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Abstract 

Coral reefs are both exceptionally biodiverse and threatened by climate change and other human 

activities. Here, we review population genomic processes in coral reef taxa and their importance 

for understanding responses to global change. Many taxa on coral reefs are characterized by 

weak genetic drift, extensive gene flow, and strong selection from complex biotic and abiotic 

environments, which together present a fascinating test of microevolutionary theory. Selection, 

gene flow, and hybridization have played and will continue to play an important role in the 

adaptation or extinction of coral reef taxa in the face of rapid environmental change, but research 

remains exceptionally limited compared to the urgent needs. Critical areas for future 

investigation include understanding evolutionary potential and the mechanisms of local 

adaptation, developing historical baselines, and building greater research capacity in the 

countries where most reef diversity is concentrated. 

INTRODUCTION 

Coral reefs fringe one-sixth of the coastlines on Earth, support a quarter of all marine species 
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alive today, enable productive fisheries that benefit hundreds of millions of people, reduce 

flooding and storm risks for 100 million people or more, and are at the core of tourism 

economies around the world (20, 47, 69, 100, 146, 189). However, coral cover has declined by 

14% globally, owing to climate change, destructive fishing, disease, and other aspects of global 

change (210). Coral reef species are especially vulnerable to climate change because they have 

evolved in a relatively stable thermal environment and live particularly close to their upper 

thermal limits (194). Rising temperatures and marine heatwaves have already been linked to 

dramatic coral bleaching and mortality around the world (76, 108–110). 

In response to rapid environmental change, populations and species have three primary 

responses: move, adapt, or die. All three are mediated by and affect population genomic 

processes, including drift, migration, and selection. Adaptive evolutionary responses are 

expected to be particularly important at the low latitudes occupied by reefs because climate 

change is driving the appearance of new environmental niches without a coincident influx of 

preadapted competitors (158). Population genomic processes will determine whether and for 

which taxa evolutionary responses to climate and other stressors will be possible. Understanding 

the genomics of adaptation on coral reefs has taken on particular urgency because many corals 

appear to have limited ability to shift to higher latitudes (150, 222). 

At the same time, as the urgency of this research has increased, rapid declines in DNA 

sequencing costs have greatly improved the feasibility of genomic research on nonmodel 

organisms, a category that includes nearly all reef species. As a result, population genetic 

research on coral reefs has expanded substantially over the last two decades, and population 

genomic study is increasing as well (Figure 1). Whereas population genetic research examines 

one or a handful of genetic loci across many individuals, population genomic studies examine 

the whole genome or substantial fractions of the genome. Existential concerns for coral reefs 

have also sparked interest in genetic engineering, controlled breeding, assisted migration, and 

other radical interventions that use population genomic insights (101, 227). 

<COMP: PLEASE INSERT FIGURE 1 HERE> 

Figure 1 Growth of coral reef population genetics and genomics research. Papers were identified 
from the Web of Science on 18 October 2022, with either “population genetics” and “coral” or 
“population genomics” and “coral” in the Topic field. 
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Coral reefs are built primarily by scleractinian (stony) corals, but corals themselves are 

considered holobionts to reflect the critical role of interactions among the coral host, 

endosymbiotic algae in the family Symbiodiniaceae (zooxanthellae), and the coral microbiome 

(49). Beyond corals, the three-dimensional structure and function of reefs support an immense 

diversity of fishes, invertebrates, macroalgae, and other organisms across at least 12 phyla (177, 

181, 189) in dozens of countries across the Pacific, Indian, and Atlantic Oceans (215). These 

organisms share similar environmental challenges (including climate change), spatial population 

structures defined by the patchiness and extent of reefs, and physical environments characterized 

by tropical and subtropical marine climates, shallow depths, low seasonality, and generally clear 

waters. Population genomic patterns and processes therefore share a number of similarities 

across this impressively wide diversity of taxa, making them amenable to a unified review. 

Population genomic patterns and processes are dynamic through time as they respond to 

environmental change. The need to understand these dynamics is especially urgent now given 

accelerating climate change and other global change from anthropogenic activity. This article 

focuses on what is known about population genomic changes in coral reef organisms as a result 

of global change, and particularly climate change. To explore this topic effectively, we also 

review the unique features of microevolutionary processes in coral reef environments, address 

the implications of population genomics for species survival on reefs, and highlight key research 

opportunities in this growing field. For related questions outside the scope of this article, we 

refer readers to excellent reviews on the evolutionary history of coral reefs (12, 167, 235, 236), 

corals and climate change (102, 109), interventions for coral conservation (157), seascape 

genomics more broadly (133), molecular tools for studying coral reefs (121, 168), bioinformatics 

of coral holobionts (49), and epigenetics in marine organisms (62). 

POPULATION GENOMIC PROCESSES ON CORAL REEFS 

We begin our review by highlighting some of the population genetic patterns and processes that 

are common across many coral reef organisms and yet distinct from those in many other 

ecosystems. Given the extraordinary diversity of organisms on coral reefs, we also note up front 

that there are exceptions to every rule, but these general patterns provide a useful starting point 

for understanding reef genomics. 
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Pervasive Gene Flow 
Dispersal is a fundamental genetic process affecting gene flow between habitat patches, but most 

dispersal in coral reef taxa occurs during the larval phase, which is difficult to observe. Partly for 

this reason, our understanding of dispersal has benefited immensely from applications of 

population genetic techniques, including parentage studies that match postdispersal offspring to 

their parents and isolation-by-distance analyses that convert spatial genetic patterns into 

estimates of the spatial scale of gene flow (200). Parentage methods provide direct observations 

of dispersal distances at a given moment in time, while isolation-by-distance analyses provide 

indirect estimates of the multigenerational average scale of dispersal (15, 176). The greater 

buoyancy of water compared to air means that passive dispersal is easier in marine than 

terrestrial systems, requiring a low energy investment to travel long distances (22). Accordingly, 

marine species often disperse widely, perhaps one to two orders of magnitude further than on 

land (118). Moreover, the Indo-Pacific Ocean basin where most coral reefs are found lacks hard 

barriers to dispersal (50). Such widespread dispersal has helped create low levels of genetic 

differentiation for many coral reef species (200) (Figure 2). 

Isolation by distance: a spatial pattern of genetic variation in which genetic differentiation 
increases with geographic distance between sampling sites 
 

<COMP: PLEASE INSERT FIGURE 2 HERE> 

Figure 2 Conceptual diagram of population genomic processes on coral reefs. Their inherent 
patchiness, extensive but irregular gene flow among habitat patches, strong selective gradients at 
both broad and microgeographic scales, and large effective population sizes create a unique mix 
of microevolutionary patterns and processes. Colors in the environmental variation arrow 
represent changes in environmental (and selective) pressures across spatial scales of meters (m) 
and kilometers (km), such as temperature variation. 

Gene flow between far-flung reefs prevents the strong spatial genetic differentiation 

historically assumed to drive diversification in terrestrial systems (51). Major biogeographic 

barriers, such as the mid-Pacific and the Amazon River outflow, more commonly act as filters to 

dispersal rather than impermeable obstacles (99). However, coral reefs are also not globally 

continuous: Tropical coral reefs cover only a tiny, highly discontinuous fraction of ocean area 

(132), and fluctuations in sea level and plate tectonics can isolate ocean regions (7, 161). Even in 

contiguous oceans, gene flow commonly involves intermediate reefs as stepping stones (58, 
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206). This stepping-stone mode of dispersal appears as an isolation-by-distance population 

genetic pattern for many coral reef taxa, in which genetic differentiation increases with 

geographic distance between sampling sites (200). 

The spatial scales of dispersal and gene flow for many reef taxa are determined by the 

physiology, development, and behavior of their larvae. Genetic parentage and isolation-by-

distance analyses have begun to reveal substantial differences among taxa, though more 

widespread applications are needed to understand how and why dispersal differs among species 

and to understand the evolutionary forces shaping dispersal-relevant traits (137). Key traits 

appear to include pelagic larval duration and swimming speeds (137, 204). For example, reef 

groupers (Plectropomus spp.) with strong larval swimming and weeks-long pelagic stages 

exhibit median dispersal distances of over 100 km (234), while marine sponges (with weak 

swimming and larval durations of hours to days) appear to primarily disperse under 200 m (11). 

Among fishes, dispersal distances vary among species from neon gobies (Elacatinus lori), with a 

median distance of 1.7 km (56), to Clark’s anemonefish (Amphiprion clarkii) at 5 to 12 km (30) 

and vagabond butterflyfish (Chaetodon vagabundus) at 43 to 64 km (2). Among corals, 

broadcast spawners generally disperse further than brooding corals (159), though mean dispersal 

distances also differ between closely related species (58). For example, most dispersal in the 

brooding coral Seriatopora hystrix is within 100 m of the natal site, but rare long-distance 

dispersal of 9 km or more is possible (225). In addition, dispersal distances within species can 

differ substantially between locations because of variations in ocean currents, with stronger 

currents driving more widespread gene flow (48, 74). 

Gene flow for coral reef taxa, however, is far from stable (Figure 2). Nearshore ocean 

currents are chaotic (205), and their temporal variation can cause dispersal to differ as widely 

across years for the same population as it does across species (30). Many coral reef species 

experience sweepstakes reproductive success, producing large, dispersing broods with 

probabilities of survival that differ substantially between them (8). When combined with wide 

interannual variation in dispersal distances, these processes can create chaotic genetic patchiness, 

a condition in which genetic differentiation varies irregularly across a landscape, including at 

small spatial scales below the scale of dispersal (63). Chaotic genetic patchiness has been 

documented in a variety of reef taxa, including among gobies in Belize (202) and Acropora 

hyacinthus corals on Palau (52). Together, this widespread but temporally variable gene flow on 
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coral reefs sets the stage and determines the potential for local adaptation, speciation, and the 

spread of beneficial alleles during rapid environmental change. 

Local adaptation: the pattern (and evolutionary process leading to it) in which resident 
genotypes have higher fitness in their local environment than do genotypes originating from 
other environments 
 

Local Adaptation Despite Gene Flow 
With extensive gene flow across wide distances that tends to nearly homogenize allele 

frequencies, coral reef taxa would seem to have little potential for local adaptation. However, 

population genomic studies have revealed that signals of local adaptation are surprisingly 

common, including allele frequencies at loci under selection that are more strongly diverged 

among populations than would be expected from drift and migration across the rest of the 

genome (i.e., outlier loci) and genotypes that have higher fitness in their local environments than 

genotypes from elsewhere (9, 14, 55, 114, 165). Local adaptation can produce strong differences 

in environmental tolerances and can exist in traits under selection even when neutral loci show 

little divergence between populations (14, 55). These patterns suggest that spatially divergent 

selection in reef environments is often strong enough to counteract the homogenizing effects of 

gene flow (113) (Figure 2), producing a fascinating study system for the interplay of natural 

selection and gene flow. While understudied in reef systems, the genetic architecture of local 

adaptation with gene flow is expected to result in a few alleles of large effect, including those 

packaged within chromosomal inversions or other tightly linked genomic islands (241). 

However, if dispersal completely mixes the gene pool and selection acts independently on each 

generation through strong environmental filtering, genomic architecture from spatially divergent 

selection can be highly polygenic and lack tight linkage among selected loci (219). Such cases of 

independent selection on each generation may not be considered local adaptation per se because 

they lack genetic differentiation among local demes (113), but in practice, there is likely to be a 

fascinating and poorly understood gradation between weak differentiation of local demes and 

complete panmixia. 

Outlier loci: genomic loci or markers (e.g., single nucleotide polymorphisms) whose allele 
frequencies are much more diverged among populations than those of the rest of the genome 
Environmental filtering: the process in which the environment allows certain genotypes to 
survive and persist in a particular location; also applies to species 
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Local adaptation has been documented in a wide variety of species and across a wide range 

of environmental gradients. These include corals adapted to high salinity and low pH, as well as 

reef-dwelling sea urchins adapted to low pH from natural CO2 vents (57, 122, 226). Local 

adaptation to temperature has been demonstrated in multiple reef taxa, including reef fishes 

along latitudinal gradients (80), but appears particularly common in sessile taxa since they have 

fewer behavioral mechanisms with which to regulate their thermal environment (147, 154). 

Broad evidence supports the local adaptation of corals to higher temperatures both between and 

within reefs (59, 218). Most notably, this includes adaptation to extremely high temperatures in 

the Red Sea and Persian Gulf, where some genera of stony corals exhibit bleaching tolerances 

several degrees higher than do their conspecifics in cooler environments (106). Also in the 

Persian Gulf, strong selective sweeps were associated with rapid thermal adaptation in 

populations of Platygyra daedalea (207). 

Local adaptation in reef species can exist on scales well below the range of dispersal, which 

has been called microgeographic adaptation (94, 185, 195). Habitat choice by individuals, 

including settlement choices by larvae, can favor the maintenance of local adaptation at fine 

spatial scales (141, 185, 209). Coral and fish larvae, for example, possess a complex set of 

searching and sensing behaviors to choose their settlement locations (125, 187). Individuals with 

different genotypes may possess behavioral mechanisms to encounter preferred habitat (180), 

including settling on preferred hosts in case of parasitic or mutualistic organisms (60). 

Alternatively, local adaptation can be maintained through strong postsettlement elimination of 

maladaptive genotypes through environmental filtering, as appears to occur in corals across 

depth gradients (129, 178). Local genetic adaptation to habitat type at spatial scales below the 

range of dispersal exists in octocorals (Plexaura flexuosa) in Florida, marine sponges 

(Chondrilla nucula) in the Caribbean, and banded coral shrimp (Stenopus hispidus) in Indonesia 

(61, 117, 232). Evidence for hyperlocal adaptation (within a few dozen meters) to differing 

temperatures within reefs exists for several species of stony corals, including phenotypic 

differences, genetic outlier loci, and genotype–environment associations (9, 29, 165, 220). 

However, it remains unclear whether gene pools are sufficiently differentiated for these 

examples to be called local adaptation, or whether selection instead acts independently each 

generation on a well-mixed gene pool (113). These distinctions have important implications for 

the scale of gene flow and the potential for beneficial alleles to spread to new areas during 



 8 

environmental change. 

Microgeographic adaptation: local adaptation of a population occurring at less than the typical 
spatial scale of dispersal 
 

Speciation with Gene Flow 
The existence of occasional gene flow between even distant reef patches makes true allopatric 

speciation difficult in reef taxa, yet reefs host an incredible wealth of species (18). Multiple 

explanations exist for this apparent paradox. First, lower sea levels in the Pleistocene fragmented 

reef habitat and led to divergence among some sister taxa (126, 136). In a similar fashion, plate 

tectonics created the Isthmus of Panama and split species into Caribbean and Pacific sister taxa 

(161). Second, speciation can occur even without complete genetic isolation. Parapatric 

speciation describes divergence of adjacent populations experiencing differential selection as 

well as some gene flow, which may be especially common on coral reefs (190). Many reef taxa 

have diverged during partial geographic separation, including several species of Dascyllus reef 

fishes in the Indo-Pacific with varying levels of population overlap and Calcinus hermit crabs in 

the Indo-Pacific with both overlapping and nonoverlapping species distributions (127, 139). In 

Orbicella (formerly Montastraea) corals in the Caribbean, genetic and morphologic novelty is 

concentrated near the edge of the genus’s range despite incomplete genetic isolation, suggesting 

that geographic distance plays an important role in speciation even without total genetic 

separation (19). Speciation due to divergent environmental selection in adjacent populations can 

be driven by the same forces underlying local adaptation. Both local adaptation and early-stage 

speciation can also share the same genomic signatures, including the presence of a small 

proportion of outlier loci within an otherwise undifferentiated genome (172). 

Parapatric speciation: occurs with restricted gene flow among populations, but without a hard 
barrier that prevents gene flow, in contrast to allopatric speciation (in which new species occupy 
separate locations without gene flow) or sympatric speciation  
 

Sympatric speciation is thought to be globally rare because reproductive isolation is difficult 

when gene flow and recombination break up the association between coadapted alleles (75). 

Similarly to local adaptation with gene flow, sympatric speciation is aided by the evolution of 

tightly clustered loci, haplotype blocks, and large-effect loci (75). However, evidence 

nonetheless suggests the occurrence of sympatric speciation in multiple coral reef taxa. This 
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process can be triggered by host specificity and shifts in host preference, which have been 

documented in coral-feeding nudibranchs (Phestilla spp.), coral-dwelling barnacles (Wanella 

spp.), and coral-dwelling gobies (Gobiodon spp.) (66, 153, 224). Alternatively, sympatric gobies 

(Elacatinus spp.) and hamlets (Hypoplectrus spp.) may have speciated primarily due to 

assortative mating by color, and Caribbean grunts (Haemulon spp.) due to assortative mating by 

vocalization (97, 191, 214). Comparative genomics of the hamlets suggests that speciation 

occurred through a few loci of large effect that control color patterns and vision, which in turn 

was facilitated by the hamlets' large effective population sizes (Ne) (97). Large effective 

population size allowed for the accumulation of novel mutations and the retention of ancestral 

variation while also promoting high rates of recombination that inhibited the formation of 

genomic islands of divergence. Other mechanisms include divergence in depth and spawn timing 

(178). 

Sympatric speciation:  occurs while both new species continue to occupy the same geographic 
area 
Effective population size (Ne): the size of an idealized population that loses heterozygosity at 
the same rate as the focal population 
 

Species boundaries are not always obvious from morphology, and recent advances in 

population genetics have revealed that coral reefs host an impressive variety of cryptic species. 

Cryptic coral reef species discovered with population genetics include polychaete worms 

(Nereididae spp.), cleaner shrimps (Saron spp.), hydrozoans (Pteroclava spp.), octocorals 

(Carijoa spp.), several genera of fishes, and multiple stony corals (5, 42, 82, 84, 107, 149). 

Similarly to locally adapted populations within species, cryptic species may exhibit distinct 

environmental tolerances. Differing environmental stress tolerance has been identified in cryptic 

Pocillopora corals in French Polynesia and the A. hyacinthus species complex in American 

Samoa, highlighting the susceptibility of unique evolutionary lineages to continued global 

change (23, 192, 193). The origins, maintenance, and evolutionary trajectories of cryptic species 

remain largely unknown. 

Hybridization 
The converse of speciation with gene flow is that closely related species also have opportunities 

for hybridization. Population genetics has been critical for identifying hybrid species and 

understanding their relationships, and hybridization is common in both coral reef fishes (91, 148, 
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237) and corals (Figure 2). In reef fishes, persistent hybridization can lead either to a decrease in 

lineage diversity or the endurance of distinct hybrid lineages (98). Hybridization has played an 

important role in the evolution of coral diversity, including the generation of diversity within 

species and the emergence of new species (140, 235). Of particular interest is evidence that 

hybrid corals have been able to expand into novel habitats, suggesting that the generation of 

genomic diversity through hybridization has relevance to survival in the face of global change 

(235). Widespread hybridization in some genera such as Acropora (branching corals) has led to 

the formation of syngameons, which are species complexes with multiple hybrid forms that 

sometimes include cryptic species (184). The same assemblages of cryptic and hybridizing 

species can sometimes be found across many distinct reefs and thousands of kilometers (124). 

The conditions under which hybridization generates new species, facilitates the adaptation of 

existing species, or leads to the dissolution of species boundaries on coral reefs remain an area of 

active investigation (140). 

Weak Genetic Drift 

Many marine populations contain millions to billions of individuals, and coral reef taxa are no 

exception (43, 133). One square meter of coral reef may have >1010 symbiotic dinoflagellates, 

for example (46). Ne quantifies the strength of genetic drift—with more drift in smaller 

populations—(34), and evolutionary theory suggests that Ne is generally between 10% and 50% 

of census population sizes (160, 233). 

Some features of marine populations—including large numbers of offspring, high variance in 

reproductive success among individuals, and skewed sex ratios—have been proposed to reduce 

Ne by many orders of magnitude below census population size, but whether these or other factors 

actually create Ne values this low remains hotly debated (95, 164, 233). Ne is roughly the number 

of parents who contribute to the next generation (233), so an Ne of 1,000 in a population of 

1,000,000 would imply that approximately 1 in every 1,000 individuals successfully reproduces 

(and contributes to the next generation) over its lifetime. Drift is weak even with an Ne of 1,000, 

suggesting that, overall, drift does not play a strong role shaping population genetic patterns on 

coral reefs (Figure 2). Ne for staghorn coral in the Florida Keys, for example, was estimated at 

roughly 40,000 to 115,000 individuals (96), and five reef fishes on the Mesoamerican Barrier 

Reef have Ne estimates ranging from nearly 1,000 to nearly 100,000 individuals (179). Weak 

drift contributes to low levels of genetic divergence among populations and creates a relatively 
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stronger role for selection in population genomic processes. 

However, drift cannot be entirely discounted. Patchy habitats such as coral reefs tend to incur 

more genetic drift than do uniform habitats such as open ocean, and coral reef species generally 

experience more genetic drift than widespread and well-mixed pelagic species (134, 200). 

Evidence for the influence of drift includes lower genetic diversity on smaller coral reef patches 

(201) and at range edges (37). In addition, a surprisingly large fraction of reef animals—

including many corals—are clonal, suggesting an important role for somatic mutations and 

somatic genetic drift in addition to multigenerational genetic drift (183, 229). Further research 

will be needed to understand the broader range of conditions and taxa for which drift is a strong 

force. 

OBSERVED GENOMIC CHANGE ON CORAL REEFS 

Over the past two decades, there has been substantial interest in the ecological and evolutionary 

repercussions of increased anthropogenic pressure on coral reefs. Coral reefs evolved under 

thermal regimes without high-frequency variability (194) but are now experiencing accelerated 

rates of warming and carbonate chemistry change (81). Human populations have grown 

particularly fast along coastlines, exposing reefs to overfishing, coastal habitat degradation, and 

localized pollution. All of these dramatic environmental changes may have strong evolutionary 

consequences, but most attention has instead been on demographic and ecological responses. 

While widespread evolutionary changes are almost certainly occurring as well, understanding 

these changes is at a nascent state. Below, we review the population genomic impacts of global 

change that have been observed on coral reefs to date (Figure 3; Table 1). More widespread 

application of population genomic methods to coral reef taxa will almost certainly expand this 

list. 

<COMP: PLEASE INSERT TABLE 1 HERE> 

<COMP: PLEASE INSERT FIGURE 3 HERE> 

Figure 3 Map of observed genomic changes on coral reefs due to anthropogenic forces. Colors 
represent the driver of the observed change, while icon shapes (coral or fish) indicate the taxa the 
change was observed in. Numbers correspond to Table 1, which contains more information 
about the findings in each individual study. 
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Bottlenecks and Genetic Diversity Change 
Overexploitation and habitat degradation reduce genetic diversity by decreasing Ne and limiting 

the number of individuals contributing genomic variation to future generations (53, 112). This 

decrease in Ne drives the erosion of heterozygosity at the rate of 1/(2Ne) while also depleting the 

number of rare alleles in a population and increasing the chance that any given allele is lost due 

to drift (1). Rare alleles are lost faster than the reduction in expected heterozygosity, which 

results in a temporary excess of heterozygous individuals (44). Coral reefs have a deep history of 

genetic bottlenecks due to environmental change. During the Holocene, large fluctuations in sea 

level spurred dramatic reductions in population size of many reef fish species (68, 136). Drops in 

sea level resulted in large-scale habitat fragmentation, barriers to gene flow, and, in some 

instances, new speciation events that shaped modern-day reef species assemblages. 

Evidence for contemporary bottlenecks is substantially more mixed, however. Mass 

bleaching events in populations of Acropora millepora and Acropora pulchra resulted in altered 

genetic composition but no detectable reductions in genetic diversity (211, 228). Strong but 

quickly disappearing genetic differentiation in damselfish (Stegastes partitus) populations after 

an extreme hurricane event suggested that there had been a genetic bottleneck in at least one 

population (123). In a field experiment, short-term heat stress increased the mortality rates of 

juvenile damselfish (Dascyllus aruanus) and reduced allelic richness, indicating that unfavorable 

environmental conditions have the potential to result in widespread genetic diversity loss (173). 

Nassau grouper (Epinephelus striatus) were heavily overfished in the Caribbean throughout the 

1970s and 1980s, but only a weak bottleneck signal of excess heterozygosity in the US Virgin 

Islands was detected when sampling was done in 2008–2010 following some population 

recovery (13). Gene flow from other populations appeared to help reduce the bottleneck 

signature. 

The emerging picture is one of weak and difficult-to-detect bottlenecks on coral reefs, likely 

because even collapsed populations have remained relatively large (and drift therefore not 

particularly strong), bottlenecks have not lasted long enough to have a large impact, and because 

gene flow has helped offset diversity loss. However, difficulty detecting bottlenecks may obscure 

a more widespread loss of standing genetic variation through the elimination of rare but 

functionally important haplotypes (175). More widespread application of whole-genome 

sequencing and testing for the loss of rare haplotypes will be needed to evaluate these ideas. 
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Adaptation to Changing Environments 
Reef populations are adapting in response to novel selective pressures, but evidence for these 

responses is only starting to appear in the scientific literature. Traits involved in adaptation to 

climate change, such as bleaching response and growth, often have high heritability (6), 

suggesting in situ adaptation may be a common response to rapid selective events. Such 

adaptation can be challenging to detect, however, as it may manifest as slight shifts at many loci 

of small effect (21, 240) and involve different genes in different populations (240). For example, 

a genome-wide association study (GWAS) across 213 individuals of A. millepora did not 

identify any single locus that was significantly associated with individual bleaching response 

during a 2017 marine heatwave, but a polygenic score constructed from the GWAS mildly 

improved prediction of bleaching (78). Similarly, signatures of selection at many loci were 

apparent between populations of A. hyacinthus that inhabit differing thermal environments in 

American Samoa, suggesting that mild selection across many loci helped to maintain extensive 

reservoirs of adaptive polymorphisms (9). Controlled crosses of Red Sea and Indian Ocean P. 

daedalea brain coral also identified hundreds of loci related to heat tolerance (105). 

In other cases, selection can involve large shifts in allele frequency at a few loci of large 

effect. For example, artificial selection experiments on A. millepora coral larvae produced allele 

frequency changes up to 40% over a single generation and implicated mitochondrial transporter 

genes (59). However, evidence of contemporary adaptive evolution on coral reefs is rare. While 

not tropical, there is evidence of rapid adaptation to cold temperatures along the northern 

expansion front of the invasive coral Oculina patagonica in the Mediterranean (131). Allele 

frequencies at three anonymous loci were associated with temperature along this expansion front. 

Similarly, lobe coral (Porites lobata) populations in Hawaii inhabiting heavily polluted 

nearshore sites were strongly differentiated at three genetic loci from nearby but less-polluted 

offshore sites, and reciprocal transplant experiments revealed local adaptation, providing 

evidence of contemporary adaptation to poor water quality and pollution (220). 

Changes in Gene Flow 
Global change has the potential to directly alter patterns and dynamics of dispersal, and 

therefore, of gene flow (152). Warming ocean temperatures could disrupt current patterns (152), 

but the largest effects appear to be through reducing larval dispersal distances due to shortened 

pelagic larval durations and lowered larval survival (72, 135). For an example beyond coral 
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reefs, variation in sea surface temperatures drove fluctuation in pelagic larval duration and 

genetic patchiness in populations of black-faced blennies (198). Juveniles dispersing at the end 

of the recruitment season (under high temperatures) tended to have shorter pelagic larval 

durations than those dispersing at the beginning of the season in cooler conditions (198). 

Short-term events, including hurricanes, also have the capacity to alter gene flow corridors, 

such as in 2005 when storm surge from Hurricane Dennis redistributed estuarine sailfin molly 

(Poecilia latipinna) individuals across long distances, erasing previously established isolation-

by-distance patterns (3). Although brief, such occurrences may have lasting evolutionary 

implications because of their ability to enable rare long-distance dispersal events. Larvae of the 

brooding coral S. hystrix, for example, typically recruit within 100 m of their parents, producing 

strong genetic differentiation at kilometer scales (225). After bleaching in 2017 drove substantial 

declines in coral cover on the Scott Reefs, Australia, an influx of larvae and distinct genotypes 

from a healthier site 9 km away appears to have allowed coral recovery (225). Isolated reefs are 

less likely to receive beneficial gene flow after catastrophic disturbance from bleaching or other 

events (4, 217). 

Genomic Consequences of Range Shifts and Invasions 
At a global scale, changing environments are causing shifts and expansions of entire species 

ranges. For example, coral species have expanded poleward since the mid-1900s (238), while 

tropical species increasingly dominate temperate fish assemblages (71, 156). Such rapid, large-

scale dispersal events can leave lasting genomic signatures. Serial founder events during range 

expansions can allow low-frequency, potentially deleterious alleles to surf to high frequency 

along the expansion wave (65, 90), resulting in lower genetic diversity (213) and higher mutation 

load (170) at the range edge. Studies tracking the range expansion of A. hyacinthus coral in Japan 

found evidence for such signatures, including higher clonality and lower diversity in edge 

populations (70, 155). Notably, six genes were near outlier loci in comparisons of edge versus 

core populations, which provided evidence of local adaptation to lower winter temperatures at 

the range edge (70). 

Invasion events are another pathway by which species can expand their ranges, and they 

often share the same genomic consequences as range shifts, including allele surfing, 

postestablishment adaptation, and bottleneck events (17). For example, in one of the most 

famous examples of a human-mediated marine invasion event, lionfish (Pterois volitans) first 
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became established in the western Atlantic in the early 2000s due to aquarium releases (203) and 

have subsequently shown evidence of allele surfing in their introduced range (16). Signatures of 

selection (FST outliers) between native and introduced lionfish populations are also apparent, 

particularly near genes that may help facilitate such rapid expansion and dispersal events (182). 

Furthermore, while yet to be seen on reefs, marine invaders have the potential to hybridize with 

native congeners, when available (231), which can help provide the expanding species with new 

sources of genetic diversity to supplement the diversity lost during the invasion wave and 

subsequent founder events (17). Such hybridization may also lead to the eventual replacement or 

extirpation of the native species and the opening up of new evolutionary pathways (17). 

Allele surfing: the neutral eco-evolutionary process by which some alleles can drift to high 
frequencies during the extension of a population range edge 
 

Elevated Hybridization Rates 
Genomic responses to global change can also have repercussions at the species level, disrupting 

macroevolutionary processes via hybridization with newly introduced species or secondary 

contact between formerly isolated populations. Environmental disturbance can mediate 

hybridization (86), as evidenced by extensive hybridization among damselfish (Stegastes spp.) 

and the blurring of species boundaries in Jamaica but not in Barbados (151). The higher 

hybridization rates appear to result from habitat degradation in Jamaica that reduced the 

differences among habitats and therefore reduced the ecological isolation among species (151). 

This positive relationship between hybridization and disturbance rates has been seen 

elsewhere as well. Hybridization levels were higher among damselfish congeners (Abudefduf 

spp.) in the heavily human-perturbed southern Hawaiian islands than in the more pristine 

northwestern part of the archipelago (38). While the mechanism driving these elevated rates 

remains unclear, it is likely that one of the hybridizing species is a marine invader that recently 

arrived to the Hawaiian archipelago via hitchhiking with marine debris (38). 

THE EVOLUTIONARY FUTURE FOR CORAL REEF TAXA 

Ongoing and accelerating rates of environmental change and human impacts suggest that coral 

reefs will continue to evolve in the coming years, decades, and centuries. Of the many 

anthropogenic pressures driving long-term changes to coral reef ecosystems, climate change 
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looms preeminent (212). While possible climate change trajectories range from 1°C to 5°C 

warming over the next century, the most likely scenarios project between 2°C and 3°C warming 

above preindustrial levels by 2100 (93). The 2022 Intergovernmental Panel on Climate Change 

(IPCC) report (111) predicts substantial loss of tropical coral reefs even under a relatively low 

1.5°C of warming, though other authors are more optimistic (143, 144, 166). In addition, even 

pessimistic scenarios do not preclude the possibility of adaptation to future change by at least 

some taxa in some locations. 

Evolutionary rescue is the process by which adaptive evolutionary change allows a 

population to reverse its decline and survive environmental change (25, 85). For evolutionary 

rescue to be successful, the rate of evolution needs to be sufficiently fast, which in turn depends 

on the amount of standing genetic variation in the evolving population measured as the additive 

genetic variance (10, 25, 28, 119, 169). Reef-building corals and their symbionts will continue to 

adapt genetically to the Anthropocene, though both the pace and magnitude of the potential 

adaptation remain controversial (102, 166). 

Evolutionary rescue: a process in which a population with declining abundance instead evolves 
to tolerate its current conditions and survives 
 

Models that integrate knowledge of coral genomics and dispersal have been helpful for 

understanding if and where adaptation will be sufficient to rescue corals. For example, a coral 

evolutionary metapopulation model for the Central Indo-West Pacific suggested that reefs vary 

widely in their capacity for persistence, with the majority collapsing within the coming century 

under a high (but not a low) greenhouse gas emissions scenario (143). However, reefs with 

substantial larval input from warmer areas persisted in all simulated warming scenarios, since 

immigrants were, in effect, preadapted to future conditions (143). Likewise, eco-evolutionary 

simulations across reef networks in the Caribbean, Southwest Pacific, and Coral Triangle 

suggested that the likelihood of coral species persistence increases with both larval input and 

genetic variance (144, 145). Both models agreed that adaptive evolution was critical for coral 

survival. Coral metapopulations in the former model required the existence of both migration and 

selection to avoid coral collapse, and corals in the latter model required at least some genetic 

variance (Figure 4). Similar nonevolutionary models reinforce the conclusion that naturally 

cooler reefs (often called climate refugia) alone are not sufficient for coral persistence, 

suggesting that reef refugia will be unable to produce sufficient coral larvae to reseed even half 
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of present-day reef areas (88). Strong selection for heat-tolerant corals and the loss of more 

sensitive corals are also expected to drive reductions in genetic diversity (230). 

<COMP: PLEASE INSERT FIGURE 4 HERE> 

Figure 4 Predicted evolutionary trait change on coral reefs (colored lines) under high 
[representative concentration pathway (RCP) 8.5; dashed lines] or lower (RCP 4.5; solid lines) 
greenhouse gas emissions scenarios. The trait in this eco-evolutionary model is thermal 
tolerance. The colors indicate scenarios with no (purple), limited (turquoise), or sufficient (lime 
green) additive genetic variance (V) to evolve in response to temperature change (gray). Figure 
adapted with permission from Reference 144 (CC BY-NC 4.0). 

Even with adaptation, some reef species will certainly vanish. While documented marine 

extinctions in the Anthropocene are few (188), tropical seas are already experiencing 

disproportionate extirpations (35). Among fishes, the small, coral-dependent species may be at 

particular risk of extinction, as are endemic species (152). For zooxanthellate stony corals, more 

than 30% of the 704 species assessed by the International Union for Conservation of Nature 

(IUCN) are listed as vulnerable, endangered, or critically endangered, highlighting the possibility 

of increased coral extinctions over the next century (26). These losses, combined with predicted 

mass bleaching and loss of coral cover accompanying future climate change may lead to a 

domino effect resulting in loss of diversity and mass extinctions in reef-associated taxa (230). 

Likewise, a recent projection of extinction risks in marine species predicts catastrophic mass 

extinction across marine ecosystems by 2300 under strong warming scenarios of climate change, 

highlighting the tropical Indo-Pacific as an area of particular risk (171). Other, more localized 

human impacts such as sedimentation, disease, overfishing, and pollution also threaten coral reef 

taxa and impede adaptation to climate change by reducing population sizes and adaptive 

potential. 

These troubling predictions have convinced some stakeholders to pursue more radical 

methods of reef conservation, especially to bolster heat tolerance in hard corals. If successful, 

these efforts would have long-lasting effects on the genetics of future coral populations. Multiple 

research groups have proposed moving heat-tolerant coral larvae or fragments from warmer to 

cooler reefs as an implementation of assisted migration (186, 197). Successful assisted migration 

would produce many of the same genomic changes as natural migration, while incurring the 

ecological risks of transporting nontarget organisms such as pathogens and the evolutionary risks 
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of outbreeding depression (157a). 

More direct genetic interventions may target either coral animals or algal symbionts. 

Selective breeding of coral animals shows theoretical promise for increasing coral resilience to 

climate change (227). In particular, hybridization of some congeneric coral species has 

successfully increased coral survival under heat stress in laboratory conditions (33). Laboratory 

breeding can also be used to enhance the heat tolerance of algal symbionts, which have the 

advantage of short generation times that enable potentially faster evolution (32). Laboratory 

selection of heat-tolerant algal symbionts successfully raised the in vitro heat tolerance of the 

population over just two years, though it showed much weaker effects on the heat tolerance of 

coral holobionts hosting the novel symbionts (31). Researchers have also proposed direct editing 

of symbiont genomes to enhance heat tolerance using CRISPR-Cas9 and have identified genes of 

interest, though this research remains mostly hypothetical (130). If laboratory-bred or -altered 

coral lineages have increased heat tolerance and do not suffer from decreased competitive 

abilities in other areas, their outplanting might narrow overall coral genetic diversity by 

outcompeting wild types (157a). These effects have already been observed in salmon 

supplementation programs (36). There is active debate over whether the risk of negative side 

effects is worth the potential reduction in risk of losing coral reef taxa from climate change (40, 

157a). 

FUTURE CHALLENGES AND OPPORTUNITIES 

The urgency of climate change and other threats to coral reefs drives a need for the substantial 

expansion of population genomic research in this ecosystem. Tropical ecosystems are 

understudied across ecological and evolutionary research fields (54), and population genomics is 

particularly important given the substantial role of evolution in tropical responses to climate 

change (158). Genomic research on coral reefs faces particular challenges, however, including 

the remoteness and logistical challenges of accessing many of the most biodiverse reefs, the 

large fraction of undescribed species and the potential for cryptic species, and the relatively few 

genomic resources for tropical species. Here, we highlight a few of the particularly urgent 

research topics and opportunities for progress. 

Evolutionary Potential and Trade-offs 
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Whether evolutionary rescue can avert extinction for vulnerable coral reef taxa is a critical 

question, and yet key factors that contribute to the likelihood of evolutionary rescue remain 

unknown. For example, the additive genetic variance for most conservation-relevant traits is 

unknown (92). Efforts to measure additive genetic variance for coral thermal tolerance have, to 

date, been underpowered and had confidence intervals spanning almost the entire range of 

possibilities (78). Because controlled breeding in most coral reef organisms is difficult or 

impossible given current knowledge, whole-genome methods for measuring additive genetic 

variance are particularly promising (174, 239). These methods are a subset of GWAS approaches 

and typically require sample sizes above 1,000 phenotyped and genotyped individuals. Sample 

sizes this large remain higher than most coral reef studies, and high-throughput phenotyping 

remains one of the more substantial bottlenecks. Advances in imagery analysis and automated 

phenotyping show promise for overcoming this challenge (104). Tolerance for disease, pollution, 

warming, acidification, fishing, and other stressors are all traits that are important and likely of 

interest. 

Beyond measurement, however, predicting more broadly the potential for evolutionary 

rescue requires understanding how and why standing genetic variation of pertinent phenotypes 

differs among species. Measurement of adaptively relevant genetic variation is time consuming 

and expensive, so finding species traits that are appropriate proxies of standing variation on coral 

reefs is important. Population size, for example, is a common constraint, with lower adaptive 

potential in small populations (233a), but even population size is poorly known for most coral 

reef taxa. Neutral genetic diversity is another common proxy, but its relevance for predicting 

extinction risk and adaptively relevant diversity remains debated (79, 216). Growing evidence 

suggests microgeographic adaptation on reefs (185, 217), implicating environmental 

heterogeneity as likely important for maintaining adaptive variation (129). Environmental 

heterogeneity, such as the variability of microclimates on reefs, may therefore be a useful proxy 

for functional genetic variation. 

Antagonistic genetic correlations also provide key constraints on evolutionary potential (64). 

There are thermal tolerance versus growth trade-offs among zooxanthellae in corals (128), and a 

similar trade-off may exist in coral hosts that is mediated by their symbiont density (45). 

Applying population genomic methods more broadly to understand trade-offs in global change–

relevant traits is an important area for further research. 
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Mechanisms of Local Adaptation and Eco-Evolutionary Feedback 
Despite increasing recognition that coral reef organisms are adapted to fine-grained 

environmental variation, including at spatial scales substantially smaller than the scales of 

dispersal, the mechanisms and environmental drivers behind this adaptation remain largely 

unknown. With a well-mixed gene pool, sorting of adaptive genotypes into separate habitats can 

occur each generation through strong environmental filters and high postsettlement mortality of 

maladapted individuals, but only under fairly restrictive conditions on the relative fitness of 

genotypes across different environments (129). Do coral reef species, including corals, fit these 

conditions? Perhaps the exceptionally large number of offspring produced by most coral reef 

organisms allows them to absorb the high cost of strong selection each generation. Or does 

settlement behavior favor microgeographic adaptation to an extent not yet appreciated, reducing 

the importance of postsettlement filtering? As yet another possibility, reproduction and dispersal 

may occur on sufficiently fine spatial scales that cause effective gene flow among fine-scale 

habitats to be relatively weak. 

One prediction of strong environmental filtering would be the presence of within-cohort 

allele frequency shifts at adaptive loci, from an undifferentiated pelagic larval cohort up through 

locally adapted adults. New genomic tools and the ability to resequence whole genomes at the 

population genomic scale could make this kind of investigation possible, particularly if coupled 

with interdisciplinary investigations of larval behavior in the lab and field. New underwater 

video technologies and the ability to automate the image annotation will likely assist these 

studies (138). 

Another key area for investigation will be to understand the ecological consequences of gene 

flow across the environmental mosaic, particularly in the context of rapid environmental change. 

Gene flow can import alleles that are beneficial in a new environment, or bring maladapted 

alleles, depending on the scale of local adaptation, the scale and directionality of gene flow, and 

the grain of environmental variation (120, 142). Recent eco-evolutionary models for corals 

predict that gene flow will favor rapid adaptation to warming and persistence in some locations 

while driving maladaptation and extirpation in others (143, 144), but field tests are needed to 

identify whether these evolutionary processes actually matter for demography. Such questions sit 

at the boundary of population genomics and ecology and will be facilitated by integrated 

research across fluid dynamics, demography, and genomics. 
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Genomic Resources for Reef Species 
Many of the most pressing population genomic questions for coral reef organisms rely on the 

availability of high-quality genomes, including questions about demographic history, natural 

selection, local adaptation, genetic load, and structural variation. Theory, for example, predicts 

that local adaptation in the face of gene flow will often occur through inversions and linkage 

blocks (241), but initial evidence in corals suggests that local adaptation of thermal tolerance 

involves many genes of small effect (9). Whether large linkage blocks also play an important 

role in local adaptation on reefs remains unclear, and the high rates of gene flow for most coral 

reef taxa and the potential for independent selection on each generation may mean the patterns 

and mechanisms differ from those appearing on land (89, 221). 

Genetic load: reduced fitness (survival or reproduction) of a population because of deleterious 
genes or genotypes 
Linkage block: an area of the genome in which alleles are likely to be inherited together because 
of reduced rates of recombination 
 

Chromosome-scale genomes are now being generated for coral reef organisms (Figure 5), 

costs are dropping under $5,000 for sequencing new genomes (67), and complete and error-free 

genome assemblies for both maternal and paternal haplotypes are becoming possible (162). The 

availability of assembled genomes, however, is completely dwarfed by the diversity of coral reef 

organisms, including microbes. Most attention to date has focused on fishes and stony corals 

(Figure 5), mirroring their ecological and economic importance as fishery targets and foundation 

species. The ability to bring long-read DNA sequencers to the field provides a novel opportunity 

to rapidly expand the availability of genomic resources for coral reef taxa (27, 39) by expediting 

sequencing timelines, involving local scientists, and simplifying permit logistics. 

<COMP: PLEASE INSERT FIGURE 5 HERE> 

Figure 5 Genome assemblies available from the National Center for Biotechnology Information 
(NCBI) for eukaryotic organisms identified as coral reef–associated by FishBase and 
SeaLifeBase as of November 2022 (77, 163, 196). Non-chordates are organized by phylum, and 
chordates are organized by class. Phyla and classes are shown according to the current FishBase 
and SeaLifeBase taxonomies, which are not necessarily up to date. Only one genome was 
counted when multiple assemblies were available for the same species. Missing taxa reflect 
database gaps and lack of taxonomic harmonization across databases, including at least 14 
missing zooxanthellae genomes (phylum Dinophyta or Myzozoa, depending on taxonomic 
system) (49). 
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Historical Samples and Baselines 
Understanding the population genomic changes occurring on coral reefs relies in part on having 

accurate baselines. Genomic time series provide insight into processes such as drift, gene flow, 

and selection that cannot be disentangled from contemporary samples (208). While time series 

can be collected specifically for research, understanding longer processes over decades or 

centuries often relies on the availability of historical or ancient samples (24). DNA from tropical 

environments degrades quickly, greatly limiting but not eliminating the availability of ancient 

samples from coral reefs (103). Metabarcoding ancient DNA from coral reef cores, sediments, 

and middens has become possible (83, 87, 199), however, and preserved museum samples 

provide an underexplored resource. The US National Museum of Natural History, for example, 

houses one of the largest collections of tropical fishes, many collected in the 1907–1909 

Albatross expedition and suitable for DNA sequencing (115). 

Democratization of Population Genomics Infrastructure 

As population genomic research on coral reefs expands, there remains a striking disparity 

between the location of reefs and the location of researchers and resources for population 

genomics. This disparity means that much of the population genomic research is concentrated in 

Hawaii, on the Great Barrier Reef, and in Florida, rather than in species-rich regions of the Coral 

Triangle and East Africa (73, 116). Overcoming this geographic bias will require the further 

development of close collaborations between researchers in high- and low-income countries, 

with particular attention to local and Indigenous consent, benefit sharing, local priorities, and 

capacity building rather than exclusionary and colonial approaches to science (223). Groups such 

as the Western Indian Ocean Marine Science Association (WIOMSA) and the Coastal Oceans 

Research and Development—Indian Ocean (CORDIO) are organized in part to address these 

issues. Workshops on and access to funding for population genomic lab techniques, 

bioinformatics, and data analysis can also help build capacity. 

SUMMARY 

Coral reefs present a fascinating combination of microevolutionary processes—including weak 

drift, strong biotic and abiotic gradients, and extensive gene flow—that contrast with more 

deeply studied terrestrial systems. At the same time, these ecosystems are exceptionally 
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important to human well-being and highly threatened by environmental change. Research to date 

has revealed surprisingly few evolutionary impacts of global change, but this likely reflects a 

lack of attention and limited application of population genomic tools at wide enough scales 

rather than a paucity of impacts. Rapid evolutionary adaptation facilitated by high standing 

genetic variation has the potential to play an important role in the future of coral reef taxa, and 

the extent and limits of evolutionary rescue on coral reefs present an urgent research topic. The 

confluence of basic science questions and applied science needs provides critical research 

opportunities at the nexus of population genomics, conservation biology, and global change. 

SUMMARY POINTS 

1. Coral reefs are among the most biodiverse and threatened ecosystems on the planet, 

sparking rapid growth in population genetic research over the last 20 years. 

2. Many coral reef taxa are characterized by extensive gene flow, large effective 

population sizes, patchy habitats, and strongly divergent selection across fine-grained 

environmental variation, setting up a unique mix of microevolutionary processes. 

3. Global change, such as climate change, is already altering the course of evolution on 

coral reefs, including population bottlenecks, evolutionary adaptation to novel 

environments, changes in gene flow, and increased rates of hybridization among coral 

reef taxa. 

4. Models and limited empirical data suggest that corals possess some capacity for 

evolutionary rescue from climate change and other forms of global change, but the 

effectiveness of this process for maintaining populations and species depends on the 

rate of environmental change, evolutionary trade-offs, and the amount of standing 

genetic variation. 

FUTURE ISSUES 

1. As coral reef taxa continue to face rapid climate change and anthropogenic impacts, a 

key question concerns their evolutionary potential and potential for evolutionary 

rescue, including trade-offs that may impede evolutionary rescue. 

2. Coral reef taxa exhibit genomic evidence of strong, spatially divergent selection and 
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phenotypic evidence of local adaptation, but given their potential for well-mixed gene 

pools, the genomic architecture for these evolutionary patterns and the relative roles 

of multigenerational inheritance versus independent selection on each generation 

remain unclear. 

3. New research is needed to understand the amount of standing genetic variation in 

coral reef taxa for global change–relevant traits, the genomic architecture of such 

traits, the mechanisms maintaining such variation, and the best proxies for this 

variation across species. 

4. Progress on understanding demographic history, natural selection, local adaptation, 

genetic load, and standing genetic variation will rely on expanding the availability 

and quality of genomic resources for coral reef taxa, including genomic sampling 

through time from natural history or contemporary scientific collections. 

5. Close collaborations and capacity building in coral-rich, low-income countries are 

needed to overcome biases in the location and focus of existing coral reef research. 
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Table 1 Summary of research on observed genomic changes on tropical coral reefs 

 

Evolutionary process Numbera Study Organism Driver of 
change Summary 

Bottlenecks and 
change in diversity 

1 Lacson & Morizot (1991) 
(123) 

Damselfish 
(Stegastes 
partitus) 

Hurricane 
Temporary genetic 
differentiation was 
observed after a hurricane. 

2 Fifer et al. (2022) (70) 
Coral 
(Acropora 
hyacinthus) 

Range 
expansion 

Reduced diversity and 
signatures of local 
adaptation to lower winter 
temperatures were found at 
the expansion front. 

3 Nakabayashi et al. (2019) 
(155) 

Coral (A. 
hyacinthus) 

Range 
expansion 

Lower genetic diversity was 
observed in marginal 
habitats along the 
expansion front. 

4 Bors et al. (2019) (16) 
Lionfish 
(Pterois 
volitans) 

Range 
expansion 

Allele surfing was observed 
in the introduced Atlantic 
range. 

5 Souter et al. (2010) (211) 

Coral 
(Acropora 
millepora, 
Acropora 
pulchra) 

Bleaching 

No loss of genetic diversity, 
but a change in genetic 
composition was found 
following a severe 
bleaching event. 



 2 

6 Bernard et al. (2016) (13) 

Nassau 
grouper 
(Epinephelus 
striatus) 

Overfishing 

Temporary heterozygote 
excess was observed after 
overfishing. 

Adaptation 

7 Reiskind et al. (2019) (182) 
Lionfish 
(Pterois 
volitans) 

Range 
expansion 

Local adaptation to 
introduced Atlantic range 
was observed. 

8 Tisthammer et al. (2021) 
(220) 

Coral (Porites 
lobata) Pollution 

Genetic differentiation was 
observed between coral in 
heavily polluted nearshore 
and higher-quality offshore 
environments. 

Gene flow 9 Underwood et al. (2007) 
(225) 

Coral 
(Seriatopora 
hystrix) 

Bleaching 

Population declined at some 
but not all sites, and this 
facilitated rare long-
distance gene flow.  

Hybridization and 
secondary contact 

10 Coleman et al. (2014) (38) 

Damselfish 
(Abudefduf 
vaigiensis, 
Abudefduf 
abdominalis) 

Pollution 

Observed hybridization 
levels were higher in parts 
of the Hawaiian 
archipelago with heavy 
human habitation; 
introduced species arrived 
to the island chain via 
hitchhiking with marine 
debris. 

11 Mullen et al. (2012) (151) 
Damselfish 
(Stegastes 
adustus, 

Hurricane 
Extensive hybridization was 
observed due to reef 
substrate destruction by 



 3 

Stegastes 
diencaeus) 

frequent hurricanes. 

 

aNumbers in the table correspond with numbers in Figure 3. 
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