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Abstract: Electric double layers form at all electrode-electrolyte interfaces and often play defining roles in governing 
electrochemical reaction rates and selectivity. While double layer formation has remained an active area of research 
for more than a century, most frameworks used to predict electric double layer properties, such as local ion 
concentrations, potential gradients, and reactant chemical potentials, remain rooted in classical Gouy-Chapman-
Stern theory, which neglects ion-ion interactions and assumes non-reactive interfaces. Yet, recent findings from the 
surface forces and electrocatalysis communities have highlighted how the emergence of ion-ion interactions 
fundamentally alters electric double layer formation mechanisms and interface properties. Notably, recent studies 
with ionic liquids show that ionic correlations and clustering can substantially alter reaction rates and selectivity, 
especially in concentrated electrolytes. Further, emerging studies suggest that electric double layer structures and 
dynamics significantly change at potentials where electrocatalytic reactions occur. Here, we provide our perspective 
on how ion-ion interactions can impact electric double layer properties and contribute to modulating 
electrocatalytic systems, especially under conditions where high ion concentrations and large applied potentials 
cause deviations from classical electrolyte theory. We also summarize growing questions and opportunities to 
further explore how electrochemical reactions can drastically alter electric double layer properties. We conclude 
with a perspective on how these findings open the door to using electrocatalytic reactions to study electric double 
layer formation and achieve electrochemical conversion by engineering electrode-electrolyte interfaces. 

1. INTRODUCTION 
Electrochemical interfaces formed between charged 

solids and liquids are ubiquitous in nature and are key to 
many emerging technologies in the growing area of 
sustainable energy, including electrocatalysis and energy 
storage. 1-6 Increasing interest in electrochemical processes 
drives substantial enthusiasm for exploring electric double 
layers through the perspective of catalysis science. In our 
view, this strongly complements and aligns with inquiries 
into the molecular level details of solid-liquid interfaces that 
have been pursued within the colloid and interface science 
�ields.  

In electrochemical systems, the liquid portion of solid-
liquid interfaces is composed of an electrolyte with 
dissolved ionic species, which experience electrostatic 
forces in the vicinity of the charged surface. These 
electrostatic interactions attract oppositely charged 
“counterions” and repel like charged “co-ions” to screen the 
applied potential. This results in the formation of a near-
surface portion of the solution where the electrolyte is de-
mixed into a counterion-rich and co-ion-depleted region 
called the “electric double layer” (Figure 1). 

The properties of this electric double layer region are 
de�ined by a balance of electrostatic and entropic driving 
forces. 7, 8 Electrostatic interactions favor more compact 
electric double layers with higher local counterion density. 
On the other hand, entropy favors thicker, more disordered 
electric double layers with smaller relative interfacial 
potential gradients. The degree of disorder and distance 
over which surface potentials are screened by imbalances in 
local ion densities are often key determinants of the 
performance of electrochemical devices. 

 

Figure 1. A schematic showing an example of classical models 
of electric double layer. Such models divide double layers into 
bound and diffuse layers. The bound layer is composed of 
solvent and counterions and is assumed to be a counterion 
diameter in thickness. The characteristic size of the diffuse 
layer is given by the Debye screening length, λD, which typically 
exceeds 10 nm under conditions where classical theory applies. 
The diffuse layer is enriched in counterions and depleted in co-
ions, and this charge imbalance screens the surface potential, 
which drops to 0 V in the bulk electrolyte. Reproduced with 
permission from ref (44). Copyright 2023 Wiley.  

For example, the distance over which surface potentials 
are screened de�ines the magnitude of local potential 
gradients, or electric �ields, at interfaces, which is often a 
governing descriptor for reaction rates and selectivity. 9-14 
Further, changes in interfacial ion densities and potential 
gradients can have a drastic impact on water hydrogen-
bonding network properties, 15-17 in�luence relative changes 
to solvation energetics, 18, 19 change the binding energies of 
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intermediates, 20, 21 modify the concentration of reactive 
species (e.g., protons and hydroxide anions), 22, 23 and even 
drive surfaces to reconstruct or dissolve. 24, 25 Together, these 
effects modulate the interfacial reaction microenvironment, 
26 and such effects are increasingly understood to play 
de�ining roles in sculpting reaction pathways. 27, 28 

The study and analysis of electric double layer formation 
arguably serves as a foundational direction for the �ield of 
colloidal science. From Helmholtz’s pioneering studies in 
the 1850s29 to contemporary investigations into diverse 
topics including colloid assembly, 30-32 soft materials, 33, 34 
and biology, 35-39 ionic assembly and electric double layer 
formation have been consistent threads connecting 
communities of researchers in colloid and interface science.  

In this perspective, we provide background on the 
development of classical electric double layer theory from 
the viewpoint of colloid and interface science to provide 
context that complements catalysis science. We then discuss 
recent advances and open questions pertaining to how 
electric double layers differ under conditions of high 
interfacial charge densities and large ion densities, which 
are often inherent characteristics of electrochemical 
interfaces and electrocatalytic processes. 

Following this conceptual overview, we describe different 
experimental approaches for investigating electric double 
layers and contextualize why the intersection of colloid 
science and catalysis is a promising avenue for advancing 
understanding of double layer formation at reactive 
interfaces. We then discuss how emerging understanding of 
electric double layer formation under conditions of high 
polarization and ion densities could provide new avenues 
for modulating electrocatalytic activity. We conclude with a 
perspective on how to leverage electrocatalytic reactions to 
understand electric double layer formation. 
2. THEORETICAL UNDERSTANDING OF ELECTRIC 

DOUBLE LAYERS 
Most contemporary understanding of electric double 

layer formation remains rooted in the hallmarks of classical 
electric double layer theory, which was primarily developed 
between the 1850s and 1950s. 40 Recent developments in 
electric double layer theory have begun to incorporate 
features of nonclassical conditions, such as high ion 
concentrations and high polarizations. 41-43 
2.1. Classical Electric Double Layer Theory  

The Helmholtz model, 29 published in 1853, proposed that 
charged solid-liquid interfaces could be modeled by parallel 
planes of charge. One plane represents a charged surface 
and the other represents a single ion layer that fully screens 
the surface charge. In this model, the separation distance 
between the charged planes and the total charge density of 
the planes de�ines the interfacial capacitance, which is 
proportional to the electrochemical energy stored at the 
polarized interface. The Helmholtz model led to the concept 
of a “double layer” of charged species, but it signi�icantly 
overpredicts the magnitude of interfacial capacitances and 
neglects the essential role of entropy in governing 
molecular level details of electric �ield screening. 44 

By the early 1900s the double layer concept proposed by 
Helmholtz was being re�ined in parallel with expanding 
interest in statistical thermodynamics. It was found that the 
entropic cost of “de-mixing” a bulk electrolyte into a single 

layer of charge-compensating ions would incur an entropic 
penalty that would vastly outweigh the energetic 
stabilization offered by electrostatic screening. Gouy45 and 
Chapman46 independently put these conclusions on 
quantitative footing using Poisson-Boltzmann theory, a 
mean-�ield approximation, which assumes that all ions are 
independent point charges.  

The Poisson-Boltzmann theory models how relative 
changes in ion density are linked to variations in 
electrostatic potential adjacent to charged surfaces. The key 
characteristic of this model is that electric double layers are 
comprised of a diffuse layer of ions, rather than a single 
layer of bound ions. This diffuse layer is predicted to screen 
the surface charge over distances that can extend tens to 
hundreds of nanometers from the electrode surface, 
depending on the ion concentration in the bulk solution. 

Importantly, the core Gouy-Chapman assumption that 
treats ions as independent point charges neglects any 
in�luence from ion-ion interactions, ion size, and ion shape. 
As a result, the Gouy-Chapman theory predicts unphysically 
large ion densities immediately adjacent to solid surfaces, 
which also leads to erroneously large predictions of 
interfacial capacitance and local potential gradients. 40, 41 

In 1924, Stern bridged the approaches of Helmholtz with 
that of Gouy and Chapman by imagining the “double layer” 
as a region composed of a near-surface “bound” ion layer in 
series with a longer range “diffuse” double layer that 
extends into the bulk electrolyte. 47 The bound layer is 
composed entirely of counterions and solvent, while the 
diffuse layer contains a modi�ied distribution of ion density 
(Figure 1). An extension by Grahame linked the bound and 
diffuse double layers via a de�ined “Helmholtz plane.” 48 
These papers comprise the core of the Gouy-Chapman-Stern 
model of electric double layer formation, which remains a 
common formalism for analyzing electric double layers in 
both colloid and catalysis science.  

There are two important scaling lengths for evaluating 
electric double layers in classical systems. The �irst scaling 
length is the Bjerrum length (𝑙𝑙𝐵𝐵), which is a parameter that 
de�ines the distance where the electrostatic interaction 
energy between two elementary charges equals the energy 
of thermal �luctuations, or kBT: 

𝑙𝑙𝐵𝐵 = 𝑒𝑒2

4𝜋𝜋𝜀𝜀𝜀𝜀0kB𝑇𝑇
   (1) 

where e (C) is the elementary charge, ε is the relative 
permittivity, ε0 (F/m) is the permittivity of free space, kB 
(J/K) is the Boltzmann constant, T (K) is the temperature. In 
classical dilute electrolyte solutions, bulk ion 
concentrations are suf�iciently low that the average 
separation distance between ions always greatly exceeds 
the Bjerrum length. 

The second parameter is the Debye screening length, 7, 8 
which is derived from the Poisson-Boltzmann framework 
that describes the characteristic length scale of electrostatic 
screening. For a classical electric double layer, which is 
typically below 1 mM in aqueous solution, surface 
potentials are screened by 66% (or 1/e) at one Debye length 
away from the surface: 8 

𝜆𝜆𝐷𝐷 = � 𝜀𝜀𝜀𝜀0kB𝑇𝑇
2(𝑛𝑛𝑒𝑒2)𝜌𝜌

   (2) 
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where ε is the relative permittivity, ε0 (F/m) is the 
permittivity of free space, kB (J/K) is the Boltzmann 
constant, T (K) is the temperature, e (C) is the elementary 
charge, n is the ion valence, and ρ (ions/m3) is the ion 
density per unit volume. 

The Debye screening length is a parameter that emerges 
from the balance of entropy and electrostatics that governs 
double layer formation. Increasing bulk ion concentration in 
the absence of ion-ion interactions results in smaller 
screening lengths as abundant ions can be recruited to 
screen surface potentials with a minimal in�luence on the 
system entropy. In contrast, raising temperature increases 
the magnitude of entropic driving forces which oppose the 
formation of compact double layers and results in a larger 
Debye screening length. 

Many predictions of classical double layer theory are 
commonly applied to electrocatalytic interfaces, including 
the assumption that double layers always become more 
compact as ion concentrations increase and co-ions are 
excluded from the near-surface region. Despite the 
convenience of the assumptions made for classical 
electrolyte theory, increasing study of double layer 
formation in concentrated electrolytes and under high 
electrode polarization reveals that the emergence of ion-ion 
interactions, or ionic correlations, requires revisiting many 
of these classical pictures of interfacial properties. 
2.2. Non-Classical Electric Double Layers Arising from 

Ion Correlations 
In electrochemical systems, high applied potentials and 

high ion concentrations mean that ion-ion interactions 
cannot be neglected. As a speci�ic example, classical models 
of electric double layer formation prohibit co-ions from 
being in the bound layer, as such an outcome would incur 
both electrostatic and entropic penalties. Yet, co-ion effects 
are rife in electrochemistry and electrocatalysis. 49-52 

In general, many efforts to analyze double layer formation 
under more complex conditions involve approaches that 
correct the mean-�ield Poisson-Boltzmann expression to 
account for ion-ion interactions or the discrete molecular 
nature of solvent. 53 Computational and theoretical work 
indicates that double layer formation can exhibit signatures 
of self-assembly. 54, 55 Further, simulation studies �ind that 
like-charge co-ions can be present immediately adjacent to 
charged surfaces under conditions where ionic correlations 
drive formation of self-assembled ion networks. 40, 53 We 
view these departures from ideality as critical elements of 
understanding how double layer formation can modify 
electrocatalytic activity and acknowledge the importance of 
these complementary studies. 

Since the 1950s, substantial efforts and successes have 
been achieved in extending electric double layer theory 
beyond the assumptions that are inherent in Gouy-
Chapman-Stern theory. A full review of this extensive 
literature is beyond the scope of our perspective, and we 
direct the reader to references from Wu, 40 Fedorov and 
Kornyshev, 41 and Zhan et al., 56 for detailed discussions of 
how development in theoretical and computational 
methods have advanced the �ield beyond Gouy-Chapman-
Stern models. The core �indings from many of these studies 
align with conclusions from the experimental evaluation of 

ionic liquids and concentrated electrolytes discussed in the 
next section. 

In the remainder of this perspective, we focus on how 
experimental study of ionic liquids and concentrated 
electrolytes has advanced the understanding of electric 
double layer formation and, more recently, started to 
connect these departures from classical theory to 
electrocatalytic activity. By focusing on experimental 
methods and approaches, we aim to constrain the scope of 
this extensive area to the primary expertise of our 
laboratory. Nevertheless, we are enthusiastic about 
continued computational and theoretical development, and 
see major opportunities for such approaches to contribute 
groundbreaking insights into questions and opportunities 
identi�ied in the remainder of this article. 

 

Figure 2. A scheme of a non-classical electric double layer. 
Electric double layers differ from classical models under 
conditions of suf�iciently high bulk ion concentrations or 
surface polarizations that induce ion-ion correlations and co-
ion effects. At bulk electrolyte concentrations exceeding 1 M, 
ion-ion correlation arises, and the double layer is composed of 
nanostructured ion clusters, which causes co-ions to become 
localized in near-surface bound ion multilayers that extend 1-5 
nm away from surfaces. Reproduced with permission from ref 
(44). Copyright 2023 Wiley. 

2.3. Electric Double Layer Formation at Electrochemical 
Interfaces  

In many electrochemical systems, high applied potentials 
and high local ion concentrations bring electrochemical 
interfaces into the non-classical regime. For example, many 
electrocatalytic devices operate at applied potentials 
exceeding 1 V of polarization, 13, 49, 57-59 several times larger 
than thermal �luctuations, or 1 kBT of energy (25 meV at 
room temperature). These high potentials readily drive the 
accumulation of near-surface bound ion layers with 
suf�iciently large ion density that ion-ion interactions 
emerge and in�luence interfacial properties. 54 

Ionic liquids are widely studied model systems for 
exploring electric double layer formation (Figure 2). 51, 53, 60-

64 As neat liquid salts often exceeding 4 M in ion 
concentration, ionic liquids provide opportunities to study 
double layer formation in highly correlated electrolytes. 41, 43 
Ionic liquids also have many technologically advantageous 
properties, 60, 65 such as tunable molecular structures, high 
electrochemical stability, and negligible volatility. As such, 
ionic liquids have been broadly applied as electrolyte 
additives within the electrocatalysis community to control 
electrochemical reaction rates and selectivity. 13, 49, 66-68 
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Early attempts to account for ion-ion interactions in 
concentrated electrolytes divided the total population of 
ions into “free” and “paired” groups. In solution, free ions 
contribute to screening with a background of neutral ion 
pairs. 41 However, more recent �indings from the surface 
forces and soft condensed matter communities support the 
idea that ion-dense regions are better described as 
correlated networks composed of larger clusters of ions and 
solvent rather than distinct classes of solvent-separated 
“free” and “paired” groups. 43 

This important re�inement suggests that correlated ion 
networks can modify interfacial microenvironments and 
hence in�luence electrocatalytic processes. For example, 
water and other molecules dissolved in ionic liquids have 
distinct properties from those of typical solvents. 69  Further, 
even many classes of ionic liquids can absorb substantial 
amounts of water, which often accumulates at interfaces15 
and in�luences electrochemical reactivity. 41 Ultimately, we 
envision that studying how ionic clustering can be used to 
tune solute concentrations and reactivity will yield new 
knobs for catalytic control. 

Importantly, the formation of ionic networks at elevated 
concentrations also has a pronounced impact on 
electrostatic screening, which concurrently impacts the 
magnitude of electric �ields at interfaces. 13, 42 As previously 
discussed, classical dilute electrolyte theory predicts that 
electrolytes with ion concentrations exceeding about 1 M 
should fully screen charged surfaces within molecular 
distances of less than 1 nm, reminiscent of the Helmholtz 
model of electric double layers. Such a picture would 
suggest that all concentrated electrolytes should universally 
result in highly localized potential gradients, leaving 
interfacial capacitance and electrochemical reactivity to 
become largely independent of the electrolyte composition. 

Yet, surface forces experiments show that aqueous and 
ionic liquid electrolytes exhibit non-monotonic screening 
lengths with concentration. 42, 43, 70 Notably, screening 
lengths in highly concentrated solutions can even exceed 15 
nm, which is larger than the Debye length for 1 mM aqueous 
NaCl. 42, 43 This is consistent with experiments that show 
double layer capacitances of neat ionic liquids in the range 
of 10 μC/cm2, which is comparable to the double layer 
capacitance of dilute electrolytes. 41  

Further work proposed that most ions in concentrated 
electrolytes are correlated into a locally charge-neutral 
network, leaving a smaller population of available charges 
to behave as screening species. 71, 72 For example, fewer than 
1 in 10,000 of the ions in typical ionic liquids would be 
required to be effectively dissociated to explain the 
observed diffuse double layer screening length of 5-10 nm 
that is increasingly observed across typical ionic liquids. 72 

This non-monotonic relationship between ion 
concentration and electrostatic screening length indicates 
that the formation of ionic clusters at higher concentrations 
begins to inhibit the ability of electrolytes to ef�iciently 
screen charged surfaces and causes interfacial potential 
gradients to extend further into the electrolyte. Indeed, 
recent studies from our lab show that CO2 electrochemical 
reduction rates peak at intermediate concentrations in ionic 
liquid-derived electrolytes, 13 where strong interfacial 
potential gradients stabilize a key CO2 reduction 
intermediate and resulted in improved device performance. 

In correlated electrolytes, like-charged co-ions can also 
become con�ined in the bound ion layer, 43, 71 which is an 
outcome that is prohibited by classical electrolyte theory. In 
dilute electrolyte theory, co-ions should be completely 
excluded from the near-surface bound ion layer. Hence, 
classical dilute electrolyte theory would suggest that co-
ions should have little in�luence on electrocatalytic reaction 
rates or selectivity. 

 

Figure 3. Co-ions present near the surface of a cathode. The 
adsorption of co-ions at electrode surfaces is a well reported 
non-classical effect. For example, hydroxide and halide anions 
near a negative cathode were reported to modulate electro-
chemical CO2 reduction. Reproduced with permission from ref 
(51). Copyright 2016 Royal Society of Chemistry. 

Yet, the electrocatalysis literature contains numerous 
examples of co-ion effects. 50-52, 73, 74 For example, the size of 
solvated anions was found to signi�icantly in�luence their 
near-surface concentration and consequently rates of 
electrochemical CO2 reduction (Figure 3), 51 indicating the 
necessity of considering anionic co-ions in cathodic 
reactions.  Growing interest in electrocatalytic reduction of 
anionic species, such as nitrate, 75-77 further highlights the 
importance of studying the behavior of anions in electric 
double layers on cathodes. A more detailed discussion of co-
ions effects is presented in Section 4.2.  

In many cases, the speci�ic details of how, when, and why 
co-ion effects can play a role in determining electrochemical 
reaction pathways remain open to investigation. We are 
optimistic that additional synergy between investigations in 
the areas of correlated electric double layer formation and 
electrocatalytic reactivity will provide fertile ground for 
transforming understanding of both electric double layer 
formation and electrocatalytic reactivity. 
3. EXPERIMENTAL APPROACHES TO MEASURE 

ELECTRIC DOUBLE LAYER PROPERTIES  
Electric double layer effects are increasingly investigated 

within the electrocatalysis �ield, 78, 79 spanning diverse 
reactions including water splitting, 80, 81 CO2 conversion, 13, 49 
and nitrate reduction. 14, 82 In many cases, systematic 
investigation of how modulations to electrolyte 
composition in�luence electrocatalytic reactivity has been 
insightful for linking double layer formation to 
electrochemical reactivity.  

To date, study of electric double layer effects in catalysis 
has seen signi�icant progress at modest electrolyte ion 
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concentrations of around 0.1 M, where complementary 
electronic structure calculations are useful in linking 
adsorbate and intermediate binding energies to changes in 
reaction rates and selectivity. This approach has been used 
to bridge differences in alkali cation hydration energies to 
CO2 reduction rates and selectivity. 83, 84  

However, systematic study of correlated electrolytes 
where collective ionic assembly can govern reaction rates 
and selectivity has remained much less explored. In these 
complex nanostructured electrolytes, the most effective 
works are those that integrate study of electrochemical 
reactivity, interfacial structure, and electrochemical 
properties in a synergistic manner. Below, we survey 
different experimental approaches to study interfacial and 
electrochemical properties in correlated electrolytes to 
show how tools and approaches from colloid and interface 
science can advance understanding of how electric double 
layer formation in�luences electrocatalytic activity.  
3.1. Surface Forces Measurements on Ionic Liquids and 

Concentrated Electrolytes 
Surface forces measurements provide a unique way to 

determine the spatial extent and nanoscale ordering of 
electric double layers. In a surface forces measurement, 
such as those performed with a surface forces apparatus85 
or atomic force microscope, 86 a probe surface is brought 
towards a sample surface. Once the two surfaces begin to 
interact via colloidal surface forces or hydrodynamic forces, 
the probe surface will begin to accelerate or decelerate 
(Figure 4A). The range and magnitude of any attractive or 
repulsive forces are measured by a calibrated spring. 
Additional details of experimental apparatus and analysis 
can be found in Kristiansen et al. 85 and Butt et al. 86 
references. 

Surface forces measurements as a function of separation 
distance provides powerful information about the physical 
structure of electric double layers. The resulting “force-
distance pro�iles” can directly yield electrostatic decay 
lengths of the bulk electrolyte. Further, force detection 
sensitivity ranges from pN to nN, and distance sensitivity 
can approach 2-5 AÅ  (Figure 4A), 43 which is about the size of 
a water molecule. Such force and distance resolution readily 
allows for the measurement of the thickness and even 
nanostructure of bound and diffuse ion layers, enabling one 
to develop quantitative understanding of how the electric 
double layer varies as a function of ion concentration, 
solvent properties, and applied electrochemical bias. 43, 85 

Surface forces interrogation of double layer formation at 
the interface between mica, ionic liquid, and gold in 2013 
revealed that electric double layers formed by neat ionic 
liquids can extend much farther away from a charged gold 
electrode surface than expected. 71 Most models at the time 
predicted that double layers in neat ionic liquids should 
comprise either one or two bound ion layers, 41, 53, 63 
reminiscent of the initial Helmholtz model of electric double 
layers. Instead, the diffuse layer electrostatic decay length 
reported for a common imidazolium ionic liquid was around 
10 nm (Figure 4A). 71  

This work also reported oscillatory short-range forces 
extending 2-4 nm away from the charged surfaces, 71 which 
is consistent with surface forces measurements between 
two negative mica surfaces. 54, 87 Since the dimensions of 

imidazolium bis(tri�luoromethylsulfonyl)-imide ions are 
around 0.5-1 nm, the results from these measurements 
indicate bound ion layers in ionic liquids extend multiple 
ion diameters away from charged surfaces and consist of 
both counterions and co-ions. Similar conclusions have 
been reached by other investigators using atomic force 
microscopy measurements. 43, 88, 89 

 

Figure 4. Surface forces studies of electric double layer in 
solutions with high ionic strengths. (A) Force-distance pro�ile 
obtained using a surface forces apparatus with in situ 
electrochemical control. Forces were measured between a 
negative single crystalline mica surface and a positive 
(anodically polarized) atomically smooth gold electrode across 
the common aprotic ionic liquid 1-butyl-3-methylimidazolium 
bis(tri�luoromethylsulfonyl)imide [BMIm][TFSI]. The x-axis 
shows the surface separation in nm, the y-axis shows the force 
normalized by the radius of curvature, black points are 
measured data, and the solid lines are �itted interaction 
potentials. (B) The decay length of long-range repulsion 
between symmetric negative mica surfaces in 1-ethyl-3-
methylimidazolium bis(tri�luoromethylsulfonyl)imide 
([EMIm][TFSI]) decreases with increasing temperature. (C) 
Non-monotonic dependence of screening lengths with 
concentrations of electrolytes. Surface force measurements 
show that highly concentrated solutions of NaCl and Ionic 
liquids both have long screening lengths comparable to dilute 
solutions. Figure 4A reproduced with permission from ref (43). 
Copyright 2017 Royal Society of Chemistry. Figure 4B 
reproduced with permission from ref (72). Copyright 2015 
National Academy of Sciences. Figure 4C reproduced from ref 
(42). Copyright 2016 American Chemical Society. 

Subsequent work in the surface forces community 
revealed the electric double layer thicknesses in ionic 
liquids decrease as temperature increases (Figure 4B). 72  
This temperature dependence differs from the predictions 
of classical theory and suggests that increased thermal 
energy disrupts ionic correlations to collapse double layers. 

These �indings have substantial implications for 
electrocatalysis by suggesting that experimental screening 
lengths vary non-monotonically with electrolyte ion 
concentration (Figure 4C). Consistent with classical theory, 
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double layer screening �irst becomes more ef�icient, as 
evidenced by more compact double layers, as electrolyte ion 
concentration is increased from the dilute limit to around 
10 mM. From around 10 mM to 1 M, electric double layer 
properties can have a more complicated concentration 
dependence, but growing consensus suggests that double 
layers are the thinnest and electric �ields are the strongest 
at around 1 M in ionic strength. Beyond 2 M, the double layer 
increases with increasing concentration. This is particularly 
salient in aqueous electrolytes of alkali metal salts, in which 
measured screening lengths can exceed 5 nm, whereas 
classical electrolyte theory predicts screening lengths 
smaller than the size of a single water molecule. 42, 70 

We see many opportunities for continued surface forces 
investigation of compositionally complex electrolytes, 
especially as surface forces techniques are expanded to 
integrate in situ optical spectroscopy. These techniques will 
be especially valuable to investigate how double layer 
structures form under high polarizations, such as those 
exceeding ±1 V. At such strong electrode bias, we 
hypothesize that interfacial environments will contain the 
signatures of correlations, even with more modest bulk 
electrolyte concentrations below 0.1 M. These insights 
could be augmented by pairing surface forces tools with 
optical spectroscopy to �ill in missing information about 
local chemical compositions and any intermediate species 
that may be present. 
3.2. Electrochemical Impedance Spectroscopy of 

Interfaces 
Electrochemical impedance spectroscopy (EIS) is a 

nondestructive analytical technique used to probe 
electrochemical systems for important charge transfer, 
mass transport, and kinetic information. EIS operates by 
applying a sinusoidal current or voltage perturbation over a 
range of frequencies to an electrochemical system and 
observing the corresponding response in voltage or current, 
respectively, to measure impedance. The resulting data is 
composed of both real and imaginary components due to 
observed phase shift between the perturbation and the 
response. Impedance is represented by the combined effect 
of resistance and reactance, which are the real and 
imaginary components, respectively. 90-92   

The relationship between the applied perturbation and 
the phase shifted components can be seen in Equation 3: 

𝑉𝑉 = 𝐼𝐼𝐼𝐼 = 𝐼𝐼(𝑅𝑅 + 𝑖𝑖𝑖𝑖)  (3) 
where V (V) is the potential, I (A) is the current, Z (Ohm) is 
the impedance, R (Ohm) is the resistance, and X (Ohm) is the 
reactance. Reactance accounts for the combined response of 
inductance and capacitance. However, inductors are usually 
absent in most electrochemical systems, thus reactance 
often represents the capacitive response of the system. 90-92  

EIS is a common approach for evaluating double layer 
properties in the �ield of energy storage, where double layer 
capacitance is an important metric for benchmarking the 
energy density of electric double layer capacitors. 93, 94 EIS 
provides powerful information for catalysis studies as well, 
as capacitance measurements can shed light on interfacial 
properties that in�luence catalytic reactivity such as double 
layer capacitance, solution resistance, and charge transfer 
resistance. 90 Most studies into the relationship between 
capacitance and double layer structure are limited to 

conditions of zero or low applied potential to avoid 
complicating effects associated with catalytic activity or 
electrode surface restructuring under applied bias. 95-98 

 

Figure 5. Electrochemical impedance spectroscopy (EIS) 
enables measurement of electric double layer capacitances as a 
function of applied polarization and ion concentration. (A) In 
acetonitrile (AN) solutions of [EMIm][TFSI], the double layer 
capacitance increases with electrode polarization. (B) 
Meanwhile, the minimum double layer capacitance, 
understood as the capacitance at the potential of zero charge, 
exhibits a non-monotonic dependence on ion concentration, 
which peaks at intermediate concentrations of around 1 M. 
Reproduced from ref (98). Copyright 2015 American Chemical 
Society. 

A 2015 study used EIS to show that neat ionic liquids 
exhibit only modest interfacial capacitance of around 10 
μF/cm2 (Figure 5A), which is lower than the typical 
capacitance of 50-100 μF/cm2 observed in aqueous 
electrolytes. 98 Notably, the study demonstrated a non-
monotonic relationship between double layer capacitance 
and concentration where the capacitance at the potential of 
zero charge reached a maximum around 1 M (Figure 5B). As 
electrolyte concentration extends beyond 1 M, correlations 
induce the formation of ionic clusters, which reduces the 
number of free ions available to store charge. 98, 99 

The non-monotonic relationship between capacitance 
and ionic liquid concentration mirrors the relationships 
between CO2 electroreduction rate and ionic liquid 
concentration we recently reported. 13 This connection 
between catalytic activity and double layer capacitance 
highlights how EIS can provide information that can be used 
to link electrochemical double layer responses and catalytic 
performance. Indeed, the use of EIS appears to be rapidly 
expanding in electrocatalysis studies. 12, 100, 101  

Yet, systematic exploration of how electric double layer 
capacitance changes during active electrocatalysis, where 
surfaces reconstruct, intermediates are generated, and 
proton gradients are induced, remains in the early stages. 
We see substantial opportunities for expanding the use of 
EIS under operating conditions, especially when EIS studies 
are used in conjunction with other techniques, including 
surface forces measurements and optical spectroscopy. 
3.3. Optical Interrogation of Electric Double Layers 

Interfacial vibrational spectroscopy provides important 
chemical information that complements measurements of 
electrochemical and structural properties of electrocatalytic 
interfaces. 102, 103 Widely used examples of interfacial 
vibrational spectroscopy include surface-enhanced Raman 
scattering (SERS) or infrared absorption (SEIRAS) and sum 
frequency generation (SFG) spectroscopy.  
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SERS and SEIRAS selectively enhance the signal of 
molecules near nanostructured noble metal electrodes 
through surface plasmon resonance, 104 while SFG achieves 
interface speci�icity by the retention of SFG signal at solid-
liquid interfaces where the centrosymmetry is broken. 105 
Several other emerging methods such as tip-enhanced 
Raman spectroscopy106 or other means of leveraging 
nanocon�inement to enhance optical signals also show 
promise for continued study of electrochemical interfaces 
and are covered further in other reviews. 107-109 

One of the most important properties that can be probed 
by vibrational spectroscopy is the interfacial electric �ield. 
This is often achieved by con�ining probe molecules with 
permanent dipoles to interfacial environments such as a 
self-assembled monolayer (SAM) of aromatic molecules 
with a nitrile group (-CN). 102, 110 When an external electric 
�ield (i.e., interfacial electric �ield) is exerted on the probe 
molecule, vibrational states of the molecule would be either 
stabilized or destabilized depending on the alignment of its 
dipole and the electric �ield. The resulting changes in 
vibrational energies are observed as spectral wavelength 
shifts – known as Stark shifts – of the corresponding 
vibrational peaks.  

The Stark shift is usually linear with the strength of the 
electric �ields: 

𝛥𝛥𝛥𝛥 = −𝛥𝛥𝛥𝛥 ∙ 𝐹𝐹  (4) 
where Δν (cm-1) is the Stark shift, F (MV/cm-1) is the 

strength of electric �ield, and Δμ (cm-1/(MV/cm)) is the 
Stark tuning rate that is characteristic for each probe 
molecule. Measuring the Stark shift of probe molecules at an 
interface enables the experimental quanti�ication of 
interfacial electric �ields. 

For example, Dawlaty and coworkers used SFG and a SAM 
of 4-mercaptobenzonitrile to measure the interfacial 
electric �ield between an Au electrode and KCl electrolytes. 
111 At the same applied potential (0.3 V vs Ag/AgCl), larger 
Stark shifts were observed when the concentration of KCl 
increased from 0 to 0.1 M, indicating the presence of a 
stronger interfacial electric �ield at higher KCl 
concentrations. Additionally, they observed that when 
scanning the applied potential in the cathodic direction, the 
interfacial electric �ield stopped growing once a faradaic 
process such as the reduction of water was initiated (Figure 
6A), which was modeled as a “leaky capacitor”. This result 
further indicates the non-classical behavior of electric 
double layer under high polarization and when charge 
transfer processes evolve at the electrochemical interface. 

Similarly, the Stark shift of CO adsorbed on roughened Cu 
electrodes has been used as an in situ generated probe to 
study interfacial electric �ields during electrochemical CO2 
reduction. 112, 113 It is noteworthy that in addition to 
interfacial electric �ields, other intermolecular interactions 
such as the solvation of probe molecules or hydrogen 
bonding also contribute to Stark shifts. 114-116 Therefore, 
careful identi�ication of the source of Stark shifts is 
necessary to accurately assess the interfacial properties. 

In addition to Stark shift of adsorbates, our lab has shown 
that when double layers are composed of asymmetric ions 
such as ionic liquids, changes in relative SERS peaks can also 
be used to probe interfacial electric �ields and orientational 
order in double layers. For example, in situ electrochemical 

SERS reveals that electrostatic forces drive the collective 
reorientation of the cation 1-ethyl-3-methylimidazolium 
([EMIm]+) near a negatively charged electrode as 
polarization is continually increased (Figure 6B). 13, 49  

 

Figure 6. Interfacial vibrational spectroscopy can provide 
information on electric double layers. (A) Stark shifts of 4-
mercaptobenzonitrile were measured to quantify local electric 
�ield at the electrochemical interfaces between an Au electrode 
and a KCl solution. Increasing the cathodic polarization 
increases the interfacial electric �ield until charge transfer 
processes (e.g., HER) start. (B) Relative changes in peak 
intensities of asymmetric ions, such as imidazolium cations, 
during in situ electrochemical surface-enhanced Raman 
scattering (SERS) measurements can be used to monitor 
changes of double layer in response to applied potential. The 
change in relative peak intensities is linked to collective 
reorientation of cations, which can be a qualitative descriptor 
of the strength of local electric �ields. Figure 6A reproduced 
from ref (111). Copyright 2017 American Chemical Society. 
Figure 6B reproduced from ref (49). Copyright 2023 American 
Chemical Society.  

As SERS only enhances the vibrational modes 
perpendicular to a metal surface, relative peak intensities of 
[EMIm]+ change with the collective reorientation. Using this 
phenomenon, our lab studied the interfacial electric �ield 
between an Ag electrode and [EMIm][BF4]-acetonitrile 
electrolyte during electrochemical CO2 reduction. We found 
that the presence of co-ions, either brought by correlation 
with [EMIm]+ at high concentrations or generated from 
electrochemical reactions, 13, 49 signi�icantly weaken 
interfacial electric �ields, leading to lower reaction activity. 

Moving forward, we see major roles for continued 
investigation of how electric double layer formation 
in�luences electrocatalytic activity using interfacial optical 
spectroscopy. In addition to continued use of Stark probes 
and spectral shifts of anisotropic ions, we envision that the 
use of interfacial spectroscopy can provide important 
insights into how and when co-ions accumulate at 
interfaces. Further development of new methods that push 
spatiotemporal sensitivity into regimes where surface-
bound intermediates can be identi�ied and studied will open 
the door to new insights into how dynamic changes to 
surface structures and interfacial properties will modulate 
reaction activities. 
3.4. Scattering Approaches and Operando 

Photoelectron Spectroscopy 
Photoelectron spectroscopy methods provide ways to 

characterize double layer formation since the kinetic 
energy of emitted electrons is influenced by interactions 
with local electrochemical potentials. The kinetic energy of 
photoelectrons and the resulting spectral peak widths also 
provide chemical information, such as the atomic identity, 
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charge states, and chemical environments of redox active 
species. Hence, photoelectron spectroscopy provides 
information to form a holistic understanding of how double 
layer properties influence electrocatalytic reactions. 

The high energy resolution and detection sensitivity of 
synchrotron-based photoelectron spectroscopy facilities 
are powerful for probing electrocatalytic interfaces. For 
example, due to the limited mean free path of “tender” X-ray 
photoelectrons (ca. 10 nm), ambient pressure X-ray 
photoelectron spectroscopy (APXPS) has been used to 
probe the potential drop at the interface between an Au 
electrode and KOH electrolytes using water and pyrazine as 
probe molecules. 117 XPS peaks of oxygen in water (O 1s) and 
nitrogen in pyrazine (N 1s) in the double layer exhibit peak 
broadening when experiencing an electric field due to 
polarization of electrode surfaces. By combining 
experimental potential-dependent peak broadening and 
numerical simulations, a profile of potential drop within the 
electric double layer can be established (Figure 7).  

 

Figure 7. In situ electrochemical X-ray photoelectron 
spectroscopy (XPS) is an emerging technique that can provide 
information on both the chemical makeup of electric double 
layers and the propagation of potential gradients away from 
charged interfaces. XPS signals from elements in probe 
molecules broaden as a function of local potential gradient. The 
extent of spectral broadening from probe molecules at different 
locations depicts the pro�ile of electric double layer. 
Reproduced with permission from ref (117). Copyright 2016 
Springer Nature.  

Other groups have used ultrabright synchrotron light for 
THz spectroscopy118 or total electron yield mode X-ray 
absorption spectroscopy119 to illuminate interfacial water 
networks and water structure as a function of applied 
potential in aqueous NaCl electrolytes on gold electrodes. 
Extending these and similar approaches to a wider range of 
electrolytes and reactions would provide exciting new ways 
to study the interplay between double layer formation and 
reaction metrics such as selectivity or reaction rate. 

Synchrotron experiments require careful design, as 
necessary precautions are needed to eliminate background 
interference. Further, restrictions on samples that can be 
analyzed can pose a limitation, as vigorous reactions or 
volatile solvents may not be suitable for measurements 
using ultrahigh vacuum or high-energy X-rays. Nonetheless, 
insights gained from synchrotron experiments performed 
on more stable electrolytes show great promise for 
informing further development of models of double layer 

formation and reaction mechanisms that can be adapted to 
a wider range of electrolytes.  
3.5. Complementary Analysis of Electrochemical 

Interfaces 
Several other approaches employed in the colloid and 

interface science community can provide additional 
information on electric double layers and surface energies 
of electrochemical interfaces. We brie�ly summarize 
selected techniques, including contact angle measurements, 
120 electrocapillarity, 48, 121 electrochemical quartz crystal 
microbalance, and zeta potential characterization. 122 These 
approaches can provide additional layers of insight when 
integrated with in situ approaches discussed above. 

 Contact angle measurements rely on observation of the 
angle formed at a triphase interface. 123 When a small liquid 
droplet is contacted with a solid surface, the contact angle is 
de�ined by the relative interfacial energies of the three 
phases. An angle of 0° indicates a fully wetted surface, while 
a nonwetting surface will have a contact angle greater than 
90°. One of the most common uses of contact angle is to 
determine surface hydrophobicity when a water droplet is 
brought into contact with a solid surface. 120 

Under electrochemical bias, changes to electrode surface 
energies lead to changes in the contact angle between a 
liquid drop and a surface, an effect called electrocapillarity, 
which dictates surface wetting behavior. 48 Polarization of an 
electrode increases both the solid-liquid and solid-vapor 
interfacial energies, while leaving the vapor-liquid 
interfacial free energy comparatively unchanged. As a 
result, droplets typically spread further on a polarized 
electrode. This electro-wetting is dependent on applied 
potential, often leading to a situation where the electrode is 
fully wetted at high polarizations. 

 Changes in double layer properties are a major 
contributor to electrocapillarity. For instance, increasing 
surface hydrophobicity to partially exclude water molecules 
while enhancing the concentration of less polar reactants, 
such as CO2, is one promising way to suppress the reduction 
of water and enhance the selectivity of reactions. 124, 125  

Electrochemical quartz crystal microbalance (EQCM) is 
another powerful tool to study changes at electrochemical 
interfaces. Applying a potential to a thin quartz crystal 
through metal electrodes induces vibrational motion of the 
crystal at its resonant frequency through piezoelectric 
effect. 126 Changes in the properties, such as electrode mass 
or the viscosity of nearby electrolytes alter the resonant 
frequency and other essential parameters of the crystal, 
making EQCM a sensitive technique to unravel interfacial 
chemical processes. 

EQCM has been widely used to monitor processes such as 
electrode corrosion, 127 chemical adsorption or deposition, 
128-130 and mass transport within nanostructured or porous 
materials. 130, 131 Recent studies demonstrate that EQCM is 
also capable of depicting double layer structures. 132, 133  

For example, an EQCM study on aqueous solutions of 1-
butyl-3-methylimidazolium chloride ([BMIm][Cl]) and NaCl 
show a decrease of crystal resonant frequency when the 
solution ion concentration is increased due to the formation 
of denser double layer. 132 Combining with mathematical 
deduction, the study also revealed the saturation of 
interfacial electrolyte viscosity at intermediate 
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concentrations (1 M), which suggests a non-monotonic 
dependence of Debye screening length on electrolyte 
concentrations, agreeing with conclusions from surface 
forces measurements. 

Zeta potential measurements offer additional approaches 
to characterize double layers. 122 Zeta potential is de�ined as 
the potential at the boundary between bound ions 
surrounding a charged surface and the bulk electrolyte. 
These measurements are effective at determining if a given 
pairing of electrode and electrolyte is most likely to be 
positive or negative in charge, which can be used to deduce 
the propensity of different ions to chemisorb to surfaces. By 
evaluating how zeta potential changes as a function of 
composition and applied potential, information about 
double layer formation can be inferred. The zeta potential of 
an electrode can be evaluated through measuring streaming 
potential. 134-136 
4. INTERSECTION OF ELECTRIC DOUBLE LAYER 

PROPERTIES AND ELECTROCATALYTIC ACTIVITY  
Electric double layer formation plays an integral role in 

sculpting interfacial microenvironments where 
electrochemical reactions occur. Properties such as ion and 
reactant concentrations and chemical potentials differ 
drastically from those of the bulk electrolyte. Double layer 
properties are often linked to interfacial processes that 
determine electrocatalytic activity, including surface 
reconstruction, intermediate binding energies, and local 
microphase separation. 7, 8 Hence, the propensity of 
electrolytes to alter the rate, selectivity, or ef�iciency of 
electrocatalytic reactions by modulating double layer 
properties are the subject of substantial ongoing research. 

Below we discuss selected examples highlighting how 
electrolyte composition and electric double layer formation 
in�luence cathodic reactions.  We do not intend to cover the 
entirety of the vast literature on electrolyte effects in 
electrocatalysis but rather focus case studies that highlight 
how interconnections between double layer formation and 
electrocatalysis promise to advance transformative 
understanding of electrochemical interfaces. 

By focusing on electrocatalytic reduction, we aim to 
maintain consistency on counterions being positive and co-
ions being negative. Importantly, many of the fundamental 
links between double layer formation and electrochemical 
reactivity should extend to anodic interfaces and 
electrocatalytic oxidation reactions. 
4.1. Cation Effects at Cathodic Interfaces 

Among electrolyte contributions to electrocatalytic 
activity, cation effects have been extensively studied for 
cathodic reactions, including water reduction for hydrogen 
production, 137, 138 CO2 electroreduction, 12, 20, 139 nitrate 
electroreduction, 14 and more complex electrosynthesis 
reactions. 138 At cathodic interfaces, cations are strongly 
attracted to electrode surfaces via electrostatic interactions, 
particularly under large electrode polarizations, often 
exceeding -1 V. While protons (or hydronium cations) are 
also positive in charge, discussion of cation effects typically 
refers to the in�luence of salt species that are dissolved in a 
solvent to form an electrolyte, including alkali, alkaline 
earth, organic, and transition metal cations. 

The hydrogen evolution reaction (HER) is considered one 
of the simplest reduction reactions. In aqueous electrolytes, 

this consists of the reduction of water into hydrogen. As a 
model reaction, HER has been considered largely 
independent of speci�ic ion effects, but recent works have 
shown substantial effects of electrolyte composition on 
reaction rates. 11, 140 Continued progress towards revealing 
mechanisms by which electrolytes in�luence HER promises 
to inform design of electrolytes and interfaces for more 
complex electrocatalytic transformations. 

Many explanations of cation effects in HER hinge on how 
cations alter the stability of reaction intermediates in the 
rate-limiting step on electrode surfaces137, 141-143 or change 
local water hydrogen bonding networks. 144-146 For example, 
Koper and coworkers investigated the cation dependence of 
HER in neutral-to-alkaline conditions, where protons are 
sourced from water. They proposed that cations can 
promote HER by enhancing interfacial potential gradients to 
stabilize transition states involved in the water dissociation 
step. 10, 141 Under these conditions, the HER rate is sensitive 
to near-surface concentration of cations (Figure 8A) and 
increases with increasing ionic strength.  

Notably, at high ionic strengths where ionic correlations 
are expected to emerge, 43 HER can become inhibited by 
cations rather than promoted. While such an inhibiting 
effect is attributed to blockage of water transport by a 
compact layer of cations, 141 we envision that recent �indings 
on ionic correlations between cations and anions42, 43 may 
contribute novel understanding on the overall mechanism. 

Other examples of how cations can in�luence HER abound 
and further complicate understanding of how electrolytes 
in�luence reaction pathways and kinetics. 67, 140, 147 For 
example, Resasco and coworkers investigated the in�luence 
of cation size on electrodes with different inherent activities 
in acidic and alkaline aqueous media. This work found that 
cation effects are most pronounced in alkaline electrolytes 
and show convoluted trends on different metal groups. 137 

On noble metal electrodes such as Au and Ag, interfacial 
cations facilitate HER by lowering the activation barrier for 
water dissociation, which is the rate-determining step. They 
also found that larger cations such as Cs+ were more 
effective in promoting HER on Au and Ag than smaller 
cations like Li+ due to smaller hydration shells and thus 
higher interfacial concentrations. However, on reactive 
electrodes like Pt and Pd, where the desorption of [OH]- is 
the kinetically relevant, larger cations can limit rates by 
stabilizing adsorbed [OH]-. Notably, cation effects appeared 
to play a minimal role under acidic conditions, where most 
protons required to drive HER are sourced from hydronium 
that do not strongly interact with metal cations. 137 
For more complex electrocatalytic reactions, such as CO2 
reduction and nitrate reduction, selectivity to different 
pathways becomes increasingly important, and electrolytes 
can play as important a role as electrodes in determining 
selectivity. Using CO2 electroreduction as an example, the 
choice of cation has been shown to affect selectivity among 
H2, C1, and C2+ products on Cu electrodes through generation 
of local electric �ields that stabilize key polar intermediates  
(Figure 8B) through electrostatic interactions. 2, 11  

Larger cations (e.g., Cs+) were proposed to accumulate at 
higher concentration at the interface than smaller cations 
(e.g., Li+), thus providing a stronger electric �ield that 
enhances the selectivity of C2+ products. Cations were also 



 

Figure 8. Interfacial properties in�luencing the activity of electrochemical CO2 reduction. (A) Concentration of cations in the double 
layer governs the rate of HER. The rate of HER initially increases with the concentration of cations as cations can facilitate water 
dissociation. This promoting effect was more pronounced for larger cations. However, further increasing the concentration of cations 
may inhibit the rate of HER due to the blockage of the surface for H2O transport. (B) Solvated cations at electrode-electrolyte 
interfaces contribute to local electric �ields. Weakly solvated cations are expected to have smaller effective radii, thus enabling higher 
interfacial concentrations, and providing stronger electric �ield that can better stabilize the transition state of electrochemical CO2 
reduction and enhance the selectivity of C2+ products. (C) In [EMIm][BF4]-acetonitrile electrolytes, concentration of cations at 
interface is maximized when the bulk concentration of [EMIm][BF4] is in the intermediate regime (0.5 to 1 M), leading to the shortest 
screening length and strongest interfacial electric �ield. Figure 8A reproduced from ref (141). Copyright 2021 American Chemical 
Society. Figure 8B reproduced from ref (11). Copyright 2017 American Chemical Society. Figure 8C reproduced from ref (13). 
Copyright 2022 American Chemical Society.  

 
proposed to in�luence the selectivity of CO2 reduction 
through enhancement of local CO2 concentrations, 
modulation of the interfacial electric �ield, 12 or suppression 
of water dissociation. 14, 148-150 

Similar cation effects have been reported for nitrate 
reduction, where larger numbers of proton and electron 
transfer steps are required. For example, nitrate reduction 
to ammonia requires transfer of 9 protons and 8 electrons, 
which often yields a mixture of side products. 148 Reported 
cation effects point towards the interaction strength 
between a metal cation and nitrate anion14 or the promotion 
of hydrogen adsorption149 as the reason behind enhanced 
reaction rates and selectivity in the presence of certain 
cations. Where there is emerging interest in synthesizing 
organic molecules such as urea, 151 adiponitrile, 150 and 
peroxides, 152 cation effects identi�ied from studying simpler 
reactions have proven promising avenues for improving 
overall selectivity and reaction rates.  

We note that most studies of cation effects to date have 
focused on how single cations can modify the binding 
energies of individual intermediate species within a near-
surface bound ion layer, which is reminiscent of the Gouy-
Chapman-Stern framework discussed above. Yet, emerging 
evidence suggests that larger applied potentials and higher 
concentrations often employed in electrocatalytic processes 
can have a substantial impact on electrocatalytic rates and 

selectivity in ways that cannot be predicted using classical 
theories where ion-ion interactions are neglected. 13, 22 The 
most notable effect is the inclusion of anions in the electric 
double layer and the observation of co-ion effects. 
4.2. Anion Effects and Interfacial [OH]- 

In classical electric double layer theory, accumulation of 
anionic species at cathodic interfaces is disfavored by both 
electrostatic repulsion and entropic effects. However, co-
ions can have major effects on interfacial micro-
environments and reactivity. For example, our study on CO2 
reduction in [EMIm][BF4]-acetonitrile electrolytes shows 
that at concentrations of [EMIm][BF4] exceeding 1 M, strong 
correlations between [EMIm]+ and [BF4]- con�ines anionic 
[BF4]- to the interfacial region, which leads to a thicker 
double layer and weaker interfacial electric �ield. 13 The 
highest CO2 reduction rate was observed when the 
concentration of [EMIm][BF4] was in an intermediate 
regime of 0.5 to 1 M (Figure 8C), before ionic correlations 
begin to dominate. 13 

Co-ion effects are even more pronounced when interfacial 
anionic species are electrochemically generated. For 
example, the electrochemical generation of interfacial [OH]- 
via consumption of protons from water during 
electrocatalysis is broadly acknowledged as a key 
determinant of reaction rates, selectivity, and process 
ef�iciency for many reactions. 49, 57 Such effects are often 
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referred to as an altered “interfacial pH,” 26, 51 and many 
trends can be explained by consideration of speci�ic 
chemical coordination interactions.  

For example, CO2 electroreduction generates [OH]- and 
subsequently (bi)carbonates as possible byproducts in 
aqueous electrolyte, 153 especially when HER is a competing 
reaction.  The mechanistic details of how [OH]- impacts CO2 
electroreduction selectivity are subject to ongoing study.  

One current understanding of interfacial pH effects on 
CO2 reduction is its in�luence on local availability of protons 
to facilitate CO2 reduction to more reduced products. 9, 154-156 
Further, interfacial pH can be modi�ied by the hydrolysis of 
water in cation hydration shells. This changes local CO2 
concentration by tipping the equilibrium between 
(bi)carbonate and CO226, 79, 157-159 or otherwise suppresses 
the competing hydrogen evolution reaction. 159  

While we agree with the utility of viewing the impact of 
interfacial [OH]- generation through the lens of pH effects, 
we are increasingly exploring the degree to which ionic 
correlations provide complementary insights into how 
generation of interfacial co-ions can modify CO2 
electroreduction activity. 

Our recent work on CO2 reduction in ionic liquid-derived 
electrolytes shows spectroscopic evidence of substantially 
lowered interfacial potential gradients that occur at the 
potential where interfacial [OH]- generation begins via 
dissociation of water to drive CO2 reduction. 49 In contrast, 
we �ind larger interfacial potential gradients are maintained 
when cationic proton donors are used to drive CO2 
reduction, as the associated conjugate base is neutral rather 
than anionic. Our �indings show how the generation of 
charged byproducts at interfaces can either attenuate or 
enhance local potential gradients and points towards 
additional approaches to modifying interfacial properties. 

Co-ion effects are also an important consideration in 
water electrochemistry, particularly for reduction reactions 
where anions are found to adsorb to electrode surfaces. 160, 

161 For instance, Jaramillo and coworkers show the oxygen 
reduction reaction (ORR) displays anion dependent kinetics 
on Pt (111), 162 Pd, 163 and Ag163 surfaces. Although the 
surfaces have different intrinsic catalytic activity for ORR, 
they all displayed lower ORR reaction rates in electrolytes 
containing halide anions than in electrolytes containing 
oxygenated anions such as [ClO4]-, [NO3]-, [SO4]2-, and [PO4]3-

.162, 163  
This study postulated that lower ORR rates in halide-

containing electrolytes arises from strong chemisorption of 
halide anions to surfaces. 163 In contrast, oxygenated anions 
bind weakly to surfaces, promoting higher ORR rates, where 
the weakest binding anion, [ClO4]-, yields the highest ORR 
rates on all surfaces. 160-163 These trends could be due to a 
combination of competitive adsorption between the anions 
and ORR intermediates, and the in�luence of bound anions 
on the electronic structure of neighboring active sites. 162, 163  

Much like oxygen reduction, hydrogen reduction is 
greatly in�luenced by co-ion effects. Often, the hydrogen 
binding energy is a major focus for HER studies, but recent 
evidence shows that [OH]- binding energy is also correlated 
with HER reaction rates by modulating reaction pathways100 
or hydrogen bonding networks. 17  

Current research suggests that [OH]- binding energy 
displays a “volcano type” relationship between adsorption 
strength and HER rates on various catalysts, showing that 
both hydrogen binding energy and [OH]- binding energy 
should be tuned in concert. 100 Some reactive surfaces bind 
[OH]- very strongly, which can become detrimental to HER 
reaction rates as cations near the electrode surface can 
further stabilize adsorbed [OH]- and prevent its departure 
from the electrode. 137  

For example, certain metals such as Pt(110) and Ru bind 
[OH]- particularly strongly, in which case, water dissociation 
is no longer the rate-limiting step but [OH]- removal. Other 
metals such as Au and Ag do not bind [OH]- strongly, 
meaning that [OH]- adsorption correlates with the energy of 
water dissociation. 100, 137  

 Additional research addresses the relationship between 
[OH]- binding energy and pH, illuminating a possible reason 
for the differences in activity between acidic and alkaline 
water electrolysis. Chen and coworkers found that there is 
an in�lection point in catalytic reactivity when moving from 
acidic to alkaline pH instead of decreasing monotonically. 80 
This in�lection point occurs at lower pH on surfaces that 
bind [OH]- more strongly and signi�ies a narrowing of the 
kinetic gap between acidic and alkaline HER pathways. Such 
�indings are encouraging for further exploration of how co-
ions in�luence HER.  

An emerging area that shows promise for progressing 
understanding of co-ion effects in electrocatalysis is that of 
nitrate electroreduction, as nitrate is anionic and must be 
present at cathodes to be reduced to products like ammonia. 
Nitrate reduction provides a compelling example where a 
negatively charged anion must approach a cathode surface 
for reduction to occur. In these cases, the composition of the 
electric double layer is key, and we view ionic correlations 
as important for understanding electrochemical nitrate 
reduction rates and selectivity. 14, 22  

For further context into how electric double layer 
formation under non-classical conditions can lead to novel 
interfacial processes, the reader is directed to studies on 
potential-induced structural transitions of electrodes 
including surface reconstruction and dissolution, 78 
formation of ion concentration gradients, 158, 164, 165 and 
formation of strong interfacial electric �ields. 13, 159 These 
phenomena synergistically modify microenvironments 
around active sites, and we see many avenues for 
investigations on how correlated double layer formation 
in�luences electrocatalytic activity. 
4.3. Microphase Separation and Carbonate 

Precipitation  
As electrochemical reactions proceed, the accumulation 

of solute species at interfaces can in�luence interfacial 
nucleation energetics and induce microphase separation 
processes. In the area of CO2 electroreduction, microphase 
separation plays a prominent role, as formation of 
insulating carbonate �ilms blocks electrode surfaces and 
limit device lifetimes. 166-168  

Recently, strategies to modulate electric double layer 
properties have been explored to disrupt carbonate �ilm 
formation. A recent study showed that cation identity can 
modify carbonate crystal nucleation energetics and 
precipitate morphology. 169 For example, Cs+ based 
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electrolytes showed longer device lifetimes compared to 
electrolytes containing smaller cations like K+ or Na+. 

An additional method for mitigating carbonate 
precipitation would be to source protons from organic 
cations as opposed to water. While promising, this approach 
adds an additional degree of complexity in that the 
conjugate bases of organic cations can often also coordinate 
CO2 to form complexes, such as the formation of 
imidazolium-CO2 adducts. 49 These complexes can then be 
thermally or electrochemically recycled to release CO2 and 
recover the imidazolium cation. 170-172 

Another prominent example of microphase separation is 
the nucleation, growth, and detachment of bubbles due to 
generation of gaseous products. For example, researchers 
are increasingly investigating how the energetics and 
dynamics of hydrogen bubble formation and detachment 
from surfaces can in�luence water electrolysis. 173-176 While 
double layer effects are in early stages of investigation, work 
on electrocapillarity suggests that electrolyte composition 
can play a major role in determining surface energies, 48, 177, 

178 which in turn determines the rate of bubble nucleation 
and residence time of hydrogen bubbles prior to desorption. 

Concentrated, correlated electrolytes could provide 
intriguing opportunities for leveraging both co-ions and 
counterions to modulate interface properties and 
microphase separation. For example, study of water-in-salt 
electrolytes, where water is dissolved into salt to form a 
single-phase liquid that is predominantly salt, has revealed 
that the emergence of microphase separation in bulk 
electrolytes is primarily governed by the properties of 
anions. 179-182 Hence, we envision that these effects will 
become more pronounced at electrochemical interfaces and 
will provide promising avenues for controlling microphase 
separation phenomena in electrocatalytic processes. 
5. OUTLOOK: LEVERAGING ELECTROCATALYTIC 

REACTIONS TO UNDERSTAND ELECTRIC DOUBLE 
LAYER FORMATION 

We conclude with an overview of how tools and 
frameworks developed in the electrocatalysis community 
are opening new opportunities for advancing the frontiers 
of understanding electric double layer formation in 
correlated, nanostructured electrolytes.  

We envision that reactions with mechanisms that have 
been extensively characterized by the electrocatalysis 
community can be used to probe double layers in new 
electrochemical systems. For example, electrochemical 
reduction of CO2 to CO on Ag has ideal characteristics for 
serving as a probe of interfacial potential gradients, as this 
reaction involves a low polarity reactant and highly polar 
intermediate. Hence, the rate of CO2 electroreduction to CO 
as a function of electrolyte composition could be used as a 
sensitive probe of how interfacial potential gradients are 
altered by electrolyte composition under the large bias that 
is characteristic of realistic electrocatalytic conditions.  

This strategy is enabled by substantial advancements 
within the electrocatalysis community, which has 
established tools and protocols for quantifying the CO 
content of gas streams with exceptional precision, yielded in 
situ and operando optical spectroscopy tools for 
determining interfacial properties, and mapped out 

plausible reaction pathways via electronic structure 
calculations. 5 

Further, electric �ields have a stronger in�luence on 
molecules with large dipole moments, such as CO, than 
nonpolar molecules, such as hydrogen. Therefore, 
comparing how reaction kinetics and selectivity for 
formation of CO and H2 changes in response to varied 
electrolyte compositions may provide additional nuance on 
the role of interfacial electric �ields. Such an approach would 
provide complementary advantages to the surface forces, 
electrochemical impedance, photoelectron spectroscopy, 
and other methods discussed above. 

Taken together, we envision that using electrocatalytic 
reactions to study how the double layer changes in dynamic 
systems can accelerate our understanding of double layers 
in a variety of �ields. Using double layers to understand 
electrochemical reactions and electrochemical reactions to 
study the evolution of double layers provides a cyclic 
approach that can offer new insights into double layers at 
electrochemical interfaces that promises to extend beyond 
electrocatalysis and into other important �ields, such as 
batteries and perhaps even biological interfaces. 
6. CONCLUSION 

Electric double layer properties can strongly in�luence 
electrocatalytic activity. Increasing study of how local 
reaction environments in�luence reaction kinetics and 
selectivity has led to the realization that descriptions 
electrocatalytic activity are often incomplete without 
speci�ic consideration of electrolyte properties. We remain 
optimistic that continued work at the intersection of the 
vibrant �ields of catalysis and colloid science shows great 
promise for revealing additional means of controlling 
electrocatalytic activity and advancing understanding of 
electric double layer formation under non-ideal conditions.  

Advanced characterization techniques, such as surface 
forces measurements and interfacial spectroscopy, will shed 
new light on the role of double layers in electrocatalysis. 
These approaches will offer novel insights into the in�luence 
of ions, ionic correlations, and microphase separation on 
reaction rates and selectivity. Future work aimed at 
revealing how electrolytes impact reactivity using model 
reactions such as CO2 reduction would uncover double layer 
design principles that could facilitate electrosynthesis 
reactions, further bridging our understanding of electric 
double layers and electrocatalysis. We envision that further 
scienti�ic exploration at the intersection of electric double 
layer formation and electrocatalytic activity will offer many 
new opportunities to pursue a future where electrocatalytic 
transformations play an integral role in decarbonizing 
chemical processing and energy use. 
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