics provide a measure of the cor-
respondence between theoretical and parametric CDFs, with W2 giving the same weight to all order statistics and ReIMSE assigning larger weights to

the differences in the right tail of the distribution.

Appendix C. Overview of the Complete Stochastic Modeling Solution (CoSMoS)

We provide here a brief description of the version of CoSMoS used here, referring the reader to Papalexiou (2018) and Papalexiou and Serinaldi
(2020) for additional details and to Papalexiou et al. (2021) and Papalexiou (2022) for further developments of this modeling framework. Let X(s;, t)
be a stationary stochastic process describing the time series of P at temporal aggregation At at S locations (s; withi=1, ..., S). CoOSMoS assumes that the
process X(s;, t) can be simulated by transforming a parent standard Gaussian process Z(s;, t) with an appropriate STCS, pz(z, ), related to the STCS of X.
The method is applied through the following steps:

e A STCS for X, px(z, 8), is identified preferably through an analytical model as done in Section 3.2.
e A suitable marginal distribution of P, Fj(x), for X is specified at each gage location.
e The STCS for the parent Gaussian process Z, pz(z, §), is obtained by inflating px(z, §) through the correlation transformation function:

Z(py(z,6)) — ux
Ox ’

px(5.6) = R(p,(r,6)) = @a7)

where ux and ox are the mean and standard deviation of X, computed from the parametric form of Fi(x), and 7 (p,(7,6)) := E(X;X;) is the
expectation of the product between X at two locations i and j. The latter term involves an integral that is solved numerically for a given value of py.
Therefore, one applies Eq. (A7) to calculate px for a set of fixed values of pz (e.g., 0, 0.05, 0.10, ..., 0.95, 1) and then fits an analytical relation to the
computed (pz px) pairs to map pz — px. Here, the following empirical equation suggested by Papalexiou and Serinaldi (2020) is found to capture
well this relation:

(1+bpy) “—1

_ A8
(1+b)=1" (A8)

z

where b and c are coefficients. It is worth noting that, while ux and 6x may vary in space, for this step they could assumed to be constant to simplify
the numerical application of CoSMoS with minimal impact of its performance.

To simulate time series of T time steps at S sites, a multivariate autoregressive model MAR(p) of order p with STCS p(z, 6) is used to generate S x T
standard Gaussian variates z(s;, t). These are transformed into X variates, x(s;, t), through the marginal back transformation: x(s;,t) = F; 1 [®(z(s;,
t))], where @( - ) is the standard Gaussian CDF. Here, the order p was chosen as the time lag where the serial correlation decays to a negligible value
(i.e., 0.05).
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