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Summary

Autonomous experimental systems offer a compelling glimpse into a future where closed-
loop, iterative cycles—performed by machines and guided by artificial intelligence (Al) and
machine learning (ML)—play a foundational role in materials research and development. To reach
their full potential, these systems need to incorporate information from their environment and
interact with human researchers. This perspective draws attention to the roles of networks and
interfaces—of and between humans and machines—for the purpose of generating knowledge
and accelerating innovation. Polymers, a class of materials with everyday impact and a massive
global footprint, present a unique opportunity for the scalable application of informatics and
automation to pressing societal challenges. To develop these networks and interfaces in polymer
science, the Community Resource for Innovation in Polymer Technology (CRIPT)—a polymer
data ecosystem based on novel polymer data model, representation, search, and visualization
technologies—is introduced. The ongoing co-design efforts engage stakeholders in industry,
academia, and government working in experimental and computational polymer science to
uncover rapidly actionable, high-impact opportunities to build networks and bridge interfaces.
Through its aspirational goal as an open-source platform of digital tools and services tailored
around polymers and their data, CRIPT aims to provide a foundational technology for artificial

intelligence, computation, and robotics and serve as a catalyst for innovation in polymers.

Introduction & Background

Polymers play an essential role in everyday life, appearing in food packaging, water
purification, clothing, shelter, medical products, electronics, and transportation.’ 2 Properties that
make polymers ideal for many applications—Ilow cost, high strength-to-mass ratio, high chemical
resistance, and low embodied energy to synthesize and process—also yield hidden, delayed, or

otherwise unquantifiable societal costs as these materials accumulate and incompletely



decompose in natural ecosystems.® Concerns around global material consumption have led to
calls for a more circular economy.* Addressing the complexity and scale of the full life cycle of
polymeric materials requires human ingenuity combined with the best automation and informatics

tools at our disposal.

The very nature of polymers—stochastic ensembles of large molecular chains—make
them difficult to represent from an informatics perspective.> Polymer properties vary across
multiple length and time scales, and these properties often depend on subtle changes in
composition, structure, process history, and environmental exposure. The complex interplay
between chemistry, composition, structure, and processing that impedes recycling and recovery
efforts® 7 also complicates the aggregation, comparison, and remixing of data captured within
different contexts (Figure 1).% ° Existing materials databases and repositories provide
meticulously curated data,'® "' but capturing sufficiently detailed metadata while remaining
relevant to a wide swath of stakeholders remains an ongoing challenge. Part of the challenge
involves technological considerations around data (volume, velocity, variety, etc.),'? but social
considerations—demonstration of value, alignment with motivations, proven reliability—remain
paramount in convincing generally skeptical individuals to invest the requisite time and energy in
a given resource (e.g., using the system, organizing data, adding metadata). Many of these
challenges can be distilled and recast through the lens of networks and interfaces. In the context
of polymer informatics, researchers can benefit greatly from a platform that captures the
chemistry, process, and property metadata while providing seamless integration with both manual

(human—-machine) and automated workflows.
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Figure 1: The life cycle of polymer materials and data. Polymers form an essential part of our daily lives, yet they
pose an increasing environmental threat as they steadily accumulate in landfills and other waste streams. From an
informatics perspective, polymers also pose challenges in terms of relating their structure and processing. Maximizing
the reusability of polymers and data requires non-trivial strategies, given that they are not always ‘miscible.’

An autonomous experimental system (AES), also known as a ‘self-driving laboratory,’
plans and carries out hypothesis testing in an iterative, closed-loop manner through novel use of
robotics, computation, and artificial intelligence (Al) and machine learning (ML)."*"
Demonstrations of autonomous experimentation in materials science include phase mapping;
composition, process and property optimization; additive manufacturing design; and discovery of
new materials systems.'®23 Guided by Al algorithms, they often balance an “exploration—
exploitation” tradeoff by weighing the benefits of exploration (maximizing the information gained
by a given action) against exploitation (focusing on the highest-value regions) through approaches
such as active learning.?* The tireless nature of these systems combined with their robotic
precision offers higher productivity and consistency compared to manual completion of similar
tasks. By combining human ingenuity and the unique capabilities of machines into research
networks, these closed-loop systems can leverage the best of both to form a collaborative

intelligence.?> %



As AES technologies advance, the need to train the next-generation workforce, facilitate
collaboration across human stakeholders and machines, and encourage the sharing of data will
only increase.?”"?° Sharing data across an organization can institutionalize expert knowledge for
broader benefit, and inter-organizational sharing of data opens up opportunities for innovation
through cross-pollinations of data, concepts, and ideas. The speed with which AESs incorporate
and produce useful knowledge will impact the questions that researchers ask and how they go
about answering those questions, providing an opportunity to unlock latent human potential.

Reconfigurable implementations, such as flexible automation, show promise in this regard.°

This perspective highlights readily achievable, high-impact areas for accelerating the
discovery and deployment of polymeric materials through the formation of information networks
and bridging of interfaces (i.e., machine—machine, human—machine, human—human) to address
global challenges (Figure 2). The early-stage development of a community-driven data ecosystem
for capturing and sharing polymer knowledge is described. Such platforms are essential to build
networks of information and people by providing streamlined interfaces for data and collaboration
between humans and machines. Through this lens of networks and interfaces, the collaborative
intelligence between humans and machines is explored, beginning with the transformation of data

into knowledge.



Figure 2: Networks and interfaces as catalysts for polymer materials innovation. Combining the mutual skills and
capabilities of humans and machines requires attention to the networks formed between humans and machines, as
well as improvements of their various interfaces (i.e., human—human, human—machine, and machine—machine), in
order to translate research discoveries into lasting societal benefits.

Transforming Data into Knowledge

The confluence of materials science and information science—expressed in frameworks
such as the ‘twin tetrahedra™'—can be described at a high level as a closed loop in which
materials data (e.g., process, structure, properties) pass into information systems (e.g., through
digital workflows and knowledge representations®) to generate actionable information to further
improve those materials. The transformation of data into knowledge is an iterative process
facilitated by the verification and distillation of information into robust models and expressive
representations. Although digitalization has amplified the production and dissemination of
information, humans still have limited time, attention, and capacity to accurately assess multi-
dimensional problems. The volume of information generated by AESs will only exacerbate the
need to filter and distill continuous streams of data and information into useful, actionable
knowledge. Long before the Internet, the human desire to capture knowledge for posterity spurred

the development of written language, the construction of libraries, and imaginings of mechanical



contraptions that assimilate human thought.®* 3* Today, AESs represent a novel thread in the
age-old tapestry of knowledge generation, providing a powerful tool and new opportunities to free

up human attention to pursue continued innovation.

The coupling of expert knowledge and intuition with Al recommendations can form a
foundational component of an ecosystem for autonomous research. Just like humans, any given
AES operates within a particular context and will be subject to biases depending on its
configuration, constraints, and environment. The potential for bias is exacerbated in the case of
polymers, whose properties are highly sensitive to subtle differences in preparation and analysis.
The fusion of theory into models provides one way to mitigate biased data and enhance the ability
to navigate complex design spaces.'® 37 Another way involves providing these disparate
systems with a shared ecosystem for communicating and learning from experience in different

contexts through collaborative networks.

Leveraging Networks to Achieve Scale

While autonomous research systems and human researchers may have the capacity to
operate independently, a collaborative intelligence that combines the talents of humans and
machines can unlock the value generated through network effects (e.g., Metcalfe’s Law?®). The
incremental value added by each new node in a network exceeds the incremental cost of adding
the node to the network, leading to super-linear scaling in innovation.*®* The World Wide Web,
through its distributed network architecture and ability to reference resources through hyperlinks,
has brought about significant areas for value creation. Networks of individuals and organizations
have spatial components that impact the flows of tacit and codified knowledge among local

clusters and through global pipelines.*°

The development of open standards forms a foundation for unlocking the benefits of

networks. Positive feedback loops for value generation are balanced by negative feedback loops



when considering competing between networks—why participate in network B when network A is
larger and offers more value today?—which can ultimately stifle innovation.*’ To counter such
winner-take-all, lock-in scenarios, open standards provide a basis for healthy competition and

yield net benefits for stakeholders.*

In the international scientific community, the notion of FAIR (findable, accessible,
interoperable, reusable) guiding principles for data stewardship has gained steam and offers a
shared understanding of the importance of data practices in materials research.?® 4 These
guiding principles argue for the use of applicable standards as well as annotation with machine-
interpretable metadata. Essentially, a ‘FAIR’ approach to data management offers a way to extract

value from research investment by extending the shelf-life of research outputs (i.e., data).

Efforts to facilitate the growth of a network should also consider ways to mitigate the
negative aspects that arrive with scale. For example, the same super-linear scaling applies to
negative socioeconomic aspects as well, including increasing the potential reach of bad actors,
irrational behavior caused by groupthink, or a lack of perceived individual responsibility. While
complex social dynamics plays a role, networks of machines and algorithms could potentially
suffer from emergent biases, for example amplifying existing biases in their data.** Establishing
proper checks and balances into the structure of these networks becomes important when
considering their long-term sustainability. For example, human-centered Al emphasizes the role
of human control in the development of reliable, safe, and trustworthy automation.*® Finally, value
generated within a network can form a divide between those who participate and those who do
not. Acknowledging these potential disparities, and addressing them through interfaces, can

strengthen the overall network through increased overall participation.



Bridging Interfaces of All Types

The addition of a node to a network results in the potential creation of multiple interfaces
and their associated barriers to communication, so the engineering of interfaces becomes
increasingly important as a network scales in size and complexity. Consideration of the various
interfaces entailed in future of AES-facilitated research (i.e., machine—machine, human—machine,
human-human) reveals numerous readily achievable, high-impact opportunities to lower these

barriers, incorporate different perspectives, and serve as a catalyst for innovation.

Machine—machine interfaces involve careful architectural design and the application of
appropriate protocols and data representations. Driven by application programming interfaces
(APls), these interfaces should consider performance (e.g., minimal latency and network
bandwidth, portability, robustness) while maximizing the independence and scalability of
components within the network. For example, Representational State Transfer (REST) describes
constraints including uniform interface, stateless behavior, independent layers, and client-server
communication that form essential aspects of the modern Web.* For platforms aiming to promote
interoperability among autonomous systems, a REST API provides the necessary communication
layer for these systems to exchange information, and developers can employ REST to create
scalable applications through a microservices architecture. Beyond these considerations about
the flow of data between machines, the data representations employed (e.g., schema-oriented,
ontology-based) play an important role by implicitly determining the expressive capabilities of the

interface.

Human—machine interfaces remain a critical aspect of autonomous systems and the focus
of a large area of research in human-computer interaction. One must recognize the role of
humans not only during the course of their operation, but in their iterative development and
implementation as well.*> 4’ For example, mixed-initiative user interface design considers the

coupling of human control through direct manipulation with systems that provide automated



services.*® Representations for communicating and accurately portraying research findings to
human researchers play a major role in facilitating this interface, including data visualization and

interaction design.*® %

Human-human interfaces (i.e., technically rich communication) form the basis of
collaborative research and development, bringing together contributors with diverse perspectives
to drive innovation and push the limits of scientific research. Enabling people to contextualize and
apply knowledge involves making it easier to quantify observations, their context, and their
reliability; create distilled and expressive representations of findings; and get those findings in
front of others who can augment or refine them. For example, an effective figure or elegant
mathematical expression can impart understanding much more rapidly than a verbose paragraph
describing the same concept. Computational notebooks show promise as a medium for
communicating interactively through the integration of code and prose.’' Other emerging
technologies such as augmented reality (AR) offer new ways create shared representations and
reason over virtual models within physical spaces.®> New methods and media may emerge, but
the essential goals of these tools to augment human thought processes and communication will

continue.

For the scientific community to address the pressing needs of today, it should consider
how these various interfaces impact the networked system as a whole. These opportunities are
readily actionable in the sense that many improvements can be made by appropriately configuring
existing technologies, and they are high-impact because they affect the growth and long-term
sustainability of these systems. Sustainability of these networks and their interfaces becomes
critical in order to address the persistent and global scale of polymers, a multi-billion-dollar
industry that produces hundreds of millions of metric tons per year, the majority of which currently

ends up in landfills.>?



Community Resource for Innovation in Polymer Technology

The Community Resource for Innovation in Polymer Technology (CRIPT)—a collaboration
between stakeholders in industry, academia, and government—aims to provide a platform for
researchers in polymer science and engineering to capture and share knowledge. An ecosystem
such as CRIPT provides a digital infrastructure to capture the complexities of polymer data and
metadata (including necessary chemical detail) in a structured and searchable way (Figure 3).
One key philosophy of CRIPT is to ‘meet researchers where they are at,” allowing them focus on
the most relevant data for their use case and providing them with tools to augment their data with
appropriate metadata. Through user interfaces and data standards, this collaborative platform
enables the networking and interfacing of humans and machines for the broader purpose of
accelerating materials discovery to solve key societal challenges around the design and

repurposing of polymers.
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Figure 3 CRIPT as a facilitator of networks and interfaces for polymer informatics. The vision for CRIPT is an
open-source ecosystem of data and software tailored for polymer materials. These objectives will be realized by
enabling collaboration among stakeholders, linking polymer representations to detailed metadata, and offering multiple
interfaces and on-ramps for stakeholders to harness the power of polymer informatics.



Polymeric materials pose unique challenges around their specification and representation
that necessitate the development of a dedicated data ecosystem. Informatics approaches for
small molecules have limited applicability to polymeric materials because polymers are stochastic,
form complex topologies, and have properties that depend strongly on processing. Such
challenges present a need to innovate and develop tools that extend the capabilities of
cheminformatics. These tools must capture the variety of experimental and computational data
with chemical fidelity within a flexible data model such that modern cheminformatics methods can

be brought to bear on polymer problems.

Key technological precursors to CRIPT include a novel way to represent polymers in a
database, as well as a structured approach to linking polymeric structure to characterization data.
First, the BigSMILES line notation captures a compact representation of a polymer through the
notion of stochastic objects as well as specification of the bonding constraints for these repeating
units.> The PolyDAT data schema provides a file format for capturing reaction and
characterization data as structured JSON, % and this notion is currently being extended to capture
relationships between materials, processing, and data within a graph-based data model.
Additional efforts in canonicalization provide a way to efficiently reference polymers in a database,

whose multiplicity otherwise impedes such efforts.

At the time of writing (July 2022), the CRIPT platform exists in a pre-release development
phase with a limited group of early adopters in academia, industry, and government settings. The
involvement of multiple stakeholders has been an essential aspect of the co-design and co-
creation of the platform.>” Through interviews and focus groups, these stakeholders have
provided valuable input and insight through their unique perspectives and variety of data-related
requirements. The resulting CRIPT structure uses a REST APl with a Python software
development kit (SDK) to enable programmatic access to data along with a web-based graphical

user interface (GUI) for organizing and interacting with data visually, two key human—machine



interfaces within the platform. The programmatic interface enables developers to augment
existing interfaces (e.g., data ingestion, workflow automation), while the GUI provides an
important endpoint for visual validation of uploaded data and easy browsing. To engender trust
in data uploaded to CRIPT, organization- and institution-independent ORCID identifiers are used
as the basis for user authentication.®® The system integrates with Globus' to manage
authentication and file storage, with the eventual goal of direct integration with characterization
instruments across user facilities.>® ¢ Current and future efforts aim to deliver additional value
through Al-based data validation, more automated data ingestion workflows, integration with
robotic research platforms, and the ability to configure private instances of CRIPT for stakeholders

in industry with strict data sharing policies.

The long-term vision of CRIPT as a community-driven digital ecosystem for polymer
innovation hinges on open-source code contributions, robust data pipelines, and clear articulation
of value to researchers. First, the Python SDK enables programmers outside the core
development team to develop application-specific software and share with others in the CRIPT
community who may adapt and improve upon this software to further enrich the data resource.
Second, the data model strikes a balance between configurability and rigidity that accommodates
a variety of use cases while still promoting unified annotation with metadata. Finally, the web
application aims to make it easier for a given researcher to accomplish their work, providing
incentive to invest the necessary time and attention to data management beyond the minimum
requirements of a funding mandate. By empowering individual polymer researchers to manage

their data, CRIPT will play an important role in the propagation of polymer knowledge.

Measurable value generation of a platform such as CRIPT can be defined through the
time and cost savings from using the platform compared to existing alternatives. For example, a
tool that can parse and suggest a template for visualizing a dataset saves minutes of time

otherwise spent configuring a plotting tool. Hours otherwise spent combing the literature for the



properties of a polymer—a task that may be avoided entirely due to the associated cost—can be
greatly reduced through structure-based searches linked to verifiable property metadata.
Identifying useful targets for synthesis alone could save months of research effort. Other, less
easily measurable forms of value may include the spark of insight that results in a fruitful new
research direction, a new perspective that deepens current understanding of physics, or a new
process that slows down or reverses the current problems of plastic waste. The fog at the current
frontier of polymer informatics will lift as new discoveries and innovations are made and shared—

one network and interface at a time—ultimately paving the way for the next frontier.

Conclusions and Perspectives

Digital ecosystems such as CRIPT will play a critical role in the future development of
AESs. First, an open, standard communication protocol is a foundational technology for
autonomous systems to send and receive information. Second, the perspective of CRIPT to ‘meet
researchers where they are at’ in terms of data practices and requirements instills an important
human element to the platform. Networks and interfaces, such as those enabled by CRIPT, form
a critical part of the broader fundamental shift in division of labor suggested by the current
trajectory of autonomous research. The notion of human-centered Al for reliable, safe, and
trustworthy autonomous systems comes into play here,* where thoughtful design provides
humans with requisite control mechanisms to effectively guide the autonomous systems
appropriately and offers checks and balances as these networks of humans and machines grow
in scale. lterative development of such systems becomes possible by building stakeholder
relations, involving consumers in the co-design of the platform and its features, and recognizing
the role of humans in the networks and interfaces of these systems. A well-designed artificial
intelligence should feel natural to interact with while simultaneously supporting the development

of human skill and mastery.



Advancements in robotics, algorithms, and computation will continue to accelerate
materials discovery, while networks and interfaces (human and machine) facilitated by open
informatics platforms such as CRIPT will act as catalysts to fully unlock this potential. Integration
of autonomous experimentation into the typical materials research workflow involves
paradigmatic shifts in the way knowledge is generated, validated, and disseminated. By focusing
on readily actionable, high-impact opportunities in forming networks and bridging their interfaces,

polymer informatics will produce transformative and lasting societal benefit.
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