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Summary 

Autonomous experimental systems offer a compelling glimpse into a future where closed-

loop, iterative cycles—performed by machines and guided by artificial intelligence (AI) and 

machine learning (ML)—play a foundational role in materials research and development. To reach 

their full potential, these systems need to incorporate information from their environment and 

interact with human researchers. This perspective draws attention to the roles of networks and 

interfaces—of and between humans and machines—for the purpose of generating knowledge 

and accelerating innovation. Polymers, a class of materials with everyday impact and a massive 

global footprint, present a unique opportunity for the scalable application of informatics and 

automation to pressing societal challenges. To develop these networks and interfaces in polymer 

science, the Community Resource for Innovation in Polymer Technology (CRIPT)—a polymer 

data ecosystem based on novel polymer data model, representation, search, and visualization 

technologies—is introduced. The ongoing co-design efforts engage stakeholders in industry, 

academia, and government working in experimental and computational polymer science to 

uncover rapidly actionable, high-impact opportunities to build networks and bridge interfaces. 

Through its aspirational goal as an open-source platform of digital tools and services tailored 

around polymers and their data, CRIPT aims to provide a foundational technology for artificial 

intelligence, computation, and robotics and serve as a catalyst for innovation in polymers. 

Introduction & Background 

Polymers play an essential role in everyday life, appearing in food packaging, water 

purification, clothing, shelter, medical products, electronics, and transportation.1, 2 Properties that 

make polymers ideal for many applications—low cost, high strength-to-mass ratio, high chemical 

resistance, and low embodied energy to synthesize and process—also yield hidden, delayed, or 

otherwise unquantifiable societal costs as these materials accumulate and incompletely 



decompose in natural ecosystems.3 Concerns around global material consumption have led to 

calls for a more circular economy.4 Addressing the complexity and scale of the full life cycle of 

polymeric materials requires human ingenuity combined with the best automation and informatics 

tools at our disposal. 

The very nature of polymers—stochastic ensembles of large molecular chains—make 

them difficult to represent from an informatics perspective.5 Polymer properties vary across 

multiple length and time scales, and these properties often depend on subtle changes in 

composition, structure, process history, and environmental exposure. The complex interplay 

between chemistry, composition, structure, and processing that impedes recycling and recovery 

efforts6, 7 also complicates the aggregation, comparison, and remixing of data captured within 

different contexts (Figure 1).8, 9 Existing materials databases and repositories provide 

meticulously curated data,10, 11 but capturing sufficiently detailed metadata while remaining 

relevant to a wide swath of stakeholders remains an ongoing challenge. Part of the challenge 

involves technological considerations around data (volume, velocity, variety, etc.),12 but social 

considerations—demonstration of value, alignment with motivations, proven reliability—remain 

paramount in convincing generally skeptical individuals to invest the requisite time and energy in 

a given resource (e.g., using the system, organizing data, adding metadata). Many of these 

challenges can be distilled and recast through the lens of networks and interfaces. In the context 

of polymer informatics, researchers can benefit greatly from a platform that captures the 

chemistry, process, and property metadata while providing seamless integration with both manual 

(human–machine) and automated workflows. 



 

Figure 1: The life cycle of polymer materials and data. Polymers form an essential part of our daily lives, yet they 
pose an increasing environmental threat as they steadily accumulate in landfills and other waste streams. From an 
informatics perspective, polymers also pose challenges in terms of relating their structure and processing. Maximizing 
the reusability of polymers and data requires non-trivial strategies, given that they are not always ‘miscible.’ 

An autonomous experimental system (AES), also known as a ‘self-driving laboratory,’ 

plans and carries out hypothesis testing in an iterative, closed-loop manner through novel use of 

robotics, computation, and artificial intelligence (AI) and machine learning (ML).13-17 

Demonstrations of autonomous experimentation in materials science include phase mapping; 

composition, process and property optimization; additive manufacturing design; and discovery of 

new materials systems.18-23 Guided by AI algorithms, they often balance an “exploration–

exploitation” tradeoff by weighing the benefits of exploration (maximizing the information gained 

by a given action) against exploitation (focusing on the highest-value regions) through approaches 

such as active learning.24 The tireless nature of these systems combined with their robotic 

precision offers higher productivity and consistency compared to manual completion of similar 

tasks. By combining human ingenuity and the unique capabilities of machines into research 

networks, these closed-loop systems can leverage the best of both to form a collaborative 

intelligence.25, 26  



 As AES technologies advance, the need to train the next-generation workforce, facilitate 

collaboration across human stakeholders and machines, and encourage the sharing of data will 

only increase.27-29 Sharing data across an organization can institutionalize expert knowledge for 

broader benefit, and inter-organizational sharing of data opens up opportunities for innovation 

through cross-pollinations of data, concepts, and ideas. The speed with which AESs incorporate 

and produce useful knowledge will impact the questions that researchers ask and how they go 

about answering those questions, providing an opportunity to unlock latent human potential. 

Reconfigurable implementations, such as flexible automation, show promise in this regard.30  

This perspective highlights readily achievable, high-impact areas for accelerating the 

discovery and deployment of polymeric materials through the formation of information networks 

and bridging of interfaces (i.e., machine–machine, human–machine, human–human) to address 

global challenges (Figure 2). The early-stage development of a community-driven data ecosystem 

for capturing and sharing polymer knowledge is described. Such platforms are essential to build 

networks of information and people by providing streamlined interfaces for data and collaboration 

between humans and machines. Through this lens of networks and interfaces, the collaborative 

intelligence between humans and machines is explored, beginning with the transformation of data 

into knowledge. 



 

Figure 2: Networks and interfaces as catalysts for polymer materials innovation. Combining the mutual skills and 
capabilities of humans and machines requires attention to the networks formed between humans and machines, as 
well as improvements of their various interfaces (i.e., human–human, human–machine, and machine–machine), in 
order to translate research discoveries into lasting societal benefits. 

Transforming Data into Knowledge 

 The confluence of materials science and information science—expressed in frameworks 

such as the ‘twin tetrahedra’31—can be described at a high level as a closed loop in which 

materials data (e.g., process, structure, properties) pass into information systems (e.g., through 

digital workflows and knowledge representations32) to generate actionable information to further 

improve those materials. The transformation of data into knowledge is an iterative process 

facilitated by the verification and distillation of information into robust models and expressive 

representations. Although digitalization has amplified the production and dissemination of 

information, humans still have limited time, attention, and capacity to accurately assess multi-

dimensional problems. The volume of information generated by AESs will only exacerbate the 

need to filter and distill continuous streams of data and information into useful, actionable 

knowledge. Long before the Internet, the human desire to capture knowledge for posterity spurred 

the development of written language, the construction of libraries, and imaginings of mechanical 



contraptions that assimilate human thought.33, 34 Today, AESs represent a novel thread in the 

age-old tapestry of knowledge generation, providing a powerful tool and new opportunities to free 

up human attention to pursue continued innovation.  

 The coupling of expert knowledge and intuition with AI recommendations can form a 

foundational component of an ecosystem for autonomous research. Just like humans, any given 

AES operates within a particular context and will be subject to biases depending on its 

configuration, constraints, and environment. The potential for bias is exacerbated in the case of 

polymers, whose properties are highly sensitive to subtle differences in preparation and analysis. 

The fusion of theory into models provides one way to mitigate biased data and enhance the ability 

to navigate complex design spaces.19, 35-37 Another way involves providing these disparate 

systems with a shared ecosystem for communicating and learning from experience in different 

contexts through collaborative networks. 

Leveraging Networks to Achieve Scale 

 While autonomous research systems and human researchers may have the capacity to 

operate independently, a collaborative intelligence that combines the talents of humans and 

machines can unlock the value generated through network effects (e.g., Metcalfe’s Law38). The 

incremental value added by each new node in a network exceeds the incremental cost of adding 

the node to the network, leading to super-linear scaling in innovation.39 The World Wide Web, 

through its distributed network architecture and ability to reference resources through hyperlinks, 

has brought about significant areas for value creation. Networks of individuals and organizations 

have spatial components that impact the flows of tacit and codified knowledge among local 

clusters and through global pipelines.40  

The development of open standards forms a foundation for unlocking the benefits of 

networks. Positive feedback loops for value generation are balanced by negative feedback loops 



when considering competing between networks—why participate in network B when network A is 

larger and offers more value today?—which can ultimately stifle innovation.41 To counter such 

winner-take-all, lock-in scenarios, open standards provide a basis for healthy competition and 

yield net benefits for stakeholders.42  

In the international scientific community, the notion of FAIR (findable, accessible, 

interoperable, reusable) guiding principles for data stewardship has gained steam and offers a 

shared understanding of the importance of data practices in materials research.29, 43 These 

guiding principles argue for the use of applicable standards as well as annotation with machine-

interpretable metadata. Essentially, a ‘FAIR’ approach to data management offers a way to extract 

value from research investment by extending the shelf-life of research outputs (i.e., data). 

 Efforts to facilitate the growth of a network should also consider ways to mitigate the 

negative aspects that arrive with scale. For example, the same super-linear scaling applies to 

negative socioeconomic aspects as well, including increasing the potential reach of bad actors, 

irrational behavior caused by groupthink, or a lack of perceived individual responsibility. While 

complex social dynamics plays a role, networks of machines and algorithms could potentially 

suffer from emergent biases, for example amplifying existing biases in their data.44 Establishing 

proper checks and balances into the structure of these networks becomes important when 

considering their long-term sustainability. For example, human-centered AI emphasizes the role 

of human control in the development of reliable, safe, and trustworthy automation.45 Finally, value 

generated within a network can form a divide between those who participate and those who do 

not. Acknowledging these potential disparities, and addressing them through interfaces, can 

strengthen the overall network through increased overall participation.  



Bridging Interfaces of All Types 

 The addition of a node to a network results in the potential creation of multiple interfaces 

and their associated barriers to communication, so the engineering of interfaces becomes 

increasingly important as a network scales in size and complexity. Consideration of the various 

interfaces entailed in future of AES-facilitated research (i.e., machine–machine, human–machine, 

human–human) reveals numerous readily achievable, high-impact opportunities to lower these 

barriers, incorporate different perspectives, and serve as a catalyst for innovation.  

 Machine–machine interfaces involve careful architectural design and the application of 

appropriate protocols and data representations. Driven by application programming interfaces 

(APIs), these interfaces should consider performance (e.g., minimal latency and network 

bandwidth, portability, robustness) while maximizing the independence and scalability of 

components within the network. For example, Representational State Transfer (REST) describes 

constraints including uniform interface, stateless behavior, independent layers, and client-server 

communication that form essential aspects of the modern Web.46 For platforms aiming to promote 

interoperability among autonomous systems, a REST API provides the necessary communication 

layer for these systems to exchange information, and developers can employ REST to create 

scalable applications through a microservices architecture. Beyond these considerations about 

the flow of data between machines, the data representations employed (e.g., schema-oriented, 

ontology-based) play an important role by implicitly determining the expressive capabilities of the 

interface.  

 Human–machine interfaces remain a critical aspect of autonomous systems and the focus 

of a large area of research in human–computer interaction. One must recognize the role of 

humans not only during the course of their operation, but in their iterative development and 

implementation as well.45, 47 For example, mixed-initiative user interface design considers the 

coupling of human control through direct manipulation with systems that provide automated 



services.48 Representations for communicating and accurately portraying research findings to 

human researchers play a major role in facilitating this interface, including data visualization and 

interaction design.49, 50  

 Human–human interfaces (i.e., technically rich communication) form the basis of 

collaborative research and development, bringing together contributors with diverse perspectives 

to drive innovation and push the limits of scientific research. Enabling people to contextualize and 

apply knowledge involves making it easier to quantify observations, their context, and their 

reliability; create distilled and expressive representations of findings; and get those findings in 

front of others who can augment or refine them. For example, an effective figure or elegant 

mathematical expression can impart understanding much more rapidly than a verbose paragraph 

describing the same concept. Computational notebooks show promise as a medium for 

communicating interactively through the integration of code and prose.51 Other emerging 

technologies such as augmented reality (AR) offer new ways create shared representations and 

reason over virtual models within physical spaces.52 New methods and media may emerge, but 

the essential goals of these tools to augment human thought processes and communication will 

continue. 

 For the scientific community to address the pressing needs of today, it should consider 

how these various interfaces impact the networked system as a whole. These opportunities are 

readily actionable in the sense that many improvements can be made by appropriately configuring 

existing technologies, and they are high-impact because they affect the growth and long-term 

sustainability of these systems. Sustainability of these networks and their interfaces becomes 

critical in order to address the persistent and global scale of polymers, a multi-billion-dollar 

industry that produces hundreds of millions of metric tons per year, the majority of which currently 

ends up in landfills.53 



Community Resource for Innovation in Polymer Technology 

The Community Resource for Innovation in Polymer Technology (CRIPT)—a collaboration 

between stakeholders in industry, academia, and government—aims to provide a platform for 

researchers in polymer science and engineering to capture and share knowledge. An ecosystem 

such as CRIPT provides a digital infrastructure to capture the complexities of polymer data and 

metadata (including necessary chemical detail) in a structured and searchable way (Figure 3). 

One key philosophy of CRIPT is to ‘meet researchers where they are at,’ allowing them focus on 

the most relevant data for their use case and providing them with tools to augment their data with 

appropriate metadata. Through user interfaces and data standards, this collaborative platform 

enables the networking and interfacing of humans and machines for the broader purpose of 

accelerating materials discovery to solve key societal challenges around the design and 

repurposing of polymers.  

 

Figure 3 CRIPT as a facilitator of networks and interfaces for polymer informatics. The vision for CRIPT is an 
open-source ecosystem of data and software tailored for polymer materials. These objectives will be realized by 
enabling collaboration among stakeholders, linking polymer representations to detailed metadata, and offering multiple 
interfaces and on-ramps for stakeholders to harness the power of polymer informatics. 



Polymeric materials pose unique challenges around their specification and representation 

that necessitate the development of a dedicated data ecosystem. Informatics approaches for 

small molecules have limited applicability to polymeric materials because polymers are stochastic, 

form complex topologies, and have properties that depend strongly on processing. Such 

challenges present a need to innovate and develop tools that extend the capabilities of 

cheminformatics. These tools must capture the variety of experimental and computational data 

with chemical fidelity within a flexible data model such that modern cheminformatics methods can 

be brought to bear on polymer problems. 

Key technological precursors to CRIPT include a novel way to represent polymers in a 

database, as well as a structured approach to linking polymeric structure to characterization data. 

First, the BigSMILES line notation captures a compact representation of a polymer through the 

notion of stochastic objects as well as specification of the bonding constraints for these repeating 

units.54 The PolyDAT data schema provides a file format for capturing reaction and 

characterization data as structured JSON,55 and this notion is currently being extended to capture 

relationships between materials, processing, and data within a graph-based data model. 

Additional efforts in canonicalization provide a way to efficiently reference polymers in a database, 

whose multiplicity otherwise impedes such efforts.56 

At the time of writing (July 2022), the CRIPT platform exists in a pre-release development 

phase with a limited group of early adopters in academia, industry, and government settings. The 

involvement of multiple stakeholders has been an essential aspect of the co-design and co-

creation of the platform.57 Through interviews and focus groups, these stakeholders have 

provided valuable input and insight through their unique perspectives and variety of data-related 

requirements. The resulting CRIPT structure uses a REST API with a Python software 

development kit (SDK) to enable programmatic access to data along with a web-based graphical 

user interface (GUI) for organizing and interacting with data visually, two key human–machine 



interfaces within the platform. The programmatic interface enables developers to augment 

existing interfaces (e.g., data ingestion, workflow automation), while the GUI provides an 

important endpoint for visual validation of uploaded data and easy browsing. To engender trust 

in data uploaded to CRIPT, organization- and institution-independent ORCID identifiers are used 

as the basis for user authentication.58 The system integrates with Globusi to manage 

authentication and file storage, with the eventual goal of direct integration with characterization 

instruments across user facilities.59, 60 Current and future efforts aim to deliver additional value 

through AI-based data validation, more automated data ingestion workflows, integration with 

robotic research platforms, and the ability to configure private instances of CRIPT for stakeholders 

in industry with strict data sharing policies. 

The long-term vision of CRIPT as a community-driven digital ecosystem for polymer 

innovation hinges on open-source code contributions, robust data pipelines, and clear articulation 

of value to researchers. First, the Python SDK enables programmers outside the core 

development team to develop application-specific software and share with others in the CRIPT 

community who may adapt and improve upon this software to further enrich the data resource. 

Second, the data model strikes a balance between configurability and rigidity that accommodates 

a variety of use cases while still promoting unified annotation with metadata. Finally, the web 

application aims to make it easier for a given researcher to accomplish their work, providing 

incentive to invest the necessary time and attention to data management beyond the minimum 

requirements of a funding mandate. By empowering individual polymer researchers to manage 

their data, CRIPT will play an important role in the propagation of polymer knowledge. 

Measurable value generation of a platform such as CRIPT can be defined through the 

time and cost savings from using the platform compared to existing alternatives. For example, a 

tool that can parse and suggest a template for visualizing a dataset saves minutes of time 

otherwise spent configuring a plotting tool. Hours otherwise spent combing the literature for the 



properties of a polymer—a task that may be avoided entirely due to the associated cost—can be 

greatly reduced through structure-based searches linked to verifiable property metadata. 

Identifying useful targets for synthesis alone could save months of research effort. Other, less 

easily measurable forms of value may include the spark of insight that results in a fruitful new 

research direction, a new perspective that deepens current understanding of physics, or a new 

process that slows down or reverses the current problems of plastic waste. The fog at the current 

frontier of polymer informatics will lift as new discoveries and innovations are made and shared—

one network and interface at a time—ultimately paving the way for the next frontier. 

Conclusions and Perspectives 

Digital ecosystems such as CRIPT will play a critical role in the future development of 

AESs. First, an open, standard communication protocol is a foundational technology for 

autonomous systems to send and receive information. Second, the perspective of CRIPT to ‘meet 

researchers where they are at’ in terms of data practices and requirements instills an important 

human element to the platform. Networks and interfaces, such as those enabled by CRIPT, form 

a critical part of the broader fundamental shift in division of labor suggested by the current 

trajectory of autonomous research. The notion of human-centered AI for reliable, safe, and 

trustworthy autonomous systems comes into play here,45 where thoughtful design provides 

humans with requisite control mechanisms to effectively guide the autonomous systems 

appropriately and offers checks and balances as these networks of humans and machines grow 

in scale. Iterative development of such systems becomes possible by building stakeholder 

relations, involving consumers in the co-design of the platform and its features, and recognizing 

the role of humans in the networks and interfaces of these systems. A well-designed artificial 

intelligence should feel natural to interact with while simultaneously supporting the development 

of human skill and mastery. 



Advancements in robotics, algorithms, and computation will continue to accelerate 

materials discovery, while networks and interfaces (human and machine) facilitated by open 

informatics platforms such as CRIPT will act as catalysts to fully unlock this potential. Integration 

of autonomous experimentation into the typical materials research workflow involves 

paradigmatic shifts in the way knowledge is generated, validated, and disseminated. By focusing 

on readily actionable, high-impact opportunities in forming networks and bridging their interfaces, 

polymer informatics will produce transformative and lasting societal benefit. 
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